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What do we really mean by management/control? 

Images from: 
crisisphotostories.blogspot.com/2012/02/1202.html 
www.dailymail.co.uk/news/article-2099230/Greece-Riot-police-flames-protesters-armed-petrol-
bombs-rampage-Athens.html 
www.international.to/index.php?option=com_content&view=article&id=5081 
www.thenewstribune.com/2012/02/13/2024158/obstacles-remain-for-greek-bailout.html 
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Can management 
rely on deterministic 
future predictions? 

Sources: 
www.bbc.co.uk/news/business-13798000 
www.dailymail.co.uk/news/article-2007949/The-Big-Fat-Greek-Gravy.html 
upload.wikimedia.org/wikipedia/commons/2/29/Greece_public_debt_1999-2010.svg 

Note: 
prediction 
≠ autopsy 
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General characteristics of water management 
problems 
 Hydrosystems are nonlinear with respect to their dynamics, operation 

constraints and objectives 
 Linear programming methods are extremely effective but are inappropriate 

except for simple sub-problems within water management 
 Water management problems cannot be divided into sequential stages  

 The overall reliability and performance cannot be assessed unless a global 
view is acquired; thus, dynamic programming methods are inappropriate 

 Water control problems may involve many variables 
 However, a parsimonious representation, in which the number of control 

variables is kept at a minimum has advantages 
 Typical problems are highly nonconvex in terms of objective functions and 

constraints, so that numerous local optima appear very often  
 This renders classical (deterministic) optimization methods useless 

 Uncertainty is always present, albeit often missed to include in modelling 
 Deterministic methods cannot deal with the uncertainty of future conditions 

(inflows, demands, etc.); even stochastic extensions of these methods (e.g. 
linear-quadratic-Gaussian control) necessitate drastic oversimplifications that 
make the obtained results irrelevant to reality 

 Problems may be multiobjective (may involve several performance criteria) 
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What is the Monte Carlo method? 
 Is it a method to generate random numbers? 

 Is it a method to perform random computer experiments? 

 Is it a method to deal with problems that involve randomness? 

 Is it a method to fool people when proper mathematical 
methods become too difficult? 

 Definition (adapted from Wikipedia): The Monte Carlo method 
is a class of computational algorithms that rely on repeated 
random sampling to compute their results 

 Note: “Monte Carlo” is synonymous to “stochastic”  

 In other words, the Monte Carlo method is a numerical method 
which, like other numerical methods, becomes useful when 
analytical solutions do not exit (that is, almost always...) 

 While the Monte Carlo method seems to be a natural choice 
when the problem studied involves randomness, it is also 
powerful even for purely deterministic problems 
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Stanislaw Ulam, the solitaire and the conception 
of the Monte Carlo method 

Source: Eckhardt (1989) 

Stanislaw Ulam (13 April 
1909 – 13 May 1984): Polish-
American mathematician; 
since 1943 he worked in Los 
Alamos National Laboratory 
(Manhattan Project  under 
leadership of Robert 
Oppenheimer) 
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Nicholas Metropolis and the “birth certificate” of 
the Monte Carlo method 

Nicholas Metropolis (11 June 
1915 – 17 October 1999): Greek-
American physicist; since April 
1943 he worked in the 
Manhattan Project in Los Alamos 
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Integration: Classical numerical method 

  

▪ In the numerical integration of a function f of a scalar variable u, a definite 
integral is approximated by the relationship (known as the trapezoidal rule)   


0

1

f(u) du   
n = 0

m

 wn f 






n

m  

where m is a positive integer and wn denotes a weight, equal to 1 / 2m for 
the endpoints n = 0 and n = m, and equal to 1 / m for all intermediate n 

▪ Likewise, in the numerical integration of a function of a vector variable of 
size s in the space Is := [0, 1]s, the relationship becomes  
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▪ The computational nodes form a rectangular grid with equidistance 1/m 

▪ Their number is Ν = (m + 1)s and the computational error is O(m-2) = O(N -2/s) 

▪ Consequently, for a specified acceptable error, N increases exponentially 
with s (curse of dimensionality) 
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Integration: The Monte Carlo method 

  
▪ In the Monte Carlo integration, the Ν points for the evaluation of f(u) are 

taken at random (rather than at the nodes of a grid) and the weight is 1/Ν, so 
that (Niederreiter, 1992) 


