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A first illustration 

 As a first example, we 
consider the stochastic 
process with known 
theoretical properties, 
including its theoretical 
power spectrum, as 
shown on the graph. 

 The process is 
characterized by two 
different scaling laws, 
shown in its theoretical 
power spectrum as 
asymptotic slopes for frequencies w → 0 and w → ∞.   

 The slopes can be deduced if the stochastic properties of the process are 
known. But can they be estimated from data?  

 Here a time series of 1024 values has been generated from the known process. 
 The graph, in addition to theoretical (true) and empirical (estimated) power 

spectra, shows theoretical and empirical pseudospectra (explained below). 
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Problems in estimation of the power spectrum 
 If estimated from data (the 

Fourier transform of the 
data series or its empirical 
autocorrelation function), 
the power spectrum is too 
rough. 

 Even after smoothing (here 
by averaging from 8 
segments) it remains too 
rough and inappropriate to 
estimate either asymptotic 
slopes or statistically 
significant peaks.  

 The bias and uncertainty in estimation are uncontrollable. 
 Finite sample and time discretization also cause problems in the estimation of 

theoretical spectrum; for example at the Nyquist frequency (1/2D) the calculated 
slope is precisely 0 (s#(½) = 0) and not equal to the actual asymptotic slope.  

 Due to these problems, erroneous results are often reported in the literature, e.g. too 
steep slopes, s#(0) < –1 (infeasible; see Koutsoyiannis 2013), and false periodicities.     
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The new concept of the climacogram-based pseudospectrum can overcome such problems.  
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The empirical climacogram 

 As an example, we consider the synthetic time series of the earlier illustration, 

               ̂(1)  
(    ̅)  (    ̅)    (       ̅) 

    
  (1) 

where   ̂(1) is the sample variance whereas the argument (1) indicates time 
scale 1 and  ̅  (               ) 1   ⁄  is the sample average.  

 We form a time series at time scale 2 and find its variance:  
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  ̂( )  (2) 

 We proceed forming a time series at time scale 3 and finding its variance:  

  
( )  

         

 
       

( )  
                  

 
  ̂( )  (3) 

 We repeat the same procedure up to scale 102 = 1/10 of the sample size 
(Koutsoyiannis 2003; for larger scales the estimation is too unreliable): 

  
(   )  

         

   
      

(   )  
            

   
  ̂(1  )   (4) 

 The empirical climacogram (Koutsoyiannis, 2010) is the logarithmic plot of 
the variance  ̂( ) versus the time scale Δ (or that of the standard deviation 

 ̂( )   √ ̂( ) vs. Δ; a contraction of the former logarithmic plot by 2).  
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The theoretical climacogram 

 For a stochastic process x(t) 
at continuous time t, the 
averaged process on time 
scale Δ at discrete time i is 

   
( )   

 

 
∫  ( )  
  

(   ) 
 (5) 

 The theoretical 
climacogram is the variance 

 ( )     [  
( )]           (6) 

 In our example, 

 ( )  
 

(     )         (7) 

where α = 1 [time], λ = 1 [x]2 and H = 0.8 [-] (Hurst parameter). 
 The empirical climacogram  ̂( ) is an estimate of the theoretical one γ(Δ), but 

not an unbiased one. The bias is calculated from the model properties: 

  [ ̂( ) ]   (   ) ( ) where  (   )  
   ( )  ( )⁄

    ⁄
 (8) 

where T ≔ nD, n the sample size and D the spacing (Koutsoyiannis, 2011). 
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Relationships of climacogram, autocovariance and power spectrum 

 The climacogram, the autocovariance function and the power spectrum of a 
process are transformations one another.  

 The climacogram  ( )     [  
( )] and the autocovariance function 

 ( )     [ ( )  (   )] of a continuous time process are interrelated as 

follows: 

 ( )   ∫ (1 −  ) (  )  
 

 
  ↔    ( )  

 

 
 
  (   ( ))

   
 (9) 

 The power spectrum s(w) and the autocovariance function c(τ) of a 
continuous time process are interrelated as follows: 

 ( )   ∫  ( )    (    )   
 

 
  ↔   ( )  ∫  ( )    (    )   

 

 
 (10) 

 The slope of the logarithmic plot of power spectrum, which is of particular 
interest in identifying scaling properties, is defined as: 

  ( )  
 (   ( ))

  (   ) 
 

     ( )

  ( )
  (11) 

 See details in Koutsoyiannis (2013).  
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The climacogram-based pseudospectrum (CBPS) 

 A substitute of the power spectrum which has similarities in its properties, is 
the climacogram-based pseudospectrum (CBPS) defined as  

 ( )   
   (  ⁄ )

 
(1 −

 (  ⁄ )

 ( )
)  (12) 

 In processes with infinite variance (γ(0)  = c(0) = ∞) the CBPS simplifies to 

 ( )  
   (  ⁄ )

 
  (13) 

 The CBPS value of at w = 0 equals that of the power spectrum (indeed from 

(9) and (10) we obtain  ( )   ( )     ( )       ∫  ( )  
 

 
).  

