SOME 024: Computer Aided Design

E. Rozos

Introduction to CAD theory part 1

Lesson structure

- Definitions (raster-vector, topology-geometry, coordinates, projections)
- Basic 2D shapes
- 3D geometric modelling
- Parametric shapes
- Surface modelling

Definitions-type of graphics

Raster graphics

The objects are represented with a set of pixels-cells laid on a grid.

Vector graphics

The objects are represented with geometrical primitives.

Definitions-type of graphics

Raster graphics

Applications: link the spatial data with other kind of information (e.g. height, temperature, mean annual rainfall), spatial related operations (aggregation, interpolation), spatial queries, spatial statistics, 2D numerical models.

Data storage: binary with the form of a 2D matrix

Vector graphics

Applications: Geometrical operations (intersections, union), objects are handled as entities, representation accuracy. **Data storage:** parametrically using analytical forms

Definitions-topology geometry

Topology

The branch of mathematics dealing with the Connectivity of geometric elements not including specific information of those elements.

Geometry

The branch of mathematics dealing with the measurements of lines, angles, surfaces and solids.

Cartesian coordinates

2D cartesian coordinates (x,y)

3D cartesian coordinates (x,y,z)

Suitable for spaces described by Euclidian geometry.

Homogeneous coordinates

2D Homogeneous coordinates (x,y,w). Each point on plain W=1 is associated with a line joining it with the origin of the 3D space.

Transformation of a circle disk to elliptical disk.

Transformations

Translation, rotation, reflection, scaling, inversion, shearing.

Corner points	Original coordinates	New coordinates
P1	(2,4.5,1)	(6,4.5,1)
P2	(3,2.5,1)	(7,2.5,1)
P3	(2,2.5,1)	(6,2.5,1)
P4	(2,2.5,-2)	(6,2.5,-2)
P5	(3,2.5,-2)	(7,2.5,-2)
P6	(2,4.5,-2)	(6,4.5,-2)

Corner points	Original coordinates	New coordinates
P1	(2,4.5,1)	(-4.5,2,1)
P2	(3,2.5,1)	(-2.5,3,1)
P3	(2,2.5,1)	(-2.5,2,1)
P4	(2,2.5,-2)	(-2.5,2,-2)
P5	(3,2.5,-2)	(-2.5,3,-2)
P6	(2,4.5,-2)	(-4.5,2,-2)

Mathematic implementation of the transformations using 3D homogeneous coordinates.

Rotation around x
$$\mathbf{R}_{x} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 \\ 0 & \sin & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Rotation around y $\mathbf{R}_{y} = \begin{bmatrix} \cos \theta & 0 & \sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta & 0 & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

Rotation around z
$$\mathbf{R}_z = \begin{bmatrix} \cos \theta & -\sin \theta & 0 & 0 \\ \sin & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Translation **T**= $\begin{bmatrix} 1 & 0 & 0 & \Delta x \\ 0 & 1 & 0 & \Delta y \\ 0 & 0 & 1 & \Delta z \\ 0 & 0 & 0 & 1 \end{bmatrix}$

Sx	0	0	0
0	Sy	0	0
0	0	Sz	0
0	0	0	1

Apply translation, rotation around x, rotation around y to P_1 : $P_2=R_yR_xTP_1$ Undo: $P_1=T^{-1}R_x^{-1}R_y^{-1}P_2$

2D polar coordinates (r, θ)

 $x = r \cos\theta$, $y = r \sin\theta$ Applications in problems with circular symmetry (point heat source in an infinite plate)

3D cylindrical coordinates (r, \theta, Z) $x = r \cos \theta$, $y = r \sin \theta$, z = Z

3D spherical coordinates (r, θ , ϕ)

 $x = r \sin \phi \cos \theta$, $y = r \sin \phi \sin \theta$, $z = r \cos \phi$ Applied in non Euclidean spaces.

Definitions-projection types

Parallel projection

Oblique, only sizes parallel to projection plane are preserved

Isometric, axes equally foreshortened

Definitions-projection types

Orthographic Multi-views projection

1st angle projection (viewer inside box)

3rd angle projection (viewer outside box)

Definitions-projection types

Perspective projection

Easy to conceive the 3D form, shape and size to scale are not preserved

Basic 2D shapes-line segment

Parallel to a lin. seg. at specified distance

.

Tangent to a circle

From a point with specified length and angle

Basic 2D shapes-circle, arc

point.

Wire frame modelling

A wire frame representation of a 3D object consist of a finite set of points (vertices) and connecting edges. The representation is a trade of between fidelity and easiness of representation.

