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Entropy is uncertainty quantified: Definitions

� Entropy of a continuous random variable z (adapted from Papoulis, 1991)

Φ[z] := E[–ln[ f(z)/l(z)]] = –∫-∞ f(z) ln [f(z)/l(z)] dz [dimensionless]

where f(z) the probability density function, with ∫-∞ f(z) dz = 1, and l(z) a 
Lebesgue density (numerically equal to 1 with dimensions same as in f(z))

� Entropy production for the stochastic process z(t) in continuous time t (from 
Koutsoyiannis, 2011)

Φ΄[z(t)] := dΦ[z(t)] / dt [units T-1]

� Entropy production in logarithmic time (EPLT) 

φLT[z(t)] := dΦ[z(t)] / d(lnt) ≡ Φ΄[z(t)] t [dimensionless]

� Note 1: Starting from a stationary stochastic process x(t), the cumulative 

(nonstationary) process z(t) is defined as z(t) := ∫0

t
x(τ) dτ; consequently, the 

discrete time process xi
Δ := z(iΔ) – z((i – 1)Δ) represents stationary intervals 

(for time step Δ in discrete time i) of the cumulative process z(t)

� Note 2: For any specified time t and any two processes z1(t) and z2(t), an 
inequality relationship between entropy productions, such as Φ΄[z1(t)] < 
Φ΄[z2(t)] holds also true for EPLTs, i.e. φLT[z1(t)] < φLT[z2(t)] 

∞

∞
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The principle of maximum entropy (ME)
� The principle of maximum entropy postulates that the entropy of a random 

variable z should be at maximum, under some conditions, formulated as 
constraints, which incorporate the information that is given about this 
variable

� Entropy maximization of a random variable z bounded within [0, b]: 

� uniform, f(z) = 1/b

� Entropy maximization of a random variable z unbounded from both below 
and above: 

� No constraint or constrained mean μ: not defined

� Constrained mean μ and standard deviation σ: 
Gaussian, f(z) = exp{–[(z – μ)/σ]2/2} / [√(2π)σ]

� Entropy maximization of a nonnegative variable unbounded from above: 

� No constraint: not defined

� Constrained mean μ: exponential, f(z) = (1/μ) exp(–z/μ)

� Constrained mean μ and standard deviation σ: 

� if σ < μ: truncated Gaussian, f(z) = exp{–[(z – μ)/σ]2/2} / [√(2π)σ]
tending to exponential as σ → μ (or σ/μ → 1 from below)

� if σ > μ: not defined
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Some general questions and answers
� Why the probability for each outcome of a die is 1/6?

� Because this maximizes entropy (the uniform distribution maximizes 
uncertainty)

� Why in a particle’s motion the energy is equally distributed among the 
different degrees of freedom (the equipartition principle)?

� Because this maximizes entropy (see Appendix)

� Why the temperature in this room is fairly uniform?

� Because this maximizes entropy (see Appendix)

� Why in the composition of Earth’s atmosphere, nitrogen and oxygen are 
present and hydrogen is absent, while in planets far from the Sun 
hydrogen is present? 

� Because, to maximize entropy, the kinetic energy is equally 
distributed among different molecules; hence, hydrogen, which has 
molecular mass lower than oxygen and nitrogen, moves faster (~4 
times) and escapes to space, while nitrogen and oxygen cannot reach 
the escape velocity

� Planets far from the sun have lower temperature, which is 
proportional to the kinetic energy, and thus hydrogen cannot reach 
the escape velocity



D. Koutsoyiannis, A hymn to entropy 5

Some general questions and answers (cont’d)
� Is the law of ideal gases (pV = nRT) an empirical relationship or can it be 

deduced and how? 

� It can be easily derived by maximizing entropy (see Appendix)

� Is the specific heat (heat capacity per unit mass) of a gas an experimental 
quantity or can it be derived theoretically?

� The entropy maximization framework can derive heat capacities 
theoretically (see Appendix, where the theoretical value of the 
specific heat at constant pressure of the dry atmospheric air mixture 
(assuming that it is composed of diatomic molecules) is derived as cp = 
1004.8 J K−1 kg−1, while the experimental value is cp = 1004 J K−1 kg−1)

� Why the temperature in a vertical cross section across the troposphere 
varies substantially (decreases with increasing elevation), while the 
entropy per unit mass is fairly uniform (an isentropic state)?

� Because this maximizes entropy (see Appendix)

� What determines how much water is evaporated and condensed (cf. the 
Clausius-Clapeyron equation), thus providing the physical basis of the 
hydrological cycle?

