
Weighted objective function selector algorithm for parameter
estimation of SVAT models with remote sensing data

Joseph A. P. Pollacco,1 Binayak P. Mohanty,1 and Andreas Efstratiadis2

Received 16 December 2012; revised 11 September 2013; accepted 26 September 2013.

[1] The objective function of the inverse problem in Soil-Vegetation-Atmosphere-Transfer
(SVAT) models can be expressed as the aggregation of two criteria, accounting for the
uncertainties of surface soil moisture (�) and evapotranspiration (ET), retrieved from remote
sensing (RS). In this context, we formulate a Weighted-Objective-Function (WOF) with
respect to model effective soil hydraulic parameters, comprising of two components for �
and ET, respectively, and a dimensionless coefficient w. Given that the sensitivity of � is
increased by omitting the periods when soil moisture decoupling occurs, we also introduce
within the WOF a threshold, �d, which outlines the decoupling of the surface and root-zone
moisture. The optimal values of w and �d are determined by using a novel framework,
weighted objective function selector algorithm (WOFSA). This performs numerical
experiments, assuming known reference conditions. In particular, it solves the inverse
problem for different sets of � and ET, considering the uncertainties of retrieving them from
RS, and then runs the hydrological model to obtain the simulated water fluxes and their
residuals, DWF, against the reference responses. It estimates the two unknown variables, w
and �d, by maximizing the linear correlation between the WOF and maximum DWF. The
framework is tested using a modified Soil-Water-Atmosphere-Plant (SWAP) model, under
22 contrasting hydroclimatic scenarios. It is shown that for each texture class, w can be
expressed as function of the average � and ET-fraction, while that for all scenarios �d can be
modeled as function of the average �, average ET, and standard deviation of ET. Based on
the outcomes of this study, we also provide recommendations on the most suitable time
period for soil moisture measurements for capturing its dynamics and thresholds. Finally,
we propose the implementation of WOFSA within multiobjective calibration, as a
generalized tool for recognizing robust solutions from the Pareto front.
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1. Introduction

[2] In the hydrological community, there is a growing in-
terest to make suitable usage of data retrieved from remote
sensing (RS), to be employed within physically based mod-
els. Two of the most typical variables, which are of key im-
portance in hydrological modeling, are surface soil
moisture, � [Sun et al., 2007; Wang et al., 2008; Zhan
et al., 2008; Naeimi et al., 2009; Entekhabi et al., 2010]
and actual evapotranspiration, ET [e.g., Wang et al., 2008;
Wu et al., 2008; Hong et al., 2009; Ramos et al., 2009;
Teixeira et al., 2009a]. In particular, RS data of this type

have been used to invert the soil hydraulic parameters of
Soil-Water-Atmosphere-Plant (SVAT) models [e.g.,
Mohanty and Zhu, 2007; Ines and Mohanty, 2008a, 2009;
Gutmann and Small, 2010]. Recently, Pollacco and
Mohanty [2012] performed numerical experiments under
18 contrasting hydroclimatic scenarios to estimate the
uncertainties of computing the water fluxes (WF) through a
modified SVAT model, by inverting its soil hydraulic pa-
rameters from � and ET. They found that the predictive
capacity of the model against its simulated fluxes strongly
depends on the hydroclimatic conditions; specifically, the
uncertainty increases under dry climates, coarse textures,
and deep rooted vegetation.

[3] In this paper, we provide a novel methodological
framework, termed Weighted Objective Function Selector
Algorithm (WOFSA), to improve predictions by SVAT
models, by ensuring the most appropriate combination of
these two types of information (� and ET), for a wide range
of hydroclimatic conditions and soil texture patterns. In the
simulations, we use a modified SWAP 3.2 model, for which
we are interested in inverting the effective soil hydraulic
parameters, while the vegetation parameters are assumed
known. The modified SWAP 3.2, introduced by Pollacco
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and Mohanty [2012] and next termed SWAPinv, is briefly
described in section 2.1.

[4] In the proposed framework, the inverse problem is
expressed in multiobjective terms, by formulating a
Weighted Objective Function (WOF) of two criteria, OF�
and OFet, which account for the deviation of the simulated
to the ‘‘reference’’ surface soil moisture � and evapotrans-
piration ET, i.e.,

WOF ¼ w OF � þ 1� wð ÞOF et ð1Þ

where w is a dimensionless weighting coefficient. Multiob-
jective approaches have been widely documented in all
aspects of hydrological modeling, starting from the late
1990s [e.g., Mroczkowski et al., 1997; Gupta et al., 1998;
Yapo et al., 1998; Bastidas et al., 1999; Gupta et al.,
1999]. The rationale is that as more information is embed-
ded within calibration, it is expected that the identifiability
of parameters is improved, thus also ensuring an improved
predictive capacity. These advantages have been demon-
strated in several applications involving SVAT and land
surface models [e.g., Bastidas et al., 1999; Franks et al.,
1999; Gupta et al., 1999; Demarty et al., 2004, 2005;
Coudert et al., 2006; Mo et al., 2006]. In this respect, con-
ditioning the hydraulic parameters of SVAT models against
both � and ET data is generally accepted, although not all
researchers found advantageous of calibrating SVAT mod-
els simultaneously with � and ET data [Ines and Droogers,
2002; Jhorar et al., 2002, 2004; Ines and Mohanty ;
2008b].

[5] In order to increase the information embedded in cal-
ibration, the WOF is further parameterized by introducing
a threshold soil moisture �d, which indicates the period
when soil moisture � can be calibrated, in order to avoid
decoupling between surface and subsurface �. The concept
of �d is one of the novelties of our framework, as explained
in section 2.4.2. It is well known that by tuning the weight-
ing coefficient w and next solving the inverse (calibration)
problem for a given value of �d, we can obtain different
sets of optimized hydraulic parameters. The later are called
nondominated or Pareto-optimal and lie in the boundary of
the feasible objective space (Figure 1). By assigning a spe-
cific value to w and �d, we assert that the solution obtained
by minimizing WOF ensures an acceptable compromise
between OF� and OFet. In this respect, the ‘‘optimal’’ com-
bination of � and ET data is mathematically represented as
the determination of the weighting coefficient w and the
decoupled soil moisture �d. The Weighted Objective Func-
tion Selector Algorithm (WOFSA) is a novel numerical
procedure, which allows for identifying the optimal values
of both the control variables of the multiobjective function
(i.e., w and �d) and the model hydraulic parameters. The
suitability of w and �d is evaluated on the basis of the infor-
mation provided by the simulated water fluxes (model out-
puts), in terms of uncertainty, in an attempt to constrain the
feasible parameter space. In contrast to the classic calibra-
tion paradigm, which merely aims to achieve the smallest
departure between the observed and simulated model
responses, the WOFSA also takes into account the uncer-
tainties due to errors in input data. For convenience, in the

Figure 1. Graphical example illustrating the objective space, the Pareto front and characteristic solu-
tions of a hypothetical problem of simultaneous minimization of two criteria (in the specific case OF�
and OFet). Vector e¼ [e1, e2] indicates limits of acceptability (in the specific case uncertainty bounds),
for distinguishing feasible solutions. Shown are the extreme solutions of the Pareto front (corresponding
to w¼ 0 and w¼ 1), the solution that has the minimum distance from the origin and the solution pro-
vided by WOFSA, corresponding to w¼ 0.75.
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investigations, we use synthetic data provided by numerical
experiments with known parameter sets, in order to elimi-
nate the impacts of other sources of uncertainty, e.g., struc-
tural (model) errors. In this context, WOFSA assumes that
the uncertainties of the water fluxes are only caused by pre-
scribed uncertainties of the observed � and ET.

[6] Specifically, we consider that the top 5 cm soil mois-
ture retrieved from remote sensing has an average accuracy
of root mean square error (RMSE) of 0.04 m3 m�3, in terms
of volumetric soil moisture [e.g., Kerr et al., 2001; Sim-
monds et al., 2004; Davenport et al., 2005; Choi et al.,
2008; Das et al., 2008; Sahoo et al., 2008; Verstraeten
et al., 2008; Vischel et al., 2008]. This has been validated
with field campaigns, typically under low vegetated area
for which the biomass is up to 4–8 kg m�2 (for example,
under mature corn and soybean), by using passive micro-
wave remote sensing [e.g., Jackson and Schmugge, 1991;
Bindlish et al., 2006; Li et al., 2006; Njoku and Chan,
2006]. On the other hand, the procedures for retrieving the
actual evapotranspiration from remote sensing exhibit an
average relative error of 20%, as also validated from field
campaigns. This value is suggested by Kalma et al. [2008],
from a compilation of 30 publications [e.g., Zhang et al.,
2006; Gao and Long, 2008; Opoku-Duah et al., 2008;
Bashir et al., 2009; Ramos et al., 2009; Teixeira et al.,
2009b]. We note that the uncertainties of retrieving � are
different when compared to the uncertainties of ET, and
therefore have different implications on the uncertainties of
the modeled/inverted water fluxes. Moreover, the behavior
of the uncertainties of � and ET retrieved from RS with
increasing � and ET is still poorly understood [e.g., Fern�an-
dez-G�alvez, 2008]. For this reason, we also assume that the
uncertainties of � and ET linearly increase with increasing
� and ET, thus suggesting that the WOF and the corre-
sponding residuals are correlated. Under this premise, the
optimal w and �d are those which achieve the maximum
linear correlation between the WOF and the residuals of
the simulated water fluxes. This is a key point of the meth-
odology, which is analytically presented in section 3.