Ι s

 

f(u) du   
 1 
N  

n = 1

N

 f(xn) 

where x1, …, xN are independent random points over the space Is 

▪ For an arbitrary integration space B the relationship becomes  


Β

 

f(u) du   
 1 
N  

n = 1

N

 f(xn) UB(xn) 

where UB(xn) = 1 if xn  B while UB(xn) = 0 if xn  B; according to a classical 
statistical law, the computational error is O(Ν -1/2) 

▪ Observation: The error does not depend on the dimensionality s 

▪ Conclusion: Comparing the errors of the classical and Monte Carlo methods, 
we readily obtain that the latter is preferable when the dimensionality s > 4  

▪ Remark: For large dimensionality s, e.g. > 20, the classical method is infeasible 
while the Monte Carlo is always feasible 
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The Monte Carlo method is part of routine 
numerical modelling 
 The screen on the 

right shows how the 
Mathematica 
software implements 
various versions of 
the Monte Carlo 
method for numerical 
integration 

 This is not just an 
additional option 
within a repertoire of 
available options; for 
high-dimensional 
spaces it is the only 
possibility  
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Typical optimization of a scalar function of a 
scalar variable: deterministic approach 

 Assumption: We have an 
effective deterministic local 
search algorithm (e.g. 
parabolic interpolation) that, 
starting from an initial point, 
will determine the local 
minimum located in the 
corresponding attraction 
basin 

 Strategy: We determine the 
global minimum using a 
multistart search, starting 
from a set of N initial points 
at equidistance Δ along the 
axis  

 Conclusion: We will locate 
the global minimum if  
Δ ≤ δ 

 Hence, Νmin ≈ 1/δ  

With the chosen Δ > δ, the global minimum 
will not be found 

Attraction 
basin 1 

Attraction 
basin 2 Δ =  

1/(Ν – 1) 

L = 1 

δ 

Sought global minimum 

Initial 
point 

Local 
minimum 
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Typical optimization of a scalar function of a 
scalar variable: stochastic (Monte Carlo) approach 

 Assumption: The same as in 
the deterministic approach  

 Strategy: We try a number Ν 
of initial points chosen at 
random 

 Conclusion: The probability 
to locate the minimum with 
one trial is 1/δ; the 
probability to find it starting 
from Ν initial points chosen 
at random is 
pε = 1 – (1 – δ)Ν ≈ 1 – e–δΝ 

 Hence, even with a few 
points, there is a possibility 
(not certainty) to find the 
minimum 

Attraction 
basin 1 

Attraction 
basin 2 

L = 1 

δ 

Sought global minimum 
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 If the attraction basin at a 
manifold of dimension s (= 
size of vector variable) has 
characteristics lengths per 
dimension δ1, δ2, …, δs, with 
volume α = δ1 δ2 … δs, then: 

 According to the 
deterministic approach (initial 
points at a grid), the global 
minimum will be found only if 
Νmin ≈ 1/(mini δi)

s  
 According to the Monte Carlo 

approach, where the initial 
points are chosen at random, 
there is always a non-zero 
probability to find the 
minimum, equal to  
pε = 1 – (1 – α)Ν ≈ 1 – e–αΝ 

 Note that δi and α are not 
known a priori 
 

An example: the Griewank function for n = 2 
f(x1, x2, …, xn) = (x1

2 + x2
2 + … + xn

2)/400  
– cos(x1/1) cos(x2/2) … cos(xn/n) + 1 

Optimization of a scalar function of a vector 
variable 
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A comparison of the deterministic and stochastic 
(Monte Carlo) approaches: a numerical example 
 We assume a 2D optimization problem with a hypothetical attraction basin  

α = δ1 δ2 = (1/10) (1/100) = 1/1000 

 Deterministic approach: Νmin ≈ 1/ (1/100)2 = 10 000 

 Stochastic (Monte Carlo) approach pε = 1 – (1 – 1/1000)Ν ≈ 1 – e–Ν/1000 

0.001

0.01

0.1

1

1 10 100 1000 10000

N

p ε
Πιθανοτική 

θεώρηση

Ντετερμινιστική 

θεώρηση

Deterministic 
approach 

Stochastic 
approach 

Note: This type of stochastic 
algorithm is known as a 
multistart algorithm (local 
search algorithm separate of 
the global strategy) 