 Furthermore, the asymptotic slopes   ( ) of CBPS at frequencies (or 
resolutions) w → 0 and ∞ follow those of the power spectrum   ( ) and in 
most processes the asymptotic slopes are precisely equal to each other.  

 At frequencies where the power spectrum has peaks, the CBPS has troughs 
(negative peaks).  

 In contrast to the empirical periodogram, the empirical ψ(w) is pretty smooth. 

See details in Koutsoyiannis (2013).  
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Example 1: The Markov process 
Variance of instantane-
ous process 

   ( )   ( )     

Variance at scale Δ 
(Climacogram) 

 ( )  
  

  ⁄
(1 −

      ⁄

  ⁄
)  

Autocovariance function 
for lag τ  

 ( )         

Power spectrum  
for frequency w 

s(w)  
   

  (    ) 
 

Asymptotic slopes   ( )    ( )     
  ( )    ( )  −    
  ( )     ( )  −1  
  ( )    ( )     

Parameter values used λ = 1, α = 10, and the 
spacing is D = 1, resulting in 
ρ = 0.905. 

 The theoretical power spectra of derived 
discrete-time processes (discretized either by 
averaging at a time scale D or by sampling at 
spacing D) fail to capture the slopes for w > 
1 / 10D, while for w = 1 / 2D they give a slope 
which is precisely zero. 

 The pseudospectrum performs better in 
identifying the asymptotic slopes. 
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Example 2: The Hurst-Kolmogorov (HK) process 
Variance of instantane-
ous process 

   ( )   ( )     

Variance at scale Δ 
(Climacogram) 

 ( )  
 (  ⁄ )    

 (    )
  

Autocovariance function 
for lag τ  

 ( )   (  ⁄ )       
( .5    1)   

Power spectrum  
for frequency w 

s(w)  
     (    )    (  )

(    )     

Asymptotic slopes   ( )    ( )  1 −      
  ( )     ( )    −     

Parameter values used λ = 1, α = 10, H = 0.8; the 
spacing is D = 1. 

 The model parameters are in essence two, i.e. 
H and (λ α2 – 2H). Here the formulation has 
three nominal parameters for dimensional 
consistency: the units of α and λ are [τ] and 
[x]2, respectively, while H is dimensionless. 

 For 0.5 ≤ H < 1 the process is called a 
persistent process; it has often been used with 
0 < H < 0.5, being called an antipersistent 
process, but this is inconsistent with physics 
(A proper antipersistent process is discussed 
in Example 4). 
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Example 3: Α modified finite-variance HK process 
Variance of instantane-
ous process 

   ( )   ( )     

Variance at scale Δ 
(Climacogram) 

 ( )  
 (  ⁄ )

 (    )
 

 (
 

 
(1  

 

 
)
  

−
 

 
−   )  

Autocovariance 
function for lag τ  

 ( )  
 

(    ⁄ )        

Power spectrum  
for frequency w  

s(w): closed expression too 
complex  

Asymptotic slopes   ( )    ( )  1 −      
  ( )    ( )  −    
  ( )     ( )    −    
  ( )    ( )     

Parameter values used λ = 1, α = 10, H = 0.8; the 
spacing is D = 1. 

 The asymptotic slopes of the power spectrum 
are both nonzero and different in the cases 
w → 0 and w → ∞. The slopes of the 
pseudospectrum are identical with those of 
the spectrum. 
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Example 4: A simple antipersistent process 
Variance of instanta-
neous process 

   ( )   ( )     

Variance at scale Δ 
(Climacogram) 

 ( )  
  

  ⁄
(
      ⁄

  ⁄
−     ⁄ )  

Autocovariance 
function for lag τ  

 ( )   (1 −   ⁄ )      

Power spectrum  
for frequency w  

s(w)     (
    

  (    ) 
)
 

 

Asymptotic slopes   ( )  1    ( )     
  ( )    ( )  −    
  ( )     ( )  −   
  ( )    ( )     

Parameter values 
used 

λ = 1, α = 10; the spacing is 
D = 1. 