� A combination of entropy maximization with energy availability
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Statistical vs. classical thermodynamics
� In classical thermodynamics, first we define temperature T, as well as a basic 

unit for it (kelvins) and then entropy S by dS := dQ / T, where Q denotes heat; 
the definition is perhaps affected by circularity, as it is valid for reversible 
processes, which are those in which dS = dQ / T, while irreversible are those 
in which dS > dQ / T

� In statistical thermodynamics, the entropy Φ is just the uncertainty, as 
defined in probability theory, and is dimensionless; the temperature is then 
defined by 1/θ := ∂Φ/∂U, where U is the internal energy of the system; the 
natural unit for temperature θ is then identical with that of energy (joules)

� Statistical thermodynamics provides explanations for the processes 
described by classical thermodynamics

� Classical thermodynamic equations can be derived from statistical 
thermodynamics by simple linear transformations: S = k Φ and T = θ/k where 
k = 0.138 065 yJ/K is the Boltzmann’s constant 

� The essential difference is in interpretation:

� Awareness of maximum uncertainty in statistical thermodynamics 

� Delusion of deterministic laws in classical thermodynamics
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Extremizing vs. equating
� The traditional approach to physics is based on writing equations, which 

express conservation laws; these govern the following quantities only:

� Mass (scalar equation)

� Linear momentum (vector equation)

� Angular momentum (vector equation)

� Energy (scalar equation)

� Electric charge (scalar equation)

� Conservation equations are not enough to describe processes, in which 
change occurs; in processes, Nature extremizes certain quantities, such as:

� Time for the path of light (cf. Hero’s and Fermat’s principles) 

� Action for the motion of simple systems

� Entropy for complex systems in equilibrium

� Entropy production for complex systems evolving in time

� Mathematically, extremizing is much more powerful than equating:

� A system of equations “g(s) = 0” can work if the number of equations 
equals the number of unknowns

� A single extremizing expression like “maximize f(s)” can work irrespective 
of the number of unknowns (it is equivalent to as many equations as 
needed)

� Nature is an extremizer—not an equalizer
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Uncertainty vs. certainty

� Thermodynamic equations, e.g. the ideal gas law pV = nRT, are 
statistical laws (relationships of expectations of random 
variables)

� While these laws are derived by maximizing entropy, i.e. 
uncertainty, they express near certainties and are commonly 
misinterpreted as deterministic laws

� The explanation of near certainty relies on these two facts:

� Typical thermodynamic systems are composed of hugely 
many identical elements: N ~ 1024 per kilogram of mass

� The random motion of each of the system elements is 
practically independent to the others’

� As a consequence, a random variable x expressing a macroscopic 
state, will have a variation std[x]/E[x] ~ 1/√N ~ 10–12 (for a 
kilogram of mass) 

� The fact that the macroscopic variability is practically zero 
should not mislead us to interpret the laws in deterministic 
terms
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Typical thermodynamic vs. hydrological systems 
A rain drop is a typical 
thermodynamic 
system with identical 
elements

However, rain drops are not 
identical to each other and 
their motion is affected by 
turbulence (photo from a 
monsoon in India) 

As the macroscopization level 
increases, the diversity of 
elements becomes more 
prominent (notice the different 
colours in the confluent rivers)

� Identical elements 

� Constraints derived from 
conservation principles

� Deduction: possible

� Different elements, each one being unique

� Constraints not related to conservation principles 

� Deduction: impossible; Induction (based on data): necessary

� Yet maximization of entropy, i.e., uncertainty, should work 
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From statistical thermodynamics of systems with 
identical elements to hydrological systems

� Higher level of macroscopization is associated with higher 
complexity

� Therefore, the probabilistic description is more imperative in 
the more complex hydrological systems

� Maximization of entropy (i.e., uncertainty) provides the path to
deal with the complex macroscopic hydrological systems

� This contrasts the recent research trend in hydrology, which 
invested hopes to the power of computers that would enable 
faithful and detailed representation of the diverse system 
elements and the hydrological processes, based on merely “first 
principles”, thus resulting in “physically-based” models that 
tend to approach in complexity the real world systems

� The aspiration of detailed and exact modelling traces a research 
direction that is wrong and opposite to how Nature works
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Expected difficulties in entropy maximization in 
high-level macroscopic hydrological systems
� The constraints in entropy extremization do not necessarily coincide with 

those in classical statistical thermophysics 

� In particular, the mean μ and variance σ2 are important indices of the 
statistical behaviour (see Koutsoyiannis, 2005) with a intuitive conceptual 
meaning, but they are not constrained by physical laws as in the kinetic 
theory of gases—rather they are estimated from data