There exist other stochastic 
algorithms (evolutionary, 
simulated annealing) that  
do not separate the local 
and global search and may 
be more efficient  
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Additional reasons for adopting a stochastic 
approach in water management 

 In water management decisions are made with reference to the 
future 

 The future is (and most probably will always be) unknown 

 Methods assuming known future conditions are common but 
inappropriate 

 Only probabilistic approaches offer a scientifically rigorous 
method to cope with future uncertainty  
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A general 
methodological 
scheme for water 
management 
 Mathematically, water 

engineering and 
management problems 
include two sub-problems: 

 An integration problem to 
find the performance 
measure of the 
hydrosystem, 
J(μ, λ) = E[L(z(x(μ, ω), λ))] 
Note: expectation means 
integration 

 A constrained optimization 
problem, in which we seek 
the hydrosystem operation 
parameters λ that optimize 
the performance J(μ, λ)  

 For both sub-problems the 
Monte Carlo method offers 
a feasible and consistent 
solution 

 
       Parameter space, θ 

Parameters of 
hydrological 

inputs, μ 

Parameters of 
hydrosystem, 

λ 
Uncertainty 
modelled as  

randomness, ω    

1. Stochastic model of inputs (stochastic hydrological simulation) 

Hydrological inputs (e.g. river flow, rainfall), x := x(μ, ω)  

2. Transformation model (hydrosystem simulation) 

System outputs (e.g. flood, water availability), z(x(μ, ω), λ)   

3. Estimation of the performance measure (e.g. reliability, cost) 

Sample performance measure of the system, L(z(x(μ, ω), λ)) 

4. Ensemble average (or time average in steady state simulation) 

Performance measure of system,  J(θ) := E[L(z(x(μ, ω), λ))] 

Source: Koutsoyiannis and Economou, 2003 



A demonstration using a simple water 
management problem: reservoir sizing 
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“Textbook” methodology (for kindergarten...)  
 The problem is stated as follows: If it denotes the inflow to a reservoir for 

time t = 1, 2, …, n, where n is a control horizon, we wish to find the smallest 
reservoir storage capacity, λ, that sustains a steady state release d 

 Sadly, the textbooks still provide an inconsistent deterministic 
methodology not differing from the original Ripple (1883) ‘mass-curve’ 
technique; although the method is presented as intuitive and helpful for 
understanding, it develops an incorrect understanding 

 Subsequent tabulated versions of the method, e.g. the sequent-peak 
technique (Thomas and Burden, 1963) are equally misleading 

 Other versions of the method that use synthetic, instead of historical, time 
series (Schultz, 1976) do not make any difference, as long as they do not  
make consistent use of probability and the notion or reliability 

 Reliability, i.e. the probability that the system will perform the required 
function, was introduced by Hazen (1914) 

 Ironically, while Hazen was American, the Americans did not fully embrace the 
notion of reliability 

 It was the Soviet engineering community (Kritskiy and Menkel, 1935, 1940; 
Savarenskiy, 1940; Pleshkov, 1939) which advanced Hazen’s idea 

 For a history of the developments on this problem see Klemes (1987) 
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Linear programming solution (for elementary 
school...) 
 There is a linear programming problem formulation (ReVelle, 1999, p. 5), i.e.: 

  minimize  λ  
 s.t.   st = st – 1 + it – d – wt, t = 1, 2, …, n  
    st ≤ λ,        t = 1, 2, …, n 
    sn ≥ s0 
    st, wt, λ, d ≥ 0,       t = 1, 2, …, n  

 where st and wt is the reservoir storage and spill, respectively, at time t 

 While the actual control variable is only one (the reservoir size λ) this 
formulation uses a number 2n of additional control variables, st and wt, as 
well as a total 3n + 3 constraints (e.g. for n = 1000, we will have 2001 control 
variables and 3003 constraints); the high dimensionality is not fortunate 

 The tacit assumption is that the future inflows it are known 

 This formulation assumes full reliability (a = 100%), which is consistent with 
the deterministic problem formulation; ReVelle (1999) provides another 
formulation that can deal with reliability a < 100%, but the logical coherence 
is questionable (why a < 100% if inflows are deterministic?) 

