Παραγωγή πιθανοτικών κατανομών με βάση την εντροπία: Εφαρμογή στην ημερήσια βροχόπτωση

S.M. Papalexiou, and D. Koutsoyiannis, Entropy based derivation of probability distributions: A case study to daily rainfall, Advances in Water Resources, 45, 51–57, doi:10.1016/j.advwatres.2011.11.007, 2012.

[Παραγωγή πιθανοτικών κατανομών με βάση την εντροπία: Εφαρμογή στην ημερήσια βροχόπτωση]

[doc_id=1182]

[Αγγλικά]

Το πλήρες κείμενο διατίθεται μόνο στο δίκτυο του ΕΜΠ λόγω νομικών περιορισμών

PDF Συμπληρωματικό υλικό:

Βλέπε επίσης: http://dx.doi.org/10.1016/j.advwatres.2011.11.007

Εργασίες μας στις οποίες αναφέρεται αυτή η εργασία:

1. D. Koutsoyiannis, Uncertainty, entropy, scaling and hydrological stochastics, 1, Marginal distributional properties of hydrological processes and state scaling, Hydrological Sciences Journal, 50 (3), 381–404, doi:10.1623/hysj.50.3.381.65031, 2005.
2. S.M. Papalexiou, and D. Koutsoyiannis, Ombrian curves in a maximum entropy framework, European Geosciences Union General Assembly 2008, Geophysical Research Abstracts, Vol. 10, Vienna, 00702, doi:10.13140/RG.2.2.23447.98720, European Geosciences Union, 2008.
3. S.M. Papalexiou, and D. Koutsoyiannis, Probabilistic description of rainfall intensity at multiple time scales, IHP 2008 Capri Symposium: “The Role of Hydrology in Water Resources Management”, Capri, Italy, doi:10.13140/RG.2.2.17575.96169, UNESCO, International Association of Hydrological Sciences, 2008.

Εργασίες μας που αναφέρονται σ' αυτή την εργασία:

1. F. Lombardo, E. Volpi, and D. Koutsoyiannis, Rainfall downscaling in time: Theoretical and empirical comparison between multifractal and Hurst-Kolmogorov discrete random cascades, Hydrological Sciences Journal, 57 (6), 1052–1066, 2012.
2. S.M. Papalexiou, D. Koutsoyiannis, and C. Makropoulos, How extreme is extreme? An assessment of daily rainfall distribution tails, Hydrology and Earth System Sciences, 17, 851–862, doi:10.5194/hess-17-851-2013, 2013.
3. S.M. Papalexiou, and D. Koutsoyiannis, Battle of extreme value distributions: A global survey on extreme daily rainfall, Water Resources Research, 49 (1), 187–201, doi:10.1029/2012WR012557, 2013.
4. A. Efstratiadis, A. D. Koussis, D. Koutsoyiannis, and N. Mamassis, Flood design recipes vs. reality: can predictions for ungauged basins be trusted?, Natural Hazards and Earth System Sciences, 14, 1417–1428, doi:10.5194/nhess-14-1417-2014, 2014.
5. D. Koutsoyiannis, Entropy: from thermodynamics to hydrology, Entropy, 16 (3), 1287–1314, doi:10.3390/e16031287, 2014.
6. T. Iliopoulou, S.M. Papalexiou, Y. Markonis, and D. Koutsoyiannis, Revisiting long-range dependence in annual precipitation, Journal of Hydrology, doi:10.1016/j.jhydrol.2016.04.015, 2016.
7. S.M. Papalexiou, and D. Koutsoyiannis, A global survey on the seasonal variation of the marginal distribution of daily precipitation, Advances in Water Resources, 94, 131–145, doi:10.1016/j.advwatres.2016.05.005, 2016.
8. D. Koutsoyiannis, and S.M. Papalexiou, Extreme rainfall: Global perspective, Handbook of Applied Hydrology, Second Edition, edited by V.P. Singh, 74.1–74.16, McGraw-Hill, New York, 2017.

Άλλες εργασίες που αναφέρονται σ' αυτή την εργασία: Δείτε τις στο Google Scholar ή στο ResearchGate

Άλλες εργασίες που αναφέρονται σ' αυτή την εργασία (αυτός ο κατάλογος μπορεί να μην είναι ενημερωμένος):

1. Zhang, L., and V. P. Singh, Bivariate rainfall and runoff analysis using entropy and copula theories, Entropy, 14, 1784-1812, 2012.
2. Kumphon, B., Maximum entropy and maximum likelihood estimation for the three-parameter kappa distribution, Open Journal of Statistics, 2 (4), 415-419, doi: 10.4236/ojs.2012.24050, 2012.
3. #Singh, V. P., Entropy Theory and its Application in Environmental and Water Engineering, Wiley, 2013.
4. Weijs, S. V., N. van de Giesen and M.B. Parlange, HydroZIP: How hydrological knowledge can be used to improve compression of hydrological data, Entropy, 15, 1289-1310, 2013,
5. Paschalis, A., P. Molnar, S. Fatichi and P. Burlando, On temporal stochastic modeling of precipitation, nesting models across scales, Advances in Water Resources, 63, 152-166, 2014.
6. Serinaldi, F., and C. G. Kilsby, Rainfall extremes: Toward reconciliation after the battle of distributions, Water Resources Research, 50 (1), 336-352, 2014.
7. Zhe, L. D. Yang, Y. Hong, J. Zhang and Y. Qi, Characterizing spatiotemporal variations of hourly rainfall by gauge and radar in the mountainous three gorges region, J. Appl. Meteor. Climatol., 53, 873–889, 2014.
8. Ridolfi, E., L. Alfonso, G. Di Baldassarre, F. Dottori, F. Russo, and F. Napolitano, An entropy approach for the optimization of cross-section spacing for river modelling, Hydrological Sciences Journal, 59 (1), 126-137, 2014.
9. Hosking, J. R. M., and N. Balakrishnan, A uniqueness result for L-estimators, with applications to L-moments, Statistical Methodology, 10.1016/j.stamet.2014.08.002, 2014.
10. Brouers, F., Statistical foundation of empirical isotherms, Open Journal of Statistics, 4, 687-701, 2014.
11. Hao, Z., and V.P. Singh, Integrating entropy and copula theories for hydrologic modeling and analysis, Entropy, 17 (4), 2253-2280, 2015.
12. Fan, Y.R., W.W. Huang, G.H. Huang, K. Huang, Y.P. Li, and X.M. Kong, Bivariate hydrologic risk analysis based on a coupled entropy-copula method for the Xiangxi River in the Three Gorges Reservoir area, China, 10.1007/s00704-015-1505-z, 2015.

Κατηγορίες: Εντροπία, Μοντέλα βροχής