� Independence among different elements and across time is most often 
invalidated 

� This, combined with the diverse elements entails that all laws should 
remain probabilistic

� High-level macroscopic quantities in hydrological systems will never

approach the near certainty of low-level macroscopic quantities in typical 
thermodynamic systems—regardless of progress in computers and 
algorithms

� Physically-based hydrological models are necessarily stochastic models
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Towards reasonable constraints for positive 
random variables
� Most hydrometeorological variables are non-negative physical quantities 

unbounded from above; examples: precipitation, streamflow, temperature 
(expressed in kelvins or in joules)

� What is a meaningful distance for a positive physical quantity, e.g. rainfall 
depth? (Note: a distance is typically used to measure model errors)

� Should 0.1 and 0.2 mm, on the one hand, be equidistant with 100.0 and 
100.1 mm, on the other hand (having a Euclidean distance of 0.1 mm)?

� Should 0.1 and 0.2 mm, on the one hand, be equidistant with 100 and 200 
mm, on the other hand (having a logarithmic distance of ln 2)?

� We heuristically define the function h(z) := p ln(1 + z/p) where p is a 
characteristic scale parameter and we define a meaningful distance between 
any two points z and z΄ as d(z, z΄) := |h(z) – h(z΄)|

� For small values, i.e., z < z΄ << p, d(x, x΄) = p ln [1 + (z΄ – z)/(p + z)] ≈ z΄ – z
(Euclidean distance)

� For large values, p << z < z΄, d(z, z΄) ≈ p ln (z΄/z) (logarithmic distance)

� Note that h(z) and d(z, z΄) have always the same units as z (physical 
consistency)

� Such distance has been sometimes used to describe model errors, e.g. 
Koutsoyiannis and Onof (2002)
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Towards workable constraints in highly variable 
geophysical processes

� The function h(z) enables a generalization of the classical power moments, 
thus defining the p-moments (Papalexiou and Koutsoyiannis, 2011)

� A p-moment is defined to be the expectation E[zp
q], where zp

q := pq ln[1 + (z/p)q] 
and p is a scale 
parameter with units 
identical to those of z

� For p → ∞, or for
finite p and small z,
zp

q ≈ zq

(the classical raise to 
power q)

� For p → 0 or for 
finite p and large z, 
zp

q∝ [ln(z/p)]q

An example plot of zp
q

for p = 10 and q = 1

Large z: 
use ln z

Small z: 
use z
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Simplest case—a single constraint

� The simplest constraint is formed by setting the exponent q = 1, so that we 
get a “generalized mean”, i.e.:

E[zp
1] = E[p ln(1 + z/p)] = mp

� The entropy maximizing distribution (derived by the general methodology in 
Papoulis, 1991, p. 571) is

f(z) = A exp [─λ1p ln(1 + z/p)] = Α (1 + z/p)─λ1p

where λ1 is a Lagrange multiplier and A is such that ∫-∞ f(z) dz = 1

� By renaming parameters (p = λ/κ, λ1 = (1 + κ)/λ) we obtain the typical 
expression of the 2-parameter Pareto distribution

f(z) = (1/λ) (1 + κ z/λ)─1 ─ 1/κ

with mean μ = λ/(1 – κ), standard deviation σ = λ/[(1 – κ) √(1 – 2κ)], 
generalized mean mp = λ and entropy Φ[z] = 1 + κ + ln λ

� The exponential distribution is fully recovered by setting κ = 0 (p = ∞); its 
statistics are μ = σ = λ, mp = p exp(λp) Γλp(0)/λ2, and Φ[z] = 1 + ln λ

� In the Pareto distribution σ/μ = 1/√(1 – 2κ) > 1, while in the exponential 
distribution σ/μ = 1

∞
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Enhanced uncertainty in comparison to classical 
thermodynamics
� In classical thermodynamics, a constrained mean results in exponential distribution

� The two density functions plotted, Pareto, fP(z), with κ = 0.15 and λP = 0.9 and 
exponential, fE(z), with λE = 0.953 have same mp = 0.9 for p = λP/κ = 6

� Their means are μP = 1.059 > μE = 0.953 and their entropies are ΦP = 1.045 > ΦΕ = 0.952