 The method can hardly incorporate nonlinear system components (e.g. 
leakage or evaporation that are nonlinear functions of storage) 
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Consistent solution (for adults only...) 
 The consistent formulation is very simple, elegant and generic: 

  minimize  J(μ, λ) = λ  
 s.t.   P{rt = d} ≥ a  (alternatively E[rt]/d ≥ a)  

 where λ is the reservoir capacity, μ is a vector of parameters of 
hydrological inflows, J is the performance measure to be minimized 
(here equal to λ), P{ } denotes probability, a is the acceptable 
reliability and rt and st are the reservoir release and storage, 
respectively, at time t, treated as random variables and 
deterministically related to inflows it via the system dynamics, i.e., 

  rt = min(d, st – 1 + it),     st = min(λ, max(0, st – 1 + it – d))  

 Here we have only one control variable and one constraint 

 The performance measure depends not on the inputs it but on the 
parameters thereof, μ 

 The formulation is highly nonlinear, yet extremely easy to solve (e.g. 
in a spreadsheet) by Monte Carlo simulation (the integration part 
refers to the determination of P{rt = d} or E[rt]) 

 Any nonlinear adaptation of dynamics is readily incorporated 
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Typical results of the consistent method (storage-
yield-reliability relationship) 
Assumptions and characteristic 
quantities  
 Inflows independent identically 

and normally distributed 
(seasonal variation neglected) 

 μ : mean inflow 
 σ : standard deviation of inflow  
 a : reliability 
 T := 1 / (1 – a): return period of 

reservoir emptying 
 d : demand 
 λ : reservoir storage capacity 
 κ := λ / σ : standardized reservoir 

storage capacity 
 ε := (μ – δ)/σ : standardized 

mean loss 

Results (for T > 2 or a > 0.5) 
ln(T – 1) = 2 (ε + 0.25) (κ + 0.5)0.8    or        
ln(T – 1) = –ln(1/α – 1) = (2/σ 1.8) (μ + 0.25σ – δ) (λ + 0.5σ )0.8   

For details see 
Koutsoyiannis (2005) 
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Effect of skewness (Results for independent 
gamma distributed inflows) 
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Extensions of results for more complex stochastic 
structure of inflows  

 While the case presented is simple, the method is fully generic and can perform with any type of 
system dynamics and stochastic structure of inflows 

 While there exist in the literature different approaches (e.g. the formulation by Moran, 1954, 
based on Markov chains, as well as recent attempts) these involve radical simplifications (e.g. 
discretization of the reservoir space) and their usefulness is questionable  

 For details see Koutsoyiannis (2005) 

Effect of persistence (Results for 
normally distributed inflows) 



Application to a hypothetical system of 
two reservoirs 

This full study can be found in Koutsoyiannis and 
Economou (2003) 
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Hypothetical hydrosystem 

 Two reservoirs 
forming a system 
that serves a joint 
objective such as: 

 Maximization of 
release for water 
supply or 
irrigation 

 Minimization of 
cost for water 
conveyance 

 Maximization of 
benefit from 
energy production 

Reservoir 2 
Storage  
capacity λ2 

Target release 

(water uses: irrigation,  
water supply) 

In
fl

o
w

 
Sp

ill
 

Target energy 
(water use:  
energy production) 

Discharge  
capacity c2 

Reservoir 1 
Storage  
capacity λ1 

Discharge  
capacity c1 

Outflow to river  
in case of energy 
production 

Power plant 

In
fl

o
w

 

Sp
ill
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Study details 
 Tested approach: The general, doubly Monte-Carlo, methodological 

scheme  
 Benchmark procedures 

 A high-dimensional perfect foresight method  (control variables 
are the complete series of releases) combined with an 
evolutionary optimization method 

 An “equivalent reservoir method”, in which the reservoir system is 
replaced by one hypothetical reservoir with characteristics 
merging those of the different reservoirs of the system (it provides 
an upper bound for the system performance for some of the 
problems) 

 Simulation scale: monthly (water supply: 12 months per year; 
irrigation: 7 months per year) 

 Simulation period: 16-50 years, depending on the problem examined, 
so that the total number of control variables in the high dimensional 
approach be 400 or less (in order for the problem to be tractable 
using a typical evolutionary solver) 
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Parsimonious modelling and the PSO approach 
 Referring to a system optimization at a control horizon of 10 years at 

monthly scale, what is more meaningful result of an optimized system 
operation e.g. at time step 100 (that is some 8 years from now), for a 
projected demand of 270 hm3? 

