
 

 

Simple physical principles  
for complex systems 

Lecture Notes on Hydrometeorology 
Athens, 2011 

Demetris Koutsoyiannis 

Department of Water Resources and Environmental Engineering 
School of Civil Engineering 
National Technical University of Athens, Greece  
(dk@itia.ntua.gr, http://www.itia.ntua.gr/dk/) 
 



 D. Koutsoyiannis, Simple physical principles for complex systems   1 

Common misconceptions about physics—and their 
remedies 
● Misconceptions: 

○ Laws of complex physical systems can be inferred by synthesizing detailed 
representations of their elements (the reductionism approach). 

○ Physical laws are mathematically expressed only by equations. 

○ Physical laws are deterministic and mechanistic. 

● Remedies: 

○ The principle of parsimony. 

○ Variational principles and the extremization approach. 

○ Recognition of the fundamental character of uncertainty and use of 
stochastic approaches. 
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What is the principle of parsimony? 
● A principle that advises us to prefer the simplest theory among those that fit 

the data equally well. 

● Alternative names: principle of parsimony, principle of simplicity, principle of 
economy, Ockham’s razor. 

● Example of a parsimonious natural law: 

○ Dogs bark. 

● Examples of non-parsimonious laws: 

○ Black, white and spotted dogs bark. 

○ Dogs bark on Mondays, Wednesdays and Fridays. 

● Intuitively, the above law does not exclude that a particular dog is mute. 

○ We should not understand it as “there is no dog that does not bark”. 

● In other words, laws of complex systems (e.g. the biological system “dog”) are 
necessarily probabilistic in nature: 

○ “Dogs bark” means “any dog is very likely to bark”. 

Failure to recognize the probabilistic character of parsimony in complex systems may create 
confusion (see e.g. Courtney and Courtney, 2008, and the “all crows are black” example). 
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Parsimony: historical reference 
● Aristotle (384–322 BC): 

○ [Αναλυτικά Ύστερα, I, 25] “ Ἒστω γὰρ αὕτη ἡ ἀπόδειξις βελτίων τῶν ἄλλων τῶν αὐτῶν ὑπαρχόντων, ἡ ἐξ 
ἐλαττόνων αἰτημάτων ἢ υποθέσεων ἢ προτάσεων.” 

○ [Posterior Analytics, I, 25] “We may assume the superiority, other things being equal, 
of the demonstration which derives from fewer postulates or hypotheses or 
propositions.”  
[Περί Ουρανού, ΙΙΙ, 4] “Φανερὸν ὅτι μακρῷ βέλτιον πεπερασμένας ποιεῖν τὰς ἀρχὰς, καὶ ταύτας ὡς ἐλαχίστας 
πάντων γε τῶν αὐτῶν μελλόντων δείκνυσθαι, καθάπερ ἀξιοῦσι καὶ οἱ ἐν τοῖς μαθήμασιν.” 

○ [On the Heavens, ΙΙΙ, 4] “Obviously, it is much better to assume a finite number of 
principles, as few as possible yet sufficient to prove what has to be proved, like in 
what mathematicians demand.” 

● Medieval philosophers: Robert Grosseteste (c. 1168-1253), Thomas Aquinas (c. 1225-
1274), William of Ockham (c. 1285-1347; “Plurality is not to be posited without 
necessity”). 

● Nicolaus Copernicus (1473-1543), Galileo Galilei (1564-1642), Isaac Newton (1642-
1727)—all used parsimony in developing their theories. 

● Albert Einstein’s formulation of parsimony: “Everything should be made as simple as 
possible, but not simpler”. 

For more information on history and philosophy of parsimony and the scientific method, see Gauch (2003). 
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Is the principle of parsimony epistemological or 
ontological? 
● Ockham put parsimony as an epistemological principle for choosing the best 

theory. 

● However, earlier philosophers, from Aristotle to Grosseteste had interpreted 
parsimony also as an ontological principle, thus expecting Nature to be simple. 