While the two 
distributions are 
almost 
indistinguishable 
for z < 3μ, the 
Pareto 
distribution gives 
extremes orders 
of magnitude 
more often than 
the non-scaling 
exponential 
distribution
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Validation based on intense daily rainfall 
worldwide

Data set: Daily rainfall from 168 stations worldwide each having at least 100 
years of measurements; series above threshold, standardized by mean and 
unified; period 1822-2002; 17922 station-years of data (Koutsoyiannis, 
2005)

0.1

1

10

0.1 1 10 100 1000 10000 100000

T  (years)

x

Empirical Pareto
Exponential Truncated Normal
Normal

μ = 0.28
(mean minus 
threshold)
σ/μ = 1.19 > 1
ME distribution: 
Pareto, κ = 0.15



D. Koutsoyiannis, A hymn to entropy 17

Generalization for the marginal distribution of 
any hydrometeorological variable
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Hourly rainfall, January, Athens Daily rainfall, January, Athens

Annual rainfall, Aliartos Daily runoff, Boeoticos Kephisos

Daily temperature, April, Athens Annual temperature, Geneva

Points: empirical distributions; lines: maximum entropy 
distributions; see details in Koutsoyiannis (2005)

� When the variation 
is small (σ/μ < 1, 
where μ is the 
mean and σ the 
standard 
deviation), the 
typical ME 
framework with 
constraints μ and 
σ, gives 
satisfactory 
results (although 
p-moment 
constraints are 
again superior)

� Generally, the ME 
framework can 
give the shape of 
the distribution 
function based on 
a single metric, σ/μ
(Koutsoyiannis, 
2005)
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8 extreme years in a decade! (normal=1)

15 extreme years in 

two consecutive 

decades! (normal = 2)

Involving time: Entropy and clustering

0 100 200 300 400 500 600 700 800 900 1000

Year

Random points in time Clustering effect
Two simulated series 
of 100 “extreme”
events each, in a 
period of 1000 
“years”; the 
probability of an 
extreme event is 
p =1/10 and the 
entropies of the two 
series are equal: 
ΦC = ΦR = ln(10)/10 + 
(9/10)ln(10/9) = 0.33

However, if we view 
the series at a 
decadal time scale, 
the entropy of the 
clustered series is 
higher: the entropy 
estimates, 
considering the 
probabilities of all 
possible numbers of 
extreme events 
(from 0 to 10), are 
ΦC = 1.29 > ΦR = 1.23

In 25 decades no extreme 
event at all! (normal = 25)
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Maximum entropy and clustering of rainfall occurrence
� Rainfall occurrence is 

characterized by a 
clustering behaviour (also 
known as overdispersion)

� The observed behaviour
can be explained by 
maximizing, for a range of 
scales, the entropy of the 
binary-state rainfall process 
using two constraints 
representing the observed 
occurrence probabilities at 
two time scales (1 and 2 
hours)

� Entropy maximization with 
only two parameters 
determined from the data 
(those defining the 
constraints) give very good 
predictions for all time 
scales 

� The ME solution is not 
Markovian neither scaling 
but in between
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Data points used for model construction

Model

Data points used for model verification

Probability p(k) that an interval of k hours is dry, as estimated 
from the Athens rainfall data set (70 years) and predicted by 
the model of maximum entropy for the entire year (full 
triangles and full line) and the dry season (empty triangles 
and dashed line); see details in Koutsoyiannis (2006)
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Maximum entropy production and scaling in time
� The dependence structure of processes evolving in time (expressed in terms 

of autocorrelogram, periodogram or climacogram, which are transformations 
of one another), can be determined by entropy extremization

� Koutsoyiannis (2011) suggested the use of entropy production (the 
dimensionless EPLT in particular) with the assumptions of:

� constrained mean μ and variance σ2, which result in Gaussian marginal 
distribution (assumption good for σ/μ << 1); in this case we have:

Φ[z(t)] = (1/2) ln[2πe γ(t)] where γ(t) := Var [z(t)] (see slide 2)

� constrained lag-one autocorrelation ρ

� These constraints are formulated for a single observation time scale but the 
extremization of entropy production is made at asymptotic time scales, i.e., 
t → 0 and t → ∞

� Such extremization of entropy production yields two simple solutions:

� A (non-scaling) Markov process (the AR(1) process in discrete time, or the 
Ornstein–Uhlenbeck process in continuous time) 

� A (scaling) Hurst-Kolmogorov (HK) process (due to Hurst, 1951, and 
Kolmogorov, 1940) 
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The two EPLT extremizing solutions
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HK, unconditional+conditional