 High dimensional approach (the releases are the control 
variables): The optimal release from reservoir 1 should be 100 hm3 
and that of reservoir 2 should be 170 hm3 

 Parsimonious approach: Determine the optimal releases, not now 
but then, so that the quantities of water stored in each reservoir 
have some balance 

 The latter approach necessitates the use of an operation rule that 
quantifies what the balance is  

 It is reasonable to assume that this quantification should include some 
parameters, which become the control variables to be determined by 
the Monte Carlo optimization  

 This gives rise to the so-called Parameterization-Simulation-
Optimization (PSO) approach 
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Reservoir system 
parameterization 
 A simple operation rule can be 

formulated so as to give the target 
storage sj

* of reservoir j as a linear 
function of the storage capacity of 
that reservoir, λj, and of the 
system, λ, as well as the total 
system storage, s, i.e.: 

  sj
* = λj – aj λ + bj s  

 where aj and bj are the parameters 
to be determined (2 control 
variables per reservoir) 

 The linear rule needs some 
nonlinear adjustments to assure 
physical consistency (Nalbantis and 
Koutsoyiannis, 1997) 

 The figures exemplify the optimized 
parametric operating rules for one 
of the examined problems (upper: 
rule for the refill period; lower: rule 
for the drawdown period) 
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Results from a large family of tests  
 Maximization of reliable release for water supply or irrigation 

 The PSO methodology with 5 control variables and zero foresight resulted 
in practically the same performance as in the perfect foresight method 
with 351 control variables 

 Even with 2 control variables the PSO method with zero foresight is very 
effective as the reduction in performance is only 1.68%  

 Minimization of cost (assuming different unit cost to convey water from 
each reservoir) 
 The results of the PSO with 4 control variables and zero foresight are 

almost identical to those of the perfect foresight method with 350 
variables (irrigation) or 192 variables (water supply) 

 Maximization of benefit from energy production  
 The reduction in performance of the PSO methodology is no more than 

3% with respect to the high dimensional perfect foresight method 
 Careful inspection showed that the 3% improvement in the high 

dimensional method is fake as it is associated with the perfect foresight 
aspect (avoidance of spill by unjustified more intense energy production 
in earlier months) 

 General conclusion: The PSO method performs practically as well as 
benchmark methods and has many additional advantages  



Application to a demanding real world 
system: The water resource system of 
Athens 

For details see: Koutsoyiannis and Economou (2003); 
Koutsoyiannis et al. (2002, 2003); Efstratiadis et al. (2004)  

 

 



D. Koutsoyiannis, A Monte Carlo approach to water management 30 

0        10      20      30 km 

Athens 

The hydrosystem: Main components 

Mornos 

Evinos 

Marathon 

Canal at Delphi 

Hylike lake 



D. Koutsoyiannis, A Monte Carlo approach to water management 31 

Typical problems to be answered 
 Find the maximum possible annual reliable release from the system:  

 for a certain (acceptable) reliability (steady state conditions) 
 for a certain combination of the system components 
and determine the corresponding: 
 optimal operation policy (storage allocation; conveyance 

allocation; pumping operation) 
 cost (in terms of energy; economy; other impacts) 

 Find the minimum total cost  
 for a given water demand (less than the maximum possible annual 

release) 
 for a certain (acceptable) reliability 
and determine the corresponding: 
 combination of the system components to be enabled 
 optimal operation policy (storage allocation; conveyance 

allocation; pumping operation) 
 alternative operation policies (that can satisfy the demand but 

with higher cost)  
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Categories of problems 

 Steady state problems for the current hydrosystem 
 (e.g. previous slide) 

 Problems involving time  
 Availability of water resources in the months to come 
 Impact of a management practice to the future availability of water 

resources 
 Evolution of the operation policy for a temporally varying demand 

 Investigation of scenarios   
 Hydrosystem structure: Impacts of new components (aqueducts, 

pumping stations etc.) 
 Demand: Feasibility of expansion of domain 

 Adequacy/safety under exceptional events – Required measures 
 Damages 
 Special demand occasions (e.g. 2004 Olympic Games) 
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Control variables – Parameterization 

