

European Geosciences Union General Assembly 2013 Vienna, Austria, 7-12 April 2013

Session NP3.1: Scaling in atmospheric, terrestrial, oceanic and biogeophysical processes

Climacogram-based pseudospectrum: a simple tool to assess scaling properties

Demetris Koutsoyiannis

Department of Water Resources and Environmental Engineering School of Civil Engineering National Technical University of Athens, Greece (dk@itia.ntua.gr, itia.ntua.gr/dk/)

Presentation available online: itia.ntua.gr/1328/

A first illustration

- As a first example, we consider the stochastic process with known theoretical properties, including its theoretical power spectrum, as shown on the graph.
- The process is characterized by two different scaling laws, shown in its theoretical power spectrum as asymptotic slopes for frequen

- asymptotic slopes for frequencies $w \to 0$ and $w \to \infty$.
- The slopes can be deduced if the stochastic properties of the process are known. But can they be estimated from data?
- Here a time series of 1024 values has been generated from the known process.
- The graph, in addition to theoretical (true) and empirical (estimated) power spectra, shows theoretical and empirical pseudospectra (explained below).

Problems in estimation of the power spectrum

- If estimated from data (the Fourier transform of the data series or its empirical autocorrelation function), the power spectrum is too rough.
- Even after smoothing (here by averaging from 8 segments) it remains too rough and inappropriate to estimate either asymptotic slopes or statistically significant peaks.

- The bias and uncertainty in estimation are uncontrollable.
- Finite sample and time discretization also cause problems in the estimation of theoretical spectrum; for example at the Nyquist frequency (1/2D) the calculated slope is precisely 0 ($s^{\#}(\frac{1}{2}) = 0$) and not equal to the actual asymptotic slope.
- Due to these problems, erroneous results are often reported in the literature, e.g. too steep slopes, $s^{\#}(0) < -1$ (infeasible; see Koutsoyiannis 2013), and false periodicities.

The new concept of the *climacogram-based pseudospectrum* can overcome such problems.

The empirical climacogram

• As an example, we consider the synthetic time series of the earlier illustration,

$$x_1, x_2, \dots, x_{1024} \to \hat{\gamma}(1) = \frac{(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + \dots + (x_{1024} - \bar{x})^2}{1023} \tag{1}$$

where $\hat{\gamma}(1)$ is the sample variance whereas the argument (1) indicates time scale 1 and $\bar{x} \coloneqq (x_1 + x_2, + \dots + x_{1024})/1024$ is the sample average.

• We form a time series at time scale 2 and find its variance:

$$x_1^{(2)} \coloneqq \frac{x_1 + x_2}{2}, x_2^{(2)} \coloneqq \frac{x_3 + x_4}{2}, \dots, x_{331}^{(2)} \coloneqq \frac{x_{1023} + x_{1024}}{2} \to \hat{\gamma}(2)$$
(2)

• We proceed forming a time series at time scale 3 and finding its variance:

$$x_1^{(3)} \coloneqq \frac{x_1 + x_2 + x_3}{3}, \dots, x_{341}^{(2)} \coloneqq \frac{x_{1021} + x_{1022} + x_{1023}}{3} \to \hat{\gamma}(3)$$
(3)

• We repeat the same procedure up to scale 102 = 1/10 of the sample size (Koutsoyiannis 2003; for larger scales the estimation is too unreliable):

$$x_1^{(102)} \coloneqq \frac{x_1 + \dots + x_{102}}{102}, \dots, x_{10}^{(102)} \coloneqq \frac{x_{919} + \dots + x_{1020}}{102} \to \hat{\gamma}(102)$$
(4)

• The empirical *climacogram* (Koutsoyiannis, 2010) is the logarithmic plot of the variance $\hat{\gamma}(\Delta)$ versus the time scale Δ (or that of the standard deviation $\hat{\sigma}(\Delta) = \sqrt{\hat{\gamma}(\Delta)}$ vs. Δ ; a contraction of the former logarithmic plot by 2).