As t → 0, the EPLT is 
maximized by a 
Markov process

As t → 0, the EPLT is 
minimized by an HK

process
As t → ∞, the EPLT is 
minimized by a 
Markov process

As t → ∞, the EPLT is 
maximized by an HK

process

The conditional EPLT 
corresponds to the case where 
the past has been observed

The solutions depicted are generic, valid for any Gaussian process, independent of μ and 
σ, and depended on ρ only (the example is for ρ = 0.543)—see Koutsoyiannis (2011)

The HK process has constant 
EPLT = H, where H is the 
Hurst coefficient—the 
exponent of the power law: 
H = ½ + ½ ln(1 + ρ)/ln 2

φLT(t)
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Application to the annual temperature of Vienna
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Mean annual temperature of Vienna, Austria (48.25° N, 16.37° E, 209 m): one of the 
longest available instrumental geophysical records—235 years of data (1775–2009) 
available from the climexp.knmi.nl, partly included in the Global Historical Climatology 
Network (GHCN; 1851–1991); from Koutsoyiannis (2011)
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Comparison of the Markov and HK models: Vienna 
temperature
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The low coefficient 
of variation (σ/μ = 
0.0031 for 
temperature in K), 
suggests Gaussian 
distribution (verified 
by the data)

The HK model (H = 
0.74) is appropriate, 
while the Markov 
model (ρ = 0.3) is 
inappropriate
(from Koutsoyiannis, 
2011)

Logarithm of aggregation scale Δ

One-to-one correspondence (linear relationship) 
between entropy Φ[xΔ] and logarithm of variance γ(Δ)

See notation 
on slide 2 

In addition, 
g(Δ) is the 
standard 
estimator of 
the variance 
γ(Δ), which 
is biased: 
E[g(Δ)] < 
γ(Δ)

This is 
remedied by 
appropriate 
adaptation
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Comparison of 
the Markov and 
HK models:
Annual minimum 
water level 
of the Nile
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The classical 
statistical estimator 
of standard 
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which however is 
biased for HK 
processes
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Nilometer data: Beran (1994) and 
lib.stat.cmu.edu/S/beran (here converted 
into meters)

Nile River annual minimum water level 
from the Roda Nilometer (663 values)

Again the Markov model is 
inappropriate , while the HK 
model (H = 0.89) is appropriate

Similar H values are estimated 
from the simultaneous record of 
maximum water levels and a 
similar value and from the modern 
record (131 years) of the Nile 
flows at Aswan
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resolution of 10 s (Papalexiou et al., 2011)
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Maximum entropy and the emergence of linearity in 

highly nonlinear systems
� Hydrological processes (e.g. rainfall, runoff) are highly nonlinear if modelled using 

deterministic dynamical systems methods

� The same processes, if approached macroscopically in stochastic terms, exhibit 
impressively linear behaviour (after the processes are transformed to Gaussian)

� Linearity in stochastic terms is a result of the principle of maximum entropy and 
makes our macroscopic descriptions as simple and parsimonious as possible
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Maximum entropy and parsimonious stochastic 
modelling
� Multivariate stochastic modelling involves vectors and matrices of parameters 

with very many elements

� As an example, we consider the prediction w of the monthly flow one month 
ahead, conditional on a number s of other variables with known values that 
compose the vector z, using the linear model:

w = aT z + v

where a is a vector of parameters (the superscript T denotes the transpose of 
a vector or matrix) and v is the prediction error, assumed independent of z; 
for simplicity, all elements of z are assumed normalized and with zero mean 
and unit variance

� For the model to take account of both short-range and long-range 
dependence (HK behaviour), a possible composition of z may include the 
following:

� The flows of a few previous months of the same year

� All available flow measurements of the same month on previous years

� The model parameters are estimated from:

aT = ηT h –1,   Var[v] = 1 – ηT h –1 η = 1 – aT η

where η := Cov[w, z] and h := Cov[z, z] (see Koutsoyiannis, 2000)
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ME and parsimonious stochastic modelling (cont’d)

� Both the vector η := Cov[w, z ] and the matrix h := Cov[z, z ] may contain numerous 
items, typically of the order of 103-104 (e.g. for a dimensionality 100, if we have 100 
years of observations: 100 + 100 × 100 = 10 100 items—albeit reduced due to 
symmetry)

� Traditionally, the items of such covariance matrices and vectors have been estimated 
directly from data; this is totally illogical (100 years of data cannot support the 
statistical estimation of 1000-10 000 parameters)