[7] Our methodology is validated by employing numeri-
cal experiments with SWAPinv. Following the recent
research study by Pollacco and Mohanty [2012], we used
as reference states/fluxes the surface and root-zone soil
moisture, groundwater recharge, actual evapotranspiration,
actual evaporation, and actual transpiration. In order to
investigate the variability of the optimized w and �d, we
formulated 22 contrasting hydroclimatic scenarios, which
are composed as combination of five climates across the
USA, three soil textures, and two rooting depths. The need
for investigating different rooting depths is justified by Ines
and Mohanty [2008b], who found that the predictions of
the hydraulic parameters of SVAT models are much more
sensitive to rooting depths than other vegetation parame-
ters. In the numerical experiments, we assumed that the
soil hydraulic parameters are unknown and that the vegeta-
tion parameters are not subject to calibration, since these
can be readily retrieved from MODIS (MODerate resolu-
tion Imaging Spectroradiometer) [e.g., Huete et al., 2002;
Simic et al., 2004; Nagler et al., 2005; Vegas Galdos et al.,
2012]. In all simulations, we assumed that the soils are ho-
mogeneous, based on the work by Jhorar et al. [2004],
who found that, in most cases, a reliable water balance can

be obtained by replacing the heterogeneous soil profile by
an equivalent single one. Finally, we selected a deep water
table, since Pollacco and Mohanty [2012] showed that
inverting the soil hydraulic parameters with ET in the pres-
ence of shallow water table causes extra uncertainties.

[8] The goals of this study include:
[9] 1. Development of the weighted objective function

selector algorithm (WOFSA) for determining the best-
compromise weights of a WOF.

[10] 2. Application of WOFSA within SWAPinv, in order
to investigate the variability of the optimal coefficient w
and threshold �d under contrasting hydroclimatic condi-
tions, on the basis of synthetic data obtained through nu-
merical experiments, i.e., by inverting the soil hydraulic
parameters.

[11] 3. Determination of the most suitable calibration pe-
riod (in terms of soil moisture thresholds) to take full
advantage of the information provided simultaneously by �
and ET retrieved from remote sensing.

[12] 4. Development of empirical relationships correlat-
ing w and �d against typical statistical metrics of � and ET.

[13] 5. Comparison with the minimum Euclidian dis-
tance approach, which is usually employed in multiobjec-
tive calibration problems.

[14] 6. Discussion of future research perspectives, for
implementing WOFSA within a multiobjective calibration
framework, and on the basis of actual (i.e., field) data.

2. Modeling Framework and Set-Up of
Numerical Experiments

2.1. Soil-Water-Atmosphere-Plant Hydrological
Model

[15] We introduce a modified version of the so-called
Soil-Water-Atmosphere-Plant (SWAP 3.2), which is a
physically based Soil-Vegetation-Atmosphere-Transfer
(SVAT) water flow model for representing the unsatu-
rated zone soil water fluxes of vegetated land [e.g., Van
Dam et al., 1997; Kroes et al., 2000; Van Dam et al.,
2008]. SWAP has been extensively used to calibrate the
hydraulic parameters by matching � and/or ET retrieved
from remote sensing [e.g., Ines and Mohanty, 2008a,
2008b, 2008c, 2009; Shin et al., 2012]. The governing
equation solves the mixed form of the Richards’ equa-
tion, combined with a sink term for root water extraction,
to simulate the variably saturated soil moisture movement
in the soil profile

@�

@t
¼
@ K �ð Þ @h

@z þ 1
� �� �
@z

� S hð Þ ð2Þ

where � is the volumetric water content (L3 L�3) or the
fraction of water-filled pore space, h is the capillary pres-
sure head (m), t is the time (T), z is the vertical coordinate
(L) defined as positive upward, K(�) is the unsaturated hy-
draulic conductivity (L T�1), and S(h) is the soil water
extraction rate by plant roots (L3 L�3).
2.1.1. Soil Water Retention and Unsaturated
Hydraulic Conductivity

[16] The model accuracy depends on two functions, the
soil-moisture characteristic curve h(�) and the unsaturated
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hydraulic conductivity K(�). The analytical function of h(�)
is provided by the van Genuchten model [1980]

�e ¼
�� �r

�s � �r

1

1þ h
hae

� �nh im ð3Þ

where �e is the normalized volumetric water content (L3

L�3), �r and �s are the residual and saturated water contents
(L3 L�3), respectively, with 0� �r<�<�s, h is the capil-
lary pressure head (m), hae(1/�) is associated to the air-
entry matrix potential (m�1), n (>1) is a shape parameter
related to the pore-size distribution (dimensionless), and m
is another shape parameter. The two parameters m and n
are interrelated via the expression m¼ 1� 1/n, following
the assumption by Mualem [1976].

[17] The unsaturated hydraulic conductivity function
K(�) is given by Mualem [1976] and van Genuchten [1980]

K �ð Þ ¼ Ks �
L
e 1� 1� �

1
m
e

� �m� 	2

ð4Þ

where L is a dimensionless shape factor and Ks is the satu-
rated hydraulic conductivity (m d�1). The shape factor L is
not a sensitive parameter and it is normally kept fixed to
0.5. Similarly, �r does not affect the goodness-of-fit of the
characteristic curve and it is typically eliminated [e.g.,
Russo, 1988; Luckner et al., 1989; Tietje and Tapkenhin-
richs, 1993; Boufadel et al., 1998; Schaap and Leij, 1998;
Ines and Droogers, 2002]. Hence, in this study, �s, hae, n,
and Ks are the sole hydraulic parameters to be inverted.
The expected range of the above parameters is provided in
Table 1; this range was computed by taking the 90% confi-
dence interval of the combined datasets of GRIZZLY
[Haverkamp et al., 2005] and UNSODA [Leij et al., 1996].
In particular, the minimum range of �s is determined for
each hydroclimate by calculating the maximum range of
the reference �.
2.1.2. Modified Sink Term of SWAP 3.2 (SWAPinv)

[18] Building parsimonious SWAP models by reducing
the number of input vegetation parameters, without
decreasing their predictive capacity and their physical con-
cept, are a challenging task. In this context, we modified
the evaporation, transpiration, and rainfall interception
modules of SWAP, next termed SWAPinv, in order to use a
reduced number of input parameters, namely the Leaf Area
Index (LAI), the extinction coefficient of solar radiation
(Kg), the rooting depth, and the saturated (�s) and residual
(�r) water contents. In this respect, we use the Beer-
Lambert law that partitions potential evaporation, potential

transpiration, and potential evaporation of a wet canopy by
using LAI and Kg [e.g., Ritchie, 1972; Goudriaan, 1977;
Belmans et al., 1983]. In addition, LAI, Kg, and the poten-
tial evaporation of a wet canopy are also used to compute
the interception, based on the works of Noilhan and Lacar-
rere [1995] and Varado et al. [2006]. Thus, the sensitivity
of LAI and Kg is increased since they control multiple proc-
esses. The modified SWAP evaporation module does not
require extra parameters, since it is directly estimated from
the soil moisture, the potential soil evaporation, and the hy-
draulic parameters [e.g., Eagleson, 1978; Milly, 1986; Sim-
mons and Meyer, 2000; Romano and Giudici, 2007, 2009].
Consequently, the sharing of the hydraulic parameters,
which computes soil moisture and evaporation, increases
the sensitivity of the hydraulic parameters when they are
inverted simultaneously from soil moisture and evapotrans-
piration. The general shape of the roots in SWAP is entered
manually in tabular form. Nevertheless, for large-scale
modeling, a detailed description of roots is not required,
thus we introduced an empirical power-law root density
function [Gale and Grigal, 1987], that was further modified
by Pollacco et al. [2008a]. The root density function
requires two parameters, the maximum rooting depths and
the percentage of roots in the top 30 cm. A detailed mathe-
matical description of SWAPinv is provided in Appendix A.

2.2. Generation of Reference Data for Numerical
Experiments

[19] The numerical experiments were carried out for 22
hydroclimatic scenarios, derived by combining three soil
types, two rooting depths, and five climates (Table 2). In
order to provide realistic simulations, deep roots (DR) were
not assigned to subtropical climates and shallow roots (SR)
were not allocated to arid climate [Schenk and Jackson,
2002]. Moreover, in semiarid climates, only loamy sand
was modeled. More precisely:

[20] 1. The hydraulic parameters for the three contrasting
benchmark soils (loamy sand, silty loam, and silty clay) are
given in Table 3. These soil textures were selected from
Carsel and Parrish [1988] and Ines and Mohanty [2008b],
and they ensure a large variability of annual evapotranspi-
ration and groundwater recharge.

[21] 2. For the two contrasting benchmark-rooting depths
(i.e., shallow and deep), the rooting depths and the percent-
age of roots for the top 30 cm are given in Table 4. These
contrasting rooting depths were selected to depict shrubs,
and they are provided by Schenk and Jackson [2002] and
Jackson et al. [1996]. Forested land use was not selected,
because remote sensing platforms using passive microwave
still cannot retrieve soil moisture under dense canopy, the
biomass of which is higher than 8 kg m�2 (e.g., vegetation
denser than mature corn) [e.g., Jackson and Schmugge,
1991; Bindlish et al., 2006; Li et al., 2006; Njoku and
Chan, 2006].

[22] 3. The values of the typical vegetation parameters
that remain constant for all simulations are provided in Ta-
ble 5 and explained in Appendix A. It is assumed that all
these parameters can be retrieved from MODIS remote
sensing [e.g., Huete et al., 2002; Simic et al., 2004; Nagler
et al., 2005; Vegas Galdos et al., 2012].