● A simple example can help us to see the 
ontological basis of the principle: Light follows 
the simplest path from A to B (the red line) and 
not other more complex ones (e.g. the black 
lines ACB, ADB)? 

● But what does “simplest” mean? 

 

Were Nature not parsimonious (e.g. were paths ACB, 
ADB materialized) it would be difficult to understand 
her and life would be hard. AB

D
C

AB

D
C
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Quantification of simplicity 
● The traditional approach to physics is based on writing equations, which 

express conservation laws; these govern the following quantities only: 

○ Mass (scalar equation); 

○ Linear momentum (vector equation); 

○ Angular momentum (vector equation); 

○ Energy (scalar equation); 

○ Electric charge (scalar equation). 

● However, to find states or paths which are “as simple as possible”, it seems 
more natural to formulate the problem in terms of optimization rather that 
using equations. 

● Mathematically, extremizing is much more powerful than equating: 

○ A system of equations “g(s) = 0” can work if the number of equations equals 
the number of unknowns. 

○ A single extremizing expression like “maximize f(s)” can work irrespective of 
the number of unknowns (it is equivalent to as many equations as needed). 

Nature is an extremizer—not an equalizer. 
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The simplicity of light trajectory: Attempt 1 
● Light follows the shortest possible path from A to B. 

○ A parsimonious law for a parsimonious natural behaviour. 

○ Further investigation will show that it is not correct (formulation simpler 
than “as simple as possible”). 
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D
C
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D
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The light trajectory: Quantification for attempt 1 

A: (-a,0)

B
aa

F: (x, y)

B: (+a,0)

φ

 
● Assume that light can travel from A to B 

along a broken line with a break point F 
with coordinates (x, y). 
This is not restrictive: we can add a 
second, third, … break point 
(homework). 

● The travel distance is s(x, y) = AF + FB, 
where: 

  AF = (x – a)2 + y 2 

  FB = (x + a)2 + y 2 

 

Contours of the distance s(x, y)
assuming a = 0.5

Line of minimum distance s(x, y) = 1
Infinite points F essentially 
describing the same path
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The simplicity of light trajectory: Attempt 2 
● In the presence of a mirror, light follows both red paths from A to B (AB, ADB)—but 

not other (the black) ones (e.g. AEB, AFB). 

● The previous formulation of the law is not valid. 

● Replacement: Light follows the shortest path, but when there is a mirror, it also 
follows a second path with a reflection by the mirror such that the angle of 
incidence equals the angle of reflection. 
○ A wordy law, not parsimonious 

(“equalizer” thinking…). 

● We observe that the mirror has imposed an 
inequality constraint to possible paths (by 
disallowing light to go through it) and thus 
generated a second minimum in the ‘shortest 
path’ problem. 

● The paths followed by light have minimum 
length (either global or local minimum). 

● Parsimonious law—Principle of Hero of 
Alexandria (~1st cent. BC)—but not perfect. 

A mirror
θ1> θ2

AB

E

D F

θ1= θ2

A mirror
θ1> θ2
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The simplicity in light trajectory: Attempt 3 
●  If we replace the flat mirror with a cylindrical mirror, the light follows several 

paths from A to B, including the red lines AB, ACB, ADB—but not the black ones, 
e.g. AEB, AFB. 

● Of these, AB is the global minimum, 
ACB is a local minimum and ADB is 
a local maximum. 

● The paths followed by light have 
extremal length (either global or 
local minimum or maximum)—still 
not a perfect law. 

Nature is a skilful extremizer, as she finds 
all local minima and maxima (put many 
mirrors to see lots of paths materializing). 
Failure to observe this makes things 
difficult to explain, as indicated for 
instance in the debate by Gaertner (2003) 
and Schoemaker (2003). 

A semi-cylindrical mirror
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 The light trajectory:  
Quantification for attempt 3 
● The mirror introduces an inequality 

constraint in the optimization: the 
point F should not be behind the 
mirror. 

● Two points of local optima emerge on 
the mirror surface (the curve where 
the constraint is binding). 
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The simplicity of light trajectory: Attempt 4 
● Refraction makes clear that light does not always follow the shortest (straight line) path. 