The theoretical climacogram

• For a stochastic process $\underline{x}(t)$ at continuous time *t*, the ∕ariance, γ(Δ) averaged process on time scale Δ at discrete time *i* is $\underline{x}_{i}^{(\Delta)} := \frac{1}{A} \int_{(i-1)\Delta}^{i\Delta} \underline{x}(\xi) \mathrm{d}\xi$ (5) • The theoretical climacogram is the variance $\gamma(\Delta) \coloneqq \operatorname{Var}\left[\underline{x}_{i}^{(\Delta)}\right]$ Climacogram, empirical (6)Climacogram, theoretical Climacogram, adapted for bias • In our example, 0.1 $\gamma(\Delta) = \frac{\lambda}{(1+\Lambda/\alpha)^{2-2H}}$ 10 100 (7)Time scale, A

where $\alpha = 1$ [time], $\lambda = 1$ [x]² and H = 0.8 [-] (Hurst parameter).

• The empirical climacogram $\hat{\gamma}(\Delta)$ is an estimate of the theoretical one $\gamma(\Delta)$, but not an unbiased one. The bias is calculated from the model properties:

$$E[\hat{\gamma}(\Delta)] = \eta(\Delta, T)\gamma(\Delta) \text{ where } \eta(\Delta, T) = \frac{1 - \gamma(T)/\gamma(\Delta)}{1 - \Delta/T}$$
(8)

where $T \coloneqq nD$, *n* the sample size and *D* the spacing (Koutsoyiannis, 2011).

Relationships of climacogram, autocovariance and power spectrum

- The climacogram, the autocovariance function and the power spectrum of a process are transformations one another.
- The climacogram $\gamma(\Delta) \coloneqq \operatorname{Var}\left[\underline{x}_{i}^{(\Delta)}\right]$ and the autocovariance function $c(\tau) \coloneqq \operatorname{Cov}[\underline{x}(t), \underline{x}(t+\tau)]$ of a continuous time process are interrelated as follows:

$$\gamma(\Delta) = 2 \int_0^1 (1 - \xi) c(\xi \Delta) d\xi \iff c(\tau) = \frac{1}{2} \frac{d^2 \left(\tau^2 \gamma(\tau)\right)}{d\tau^2}$$
(9)

The power spectrum s(w) and the autocovariance function c(τ) of a continuous time process are interrelated as follows:

$$s(w) \coloneqq 4 \int_0^\infty c(\tau) \cos(2\pi w\tau) \, \mathrm{d}\tau \,\leftrightarrow \, c(\tau) = \int_0^\infty s(w) \cos(2\pi w\tau) \, \mathrm{d}w \tag{10}$$

• The slope of the logarithmic plot of power spectrum, which is of particular interest in identifying scaling properties, is defined as:

$$s^{\#}(w) = \frac{d(\ln s(w))}{d(\ln w)} = \frac{w \, s'(w)}{s(w)} \tag{11}$$

See details in Koutsoyiannis (2013).

The climacogram-based pseudospectrum (CBPS)

• A substitute of the power spectrum which has similarities in its properties, is the climacogram-based pseudospectrum (CBPS) defined as

$$\psi(w) \coloneqq \frac{2\gamma(1/w)}{w} \left(1 - \frac{\gamma(1/w)}{\gamma(0)}\right) \tag{12}$$

• In processes with infinite variance $(\gamma(0) = c(0) = \infty)$ the CBPS simplifies to

$$\psi(w) = \frac{2\gamma(1/w)}{w} \tag{13}$$

- The CBPS value of at w = 0 equals that of the power spectrum (indeed from (9) and (10) we obtain $\psi(0) = s(0) = \Delta \gamma(\Delta)|_{\Delta \to \infty} = 4 \int_0^\infty c(\tau) d\tau$).
- Furthermore, the asymptotic slopes $\psi^{\#}(w)$ of CBPS at frequencies (or resolutions) $w \to 0$ and ∞ follow those of the power spectrum $s^{\#}(w)$ and in most processes the asymptotic slopes are precisely equal to each other.
- At frequencies where the power spectrum has peaks, the CBPS has troughs (negative peaks).
- In contrast to the empirical periodogram, the empirical $\psi(w)$ is pretty smooth.

See details in Koutsoyiannis (2013).

