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Dice games are old 

P. Dimitriadis et al., Windows of predictability in dice motion 2 

 All these dice are of the period 580-570 BC from  
Greek archaeological sites: 
 Left, Kerameikos Ancient Cemetery Museum, Athens, photo by D. Koutsoyiannis 

 Lower right and middle: Bronze die (1.6 cm), Greek National Archaeological 
Museum, www.namuseum.gr/object-month/2011/apr/apr11-gr.html 

 Upper right: Terracotta die (4 cm) from Sounion, Greek National Archaeological 
Museum, www.namuseum.gr/object-month/2011/dec/dec11-gr.html 

 Much older dice (up to 5000 years old) have been found in 
Asia (Iran, India). 
 



Some famous quotations about dice 

P. Dimitriadis et al., Windows of predictability in dice motion 3 

Jedenfalls bin ich überzeugt, daß der nicht würfelt  
I, at any rate, am convinced that He does not throw dice 

(Albert Einstein, in a letter to Max Born in 1926):  

Αἰών παῖς ἐστι παίζων πεσσεύων  
Time is a child playing, throwing dice 

(Heraclitus; ca. 540-480 BC; Fragment 52)  

Ἀνερρίφθω κύβος  Iacta alea est  
Let the die be cast The die has been cast 
[Plutarch’s version]  [Suetonius’s version] 

(Julius Caesar, 49 BC, when crossing Rubicon River) 



Physical setting 
 The die motion is described by the laws of classical (Newtonian) 

mechanics and is determined by: 
 Die characteristics: 

 dimensions (incl. imperfections with respect to cubic shape), 
 density (incl. inhomogeneities). 

 Initial conditions that determine the die motion:  
 position,  
 velocity,  
 angular velocity. 

 External factors that influence the die motion: 
 acceleration due to gravity,  
 viscosity of the air,  
 friction factors of the table, 
 elasticity moduli of the dice and the table. 

 Knowing all these, in principle we should be able to predict the 
motion and outcome solving the deterministic equations of motion. 

 However the die has been the symbol of randomness (paradox?).  
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Some scientific studies on dice 
 In a letter to Francis Galton (1894), W. F. Raphael Weldon, a 

British statistician and evolutionary biologist, reported the results 
of 26 306 rolls of 12 dice; the outcomes show a statistically 
significant bias toward fives and sixes (observed frequency 0.3377 
against theoretical 0.3333; see Labby, 2009). 

 Labby (2009) repeated Weldon’s experiment (26 306 rolls of 12 
dice) after automating it and reported outcomes close to those 
expected for fair dice (probabilities ~1/6, no autocorrelation). 

 Strzalco et al. (2010) claim that a die is not fair by dynamics as the 
probability of the die landing on the face that is the lowest one at 
the beginning is larger than on the other faces. 

 The same claim is made by Kapitaniak et al. (2012) who conclude 
that the die throw is neither random nor chaotic. 

 Grabski et al. (2010) and Nagler and Richter (2008) call the dice 
behaviour pseudorandom because the motion is governed by 
deterministic laws (albeit with high sensitivity to initial 
conditions).  
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Researchers and apparatus for the experiment 
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Technical details 
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Color wheel of primary colours hue 
and saturation 
(www.highend.com/support/controllers/doc
uments/html/en/sect-colour_matching.htm) 

 Each side of the die is painted with a different  
colour: blue, magenta, red, yellow and green  
(basic primary colours) and black (highly  
traceable from the video as the box is white).  

 The visualization is done via a camera with  
frame frequency of 120 Hz. The video is  
analyzed to frames and numerical codes are  
assigned to coloured pixels (based on the  
HSL system) and position in the box  
(two Cartesian coordinates).  

 The area of each colour traced by the camera  
is estimated and then non-dimensionalized with the total traced area of 
the die. Pixels not assigned to any colour (due to low camera analysis 
and blurriness) are typically ~30% of the total traced die area. 

 In this way, the orientation of the die in each frame is known (with some 
observation error) through the colours shown looking from above.  

 The audio is transformed to a non-dimensional index from 0 to 1 (with 1 
indicating the highest noise produced in each video) and can be used to 
locate the times in which the die hits the bottom or sides of the box.  



Experiments made 
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 In total, 123 die throws were performed, 52 with initial angular 
momentum and 71 without. 

 The height from which the die was thrown remained constant for all 
experiments (15 cm).  

 However, the initial orientation of the die varied . 

 The duration of each throw varied from 1 to 9 s. 

A selection of frames from die throws 48 (upper left) and 78 (lower left) and video for 78 (right). 



Representation of die orientation 
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 The evolution of die orientation is most important as it determines the outcome. 
 The orientation can be described by three variables representing proportions of 

each colour, as shown from above, each of  
which varies in [−1,1] (see table and figures  
which show raw values for experiment 78). 