The wire frame representation consist of two types of information concerning:

- 1. The geometric data (coordinate positions of the vertices)
- 2. The topological data (relate pairs of vertices together as edges)

3D geometric modelling

Vertex list Ed	e list	Face list	× 1/2
$ \begin{array}{c ccccc} V_1 & (0,0,0) & & & & & & \\ V_2 & (0,0,1) & & & & & \\ V_3 & (1,0,1) & & & & & \\ V_4 & (1,0,0) & & & & & \\ V_5 & (1,1,0) & & & & & \\ V_6 & (1,1,1) & & & & & \\ V_7 & (0,1,1) & & & & \\ V_8 & (0,1,0) & & & & \\ \end{array} $	$\begin{array}{l} {E_7} & < {V_7},{V_8} > \\ {E_8} & < {V_8},{V_1} > \\ {E_9} & < {V_2},{V_7} > \\ {E_{10}} < {V_3},{V_6} > \\ {E_{11}} < {V_1},{V_4} > \\ {E_{12}} < {V_8},{V_5} > \end{array}$	$\begin{array}{ll} F_1 & < \mathcal{E}_1, \mathcal{E}_2, \mathcal{E}_3, \mathcal{E}_{11}. > \\ F_2 & < \mathcal{E}_7, \mathcal{E}_6, \mathcal{E}_5, \mathcal{E}_{12} > \\ F_3 & < \mathcal{E}_1, \mathcal{E}_9, \mathcal{E}_7, \mathcal{E}_8 > \\ F_4 & < \mathcal{E}_3, \mathcal{E}_{10}, \mathcal{E}_5, \mathcal{E}_4 > \\ F_5 & < \mathcal{E}_8, \mathcal{E}_{12}, \mathcal{E}_4, \mathcal{E}_{11} > \\ F_8 & < \mathcal{E}_9, \mathcal{E}_6, \mathcal{E}_{10}, \mathcal{E}_2 > \end{array}$	
			Va
Geometric data	Topologic	al data	x

The simplest representation of a cone with only 3 vertices, 1 vertex for the apex, 2 vertices defining the diameter of the base. The fidelity may be improved by adding more vertices to the base.

Vertex list	Vertex list Edge list	
$\begin{array}{c} V_1 & \{0,0,3\} \\ V_2 & (-1,0,0) \\ V_3 & (1,0,0) \end{array}$	$\begin{array}{l} E_1 & < V_1, V_2 > \\ E_2 & < V_1, V_3 > \\ E_3 & < V_2, V_3 > \\ E_4 & < V_2, V_3 > \end{array}$	Linear Linear Semi-circular Semi-circular

3D geometric modelling

Low level constrains

- Each vertex described by 3 coordinate values
- Each edge associated with only 2 vertices
- Edges must form close loops
- Edges should not intersect

Object validity is not guaranteed

Parametric curve and surface geometry

Parametric form of a straight line with 2 control points (\mathbf{p}_1 , \mathbf{p}_2) $\mathbf{r}(u) = (1-u) \mathbf{p}_1 + u \mathbf{p}_2$

Parametric bilinear surface with 4 control points (\mathbf{p}_1 , \mathbf{p}_2 , \mathbf{p}_3 , \mathbf{p}_4) $\mathbf{r}(u,v) = (1-v) (1-u) \mathbf{p}_1 + (1-v) u \mathbf{p}_2 + v (1-u) \mathbf{p}_3 + v u \mathbf{p}_4$

Parametric curve and surface geometry

Bezier cubic parametric curve 4 control points $(\mathbf{p}_1, \mathbf{q}_1, \mathbf{q}_2, \mathbf{p}_2)$ $\mathbf{r}(u) = (1-u)^3 \mathbf{p}_1 + 3u(1-u)^2 \mathbf{q}_1 + 3u^2 (1-u) \mathbf{q}_2 + u^3$

Bezier bicubic parametric patch with 16 control points ($\mathbf{p}_1, ..., \mathbf{p}_4, \mathbf{q}_1, ..., \mathbf{q}_{12}$)

Parametric curve and surface geometry Splines

For n given points there exists a unique polynomial of degree n-1 or less which passes through these points.

A spline is a piecewise polynomial such that the function (G0), its derivative (G1) and its second derivative (G2) are continuous at the interpolation nodes.

Parametric curve and surface geometry Non uniform rational Basis-Splines (NURBS)

A NURBS curve is defined by:

- its order i.e. the maximum degree of the polynomial basis functions.
- a set of control points i.e. the points from which the curve passes.
- a knot vector that determines where and how the control points affect the NURBS curve; the number of knots is always equal to the number of control points plus curve degree plus one.

Parametric curve and surface geometry Non uniform rational Basis-Splines (NURBS)

Basis functions used in NURBS.

 $N_{i'n} = f_{i'n}N_{i'n-1} + g_{i+1'n}N_{i+1'n-1}$

where i the ith control point, n degree of basis function, f and g

weigthing functions depending on knots.

Surface modelling

Test the aesthetic and functionality of surfaces in components such as car bodies or simulated the fluid dynamics (turbine blades, boat hulls, etc.)

Creation methods

- 1. The user supplies an array of control points. The surface modeller fits a Bezier bicubic parametric patch to the control features.
- 2. The 3D surface is created either by sweeping a curve along a guide rail or by lofting a mesh of curves.

Surface modelling