Example 1: The Markov process

Variance of instantane-	$\gamma = \gamma(0) = c(0) = \lambda$
ous process	
Variance at scale Δ	$\gamma(\Lambda) = \frac{2\lambda}{2\lambda} \left(1 - \frac{1 - e^{-\Delta/\alpha}}{2\lambda}\right)$
(Climacogram)	$\gamma(\Delta) = \frac{1}{\Delta/\alpha} \left(1 - \frac{1}{\Delta/\alpha} \right)$
Autocovariance function	$c(\tau) = \lambda \mathrm{e}^{-\tau/lpha}$
for lag $ au$	
Power spectrum	$s(w) = \frac{4\alpha\lambda}{2}$
for frequency w	$1+(2\pi\alpha w)^2$
Asymptotic slopes	$\psi^{\#}(0) = s^{\#}(0) = 0$
	$\psi^{\#}(\infty) = s^{\#}(\infty) = -2$
	$\gamma^{\#}(\infty) = 2\sigma^{\#}(\infty) = -1$
	$\gamma^{\#}(0) = \sigma^{\#}(0) = 0$
Parameter values used	$\lambda = 1$, $\alpha = 10$, and the
	spacing is $D = 1$, resulting in
	$\rho = 0.905.$

- The theoretical power spectra of derived discrete-time processes (discretized either by averaging at a time scale *D* or by sampling at spacing *D*) fail to capture the slopes for w > 1 / 10D, while for w = 1 / 2D they give a slope which is precisely zero.
- The pseudospectrum performs better in identifying the asymptotic slopes.

D. Koutsoyiannis, Climacogram-based pseudospectrum 7

Example 2: The Hurst-Kolmogorov (HK) process

Variance of instantane-	$\gamma = \gamma(0) = c(0) = \infty$
ous process	
Variance at scale Δ	$\chi(\Lambda) = \frac{\lambda(\alpha/\Delta)^{2-2H}}{2}$
(Climacogram)	γ (\Box) - $H(2H-1)$
Autocovariance function	$c(\tau) = \lambda(\alpha/\tau)^{2-2H}$
for lag $ au$	$(0.5 \le H < 1)$
Power spectrum	$s(w) = \frac{4\alpha\lambda\Gamma(2H-1)\sin(\pi H)}{1}$
for frequency w	$(2\pi \alpha w)^{2H-1}$
Asymptotic slopes	$\psi^{\#}(w) = s^{\#}(w) = 1 - 2H$
	$\gamma^{\#}(\varDelta) = 2\sigma^{\#}(\varDelta) = 2H - 2$
Parameter values used	$\lambda = 1, \alpha = 10, H = 0.8;$ the
	spacing is $D = 1$.

- The model parameters are in essence two, i.e. *H* and (λ α^{2 2H}). Here the formulation has three nominal parameters for dimensional consistency: the units of α and λ are [τ] and [x]², respectively, while *H* is dimensionless.
- For $0.5 \le H < 1$ the process is called a persistent process; it has often been used with 0 < H < 0.5, being called an antipersistent process, but this is inconsistent with physics (A proper antipersistent process is discussed in Example 4).

Example 3: A modified finite-variance HK process

Variance of instantane-	$\gamma = \gamma(0) = c(0) = \lambda$
ous process	
Variance at scale⊿ (Climacogram)	$\gamma(\Delta) = \frac{\lambda(\alpha/\Delta)}{H(2H-1)} \times \left(\frac{\alpha}{\Delta} \left(1 + \frac{\alpha}{\Delta}\right)^{2H} - \frac{\alpha}{\Delta} - 2H\right)$
Autocovariance function for lag $ au$	$c(\tau) = \frac{\lambda}{(1+\tau/\alpha)^{2-2H}}$
Power spectrum	<i>s</i> (<i>w</i>): closed expression too
for frequency w	complex
Asymptotic slopes	$\psi^{\#}(0) = s^{\#}(0) = 1 - 2H$ $\psi^{\#}(\infty) = s^{\#}(\infty) = -2$
	$\varphi^{\#}(\infty) = 3\sigma^{\#}(\infty) = 2H - 2$ $\gamma^{\#}(\infty) = \sigma^{\#}(0) = 0$
Daramatar values used	$\gamma (0) = 0 (0) = 0$
rarameter values used	$\lambda = 1, \alpha = 10, H = 0.0;$ the
	spacing is $D = 1$.

The asymptotic slopes of the power spectrum are both nonzero and different in the cases w→0 and w→∞. The slopes of the pseudospectrum are identical with those of the spectrum.