[23] 4. To formulate the hydroclimatic scenarios, we used
daily precipitation time series and meteorological data for

Table 1. Expected Parameter Space of the van Genuchten
Hydraulic Parameters Computed by Taking the 90% Confidence
Interval of the Combined Data Sets of GRIZZLY [Haverkamp
et al., 2005] and UNSODA [Leij et al., 1996]a

�s (m3 m�3) hae (cm) n (–) Ks (cm d�1)

Minimum MAX(�ref) 7.6 1.09 0.48
Maximum 0.54 375 2.3 465

aThe minimum range of �s is computed from the maximum value of ref-
erence �.
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computing the potential evapotranspiration through the Pen-
man and Monteith formula [1965], which were compiled
from AmeriFlux http://public.ornl.gov/ameriflux/ (Table 6).
The contrasting climates correspond to typical mainland
Southern United States conditions, for which snowfall is
scarce. The forcing data was selected by combining a dry, a
normal, and a wet water year (1 October to 30 September).

[24] A summary of the 22 reference water fluxes computed
with SWAPinv is presented in Figure 2. The scenarios provide
satisfactory high variability of the model fluxes. Specifically,
the annual groundwater recharge ranges from 30 to 800 mm,
the annual transpiration ranges from 120 to 370 mm, and the
annual evaporation ranges from 7 to 144 mm.

2.3. Boundary Conditions and Discretization

[25] Within the simulations, the soil column was discre-
tized for deep roots of a total depth of 1.80 m and for shal-
low roots of a total depth of 0.90 m. Finer discretization
(0.25 cm) near the land atmospheric boundary and coarser
discretization (5 cm) at deeper depths were employed. For
all scenarios, the soil columns were initialized uniformly at
h¼�0.1 m and SWAPinv run for 90 days (spin up time)
ahead of the experiment, to tune the state of the initial soil
moisture profile. For the bottom boundary condition of the
soil columns, the free drainage was selected. The upper
boundary condition was determined by the daily net precipi-
tation, which was computed with the interception model,
and the potential evapotranspiration, estimated by the
Penman-Monteith equation. The potential evapotranspiration
was partitioned into potential soil evaporation, potential
evaporation of wet canopy, and potential transpiration by
using the Beer-Lambert law [e.g., Ritchie, 1972; Goudriaan,
1977; Belmans et al., 1983]. Finally, a maximum of 2 cm of
ponding water is permitted with any overflow lost as runoff.

2.4. Formulation of the Inverse Problem

2.4.1. The Weighted Objective Function
[26] Within the inverse problem, we use a WOF com-

prising two fitting criteria, OF� and OFet, and two control
variables, w and �d. In order to account for the differences
in magnitude between the individual criteria, it is prefera-
ble that all the components of the WOF are either dimen-
sionless or normalized. The WOF is derived by dividing
the mean absolute error by the typical observation error

(uncertainty) of the corresponding reference state or flux,
i.e.,

OF � ¼

XN�

1

j�ref � �simj

N� D�rs
and OF et ¼

XNet

1

jETref � ETsimj

Net DETrs
ð5Þ

where � [L3 L�3] is the top 5 cm surface soil moisture
where decoupling does not occur and N� and Net are the
lengths of daily soil moisture and evapotranspiration time
series, respectively. When OF� or OFet is greater than 1
indicates that the errors of simulations are greater than the
uncertainties of retrieving the observation from remote
sensing. We highlight that for both functions, all model
outputs which provide values greater than 1 are considered
as nonacceptable. Hence, a trial set is rejected if OF� > 1 or
OFet> 1.

[27] To provide a proper configuration of the multiobjec-
tive calibration problem, it is essential to ensure that the
two fitting criteria, OF� and OFet, are approximately uncor-
related. Indeed, Pollacco and Mohanty [2012] showed that
for contrasting hydroclimatic conditions the related proc-
esses � and ET are rather independent. This is because the
surface � is influenced by the evaporation and decouples
between the surface and root-zone soil moisture, while ET
is a signature of the whole root-zone �, since ET results in
the uptakes of water stored at depth. In addition, the storage
of � in the root-zone profile is dependent on the past
weather events, whereas the near-surface � reflects the pres-
ent weather condition.
2.4.2. Introducing Decoupling Within WOF

[28] One of the peculiarities when calibrating hydrologi-
cal models against surface soil moisture is that soil mois-
ture is prone to decoupling. This originates from the
significantly faster drying of the surface compared to the
root zone, due to evaporation and shallow root water
uptake, causing a sharp vertical soil water gradient near the
surface. When this occurs, the surface � is no more repre-
sentative of the soil moisture dynamics in the rooting zone
[Capehart and Carlson, 1997; Walker et al., 2002; De
Lannoy et al., 2007; Pollacco and Mohanty, 2012]. For
instance, large-scale decoupling was evidenced in New
Zealand by Wilson et al. [2003] between 0–6 cm and 0–30

Table 2. Contrasting 22 Scenarios Composed of Three Soil Types, Two Rooting Depths, and Five Climatesa

Temp. Arid Semi-Mediter. Temp. Continental Temperate Subtropical

Shallow roots Loamy Sand � � � �
Silt Loam � � � �
Silty Clay � � � �

Deep roots Loamy Sand � � � �
Silty Loam � � �
Silty Clay � � �

aTo maintain the simulations more realistic deep roots were not assigned to subtropical climates and shallow roots were not allocated to arid climate.

Table 3. Reference Values of the Mualem [1976] and van Genuchten [1980] Hydraulic Parameters

Texture Acronym �s (m3 m�3) �r (m3 m�3) L (–) hae (cm) n (–) Ks (cm d�1) Sources

Loamy sand LS 0.41 0.057 0.5 8 2.28 350.2 Carsel and Parrish [1988]
Silty loam SiL 0.43 0.061 0.5 83 1.39 30.5 Ines and Mohanty [2008b]
Silty clay SiC 0.36 0.07 0.5 200 1.09 0.48 Carsel and Parrish [1988]

POLLACCO ET AL.: PARAMETER ESTIMATION FOR SVAT MODEL

5

http://public.ornl.gov/ameriflux/


cm in situ. Decoupling is more prominent when surface � is
in the drying phase and it is below the threshold �d (L3

L�3), which is computed by

�ref ðtÞ < �d and �ref ðt þ 1Þ < �ref tð Þ ð6Þ

[29] On the basis of equation (6), we modified OF� such
that to increase its sensitivity by omitting the period when
surface and root-zone decoupling occurs. If �d¼ 0, decou-
pling is not taken into account within WOF.

3. Outline of the Weighted Objective Function
Selector Algorithm (WOFSA)

3.1. Identification of the Best-Compromise Parameter
Set in Multiobjective Calibration: Approaches and
Drawbacks

[30] Equation (1) is a specific case of aggregated objec-
tive functions that represent an overall measure of the
model performance, in which the characteristics of the
best-compromise solution, which also reflect the relative
importance of the individual criteria, are specified a priori.
The later are expressed in terms of multipliers (e.g.,
weighting method), target values combined with distance
metrics (e.g., goal programming and "-constraint methods)
[e.g., Laumanns et al., 2002; Reed et al., 2003] or priorities
(e.g., lexicographic ordering). Besides, the detection of the
best-compromise parameter set remains an open issue in
hydrological calibration, which has not been thoroughly
addressed in the literature [e.g., Dumedah et al., 2010].

[31] Most approaches employ hybrid strategies, based on
combined objective and subjective criteria, to support the
manual identification of the ‘‘most prominent’’ parameter
values [e.g., Efstratiadis and Koutsoyiannis, 2010]. In par-
ticular, a well-accepted technique for detecting the best-
compromise parameters, which is usually employed in
subsurface flow modes, is by minimizing the Euclidean dis-
tance of the Pareto set to the origin [e.g., Refsgaard and
Storm, 1996; Madsen, 2003; Twarakavi et al., 2008].
Although this methodology, which is a subcase of goal pro-
gramming, appears to be statistically reasonable, its hydro-
logical meaning is not well understood. On the other hand,

few are the procedures for recognizing effective nondomi-
nated solutions a posteriori, through systematic filtering of
the Pareto set. Some of the proposed approaches are prefer-
ence ordering and compensation between model objectives
[e.g., Khu and Madsen, 2005] as well as cluster analysis
[e.g., Taboada and Coit, 2006; Crispim and de Sousa,
2009; Dumedah et al., 2010]. For instance, Dumedah et al.
[2010, 2012a, 2012b] used cluster analysis to evaluate the
distribution of solutions on the trade-off surface, to find
relationships in both objective space and parameter space.
The linkage between the two spaces describes the level of
robustness for the parameter sets (according to Deb and
Gupta [2005], robust solutions are less sensitive to variable
perturbations in their vicinity). They also showed that the
use of criteria that are based on a compromise between rep-
resentative pathways in the parameter space and a domi-
nant variability in the objective space provides solutions
that remain nondominated across different validation
subsets.

[32] The above, rather subjective, approaches for detect-
ing the best-compromise parameter set in multiobjective
calibration problems, ignore uncertainties that are due to
errors in input data, which prevent providing robust solu-
tions. In this respect, we are proposing a systematic proce-
dure, called weighted objective function selector algorithm
(WOFSA), which identifies the most appropriate weighted
objective function (WOF), by performing inverse model-
ing, where the uncertainties in retrieving � and ET data are
directly accounted for. Next are described the key assump-
tions of the methodology as well as the detailed computa-
tional procedure.

