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Entropy as a measure of uncertainty

� Definition of entropy of a random variable z (adapted from Papoulis, 1991)

Φ[z] := E[–ln[ f(z)/l(z)]] = –∫-∞ f(z) ln [f(z)/l(z)] dz [dimensionless]

where f(z) the probability density function, with ∫-∞ f(z) dz = 1, and l(z) a 
Lebesgue density (numerically equal to 1 with dimensions same as in f(z))

� Definition of entropy production for the stochastic process z(t) in continuous 
time t (from Koutsoyiannis, 2011)

Φ΄[z(t)] := dΦ[z(t)] / dt [units T-1]

� Definition of entropy production in logarithmic time (EPLT) 

φ[z(t)] := dΦ[z(t)] / d(lnt) ≡ Φ΄[z(t)] t [dimensionless]

� Note 1: Starting from a stationary stochastic process x(t), the cumulative 

(nonstationary) process z(t) is defined as z(t) := ∫0

t
x(τ) dτ; consequently, the 

discrete time process xi
Δ := z(iΔ) – z((i – 1)Δ) represents stationary intervals 

(for time step Δ in discrete time i) of the cumulative process z(t)

� Note 2: For any specified t and any two processes z1(t) and z2(t), any 
inequality between entropy productions, e.g. Φ΄[z1(t)] < Φ΄[z2(t)] holds also 
for EPLTs, e.g. φ[z1(t)] < φ[z2(t)] 

∞

∞



D. Koutsoyiannis & S. M. Papalexiou, Scaling as enhanced uncertainty 3

The principle of maximum entropy (ME)

� The principle of maximum entropy postulates that the entropy of a random 
variable should be at maximum, under some conditions, formulated as 
constraints, which incorporate the information that is given about this 
variable

� Entropy maximization of a random variable z bounded within [0, b]: 

� uniform, f(z) = 1/b

� Entropy maximization of a nonnegative variable unbounded from above: 

� No constraint: not defined

� Constrained mean μ: exponential, f(z) = (1/μ) exp(–z/μ)

� Constrained mean μ and standard deviation σ: 

� if σ < μ: truncated Gaussian, f(z) = exp{–[(z – μ)/σ]2/2} / [√(2π)σ] 
tending to exponential as σ → μ (or σ/μ → 1 from below)

� if σ > μ: not defined

� Entropy maximization of a random variable z unbounded from both below 
and above: 

� No constraint or constrained mean μ: not defined

� Constrained mean μ and standard deviation σ: 
Gaussian, f(z) = exp{–[(z – μ)/σ]2/2} / [√(2π)σ]
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Typical application of principle of ME to thermodynamics
� Consider a motionless cube with edge a (volume V = a3) containing N identical 

monoatomic molecules, each one with mass m, of a gas in motion with total 
(internal) energy U

� Each molecule is described by 6 variables, 3 indicating its position xi and 3 indicating 
its velocity vi, with i = 1, 2, 3; all are represented as random variables, forming the
vector z = (x1, x2, x3, v1, v2, v3)

� Independence among molecules can arguably be assumed

� Constraints for position: 0 ≤ xi ≤ a

� Constraints for velocity (where the integrals are over feasible ranges of variables):

� Preservation of momentum: Ε[m vi] = –∫ vi f(z) dz = 0 (the cube is not in motion)

� Preservation of energy: Ε[m ||v||2/2] = –∫ ||v||2/2 f(z) dz = m e, where e is the 
energy per unit mass (e := U/(m N))

� Application of the principle of maximum entropy with the above constraints will give 
the distribution of z as:

f(z) =  [3/(4π e)]3/2 (1/V) exp[-3||v||2/ (4e)]

� The marginal distributions are given by:

f(xi) = 1/a (uniform in [0, a])

f(ui) = [3/(4π e)]1/2 exp[-3vi
2/(4e)] (Gaussian with mean 0 and variance 2e/3 

= 2 × energy per degree of freedom) 

� These equations can yield the entire framework of the behaviour of gases at 
equilibrium, including relationships of macroscopic quantities such as pressure and 
temperature with volume (the equation of state, pV = nRT)
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Disambiguation of scaling: different types
� Scaling behaviours are typically represented as 

power laws of different statistical properties 

� distribution tails

� autocorrelograms

� periodograms

� climacograms

� Independent variables in such power laws could 
be different quantities such as 

� state-related: random variates representing 
states of a system

� time-related: temporal scale, spatial scale, 
time lag, frequency (inverse time) 

� space-related: spatial scale, spatial 
displacement, inverse space

� The power laws are applicable either on the 
entire domain of the variable of interest or 
asymptotically