D. Koutsoyiannis, Climacogram-based pseudospectrum 9

Example 4: A simple antipersistent process

Variance of instanta-	$\gamma = \gamma(0) = c(0) = \lambda$
neous process	
Variance at scale Δ	$\chi(\Lambda) = \frac{2\lambda}{2\lambda} \left(\frac{1 - e^{-\Delta/\alpha}}{2\lambda} - e^{-\Delta/\alpha} \right)$
(Climacogram)	$\gamma(\Delta) = \frac{1}{\Delta/\alpha} \left(\frac{1}{\Delta/\alpha} - e \right)$
Autocovariance	$c(\tau) = \lambda (1 - \tau/\alpha) \mathrm{e}^{-\tau/\alpha}$
function for lag $ au$	
Power spectrum	$s(w) = 8\lambda \alpha \left(\frac{2\pi \alpha w}{2\pi \alpha w}\right)^2$
for frequency w	$S(w) = Ond \left(\frac{1}{1 + (2\pi\alpha w)^2} \right)$
Asymptotic slopes	$\psi^{\#}(0) = 1; \ s^{\#}(0) = 2$
	$\psi^{\#}(\infty) = s^{\#}(\infty) = -2$
	$\gamma^{\#}(\infty) = 2\sigma^{\#}(\infty) = -2$
	$\gamma^{\#}(0) = \sigma^{\#}(0) = 0$
Parameter values	$\lambda = 1, \alpha = 10$; the spacing is
used	<i>D</i> = 1.

- The condition making the process antipersistent is that $4\int_0^{\infty} c(\tau)d\tau = \psi(0) = s(0) = 0$ (while of course $c(0) = \gamma(0) = \lambda > 0$).
- For τ > α, the autocovariance is consistently negative—but for small τ it is positive.
- Antipersistence is manifested in the positive slopes in power spectrum and pseudospectrum. Clearly, these slopes are positive only for low *w*.

Example 5: A periodic process with white noise

Variance of instantane-	$\gamma = \gamma(0) = c(0) = \infty$
ous process	
Variance at scale⊿ (Climacogram)	$\gamma(\Delta) = \frac{\lambda_1}{\Delta/\alpha} + \lambda_2 \operatorname{sinc}^2\left(\frac{\Delta}{\alpha}\right)$
Autocovariance	$c(\tau) = \lambda_1 \delta(\tau/\alpha) + $
function for lag $ au$	$\lambda_2 \cos(2\pi \tau / \alpha)$
Power spectrum	s(w) =
for frequency w	$2\lambda_1 \alpha + \lambda_2 \alpha \delta(\alpha w - 1)$
Asymptotic slopes for	$\psi^{\#}(0) = s^{\#}(0) = 0$ [+1]
$\lambda_1 > 0$ [and for $\lambda_1 = 0$;	$\psi^{\#}(\infty) = s^{\#}(\infty) = 0 [-3]$
but not valid for <i>s</i> [#] ()]	$\gamma^{\#}(\infty) = 2\sigma^{\#}(\infty) = -1[-2]$
	$\gamma^{\#}(0) = \sigma^{\#}(0) = -1 [0]$
Parameter values used	$\lambda_1 = 0.05, \lambda_2 = 1, \alpha = 1.00$

- $\delta(x)$ is the Dirac delta function while $\operatorname{sinc}(x) \coloneqq \sin(\pi x) / \pi x$.
- Strictly speaking, the periodic component is a deterministic rather than a stochastic process. In this respect, the process should be better modelled as a cyclostationary one. However, the fact that the autocorrelation is a function of the lag τ only, allows the process to be treated as a typical stationary stochastic process.

Example 6: A process with Cauchy-type climacogram

Variance of instan-	$\gamma = \gamma(0) = c(0) = \lambda$
taneous process	
Variance at scale \varDelta	$\gamma(\Lambda) = \frac{\lambda}{1 - \lambda}$
(Climacogram)	$\frac{1}{(1+(\Delta/\alpha)^{\kappa})} \frac{2-2H}{\kappa}$
Autocovariance	$c(\tau)$: expression too complex
function for lag $ au$	
Power spectrum	<i>s</i> (<i>w</i>): expression too complex
for frequency w	
Asymptotic slopes	$\psi^{\#}(0) = s^{\#}(0) = 1 - 2H$
	$\psi^{\#}(\infty) = s^{\#}(\infty) = -\kappa - 1$
	$\gamma^{\#}(\infty) = 2\sigma^{\#}(\infty) = -2 + 2H$
	$\gamma^{\#}(0) = \sigma^{\#}(0) = 0$
Parameter values	$\lambda = 1, \alpha = 10, H = 0.8, \kappa = 1.8$
used	

- The process was derived by modifying one proposed by Gneiting and Schlather (2004).
- The important feature of this process is that it allows control of both asymptotic slopes.
- The asymptotic slopes of the pseudospectrum are identical with those of the spectrum.
- An intermediate steep slope that appears in the power spectrum is artificial and does not indicate a scaling behaviour.