3.2. Key Assumptions of WOFSA

[33] The key idea of WOSFA is based on the postulation
that the optimal weighting between the individual objec-
tives is the one ensuring the maximum linear correlation
between the residuals DWF of the computed model
responses of interest (water fluxes) and the WOF. The
rationality is that if the inverse modeling is well posed,
then an increase in the OF should cause the error of each
specific simulated flux to also increase and vice versa [Pol-
lacco et al., 2008a]. If the later is insensitive against to var-
iations of � and ET, the problem is ill-posed as the modeled
flux cannot be calibrated solely from the observed � and
ET ; thus, additional observations should be included into
the WOF.

[34] This assumption is further illustrated in Figure 3,
where we plot three hypothetical relationships between a
normalized WOF

�
and a dimensionless residual metric

(e.g., relative bias) DQ
�
, which is a measure of uncertainty

of the corresponding water flux (in the specific case, the
groundwater recharge). It is assumed that the optimal

Table 4. Contrasting Scenarios of the Percentage of Roots in the
Top 30 cm, DRDF30 [Jackson et al., 1996], and Maximum Root-
ing Depths, zroot [Schenk and Jackson, 2002]

Description Acronym zroot (cm) DRDF30 (%) Vegetation Type

Shallow roots SR 40 80 Meadows
Deep roots DR 130 50 Semidesert

Table 5. Values of Vegetation Parameters that Remains Constant, Where h1, h2, h3high, h3low, and h4 are the Capillary Pressure Head
that Regulate the Water Uptake Model, LAI is the Leaf Area Index, � is the Crop Factor, and Kg is the Extinction Coefficient of Solar
Radiation (–)a

h1 (cm) h2 (cm) h3high (cm) h3low (cm) h4 (cm) LAI (m3 m�3) Kg (–) � (–)

�1 �22 �1000 �2200 �16,000 2 0.5 0.9
[Singh et al., 2006] [Brutsaert, 2005] [Varado et al., 2006] [Pollacco, 2005]
Wheat Scrubland Universal Grassland

aRefer to Appendix A for further information.
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relationship is the 1:1 line (intermediate curve of Figure 3,
e.g., 2), which indicates that a specific change of the WOF

�

value results to an equal change of the model uncertainty
DQ

�
. Therefore, this expression is the most suitable to be

used in calibration. Any other relationship, derived by dif-
ferent combinations of weights, is suboptimal. For instance,
the right curve of Figure 3 (e.g., 1) demonstrates a
weighted function that initially has limited sensitivity
against the model uncertainty (a significant change of the
WOF

�
results to a much less significant change of DQ

�
),

followed by sharply varying model uncertainty for small
changes of the WOF

�
. On the other hand, the left curve of

Figure 3 (e.g., 3) represents an opposite performance,
which is also far from desirable. This feature forms the ba-
sis for our linearity assumption between WOF

�
and DQ

�
in

WOFSA.

3.3. Description of Computational Procedures

[35] The algorithm is applied to a SWAPinv model, using
the objective functions of section 2.4. The model runs on
daily basis. The water fluxes of interest are groundwater
recharge Q (mm d�1), evaporation E (mm d�1), transpira-
tion T (mm d�1), evapotranspiration ET (mm d�1), while
the modeled state variables are the root-zone soil moisture
�rz (m3 m�3) and the surface soil moisture � (m3 m�3). The
method is performed in three successive steps, as also
shown in the flowchart of Figure 4
3.3.1. Step 1: Generation of Reference Runs

[36] WOFSA performs numerical experiments to deter-
mine the optimal control variables w and �d of the WOF,
which requires that the soil moisture �, evapotranspiration

ET, and water fluxes (as well as state variables) WF, are
known a priori. The later will be next called ‘‘reference’’
data, symbolized �ref, ETref, and WFref, respectively. In par-
ticular, WFref are computed by inputting known sets of
hydraulic parameters (HYDRAUref), vegetation parameters
(VEGETATIONref), and daily forcing (precipitation, poten-
tial evapotranspiration) data into SWAPinv (Figure 4, Loop
1). We remark that the vegetation parameters are treated as
known properties of the model (cf. section 2.2), while the
soil hydraulic parameters are to be inverted through
optimization.
3.3.2. Step 2: Monte Carlo Simulation and
Calculation of Uncertainties

[37] In order to assess the uncertainties in retrieving �ref

and ETref from remote sensing, we use different sets of �sim

and ETsim, provided through Monte Carlo simulation (Fig-
ure 4, Loop 2). Each trial set is formulated on the basis of
different values of soil hydraulic parameters (HYDRAU-
sim), which are generated by SWAPinv to provide the corre-
sponding simulated time series WFsim, �sim, and ETsim. The
‘‘unknown’’ constrained HYDRAUsim are estimated by
minimizing the WOF. To initialize the search procedure,
the typical values w¼ 0.5 and �d¼ 0 are assigned to WOF,
which are updated after the completion of Step 3. The sim-
ulations are carried out by employing the Shuffled Com-
plex Evolution University of Arizona (SCE-UA) algorithm,
developed by Duan et al. [1992, 1994]. The customized
global optimization can be seen as a restrained Monte Carlo
simulation that seeks for different combinations of ‘‘com-
promise’’ parameter sets (HYDRAUsim), in the vicinity of

Table 6. Sources of Reference Hydroclimate Data Compiled From AmeriFlux (http://public.ornl.gov/ameriflux/)

Climate Acronym Site State Lat. Long. IGBP Classif.

Temperate semiarid Tsa Kendall Grassland AZ 32 �110 Grasslands
Mediterranean M Tonzi Ranch CA 38 �121 Woody Savannas
Temp. continental Tc Walnut river OK 37 �97 Cropland
Temperate T Mead Rainfed NE 41 �96 Croplands
Subtropical S Kennedy Space Center Scrub Oak FL 29 �81 Closed shrublands

Figure 2. The 22 hydroclimatic scenarios depicted by av-
erage yearly groundwater recharge Q, transpiration T, evap-
oration E, interception Pint computed from SWAPinv. For
visualization, the gross precipitation Pg¼ Qþ TþEþPint

with the long-term storage computed to 0. The acronyms
are provided in Table 3 for the soil texture, in Table 4 for
the roots, and in Table 6 for the climate.

Figure 3. Examples of relationship between a normalized
weighted objective function (WOF

�
) with the normalized

uncertainty of the water flux (DWF
�
) error represented by

DQ
�
. The ideal is a linear correlation between WOF

�
and

DQ
�
.
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the global minimum [van Griensven and Meixner, 2006;
Pollacco et al., 2008a, 2008b].

[38] For each trial set (i.e., hydraulic parameters and
resulting fluxes), the model uncertainties, in terms of resid-
uals DWF, are computed by

DWF ¼

Xt¼Nwf

1

jWFref tð Þ �WFsim tð Þj

Xt¼Nwf

1

WFref tð Þ
ð7Þ

where Nwf is the time length of simulations (days).
[39] During the Monte Carlo procedure, all the different

trials of HYDRAUsim and the corresponding WFsim and
DWF are stored in the STORAGE archive (Figure 4). At
the end of Step 2, the trial sets are sorted in increasing order
of WOF values. Figure 5a depicts the relationship between

WOF and the residuals of the groundwater recharge DQ,
for one of the experiments that are examined next (i.e.,
loamy sand, temperate climate, and short rooting depth).
3.3.3. Step 3: Estimation of w and hd

[40] As explained in section 3.2, in order to determine
the best-compromise values of w and �d, it is essential
to ensure the greatest linearity between the so-called
normalized WOF and the normalized maximum uncer-
tainties DWFmax

�
. This linearity is obtained by minimiz-

ing an ‘‘auxiliary’’ objective function OFlin through the
SCE-UA method, using the ensemble sets that are gener-
ated in Step 2. The computational procedure is the
following.

[41] From each generated WOFi, the maximum corre-
sponding error of WFsim (DWFmax) is selected and plotted.
As shown in Figure 5b (where DWFmax is DQmax), the key
asumption is that the relationship between WOF and

Figure 4. Flowchart of the weighted objective function selector algorithm (WOFSA) where
HYDRAUref and VEGETATIONref are a known set of reference parameter values; WFref are the mod-
eled reference water fluxes outputs that are computed from the SVAT hydrological model requiring a
priori known sets of hydraulic parameters (HYDRAUref) and gross precipitation (Pg) and potential evap-
otranspiration (ETp) as forcing data; HYDRAUsim are the trial set of parameter values that are obtained
from the OPTIMIZATION ALGORITHM; WFsim are the simulated fluxes and DWF is their residuals,
derived by a posteriori estimated hydraulic parameters (HYDRAUsim) by minimizing the weight w
(between the fitting criteria based on soil moisture � and evapotranspiration ET) and the decoupling
threshold �d of WOF. All the trials are stored in the STORAGE that are filtered such that the uncertain-
ties in �sim and ETsim are not greater than the uncertainties of retrieving � and ET from remote sensing
(D�rs and DETrs). WOFSA is performed in two separate parts: Part A generates uncertainties in the
fluxes DWF as if they were available from independent measurements, while Part B optimizes w and �d

by minimizing the OFlin such that to ensure the maximum linearity between the normalized WOF
�

and
the normalized maximum uncertainty DWFmax

�
. The different loops are colored coded with blue for loop

1, red for loop 2, and green for loop 3.
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DWFmax monotonically increases is reasonable. The com-
putation of DWFmax is mathematically expressed as

DWF max ðiþ 1Þ ¼ max DWFðiþ 1Þ; DWFðiÞf g
and DWF max ðiþ 1Þ � DWF max ið Þ

ð8Þ

where index i corresponds to the ith simulation, classified
by an increasing order of WOF. We remind that here we
only consider the uncertainties of the reference data that
are used in calibration, and we do not take into account
other error sources, such as structural errors of the model.
In order to implicitly account for the later, we use the upper
envelope uncertainties of the water fluxes DWFmax and not,
for instance, their average values.