� An alternative approach is to use data to estimate a couple of parameters per month 
and derive all other ‘unestimated’ parameters by maximizing entropy 

� Such entropy maximization is in fact very simple (a generalized matrix decomposition)
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Finale: Entropy beyond hydrology

� Entropy and parsimony

� The tendency of entropy, i.e. uncertainty, to become maximum makes 
possible a parsimonious description of complex natural systems

� Entropy and change 

� Reversible transformations, in which entropy remains constant, are trivial

� Mass, energy and momentum are conserved in all transformations

� It is the entropy that changes in irreversible processes and its tendency to 
become maximum drives the change 

� The second law ... provides a foundation for understanding why any
change occurs (Atkins, 2007, p. 49)

� Entropy, evolution and creativity

� Entropy production in irreversible processes causes a system to evolve

� Without evolution and creativity the uncertainty of future would be low

� Entropy and value of change

� Actions of change are not costless; the cost paid is entropy and this cost 
represents a value of the action taken
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Entropy beyond hydrology (cont’d) 

� Entropy and life

� The second law allows for local decrease of entropy—at a larger cost paid 
to the environment

� Living organisms, if isolated,  are clusters with low entropy—but making 
the entropy of the big picture higher

� Life is fully consistent with maximum uncertainty—dead systems are 
certain

� Entropy and freedom

� No other scientific law has contributed more to the liberation of the 
human spirit than the second law of thermodynamics (Atkins, 2007, p. 49)

� Would freedom have a meaning without uncertainty? 

� If the future was certain, and thus controllable (by some), would the 
world be livable? 
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Entropy and laughter: We predict, God laughs...
(we laugh, too, but after years: these are from 1970) 
� Civilization will end within 15 or 30 years unless immediate action is taken against 

problems facing mankind
George Wald, Harvard Biologist, share of the 1967 Nobel Prize in Physiology or Medicine, quoted in Climate 

Change and the Emergence of Civilization By Carl Grant Looney, Ph.D. , Xlibris, 2011, 

books.google.com/books?id=cMlBE3umGzMC p. 390, as well as in p. 26 of The environment: opposing 

viewpoints, William Dudley, Greenhaven Press, 2001, books.google.com/books?id=vwAKAQAAMAAJ

� Demographers agree almost unanimously on the following grim timetable: by 1975 

widespread famines will begin in India; these will spread by 1990 to include all of 

India, Pakistan, China and the Near East, Africa. By the year 2000, or conceivably 

sooner, South and Central America will exist under famine conditions… By the year 

2000, thirty years from now, the entire world, with the exception of Western 

Europe, North America, and Australia, will be in famine
Peter Gunter, professor, North Texas State University, The Living wilderness, Volumes 34-35, Wilderness 

Society, 1970, books.google.com/books?id=ogv0AAAAMAAJ (also quoted in Climate Change and the 

Emergence of Civilization By Carl Grant Looney, Ph.D. , p. 389)

� The world has been chilling sharply for about twenty years... If present trends 

continue, the world will be about four degrees colder for the global mean temperature 

in 1990, but eleven degrees colder in the year 2000. This is about twice what it 

would take to put us into an ice age
Kenneth E. W. Watt, Ecologist and Professor of University of California, Davis, Earth Day—the beginning: a 

guide for survival (pp. 14-15; books.google.com/books?id=1yE9AAAAIAAJ)
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Concluding remarks

� Entropy is none other than uncertainty properly quantified 

� The tendency of entropy to become maximum is not a curse—it 
is an eulogia

� It offers the basis to understand and describe Nature, but it also 
constitutes the driving force of change and evolution

� Extremal entropy considerations provide a theoretical basis in 
stochastic modelling of hydrological processes

� They also provide an important connection with statistical 
thermophysics, which suggests that physical modelling of 
complex systems can only be done in stochastic terms
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Epilogue
� In 1927, Werner Heisenberg published his uncertainty principle, 

expressing the limitations of predictability and even observability of the 
quantum world

� In 1930, David Hilbert pronounced his aphorism “Wir müssen wissen, wir
werden wissen” (“We must know, we will know”); Hilbert did not know 
that the day before, Kurt Gödel had announced his incompleteness 

theorem thus killing Hilbert’s dogma 

� 80 years after, hydrology and other geophysical sciences still embrace 
the dogma “We must know, we will know”

� Wanted: Recognition of the intrinsic uncertainty in Nature and awareness 
of the limitations in predictability 

� My view: We must live, we can live with incomplete knowledge and with 
uncertainty