Different (albeit often 
confused) types of scaling

scaling in time: refers to 
joint distributions of 
stochastic processes

scaling in space: refers to 
joint distributions of 
random fields

scaling in state: refers to 
marginal distributions
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Demystification of scaling

� The omnipresence of scaling behaviours has often been regarded as a 
mystery and has been interpreted by analogous ways, e.g. by invoking a 
“self-organizing” power of natural systems (cf. “self-organized criticalities”)

� In another view, power laws just contrast exponential laws:

� We often encounter functions f(x) ≥ 0 for which f(x) → 0 as x → ∞

� Asymptotically exponential decay is a fast decay: 

� there exist a, b, c > 0, b < 1, so that for all x > c, f(x) ≤ a bx

� Asymptotically power-law decay is a slow decay which is not exponential:

� there exist a, b, c > 0, so that for all x > c, f(x) ≤ a x ─b

(note: for f(x) to have finite integral over (c, ∞), b must be > 1)

� According to this view, scaling behaviours are just manifestations of 
enhanced uncertainty and are consistent with the principle of maximum 
entropy (as will be shown below)
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Maximum entropy and scaling in state 

� Most hydrometeorological variables are non-negative physical quantities 
unbounded from above; examples: precipitation, streamflow, temperature 
(expressed in kelvins or in joules)

� The mean μ and variance σ2 are important indices of the statistical behaviour 
(see Koutsoyiannis, 2005) with a intuitive conceptual meaning

� but they are not constrained by physical laws as e.g. in the kinetic theory 
of gases; rather they are estimated from data

� When σ/μ < 1 , the mean and variance can be loosely used as constraints,
thus yielding distributions with exponential tails: from Gaussian to 
exponential → no scaling; example: temperature

� When σ/μ > 1 (highly variable processes), the mean and variance cannot 
provide workable constraints and different constraints should be used 
→ possible scaling (example: precipitation at fine temporal or spatial scales)

� When at some temporal or spatial scale a process exhibits scaling in state, 
i.e. power-law tail of its density function, f(x) ∝ x ─b with b > 0, then it can be 
shown that it will have the same asymptotic scaling behaviour with same b
at all time scales 
(note: in aggregate scales this may be difficult to observe, except in very long 
records)
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Towards workable constraints in highly variable 
geophysical processes
� Generalization of the classical power moments with p-moments (Papalexiou and 

Koutsoyiannis, 2011)

� A p-moment is defined to be the expectation E[zp
q], where 

zp
q := pq ln[1 + (z/p)q]

whereas p is a scale 
parameter with units 
identical to those of z

� For p → ∞, zp
q → zq

(the classical raise to 
power q)

� For finite p and for 
small z, zp

q ≈ zq, 
while for large z, 
zp

q∝ ln(z/p)

An example plot of zp
q

for p = 10 and q = 1

Large z: 
use ln z

{Ƴŀƭƭ z: 
use z
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Simplest case—a single constraint

� The simplest constraint is formed by setting the exponent q = 1, so that we 
get a “generalized mean”, i.e.:

E[zp
1] = E[p ln(1 + z/p)] = mp

� The entropy maximizing distribution (derived by the general methodology in 
Papoulis, 1991, p. 571) is

f(z) = A exp [─λ1p ln(1 + z/p)] = Α (1 + z/p)─λ1p

where λ1 is a Lagrange multiplier and A is such that ∫-∞ f(z) dz = 1

� By renaming parameters (p = λ/κ, λ1 = (1 + κ)/λ) we obtain the typical 
expression of the 2-parameter Pareto distribution

f(z) = (1/λ) (1 + κ z/λ)─1 ─ 1/κ

with mean μ = λ/(1 – κ), standard deviation σ = λ/[(1 – κ) √(1 – 2κ)], 
generalized mean mp = λ and entropy Φ[z] = 1 + κ + ln λ

� The exponential distribution is fully recovered by setting κ = 0 (p = ∞); its 
statistics are μ = σ = λ, mp = p exp(λp) Γλp(0)/λ2, and Φ[z] = 1 + ln λ

� In Pareto σ/μ = 1/√(1 – 2κ) > 1, while in exponential σ/μ = 1

∞
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Verification based on extreme daily rainfall 
worldwide

Data set: Daily rainfall from 168 stations worldwide each having at least 100 
years of measurements; series above threshold, standardized by mean and 
unified; period 1822-2002; 17922 station-years of data.