[42] For each flux, in order to evaluate the linearity
between WOF and DWFmax, the two variables are normal-
ized, thus taking values in the range [0, 1]. This is per-
formed by selecting the corresponding ‘‘envelopes’’ of
simulated DWFmax such that the following condition is
fulfilled

OF � ¼ D� � D�rs and OF et ¼ DET � DETrs ð9Þ

where D�rs and DETrs are typical values of the uncertainties
in retrieving � and ET, respectively, from remote sensing.

In the case study, we generated 7000 sets of �sim and ETsim

which comply with equation (9). Preliminary investigations
indicated that generating more sets improve the optimal
values of w and �d only marginally. On the basis of litera-
ture data already mentioned in section 1, for the soil mois-
ture we assigned a volumetric root-mean-square error
D�rs¼ 0.04 m3 m�3 while for the evapotranspiration we set
a relative error DETrs¼ 20% (apparently, in a particular
study, different values can be employed, taking advantage
of uncertainty estimations based on local data). The simu-
lated DWFmax values that comply with equation (9) are
depicted in Figure 5c, through the nonshaded area. WOF and
DWFmax are normalized and symbolized with (�), using the
maximum feasible simulated value that complies with equa-
tion (9), which is annotated with the circle in Figure 5c.

[43] As explained in section 3.2, the optimal WOF is
determined such that to ensure the maximum linearity
between WOF

�
and DWFmax

�
. The linearity is quantified by

means of the auxiliary objective function OFlin (Figure 3),
which is computed separately for each water flux, as
follows:

OF �lin ¼
MAX jDWF �max ið Þ �WOF i

� w; �dð Þjffiffiffi
2
p

=2
ð10aÞ

Figure 5. Different steps of the WOFSA given as an example for loamy sand, temperate climate, and
short rooting depth. (a) An ensemble of generated parameter sets HYDRAUsim with the relationship
between WOF and the residuals between reference and simulated WFsim given as an example for ground-
water recharge DQ. (b) From each generated WOFi, described in Figure 5a, the maximum corresponding
error DQmax is selected. (c) Selection of feasible parameter sets DQmax to reproduce the uncertainties in
retrieving �ref and ETref from remote sensing. (d) Correlation between normalized WOF

�
and normalized

WFmax
�

for top soil moisture SM (�), root-zone soil moisture SMrz (�rz) evapotranspiration ET, evapora-
tion E, transpiration T, and groundwater recharge Q.

POLLACCO ET AL.: PARAMETER ESTIMATION FOR SVAT MODEL

9



where the index i corresponds to the ith simulation, classi-
fied by an increasing order of DWF

�

max and
ffiffiffi
2
p

=2 is only
used for graphical reasons, i.e., in order to normalize OFlin

thus being equal to half the diagonal of a unit square.
[44] The value of OFlin

�
depicts the maximum deviation

from the 1:1 line composed of DWFmax
�

and WOF
�
, as

described in Figure 3. The value OFlin¼ 0 denotes a perfect
linearity, while OFlin¼ 1 corresponds to the greatest devia-
tion from the desirable line 1:1. The final value of OFlin is
computed by averaging OFlin, which is calculated for each
individual water flux and state variables of interest (root-
zone soil moisture, groundwater recharge, evapotranspira-
tion, evaporation, and transpiration) by using the following
expression:

OF �lin ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNOF lin

1

OF �lin jð Þ2

NOF lin

vuuuut
ð10bÞ

where index j corresponds to jth water flux of interest and
NOFlin is the number of water fluxes of interest. An example
of the relationship between the optimal WOF

�
and

DWFmax
�

for all water fluxes is provided in Figure 5d.
[45] The SCE-UA optimization algorithm is next used to

minimize the auxiliary function (equation (10b)) against w
and �d. After getting the optimal values of w and �d, the ini-
tial objective function (WOF) is updated and Steps 2 and 3
are repeated. The iterative procedure continues until the
values of w and �d are stabilized, thus WOFi � WOFi�1.
Typically, four runs are enough to achieve convergence.

4. Results

4.1. General Outcomes

[46] An overview of the WOFSA capabilities is provided
by investigating the three representative scenarios, which
are presented in Table 7 and plotted in Figure 6. The figure
shows the relationship between WOF

�
and DWFmax

�
, which

is computed for ET, T, E, �, �rz, and Q. The following gen-
eral outcomes are drawn:

[47] 1. The strength of linearity between WOF
�

and
DWFmax

�
can vary greatly with hydroclimate conditions

(Figure 6).
[48] 2. The usage of the decoupling algorithm (equation

(6)) increases the linearity between WOF
�

and DWFmax
�

(e.g., for loamy sand; Figure 6a).
[49] 3. Deep roots compared to shallow roots tend to

increase the discrepancy in the predictions of transpiration
(e.g., for sandy clay; Figure 6b).

[50] 4. The usage of WOF instead of a single OFet did
not improve the linearity between WOF

�
and DWFmax

�

(e.g., for silty clay under a Mediterranean climate for which
we will show that it is a special case; Figure 6c).

[51] Next, we further investigate how the optimized val-
ues of w and �d vary under different hydroclimatic
conditions.

4.2. Correlating Soil Moisture Decoupling With
Hydroclimatic Variables

[52] The weighting coefficient w and the decoupling
threshold �d (m3 m�3) were optimized by minimizing OFlin

(equation (10b)). As already mentioned in section 2.4.2, to
account for the observed � within WOF we only used peri-
ods when soil moisture decoupling does not occur. We
remind that decoupling only occurs when the soil is drying
and the soil moisture falls below �d. For loamy sands, an
example of decoupling is given in Figure 7a, where the ref-
erence time series of soil moisture � are plotted at different
depths. Figure 7a suggests that during the drying period
and when �< �d¼ 0.07 m3 m�3 (where 0.07 m3 m�3 is the
optimal value obtained through the WOFSA, for the spe-
cific combination of soil texture and climate), the surface
moisture is decoupled from root-zone moisture.

[53] For each hydroclimatic scenario, we employed pre-
liminary simulations to express �d as function of average
surface soil moisture �, average evapotranspiration ET and
its standard deviation �ET (Figure 8). The scatter plots indi-

cate a negative correlation between ET =�ET and �d=�
� �1=3

.
The ratio ET =�ET is a climatic indicator which increases as
the climate gets wetter, since there is a positive correlation
(r2¼ 0.70) between ET =�ET and the evapotranspiration
fraction ET=ET pot ET f

� �
(results not provided here). On

the other hand, the ratio �d=�
� �

can be viewed as a normal-

ized expression of �d, where � is representative of the soil
texture, which is lower for coarse texture and higher for
fine texture. To understand the correlation we rewrite �d

model as

�d ¼ � 2:28� 0:86
ET

�ET

� �
ð11Þ

[54] From the above equation, it results that when the
soil moisture storage � in the root zone increases, ET also
increases, which is reasonable. An increase in � also gener-
ates a decrease in soil moisture decoupling, which is repre-
sented by a decrease in �d. However, a high value of �ET

indicates more pronounced periods of drying and wetting,
which in turn produces an increase in soil moisture decou-
pling �d, due to differences in the soil moisture storage
between the surface and the root zone. Figure 8 shows that
for dry hydroclimates �d=� > 1, while for wetter hydrocli-
mates �d=� � 1. Thus, ET =�ET is negatively correlated

with �d=�
� �1=3

. The conclusion that soil moisture decou-
pling is more pronounced in drier climates is in line with
the results of Capehart and Carlson [1997].

4.3. Correlating Weighting Coefficient With
Hydroclimatic Variables

[55] A major objective of this study is to relate the
weighting coefficient w with easily obtainable predictors.
The optimal value of w is a complex trade-off between the

Table 7. Detailing the Different Scenarios Used in Figure 6

Texture Specification OFlin (%) Figure 6

Loamy sand Decoupling equation 21 A1
No decoupling 17 A2

Sandy clay Shallow roots 13 B1
Deep roots 10 B2

Silty clay Calibrated with OFet 13.9 C1
Calibrated with WOF 14.5 C2
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information gathered by OF� and OFet. When more weight
is assigned to OF�, then the errors in D�rs influences more
the computation of the water fluxes (WF) compared to
DETrs. On the other hand, when more weight is assigned to
OFet then the errors in DETrs influences more the computa-
tion of the WF compared to D�rs. In fact, the inverse mod-
eling will favor the weighting to OF�, since � is a better
predictor of the hydraulic parameters than ET [Pollacco
et al., 2008a].