● This is related to the fact that the light speed in liquids is smaller than in air. 

● The broken line ACB, rather than the straight line AB, has the least travel time. The point 
C is determined so as to minimize the total travel time. Assuming an x axis at the level of 
the liquid (so that xC = 0) and denoting the light speed cA and cB in the liquid and air, 
respectively, the travel time is: 

  tACB = 
(xA – xc)

2 + yA
2

cA
 + 

(xc – xb)2 + yB
2

cB
 

● Extremization of tACB yields: 

  
1
cA

 
xA – xc

(xA – xc)
2 + yA

2 = 
1
cB

 
xC – xB

(xC – xB)2 + yB
2 

(notice, the rightmost fractions of the two sides are 
the sinuses of the angles of incidence and refraction). 

● Final law (Fermat’s principle, corrected for 
extremal—instead of minimal): 
Light follows paths that have extremal travel time. 

Nature is indeed parsimonious (ontological parsimony). 
The law is parsimonious (epistemological parsimony), reflecting the parsimony of Nature. 

B
C

A
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Refraction by water
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Generalization to the trajectory of a weight 
The principle of extremal (stationary) action 
● Quantities involved: 

○ Potential energy: V = m g z; 
○ Kinetic energy: T = (1/2)m u 2 = (1/2)m (ux

2 +uz
2); 

○ Lagrangian: L = T – V = (1/2)m (ux
2 +uz

2) – m g z; 

○ Action: S = ∫Π L dt along the path Π. 

● Principle of extremal action (Hamilton; applicable both in 
classical and in quantum physics): 
○ From all possible motions between two points, the 

true motion has extremal (stationary) action. 
○ Credit for the principle is given to Pierre-Louis 

Moreau de Maupertuis, who wrote about it in 1744; 
Leonhard Euler discussed it in 1744, whereas 
Gottfried Leibniz preceded both by 39 years. 

● Solution 
○ Extremization of action results in the Euler-Lagrange 

equation: 0,0 

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Not 
minimum 
length or 
travel time.
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The trajectory of a weight  
Application of the principle of extremal action 
● The Euler-Lagrange equation results in a single (global) minimum (least action): 

  ux = u0 (= constant), uz = –g t 

 from which we obtain: 

  x = u0 t, z = –g t
2/2 or z = –(g / 2u0

2) x
2 

 (parabola; going down). 

● In the above formulation, we have not used 
Newton’s laws, not even the conservation of energy. 
○ Rather, the conservation of total energy E = T + V 

results from the least action solution. 

● The solution gives not only the geometry (parabola) 
and direction (down) of the trajectory but the full 
description of the movement of the weight. 

A single principle (Hamilton’s with Fermat’s as a special case) 
describes diverse phenomena in optics and classical 
mechanics—but works well only in simple systems. 

x

z
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Velocity ux, uz

u0

Initial conditions (time t = 0) 
Position: x = 0, z = 0 
Velocity: ux = u0, uz = 0
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z

At time t :
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Velocity ux, uz
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Initial conditions (time t = 0) 
Position: x = 0, z = 0 
Velocity: ux = u0, uz = 0
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From simple to complex systems 
● When we investigate a system of many “bodies” e.g. particles (such the molecules of 

water in solid, liquid or gaseous phase; see figure), we are not interested on the 
properties (position, momentum) of each particular particle. 

● Even if we were interested, it would be difficult (and extremely non-parsimonious) to 
know them; e.g. 1 m3 of a gas at room conditions contains 2.7 × 1025 molecules. 

● Only macroscopic/statistical (or thermodynamic) properties of the system are of 
interest. 

● Macroscopic properties are state variables such as pressure, internal 
energy, entropy, temperature, and characteristic constants such as 
specific heat and latent heat. 

● Inevitably—albeit often not stated explicitly—macroscopic 
descriptions rely on probability and involve uncertainty. 