I like to live,

The predictions to deceive

Θέλω να ζω,

Τις προβλέψεις ν’ αναιρώ

From the theater play “Τι θα κάνουμε τώρα;” (“What shall we do now?”) by D. Kouroumbalis and the youngsters’
theater team So7 (Ερευνητικό Θέατρο, Athens, Greece, 2011); transliteration into English by D. Koutsoyiannis 
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Appendix: Some mathematical 
derivations 

Caution: 
(1) Results not cross-checked; errors may be present (please report 
them to dk@itia.ntua.gr) 
(2) No quantum effects have been taken into account
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A first application of principle of ME to uncertain motion
� Consider a motionless cube with edge a (volume V = a3) containing spherical particles 

of mass m0 (e.g. monoatomic molecules) in fast motion, in which we cannot observe 
the exact position and velocity

� A particle’s state is described by 6 variables, 3 indicating its position xi and 3 
indicating its velocity ui, with i = 1, 2, 3; all are represented as random variables, 
forming the vector z = (x1, x2, x3, u1, u2, u3)

� Constraints for position: 0 ≤ xi ≤ a

� Constraints for velocity (where the integrals are over feasible ranges of variables):

� Conservation of momentum: Ε[ui] = ∫ ui f(z) dz = 0 (the cube is not in motion)

� Conservation of energy: Ε[||u||2/2] = ∫ ||u||2/2 f(z) dz = ε, where ε is the energy

� Application of the principle of maximum entropy with the above constraints will give 
the distribution of z as:

f(z) = [3/(4π ε)]3/2 (1/V) exp[-3||u||2/ (4ε)]

� The marginal distributions are given by:

f(xi) = 1/a (uniform in [0, a])

f(ui) = [3/(4π ε)]1/2 exp[-3ui
2/(4ε)] (Gaussian with mean 0 and variance 2e/3

= 2 × energy per degree of freedom) 

f(||u||) = (2/π)1/2[3/(2ε)]3 ||u||2 exp[-3||u||2/ (4ε)] (Maxwell–Boltzmann) 

� The entropy is then calculated as follows, where e is the base of natural logarithms:

Φ[z] = (3/2) ln[(4/3) π e ε)] + lnV
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Typical application of principle of ME to the atmosphere
� The dominant atmospheric gases are diatomic (N2, O2); in a diatomic gas, in addition 

to kinetic energy we have rotational energy at two axes x and y perpendicular to the 
axes defined by the two molecules; these are Lx

2 / 2Ix and Ly
2 / 2Iy, where L denotes 

angular momentum and I denotes rotational inertia

� We consider again a motionless cube with edge a (volume V = a3) containing N
identical diatomic molecules, each one with mass m0, of a gas in motion with total 
(internal) energy U

� Each molecule is described by 8 variables, 3 indicating its position xi, 3 indicating its 
velocity ui, with i = 1, 2, 3, and two indicating its rotation, u4 := Lx / √(Ix m0) and 
u5 := Ly / √(Iy m0); all are represented as random variables, forming the vector 
z = (x1, x2, x3, u1, u2, u3 , u4, u5)

� Independence among molecules can arguably be assumed

� Constraints are same as before

� position: 0 ≤ xi ≤ a

� momentum/angular momentum: Ε[ui] = 0 (the cube is not in motion)

� energy: Ε[||u||2/2] = ε, where ε = U/(N m0) is the energy per unit mass

� Application of the principle of maximum entropy with the above constraints will give 
the distribution of z (one molecule) and z1,…, zN (all molecules) as:

f(z) = [5/(4π ε)]5/2 (1/V) exp[-5||u||2/ (4ε)]

f(z1,…, zN) = [5/(4π ε)]5N/2 (1/V)N Πj=1
N exp[-5||uj||2/ (4e)]

� The entropy of the N molecules is then calculated as:

Φ[z1,…, zN] = (5N/2) ln[(4/5) π e ε)] + N lnV
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Macroscopic view of entropy and related quantities
� The entropy per unit mass is

φ := Φ/(m0 N) = {(5/2) ln[(4/5) π e ε] + lnV} /m0

� The temperature θ is defined as

1/θ := ∂Φ/∂U = ∂φ/∂ε, so that θ = (2/5)ε m0 = (2/5) εp (Note: units of energy, i.e. J) 

� The entropy per unit mass can be expressed in terms of the temperature as

φ = [(5/2) ln(2 π e /m0) + (5/2) ln θ + lnV] /m0

� Consider a time interval dt; any particle at distance dx3 ≤ -u3 dt will collide with the 
cube edge (x3 = 0)