[56] For the three soil texture classes subdivided climati-
cally, Figure 9a depicts the relationship of w against the av-
erage evapotranspiration fraction ET=ET pot and Figure 9b
shows the correlation of w against the average measured sur-
face soil moisture �. For every texture class, the empirical
linear equations of Figures 9a and 9b are described in Table

8. No correlation of the rooting depth with w was found
since the former influences indirectly w through ET f . The
hydroclimates that are enclosed in ovals are the ones for
which little difference arises in OF�lin , given that OFet is used
instead of WOF. These hydroclimates are depicted by
arrows, representing threshold values of � and ETf.
4.3.1. Loamy Sand

[57] For coarser texture soils (loamy sand and sandy
clay), w is negatively correlated to both ET f (Figure 9a)
and � (Figure 9b). It is to be noted that � is small for coarse
soils because, as shown in Figure 7a, there are long periods
of droughts for which � � 0. Therefore, for dry hydrocli-
mates, represented by low values of ET f , more weight is
assigned to OF�, and for wetter hydroclimates, represented
by larger ET f , more weight is assigned to OFet.

Figure 6. Relationships between normalized optimized WOF
�

and normalized DWFmax
�

for the scenar-
ios described in Table 7.
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[58] These results can be explained in terms of the sensi-
tivity of OFet against DWF, which depends on ET f . The
later is computed from the water uptake function of Feddes
et al. [1978], as shown in Figure 9c. The sensitivity of OFet

is considerably reduced when the vegetation is under arid
conditions, with ET f as low as 10%. This is due to the
closure of the stomata, thus more weight is assigned to

OF�. For wetter hydroclimatic scenarios characterized by
an increase of ET f , the sensitivity of OFet increases but at
the same time OF� weakens due to the enhanced surface
and root-zone decoupling caused by evaporation. As ET f

further increases (hydroclimates enclosed in ovals in Fig-
ures 9a and 9b), OF�lin remains invariant if either OFet or
WOF is used independently. Therefore, under these hydro-
climatic conditions, it is preferable to use OFet instead of
WOF. OFlin remains invariant when ET f > 68% and
�> 0.035 L3 L�3, approximately (refer to arrows in Figures
9a and 9b), where the relationships between w versus ET f

and w against � change slope. These outcomes explain why
Ines and Droogers [2002], Ines and Mohanty [2008b], and
Jhorar et al. [2002, 2004] did not find advantages of using
a WOF instead of a single OF to optimize the hydraulic
parameters.
4.3.2. Sandy Clay

[59] The behavior of sandy clay soils is very similar to
the loamy sands described above. Nevertheless, sandy clays
are less coarse than loamy sand and thus the average drain-
age and the evaporation rate is moderated. Therefore, for
the nonarid hydroclimatic scenarios ET f > 70%

� �
, w is

clustered around 0.60.
4.3.3. Silty Clay

[60] For finer texture soils (silty clay), w is positively
correlated with both ET f (Figure 9a) and � (Figure 9b).
Therefore, for dry hydroclimates more weight is assigned
to OFet and for wetter hydroclimates more weight is given
to OF�. The correlation between w with � and w with ET f

of fine texture soils is positive, while for coarse texture
soils it is negative (Table 8). This difference arises because
the vegetation under moist soils do not experience much
stress, thus ETf remains close to unity (Figure 9c). Under
this premise, h is free to vary between h2 and h3 (equation
(A8)), which reduces the sensitivity of OFet. Thus, for wet
hydroclimates, more weight is assigned to OF�.

[61] On the other hand, for drier hydroclimates, more
weight is assigned to OFet due to another type of decou-
pling, which occurs for fine texture soils termed as fine tex-
ture decoupling. An example is provided in Figure 7b,
where the reference time series � are plotted at different
depths. Figure 7b suggests that for drier climates the top
soil dries up progressively and decouples with the root
zone, for which there is a substantial amount of water
stored at depth. Under these conditions, ET is more repre-
sentative of the root-zone soil moisture than the surface
soil moisture, thus more weight should be assigned to OFet.

5. Discussion

5.1. Selection of the Most Suitable Calibration Period

[62] It is widely accepted that the information which is
embedded in calibration data plays much more important
role than the length of observations themselves. However,
most of the existing hydrological calibration approaches do
not provide any guidance about which sets of measure-
ments are most informative for specific model parameters
[e.g., Vrugt et al., 2002]. In particular, for SVAT models,
an additional quest is to determine the ‘‘optimal’’ period to
calibrate the hydraulic parameters from reference surface �
and ET retrieved from remote sensing. The use of a

Figure 7. Reference time series � plotted at different
depths: (a) for coarse soils, showing that the top layer is
decoupled from the deeper layer when � is drying and
�< �d and (b) for fine texture soils under dry climate,
showing that the top layer gets gradually decoupled from
the deeper layer.

Figure 8. For all hydroclimatic conditions a relationship
is obtained between average ET divided by the standard
deviation of ET (�ET) with (�d/�)0.3. The scenarios are wet-
ter as ET/�ET increases.
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multiobjective function, by means of the WOF, can
adequately represent the errors that may be incurred due to
the inverted parameter sets and may also help to recognize
the structural errors much easier than when using a single
fitting criterion. Therefore, to reduce DWF we need to
select the period where the optimal w is theoretically
around 0.6 (more weight is assigned to OF�, since � is a
better predictor of the hydraulic parameters), thus taking
full advantage of the information provided simultaneously
from OFet and OF�.

[63] Feddes et al. [1993], Ines and Mohanty [2008c],
Jhorar et al. [2002], and Van Dam [2000] suggested that

the identifiability of the parameters increases with the
ranges of the data from very dry to very wet. Nevertheless,
these results are partly supported by our study, which
showed that better predictions are obtained when optimiza-
tion is performed during periods where soil moisture
decoupling does not occur. In this respect, given that soil
moisture decoupling is accentuated under dry conditions
(equation (6)), inverse estimations should be avoided dur-
ing dry periods. Our investigations also indicated that under
dry conditions ETf is reduced and therefore OFet, driven by
the Feddes et al. [1978] model, becomes less significant. In
section 4.3, it was also shown that for wet periods, during
which ETf remains close to unity (Figure 9c), the sensitivity
of OFet is reduced. Thus, the common belief that one
requires a period such that � goes from saturated to residual
water content is not supported by this study.

[64] In practical terms, it is recommended that the hy-
draulic parameters should be preferably optimized after
heavy rainfall events, when the soil moisture profile is ho-
mogeneous. Nevertheless, the measurements should only
start after the plant is starting to experience stress and
stopped when the roots are experiencing excessive stress.
This finding suggests that the inverse modeling should be

Figure 9. For the three soil textures class subdivided climatically : (a) relationship of w with average
evaporative fraction ETf, and (b) correlation of optimal w with the measured average �. The empirical
linear equations of each texture classes are described in Table 8. The enclosed hydroclimates are those
for which a single OFet can be used instead of a WOF. These hydroclimates are depicted by arrows
which represent threshold values of � and ETf. Figure 9c schematizes the Feddes et al. [1978] plant water
stress response function (ETf) as a function of soil water pressure. The position of the parameter h3

depends on the intensity of the potential transpiration (Tp< 1 mm d�1 or Tp� 5 mm d�1). The interpola-
tion of h3 is between the interval h3low, h3high for which their values are provided in Table 5.

Table 8. Empirical Relationship for the Three Texture Classes
Which Relates w With Average ET f (ET/ETp) and w With Aver-
age �

Texture

w ¼

Figure 10a Figure 10b

Loamy sand �0:91ET f þ 1:31 �13:06� þ 1:04
Sandy clay �0:59ET f þ 1:20 �3:10� þ 1:5
Silty clay 1:15ET f � 0:28 9:63� þ 2:52
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performed during the period where evaporation is not at its
maximum, to avoid soil moisture decoupling.

5.2. Comparison of the WOFSA With the Minimum
Distance From the Origin

[65] In section 3.1, we mentioned that a well-accepted
technique for detecting the optimal value of w, which is a
complex trade-off between the information gathered by
OF� and OFet, is by Minimizing the Euclidean Distance of
the Pareto front to the origin (MEDP). Apparently, this
requires determining the shape of the Pareto front. In non-
linear spaces, this is only achievable by running a suitable
multiobjective evolutionary optimization algorithm, which
can provide representative nondominated solutions that are
uniformly distributed across the objective space [Efstratia-
dis and Koutsoyiannis, 2010]. For a given shape of the
front, the computation of its minimal distance from the ori-
gin is trivial. In particular, as illustrated in Figure 1, when
OF� and OFet are normalized this method results to
w¼ 0.5, independently of the values of D�rs and DETrs, and
also independently of the hydroclimatic conditions.

[66] The major drawback of the MEDP approach is the
erroneous assumption that the magnitude of D�rs is similar
to the one of DETrs and that the impact of D�rs and DETrs

on the WF is similar. Indeed, our extended investigations
within this paper concluded that w is far from constant; on
the contrary, it is highly dependent on both the soil texture
and climate (Figure 9). Moreover, MEDP fails to take into
consideration that when more weight is assigned to OF�,
then the errors in D�rs influences more the computation of
the water fluxes and state variables WF, compared to
DETrs. On the other hand, when more weight is assigned to
OFet, the errors in DETr have more influence to the simu-
lated WF, if compared to D�rs. Hence, the only advantage
of MEDP against WOFSA is the simplicity of the computa-
tional procedure, but only under the premise that the shape
of the Pareto front is well approximated.