● However, when the system components are very many and identical, 
due to the applicability of the laws of large numbers, uncertainty 
becomes near certainty. 

When we move from single to complex systems, parsimony demands 
replacement of microscopic with macroscopic properties and of 
deterministic with probabilistic descriptions. 
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What does Nature extremize in complex systems? 
● The quantity that gets extremized is the entropy* (or the entropy production when time 

is involved; Koutsoyiannis, 2011). 

● The scientific term† is due to Clausius (1850-1865) and the concept was fundamental to 
formulate the Second Law of thermodynamics. 

● Boltzmann (1866) showed that the entropy of a macroscopic stationary state is 
proportional to the logarithm of the number W of possible microscopic states that 
correspond to this macroscopic state. 

● Gibbs (1902) studied the concept further in a statistical mechanical context. 

● Shannon (1948) generalized the mathematical form of entropy and explored it further. 

● Kolmogorov (1956, 1958) founded the concept on the basis of the measure theory and 
introduced entropy to the theory of dynamical systems. 

● Jaynes (1957) introduced the principle of maximum entropy as a tool for logical 
inference (to infer unknown probabilities from known information). 

● In modern terms, entropy is a probabilistic concept and is a measure of uncertainty. 

                                 
* The word is ancient Greek: ἐντροπία (a feminine noun; also ἐντροπή) meaning a turning towards, twist—also a trick, dodge; it springs 
from the preposition verb ἐν (in) and the verb τρέπειν (to turn or direct towards a thing, to turn round or about, to alter, to change, to 
overturn); related ancient Greek words: ἐντροπαλισμός (turning round); ἐντροπαλίζεσθαι (to turn round often). 
† As in composition the preposition ἐν- often expresses the possession of a quality, the scientific meaning of the term ἐντροπία is the 
possession of the potential for change. 
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What is the mathematical tool to reconcile the 
complexity of natural systems with parsimony? 
● A consistent theory for complex systems should necessarily be based on 

probability—but in an enhanced setting. 

● The tool is Stochastics = Probability theory + Statistics + Stochastic processes. 

● Probability theory provides the theoretical basis for: 
○ moving from a microscopic to a macroscopic view of phenomena by mapping 

sets of diverse elements and events of complex systems to single numbers (a 
probability or an expected value); 

○ making induction. 

● Statistics provides the empirical basis for: 
○ summarizing data; 
○ making inference from data; 
○ supporting decision making. 

● Stochastic processes and Monte Carlo simulations provide the means for: 
○ probabilistic predictions; 
○ uncertainty estimation; 
○ design and management of complex systems. 
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A note on the “enhanced setting” of stochastics 
● Classical statistics is based on the prototype of independence and repeatability 

(the “coin-tossing” prototype). 

● This prototype works well for systems with many identical particles for which 
independence can be assumed (this is the case e.g. for ideal gases). 

● However, more complex natural (real-world) systems evolving in time may 
behave differently from the classical prototype (e.g. turbulent flows, 
hydrometeorological and climatic processes). 

● In such cases, stochastic models admitting dependence in time/space are 
necessary. 

● Typical stochastic models (particularly the multivariate ones) are often not 
parsimonious themselves. 

● A more advanced stochastic approach is necessary to make models more 
consistent with: 

○ observed natural behaviours, and 

○ the principle of parsimony. 
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 Conclusions 
● Nature seems to be naturally parsimonious. 

● It is then natural to try to build parsimonious models for natural processes. 

● Simple systems can be parsimoniously modelled by deterministic approaches. 

● In complex systems parsimony should necessarily be combined with stochastic 
approaches. 

● Recently mainstream research invested hopes in detailed approaches by 
building complicated models. 

● However, comparisons of complicated models with parsimonious ones indicate 
that the latter: 

○ can facilitate insight and comprehension; 

○ improve accuracy, efficiency and predictive capacity; 

○ require fewer data to achieve the same accuracy with the former. 

● Parsimonious formulations and solutions of problems are more reasonable and 
rational, and easier to apply and monitor in practice. 
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