 The condition making the process antipersistent 

is that 4∫  ( )    ( )   ( )   
 

 
 (while of 

course c(0) = γ(0) = λ > 0).  
 For τ > α, the autocovariance is consistently 

negative—but for small τ it is positive. 
 Antipersistence is manifested in the positive 

slopes in power spectrum and pseudospectrum. 
Clearly, these slopes are positive only for low w. 
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Example 5: A periodic process with white noise 
Variance of instantane-
ous process 

   ( )   ( )     

Variance at scale Δ 
(Climacogram) 

 ( )  
  

  ⁄
       

 (
 

 
)  

 
Autocovariance 
function for lag τ 

 ( )     (  ⁄ )  
     (    ⁄ )  

Power spectrum  
for frequency w  

 ( )    
          (  − 1)  

Asymptotic slopes for 
λ1 > 0 [and for λ1 = 0; 
but not valid for s#( )] 

  ( )    ( )    [ 1]   
  ( )    ( )    [− ]   
   ( )     ( )  −1[− ]   

  ( )    ( )  −1 [ ]  
Parameter values used λ1 = 0.05, λ2 = 1, α = 100 

 δ(x) is the Dirac delta function while 
sinc(x) ≔ sin(πx)/πx. 

 Strictly speaking, the periodic component is a 
deterministic rather than a stochastic process. 
In this respect, the process should be better 
modelled as a cyclostationary one. However, 
the fact that the autocorrelation is a function 
of the lag τ only, allows the process to be 
treated as a typical stationary stochastic 
process. 
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Example 6: A process with Cauchy-type climacogram 
Variance of instan-
taneous process 

   ( )   ( )     

Variance at scale Δ 
(Climacogram) 

 ( )  
 

(  (  ⁄ ) )
    

 

    

Autocovariance 
function for lag τ  

 ( )                          

Power spectrum  
for frequency w  

s(w): expression too complex 

Asymptotic slopes   ( )    ( )  1 −    
  ( )    ( )  − − 1 
  ( )     ( )  −     
  ( )    ( )    

Parameter values 
used 

λ = 1, α = 10, H = 0.8, κ = 1.8 

 The process was derived by modifying one 
proposed by Gneiting and Schlather (2004). 

 The important feature of this process is that it 
allows control of both asymptotic slopes. 

 The asymptotic slopes of the pseudospectrum 
are identical with those of the spectrum. 

 An intermediate steep slope that appears in 
the power spectrum is artificial and does not 
indicate a scaling behaviour. 
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Example 7: A composite long-range and short-range dependence 
Variance of instan-
taneous process 

   ( )   ( )   1 +  2  

Variance at scale Δ 
(Climacogram) 

 ( ): expression too complex 
(sum from examples 1 and 2)  

Autocovariance 
function for lag τ  

 ( )  
  

(    ⁄ )        
      

Power spectrum  
for frequency w  

s(w): expression too complex  

Asymptotic slopes   ( )    ( )  1 −    
  ( )    ( )  −  
  ( )     ( )  −     
  ( )    ( )    

Parameter values 
used 

λ1 = 1, λ2 = 20, α = 10, H = 0.85 

 Again the asymptotic slopes of the 
pseudospectrum are identical with those of 
the spectrum. 

 As in the previous example, an intermediate 
slope appears in the power spectrum (in this 
case a mild one). Again this is artificial, here 
imposed by the Markov process, and does not 
indicate a scaling behaviour. 
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Example 8: The initial example: process defined by (7)   
 Examples 1-7 have 

been focused on the 
theoretical power 
spectrum and 
pseudospectrum and 
have shown that: 

(a) the asymptotic 
behaviours of the 
two are similar; 

(b) the 
pseudospectrum 
is less affected by 
discretization. 

 Example 8 adds 
information from 
data.  

 It shows that when the power spectrum and pseudospectrum are estimated from data, 
the latter is much smoother and its bias is a priori known, thus enabling a more direct 
and accurate estimation of slopes and fitting on a model.  
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Conclusions 
 The power spectrum is very powerful in identifying strong periodicities in 

time series. However, it has some problems in identifying scaling laws and 
weak periodicities, as: 

o Discretization and finite length of data alter asymptotic slopes; 

o The rough shape of the periodogram may result in: 
 misleading, inaccurate or even incorrect slopes (e.g. slope > –1 for 

frequency → 0, which is infeasible);  
 false periodicities; 

o Biases and uncertainties are uncontrollable, particularly when the 
periodogram is smoothed; 

o False detection of artificially induced scaling areas is likely.  

 The climacogram-based pseudospectrum has an asymptotic behaviour 
similar to that of the power spectrum and offers some advantages such as: 

o Its calculation is very easy: it only uses the concept of variance and does 
not involve integral transformations (like the Fourier transform); 

o It is smooth; 

o Its biases and uncertainties are smaller and easy to determine; 

o Its asymptotic slopes are determined more accurately from data. 
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