5.3. Implementing WOFSA Within a
Pareto-Optimization Framework

[67] Forthcoming research needs to address how we can
integrate WOFSA within global multiobjective calibration
procedures (e.g., MOSCEM, MOPSO, MOHBMO) [Barros
et al., 2010], by using real observations. Moreover, it can
provide guidance for the selection of the most robust solu-
tion, among the mathematically equivalent Pareto optimal
alternatives. Indeed, the best-compromise solution of the
multiobjective calibration problem is theoretically found in
the cross section of the optimally weighted objective func-
tion (WOF) and the Pareto-front. Yet, the task of imple-
menting the above idea is nontrivial, since the true water
fluxes and state variables (WFref) are unknown. In the fol-
lowing, we propose preliminary guidelines on how to use
WOFSA in a multiobjective calibration setting by assuming
that the inverse problem is well posed, thus exhibiting rela-
tively steep trade-offs and that an increase in WOF would
produce an increase in WFsim.
5.3.1. Step A: Run Multiobjective Optimization

[68] Perform multiobjective optimization by simultane-
ous minimizing OFet and OF�, for which w does not need
to be provided. On the other hand, �d which depends on the

climate data can be estimated from Figure 8. During the
optimization, all the feasible HYDRAUsim and WFsim

which complies with equation (9) are kept in storage which
will give the subset of acceptable Pareto-optimal solutions
(Figure 1).
5.3.2. Step B: Selection of Temporary Reference
Water Fluxes

[69] A first guess of the reference parameters (WFref,
HYDRAUref) is obtained from the cross section of the
weighted objective function (WOF) and the subset of Par-
eto optimal solutions. To obtain a first guess of WOF, w is
approximated from Table 8 and �d is provided from Figure
8. Next, DWF is computed for the subset of acceptable
solutions.
5.3.3. Step C: Dividing the Subset of Acceptable
Solutions

[70] WOFSA is performed independently on different
parts of the subset of acceptable solutions, i.e., the Pareto
front (Figure 1). The area is divided on the basis on w. For
instance, if the subset of acceptable solutions are divided
into four subareas, then the ranges of w are [0; 0.25],
[0.25; 0.5], [0.5; 0.75], and [0.75; 1.0]. For each subareas,
the WOFSA runs from Step 3, (section 3.3.3), thus obtain-
ing the corresponding OF�lin .
5.3.4. Step D: Refining the Results

[71] The WFref is updated with the new value of w based
on the group which exhibits the lowest OF�lin . Thus, the
best-compromise solution is in the cross section of the opti-
mal WOF and the Pareto front (Figure 1). Steps b and c are
repeated until convergence occurs between the new optimal
w and the previously computed value.

[72] We should remark that although in this study we
used two fitting criteria, the WOFSA can be performed
with more criteria. In the current version, we suggest using
a maximum of four fitting criteria, thus allowing the cali-
bration of up to three weights within the minimization of
OF�lin (equation (10b)). The introduction of more criteria
would result in a significantly extended Pareto front, tend-
ing to cover a large part of the entire objective space. Evi-
dently, this is far from desirable, for both theoretical (i.e.,
increased uncertainty) and practical reasons (i.e., poor
understanding of the generated trade-offs). Nevertheless,
very limited are the cases where more than four independ-
ent criteria have been applied in real-world applications
[Efstratiadis and Koutsoyiannis, 2010]. Forthcoming
research will investigate whether is it practical to increase
the number of fitting criteria, taking into account that the
WOFSA enables to constrain the feasible Pareto front, as
depicted in Figure 1, thus significantly facilitating the mul-
tiobjective searching procedure.

5.4. The Need for Validation Experiments With Field
Data

[73] The proposed WOFSA methodology, which was
thoroughly tested on the basis of synthetic data for a wide
range of soil texture and climatic conditions, provided con-
sistent and reasonable results. By using synthetic data, we
also explicitly ignored uncertainties that are related to field
observation errors, thus only focusing to uncertainties due
to retrieval of surface soil moisture and evapotranspiration
from remote sensing. Evidently, in real-world conditions,
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inherent modeling and measurement errors and uncertain-
ties cannot be neglected.

[74] Yet, for a full validation of the methodology, and in
order to quantify the gain in accuracy would require the
collection of field data. This is by far nontrivial, due to the
extent of in situ and remote sensing data requirements as
well as potential scaling problems. In fact, performing
measurements of effective large-scale water fluxes is con-
sidered infeasible because typically � and ET are retrieved
at a scale of several square kilometers. Without considering
the scale issues, a way forward can be by using precise
weighing lysimeters for which all the water fluxes are con-
tinuously monitored (storage, drainage, and evapotranspira-
tion). The surface � determined (for example) by neutron
probe or time-domain reflectometer needs to be monitored.
To mimic the uncertainties in retrieving � and ET from
remote sensing, noise can be introduced into the measure-
ments of surface � and lysimeter ET.

[75] The different lysimeters experiments should contain
contrasting textures and climate as described in Figure 2.
Preferably, the lysimeters should be filled with representa-
tive soils and vegetation. Too dry climates may be avoided
since it causes strong surface and root-zone � decoupling
for which these periods can be recognized through the
newly introduced threshold �d, which is computed from
equation (6).

[76] During the validation phase, it is also important to
recognize that nondaily information for observed � and ET
is retrieved from thermal-band land surface temperature
retrievals, which to date are limited to cloud-free atmos-
pheric conditions [e.g., Anderson et al., 2011]. This implies
that the collected data from remote sensing is skewed to-
ward drier conditions.

6. Conclusions

[77] The inversion of the hydraulic parameters of a one-
dimensional physically based SVAT model by taking
advantage simultaneously of surface soil moisture (�), and
evapotranspiration (ET), requires to take into consideration
the uncertainties of retrieving � and ET from remote sens-
ing and the decoupling of the surface and root-zone �. To
increase the sensitivity of �, the optimization should not be
performed during dry periods, i.e., when decoupling of the
surface and root-zone soil moisture occurs. These periods
can be recognized through the newly introduced threshold
�d, which is computed from equation (6).

[78] The proposed multiobjective approach, by means of
a weighted objective function (WOF), provides a suitable
compromise between fitting criteria against � and ET, also
taking into consideration the contrasting uncertainties in
retrieving � and ET from remote sensing. As shown in the
simulations, the uncertainties of � have different implica-
tions in the computation of the water fluxes of interest com-
pared to the uncertainties of ET. WOF comprises of two
control variables, namely a weighting coefficient (w) and
the decoupling threshold �d.

[79] In order to determine the best-compromise values of
w and �d, we developed a novel inverse modeling frame-
work, called weighted objective function selector algorithm
(WOFSA). WOFSA aims to minimize the uncertainties of
the computed water fluxes and state variables, following a

systematic and as much as objective procedure, in terms of
a theoretical framework for formulating an optimal WOF,
on the basis of synthetic data. WOFSA performs forward
simulations in order to ensure the greatest linearity between
the optimized WOF and the maximum uncertainties of the
generated water fluxes DWF. The DWF are derived by
mimicking the typically recommended uncertainties of
retrieving � and ET from remote sensing.

[80] To determine how the optimal w and �d of WOF
vary under different hydroclimatic conditions, 22 contrast-
ing hydroclimatic scenarios were formulated, by combining
five climates, three soil textures, and two different rooting
depths. Based on the results provided by WOFSA, we
established relationships between the optimized values of
w and �d. In particular, for all scenarios, we provided em-
pirical relationships to compute �d from the average values
of � and ET, and the standard deviation of ET. Moreover,
for each texture class, we correlated w with average evapora-
tion fraction and with average surface soil moisture, for
which we also provided empirical linear equations. All
results are interpreted in terms of hydrological evidence,
which is a strong justification of the proposed WOFSA meth-
odology. For instance, we found that �d increases for drier
hydroclimates and that the rooting depths indirectly influence
w through the average evapotranspiration fraction. We
remark that typical multiobjective calibration approaches,
such as the well-known minimization of the Euclidean Dis-
tance of the Pareto set, erroneously assume that the magni-
tude of D�rs is similar to the one of DETrs and that the
impacts of D�rs and DETrs on the simulated model responses
are not affected by soil and climate conditions.

[81] In practical terms, it is recommended to employ soil
moisture measurements preferably after heavy rainfall,
when the soil moisture column is homogenized to avoid
soil moisture decoupling. Nevertheless, the measurements
should be performed only after the plant is starting to expe-
rience stress since it was found that the fitting criteria of ET
reduces the sensitivity when the Feddes plant water stress
response function equals the potential evapotranspiration.
The measurements should also not be taken when the plant
is experiencing excessive stress, since it reduces the sensi-
tivity of the fitting criteria of ET and causes soil moisture
decoupling. It is also advised to perform the study during
the season where evaporation is not at its maximum to
avoid soil moisture decoupling.

[82] The proposed framework, which was thoroughly
tested on the basis of synthetic data for a wide range of soil
texture and climatic conditions, provided consistent and
reasonable results. Yet, for a full validation of the method-
ology, and in order to quantify the gain in accuracy without
considering the scale issues, a number of calibration experi-
ments with real data are necessary. Evidently, this task is
not trivial, mainly because it is very demanding in terms of
in situ data measurements, e.g., through high-precise
weighing lysimeters.

[83] Our next research step is the implementation of
WOFSA within a multiobjective optimization context, tak-
ing into account the preliminary ideas of section 5.3. This
will enable to reduce the range of the Pareto set in a hydro-
logical perspective, on the basis of real (observed) data
across a specific study area. The results of these investiga-
tions will be reported in due course.
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Appendix A
[84] The appendix describes the sink term and the inter-

ception module of SWAPinv which is substantially different
than the ones implemented into SWAP.