Example 7: A composite long-range and short-range dependence

Variance of instan-	$\gamma = \gamma(0) = c(0) = \lambda_1 + \lambda_2$
taneous process	
Variance at scale \varDelta	$\gamma(\Delta)$: expression too complex
(Climacogram)	(sum from examples 1 and 2)
Autocovariance	$c(\tau) = \frac{\lambda_1}{1 + \lambda_2} + \lambda_2 e^{-\tau/\alpha}$
function for lag $ au$	$(1+\tau/\alpha)^{2-2H}$
Power spectrum	<i>s</i> (<i>w</i>): expression too complex
for frequency w	
Asymptotic slopes	$\psi^{\#}(0) = s^{\#}(0) = 1 - 2H$
	$\psi^{\#}(\infty) = s^{\#}(\infty) = -2$
	$\gamma^{\#}(\infty) = 2\sigma^{\#}(\infty) = -2 + 2H$
	$\gamma^{\#}(0) = \sigma^{\#}(0) = 0$
Parameter values	$\lambda_1 = 1, \lambda_2 = 20, \alpha = 10, H = 0.85$
used	

- Again the asymptotic slopes of the pseudospectrum are identical with those of the spectrum.
- As in the previous example, an intermediate slope appears in the power spectrum (in this case a mild one). Again this is artificial, here imposed by the Markov process, and does not indicate a scaling behaviour.

Example 8: The initial example: process defined by (7)

- Examples 1-7 have been focused on the theoretical power spectrum and pseudospectrum and have shown that:
 - (a) the asymptoticbehaviours of thetwo are similar;
 - (b) the pseudospectrum is less affected by discretization.
- Example 8 adds information from data.

• It shows that when the power spectrum and pseudospectrum are estimated from data, the latter is much smoother and its bias is a priori known, thus enabling a more direct and accurate estimation of slopes and fitting on a model.

Conclusions

- The power spectrum is very powerful in identifying strong periodicities in time series. However, it has some problems in identifying scaling laws and weak periodicities, as:
 - Discretization and finite length of data alter asymptotic slopes;
 - The rough shape of the periodogram may result in:
 - misleading, inaccurate or even incorrect slopes (e.g. slope > −1 for frequency → 0, which is infeasible);
 - false periodicities;
 - Biases and uncertainties are uncontrollable, particularly when the periodogram is smoothed;
 - $\circ~$ False detection of artificially induced scaling areas is likely.
- The climacogram-based pseudospectrum has an asymptotic behaviour similar to that of the power spectrum and offers some advantages such as:
 - Its calculation is very easy: it only uses the concept of variance and does not involve integral transformations (like the Fourier transform);
 - It is smooth;
 - $\circ~$ Its biases and uncertainties are smaller and easy to determine;
 - $\circ~$ Its asymptotic slopes are determined more accurately from data.

References

- Gneiting, T., and M. Schlather, Stochastic models that separate fractal dimension and the Hurst effect, *Society for Industrial and Applied Mathematics Review*, 46 (2), 269-282, 2004.
- Koutsoyiannis, D., Climate change, the Hurst phenomenon, and hydrological statistics, *Hydrological Sciences Journal*, 48 (1), 3–24, 2003.
- Koutsoyiannis, D., A random walk on water, *Hydrology and Earth System Sciences*, 14, 585–601, 2010.
- Koutsoyiannis, D., Hurst-Kolmogorov dynamics as a result of extremal entropy production, *Physica A: Statistical Mechanics and its Applications*, 390 (8), 1424–1432, 2011.
- Koutsoyiannis, D., *Encolpion of stochastics: Fundamentals of stochastic processes*, 30 pages, Department of Water Resources and Environmental Engineering National Technical University of Athens, Athens, 2013 (itia.ntua.gr/1317/).