0.1

1

10

0.1 1 10 100 1000 10000 100000

T  (years)

x

Empirical Pareto
Exponential Truncated Normal
Normal

μ = 0.28 
(mean minus 
threshold)
σ/μ = 1.19 > 1
ME distribution: 
Pareto, κ = 0.15

Scaling behaviour
appears for 
T > ~50 yr 
(Koutsoyiannis, 
2005)
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Enhanced uncertainty with respect to extremes
� The two density functions plotted, Pareto (fP(z)) with κ = 0.15 and λP = 0.9 

and exponential (fE(z)) with λE = 0.953 have same mp = 0.9 for p = λP/κ = 6 

� Their means are μP = 1.059 > μE = 0.953 and their entropies are ΦP = 1.045 > 
ΦΕ = 0.952.

While the two 
distributions are 
almost 
indistinguishable 
for z < 3μ, the 
scaling Pareto 
distribution gives 
extremes orders 
of magnitude 
more often than 
the non-scaling 
exponential 
distribution
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Maximum entropy and scaling in time
� Scaling in time refers to the dependence structure  of a process rather than 

to marginal distributional properties

� The dependence structure can be expressed in terms of autocorrelogram, 
periodogram or climacogram, which are transformations of one another

� If any one of these is expressed as a power law, then all are power laws

� The simplest process with scaling properties in time is the Hurst-Kolmogorov 
(HK) process (due to Hurst, 1951, and Kolmogorov, 1940), while the simplest 
non-scaling process is the Markov process (AR(1) process in discrete time, 
Ornstein–Uhlenbeck process in continuous time) 

� For determining the dependence structure by entropy extremization, 
because time is involved, Koutsoyiannis (2011) suggested the use of entropy 
production (the dimensionless EPLT in particular) with the assumptions of:

� constrained mean μ and variance σ2, which result in Gaussian marginal 
distribution (assumption good for σ/μ << 1); in this case we have:

Φ[z(t)] = (1/2) ln[2πe γ(t)] where γ(t) := Var [z(t)] (see slide 2)

� constrained lag-one autocorrelation ρ

� Scaling in space is very similar to scaling in time, derived by extending the 
latter in higher dimensions and substituting space for time (cf. Koutsoyiannis 
et al., 2011)
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The two EPLT extremizing solutions

0
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t

φ (t )
Markov, unconditional

Markov, conditional

HK, unconditional+conditional

As t → 0, the EPLT is 
maximized by a 
Markov process

As t → 0, the EPLT is 
minimized by an HK
process

As t → ∞, the EPLT is 
minimized by a 
Markov process

As t → ∞, the EPLT is 
maximized by an HK
process

The conditional EPLT 
corresponds to the case where 
the past has been observed

The solutions depicted are generic, valid for any Gaussian process, independent of μ and 
σ, and depended on ρ only (the example is for ρ = 0.543)—see Koutsoyiannis (2011)

The HK process has constant 
EPLT = H, where H is the 
Hurst coefficient—the 
exponent of the power law: 
H = ½ + ½ ln(1 + ρ)/ln 2
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Application to the annual temperature of Vienna
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Mean annual temperature of Vienna, Austria (48.25° N, 16.37° E, 209 m): one of the 
longest available instrumental geophysical records—235 years of data (1775–2009) 
available from the climexp.knmi.nl, partly included in the Global Historical Climatology 
Network (GHCN; 1851–1991)
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Comparison of the Markov and HK models 
(Vienna temp.)
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The low coefficient 
of variation (σ/μ = 
0.0031 for 
temperature in K), 
suggests Gaussian 
distribution (verified 
by the data)

The HK model (H = 
0.74) is appropriate, 
while the Markov 
model (ρ = 0.3) is 
inappropriate
(from Koutsoyiannis, 
2011)

Logarithm of aggregation scale Δ

One-to-one correspondence (linear relationship) 
between entropy Φ[xΔ] and logarithm of variance γ(Δ)

See notation 
on slide 2 

In addition, 
g(Δ) is the 
standard 
estimator of 
the variance 
γ(Δ), which 
is biased: 
E[g(Δ)] < 
γ(Δ)

This is 
remedied by 
appropriate 
adaptation
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Summary and conclusions
� Scaling behaviours are typically represented as power laws, as contrasted to 

exponential laws, and can be classified in different types: scaling in state, in 
time and in space

� Scaling behaviours are manifestations of enhanced uncertainty and are 
consistent with the principle of maximum entropy

� The connection of scaling with maximum entropy constitutes also a 
connection of stochastic representations of natural processes with statistical 
physics, in which, notably, maximum entropy considerations provide a basis 
for the Second Law of thermodynamics

� Extremal entropy considerations may thus provide theoretical background in 
modelling complex natural processes, which otherwise is heuristic and data-
driven

� The examples given demonstrate: 

� the emergence of scaling from maximum entropy considerations 

� the consistency of scaling with real world behaviours, and

� the enhancement of uncertainty due to scaling

Uncertainty is the only certainty there is, 
and knowing how to live with insecurity is the only security

(Paulos, 2003, p. v, quoting his father)
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