� The distribution function of (x3, u3) is 

f(x3, u3) = (1/a)[5/(4π ε)]1/2 exp[-5u3
2/(4ε)]

� The expected value of the momentum of molecules colliding at the cube edge (x3 = 0)
within time interval dt is 

E[p(dt)] = N ∫0
∞dx3∫-∞

-x3/dt m0 u3 f(x3, u3) du3 = N e m0 dt/(5a)

� According to Newton’s 2nd law, the force exerted on the edge is 
F = 2 E[p(dt)]/dt and the pressure is

p = F / a2 = 2 N e m0/(5V) = N θ / V � p V = n NA θ (Law of ideal gases)

where n is the number of moles and NA (=6.022×1023 mol-1) is the Avogadro constant 

� Using p instead of V, and the molecular mass M0 = NA m0 instead of m0, denoting 
c := ln(2 π e /m0) and c΄ := c + ln NA, and finally generalizing for ν degrees of freedom 
per particle, the entropic quantities become:

φ = (NA/M0) [c + (1+ ν/2) ln θ + ln N – ln p] = (NA/M0) [c΄ + (1+ ν/2) ln θ + ln n – ln p]

Φ = N [c + (1+ ν/2) ln θ + ln N – ln p] = n NA [c΄ + (1+ ν/2) ln θ + ln n – ln p]
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Standard (Boltzmann) formalism
� In Boltzmann’s formalism the temperature is (unnecessarily) regarded as an 

independent fundamental unit (kelvin, K) and the (unnecessary) constants k = 
0.138 065 yJ/K (yocto-joule per kelvin) and R* = k NA = 8 314.472 J K−1 kmol−1 are used

� Accordingly, the so-called absolute (or thermodynamic) temperature is T := θ/k
[units: K], while Boltzmann’s entropy is S = k Φ [units: J/K], so that the relationship 
1/T = ∂S/∂E = ∂s/∂ε is retained

� The entropy per unit mass becomes:

s = [(7/2) ln(T/T0) – ln(p/p0)] (R*/M0)

where T0 and p0 designate an arbitrary macroscopic state to which we assign zero 
entropy (typically T0 = 200 K and p0 = 1000 hPa)

� By setting R*/M0 =: R and (7/2) R =: cp (the specific heat of the gas), we obtain the 
final entropic formula:

s = cpln(T/T0) – R ln(p/p0)

� The law of ideal gases becomes

p V = n R* T � p v = R T

where v := V / m = V / (n M0) is the volume per unit mass (= 1/density)

� Note that in the dry atmospheric air mixture, M = 28.96 kg/kmol, R = 8314.472/28.96 
= 287.1 J K−1 kg−1, so that cp = (7/2) × 287.1 = 1004.8 J K−1 kg−1, while the experimental 
value is cp = 1004 J K−1 kg−1!
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Compound entropy from different states
� Suppose that a system described by a vector random variable z can alternate 

between two states 1 and 2 with conditional entropies Φ1 := Φ[z|1] and Φ2 := Φ[z|2]; 
further, suppose that the probabilities of states 1 and 2 are π and 1 – π, thus defining 
an entropic quantity: 

Φπ := –π ln π – (1 – π) ln (1 – π)

� It is easy to show that the total entropy is Φ = πΦ1 + (1 – π) Φ2 + Φπ

� It is easy to show that the value of π that maximizes Φ is such that

exp(Φ1)/π = exp(Φ2)/(1 – π)

� For a single particle with ν degrees of freedom, Φ[z|1] = c + (ν/2) ln ε1 + lnV1; Φ[z|2]
= c + (ν/2) ln ε2 + lnV1 so that for maximum entropy,

ε1
ν/2V1/π = ε2

ν/2V2/(1 – π)

� Extending to N particles, of which N1 = π N and N2 =(1 – π) N will belong to states 1 
and 2, respectively, and noting that energies ε are proportional to temperatures θ, 
we obtain:

θ1
ν/2V1/Ν1 = θ2

ν/2V2/Ν2

� From the law of ideal gases, V1/Ν1 = θ1/p1, V2/Ν2 = θ2/p2, so that

θ1
1 + ν/2/p1 = θ2

1 + ν/2/p2

� In Boltzmann’s formalism T 1
cp/R/p1 = T 2

cp/R/p2 (law of adiabatic change)

� It is easy to show that the entropy per unit mass is the same in both states, i.e. 
φ1 = φ2 and s1 = s2