A1. Potential Evapotranspiration

[85] The potential evapotranspiration ETp (mm d�1) is
estimated by the Penman and Monteith equation that was
further modified by Allen et al. [1998] and is computed by

ETp ¼
Dv
�w

Rn � Gð Þ þ P1Cair

�w

esat�ea

rair

Dv þ �air 1þ rcrop

rair

� � ðA1Þ

where Dv is the slope of the vapor pressure curve (M L�1

T�2��1), �w is the latent heat of vaporization of water (L2

T�2), Rn is the net radiation flux density (M T�3) above the
canopy, G is the soil heat flux density (M T�3), p1 accounts
for unit conversion (86,400 s d�1), �air is the air density (M
T�3), Cair is the heat capacity of moist air (L T�1 ��1), esat

is the saturation vapor pressure (M L�1 T�2), ea is the
actual vapor pressure (M L�1 T�2), rair is the aerodynamic
resistance (L�1 T), �air is the psychrometric constant (M
L�1 T�2 ��1) ; and rcrop¼ 70 s m�1 is the crop resistance
[Allen, 1986].

[86] ETp is partitioned into potential evaporation of the
wet canopy EPW (mm d�1), potential soil evaporation Ep

(mm d�1) and potential transpiration Tp (mm d�1). The par-
titioning is performed using the leaf area index LAI (m3

m�3) and the fraction of the canopy, 1�Fw that is not wet.
It is to be noted that Fw is computed differently in SWAPinv

(equation (A.15)). SWAP assumes that the net radiation
inside the canopy decreases exponentially and that the soil
heat is negligible. The partitioning is performed by using a
Beer-Lambert law [e.g., Ritchie, 1972; Goudriaan, 1977;
Belmans et al., 1983]

TP ¼ max ETp 1� Fw Epw; LAI
� �� �

� Ep; 0

 �

ðA2Þ

Ep ¼ Epo Fs ðA3Þ

Fs ¼ expð�Kg LAIÞ ðA4Þ

where Fs (dimensionless) is the interception of solar radia-
tion that will also be used in the interception model, Kg (�)
is the extinction coefficient for solar radiation that is set to
0.5 [Varado et al., 2006; Wang et al., 2009]. ETp decreases
with increasing Kg and increasing LAI. Epo (mm d�1) is the
potential evaporation of bare soil, computed for albedo
equal to 0.1. For further information on the computation of
ETp, EPW, and Epo the readers are referred to the SWAP
manual (http://www.swap.alterra.nl/).

A2. Sink Term

[87] To take into account tree physiology and the reduc-
tion of transpiration by soil water stress, the actual transpi-
ration T is distributed by the sink term S(hi) over the whole
root zone and is calculated for each cell by Feddes et al.
[1978]. The sink term is computed by

S hið Þ ¼ �TpG hið ÞDRdfi ðA5Þ

where � is the transpiration fraction or crop factor (�), the
value of which is provided in Table 5, Tp (mm d�1) (equa-
tion (A2)) is the potential transpiration estimated for short
grass, DRdfi is the vertical fraction of the root density func-
tion per cell i (%) (equation (A6)), and G(hi) is the reduc-
tion of root water uptake at pressure head h per cell i (�)
(equation (A8)). All these variables except for Tp are
dimensionless.

A2.1. The Root-Density Distribution
[88] In SWAP, the vertical fraction of the root-density

function per cell i (DRdfi), which defines the general shape
of the roots, is entered manually in tabular form. In
SWAPinv, the root distribution is modeled with an empiri-
cal function of Gale and Grigal [1987] that was modified
further by Pollacco et al. [2008a]. The model requires the
rooting depth and the percentage of root density in the top
30 cm (DRdf30). It is to be noted that in this literature the
percentage of root density is often stated for the top 30 cm,
but the user can specify any other depth. The values of the
parameters for the two contrasting scenarios used in this
study, composed of shallow and deep rooted plants, are
provided in Table 4. For each cell i, the fraction of roots
DRdfi between the top depth zup and the bottom depth zdown

is computed as

DRdfi ¼
Ec
jZdownj � Ec

jZupj

1� Ec
jZroot j

with
Xi¼imax

1

DRdfi ¼ 1 ðA6Þ

where zup and zdown are, respectively, the top and bottom
depth of each cell which is positive downward (cm). Ec is
the ‘‘extension coefficient’’ parameter, zroot is the rooting
depth (cm), and imax is the last cell of the root zone. Ec

varies between 0.700 and 0.9999, such that when Ec is
close to 0.7 all the roots are distributed in the top cell, and
when Ec is close to 1, the roots are distributed evenly
within the root zone.

[89] The value of Ec is computed from the percentage of
roots. For example, in the top 30 cm, DRdf30 is estimated
by solving the following equation:

DRdf30 ¼
Ec

0 � Ec
30

1� Ec
jZroot j
¼ 1� Ec

30

1� Ec
jZroot j

ðA7Þ

where Ec is the ‘‘extension coefficient’’ parameter and zroot

is the rooting depth (cm).
A2.2. Root Water Uptake

[90] When the capillary pressure head hi per node i is
reduced, the vegetation closes their stoma and decreases
transpiration, by using the Feddes et al. [1978] stress func-
tion computed as follows:

G hið Þ ¼ 0; if jhj > jh4j or jhj < jh1j
G hið Þ ¼ 1; if jhj > jh2j and jhj < jh3j

ðA8Þ

[91] Water uptake below jh1j (oxygen deficiency) and
above jh4j (wilting point) is set to zero. Between jh2j and
jh3j, g(hi)¼Tp maximal. The value of h3 varies with Tp.
For different values of Tp, h3 is linearly interpolated
between h3low and h3high. The values of h1, h2, h3high, h3low,
and h4 are provided in Table 5.
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A3. Evaporation From Bare Soil

[92] The evaporation module of SWAP was simplified.
Under wet soil conditions, the actual soil evaporation E
[mm d�1] equals the potential soil evaporation Ep. During
interstorm period SWAP computes E by using the empiri-
cal evaporation method of Black et al. [1969] that requires
two fitting parameters. Nevertheless Eagleson [1978], Milly
[1986], Simmons and Meyer [2000], and Romano and Giu-
dici [2007, 2009] showed that good results can be achieved
by relating evaporation with �. We therefore used the
Romano and Giudici [2007, 2009] evaporation model that
does not require any extra parameters

E ¼
MAX �

���� 0
15
� �r

�s � �r
Ep ðA9Þ

where the maximum � is taken from the highest soil mois-
ture between the surface and the depth to 15 cm; �r and �s

are the residual and saturated water contents (L3 L�3),
respectively, defined earlier by equation (3).

A4. Rainfall Interception Model

[93] SWAP computes rainfall interception following
Braden [1985] and Von Hoyningen-Huene [1981]. These
interception models require extra parameters and do not
use potential evaporation of a wet canopy Epw (mm d�1).
We introduced in SWAPinv a physically based interception
model, following the work of Noilhan and Lacarrere
[1995] and Varado et al. [2006] described in Pollacco and
Mohanty [2012]. In this model, Epw is used as a predictor,
while the leaf area index LAI (�) and the extinction coeffi-
cient of solar radiation Kg (�) are assumed as parameters.
The values of the LAI and Kg are provided in Table 5. The
gross precipitation Pg (mm d�1) defined as the amount of
water which reaches the canopy is computed following
Rutter et al. [1971]

Pg ¼ Pint þ Pfree ðA10Þ

where Pfree (mm d�1) is the free throughfall that is the frac-
tion of precipitation that reaches the ground surface
through gaps in the canopy and Pint (mm d�1) is the inter-
cepted precipitation.

[94] The foliage of the canopy is considered as a water
reservoir filled up to a depth of Wr (mm), with a maximum
storage capacity Wmax (mm). When the canopy is fully sat-
urated (Wr¼Wmax), then any excess of Pint overflows Pover

(mm) to the ground such that according to Valante et al.
[1997]

Pover ¼ max Pint þWr �Wmax ; 0f g ðA11Þ

[95] The amount of water that reaches the ground is the
net precipitation Pnet (mm d�1)

Pnet ¼ Pover þ Pfree ðA12Þ

[96] A fraction of the water from the reservoir Wr will be
evaporated at the rate of the actual evaporation of a wetted
canopy EAw (mm d�1) during and after a rainfall event. Wr

is calculated following Deardorff [1978]

@Wr=@t ¼ Pint � Pover � EAw ðA13Þ

[97] The maximum quantity of water that can be evapo-
rated during a time step is computed as

EAw ¼ min EpwFw;Wr=dt

 �

ðA14Þ

where Epw is the potential transpiration of a wet canopy.
[98] According to Rutter et al. [1971], evaporation from

wet canopies is assumed to be proportional to the fraction
of the canopy that is wet Fw (0–1) that is computed follow-
ing Deardorff [1978]

Fw ¼ Wr=Wmaxð Þ2=3 ðA15Þ

[99] Wmax is related to LAI based on the empirical rela-
tionship of Varado et al. [2006] and Von Hoyningen-Huene
[1981]. Varado et al. [2006] assumes that the interception
of water of a canopy is similar to the interception of solar
radiation Fs (0–1) (equation (A.4)). Combining Varado
et al. [2006] and Von Hoyningen-Huene [1981], Wmax is
computed as

Wmax ¼ 0:935þ 0:498 LAI � 0:00575 LAI 2
� �

ð1 � FsÞ
ðA16Þ

[100] Wmax increases with increasing LAI and Kg. The
partitioning of Pg and Pfree is computed as

Pfree ¼ Fs Pg ðA17Þ
Pint ¼ 1 � Fsð ÞPg ðA18Þ

Fs ¼ e�Kg LAI ðA19Þ
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