Number of 
control 
variables: 
According to a 
conventional 
approach: 
1 variable/ 
branch/month × 
60 branches × 
120 months = 
7200  
According to 
the PSO 
approach: 
4 reservoirs  × 2 
parameters/ 
reservoir = 8  

We assume a control horizon of 10 years and monthly scale of 
simulation; the network includes 60 branches 
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Simulation and optimization 

 Assuming that parameters ai and bi of the operation rule are 
known, the target releases from each reservoir will be also 
known at the beginning of each simulation time step  

 The actual releases depend on several attributes of the 
hydrosystem (physical constraints) 

 Their estimation is done using simulation  

 Within simulation, an internal optimization procedure may be 
necessary (typically linear, nonparametric) 

 Because parameters ai and bi are not known, but rather are to 
be optimized, simulation is driven by an external optimization 
procedure (nonlinear) 
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problems within simulation  

Stochastic simulation of 
hydrological processes  

Nonlinear optimization 
methods  
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Project initiation: 1999 

First master plan of the hydrosystem: Koutsoyiannis et al. (2000) 

Completion of a decision support tool: Nalbantis et al. (2004) 

Milestones in the development of the methodology and 
the software system 
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Hydrognomon: Software for the management and 
processing of hydrological data 

All software tools are available online and free; itia.ntua.gr/en/software/ 
See also poster A121 at the Session on Open Source Computing in Hydrology (25 Apr 17:30–19:00)  
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Castalia: 
Software for 
the stochastic 
simulation of 
hydrological 
processes 
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All software tools are available online 
and free; itia.ntua.gr/en/software/ 
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Hydronomeas: Software for hydrosystem optimization 

All software tools are available online and free; itia.ntua.gr/en/software/ 



A human-modified inadequately 
measured basin: hydrological model 
calibration and water management 

See details in: Efstratiadis et al. (2008); Nalbantis et al. (2011) 
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The Boeoticos Kephisos hydrosystem 

Sketch of the water management 
network in the middle part of the 
basin 

The Boeoticos Kephisos River 
basin (~2000 km2) and the main 
hydrosystem components 

 Domination of groundwater flow (karst area) 

 High withdrawal of groundwater—but not measured 

 Modelling of surface water and groundwater flows cannot be 
separated from each other and from a water management model 
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Different problem 
objectives dealt with 
using the PSO method 
 Parameters of hydrological 

models along with parameters of 
the operation rules (concerning 
the unknown past surface and 
groundwater withdrawals, which 
affect measured flows) are 
determined by the PSO method 
 The objective function is 

related to the fitting of the 
model outputs with 
observations 

 Search of optimal designs and 
future management policies  
are again determined by the  
PSO method 
 The objective function is 

related to the cost and the 
reliability of the system 

Surface hydrology  
model 

Percolation 

Spring flows,  
cell levels 
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Hydrogeios: Software for holistic river basin simulation 

All software tools are available online and free; itia.ntua.gr/en/software/ 
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Instead of conclusions 
Classical approach Inconsistency New approach 

Input time series 
are known 

Water management is made 
with reference to the future, 
which is unknown 

The parameters of a stochastic 
(Monte Carlo) model of 
inflows are known 

Control variables 
are the controlled 
water fluxes per 
time step 

This results in inflationary 
modelling which contravenes 
the principle of parsimony and 
is meaningless due to the 
uncertain future 

The parameterization 
approach, in which the control 
variables are the parameters 
of operation rules, radically 
reduces dimensionality 

Simplified system 
representation 

Common simplifications (e.g. 
discretization, avoidance of 
probabilistic constraints) 
annuls the optimality of the 
solutions determined 

Faithful system representation 
and assessment of 
performance via stochastic 
(Monte Carlo) simulation 

Use of simplified 
optimization 
methods, such as 
linear or dynamic 
programming 

Water management problems 
are highly nonlinear (except 
some simple sub-problems); 
dynamic programming is 
inappropriate 

Nonlinear stochastic (Monte 
Carlo) optimization 
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