Value → −1 +1 

Variable ↓ Colour Pips Colour Pips 

x yellow 1 black 6 

y magenta 3 blue 4 

z red 5 green 2 

Example: 
x = −0.25 (yellow) 
y = 0.4 (blue) 
z = −0.35 (red) 



Alternative representation 
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The plot of all experimental points and 
the probability density function show 
that u and v are independent and fairly 
uniformly distributed except that 
states for which u±v = 0 
(corresponding to one of the final 
outcomes) are more probable. -1 -0
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 The variables x, y and z are not 
stochastically independent of each other 
because of the obvious relationship  
|x| + |y| + |z| = 1.  

 The following transformation produces a 
set of independent variables u, v, w, where 
u, v vary in [−1,1] and w is two-valued 
(−1,1): 

𝑢 = 𝑥 + 𝑦
𝑣 = 𝑥 − 𝑦

𝑤 = sign(𝑧)
↔

𝑥 = (𝑢 + 𝑣) ∕ 2
𝑦 = (𝑢 − 𝑣) ∕ 2

𝑧 = 𝑤(1 − max⁡( 𝑢 , 𝑣 )
 



 Autocorrelograms 
and climacograms 
(here those for 
experiment 78 are 
shown) indicate: 

 Strong dependence 
in time; 

 Long-term, rather 
than short-term 
persistence. 

 Strong dependence 
enables stochastic 
predictability. 
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Stochastic models 
 Two parsimonious (3-parameter) linear stochastic models were tested, 

which predict the state s((t+l)Δ) based on a number of past states 
s((t−p)Δ), where p = 0, 1, …., Δ = 1/120 s is the time step, lΔ is the lead 
time of prediction, and s denotes either the vector (x, y, z) or (u, v, w). 

 Model 1 (using the u-v-w formalism): 
u((t+l)Δ) =  𝑎𝑝𝑢((𝑡 − 𝑝 + 1)𝛥)10

𝑝=1 , v((t+l)Δ) =  𝑎𝑝𝑣((𝑡 − 𝑝 + 1)𝛥)10
𝑝=1 , 

w((t+l)Δ)=w(tΔ)  
where to reduce the number of parameters it was set a2 = a3 = … = a9.  

 Model 2 (using the x-y-z formalism): 
𝑥 ((t+l)Δ) =  𝑏𝑝𝑥((𝑡 − 𝑝 + 1)𝛥)10

𝑝=1 , 𝑦 ((t+l)Δ) =  𝑏𝑝𝑦((𝑡 − 𝑝 + 1)𝛥)10
𝑝=1 , 

𝑧 ((t+l)Δ) =  𝑏𝑝𝑧((𝑡 − 𝑝 + 1)𝛥)10
𝑝=1    

where b2 = … = b9. This is followed by adjustment to ensure consistency: 
𝑥((t+l)Δ) = 𝑥 ((t+l)Δ)/𝑠 , 𝑦((t+l)Δ) = 𝑦 ((t+l)Δ)/𝑠 , 𝑧((t+l)Δ) = 𝑧 ((t+l)Δ)/𝑠 , 
where 𝑠 ≔ |𝑥 ((t+l)Δ)|+|𝑦 ((t+l)Δ)|+|𝑧 ((t+l)Δ)|. 

 The sets of parameters (a1, a2, a10) and (b1, b2, b10) depend on the lead 
time lΔ. For each lead time they were numerically determined so as to 
minimize the mean square error over all time steps. 

 To find an upper limit for predictability the entire data set of an 
experiment was used (no model validation period).  
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Deterministic data-driven model 
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 Model 3 is a deterministic model, purely data-driven, known as the 
analogue model (e.g. see Koutsoyiannis et al. 2008); it does not use any 
mathematical expression between variables. 

 To predict s((t+l)Δ), based on past states s((t−p)Δ), p = 0, 1, …, m, where s 
= (x, y, z):  

 We search the data base of all experiments to find similar states 
(neighbours or analogues) si((ti −p)Δ), so that 

 𝒔𝑖 𝑡𝑖 − 𝑝 𝛥 − 𝒔 𝑡 − 𝑝 𝛥
2
≤ 𝑐𝑚

𝑝=1 , where c is an error 

threshold. 

 Assuming that n such neighbours are found, for each one we find the 
state at time (ti +l)Δ, i.e. si((ti + l)Δ) and calculate an average state  

𝒔 ((t+l)Δ) =
1

𝑛
 𝒔𝑖 𝑡𝑖 + 𝑙 𝛥𝑛

𝑖=1 . 

 We adjust 𝒔 ((t+l)Δ) to ensure consistency, in the same manner as in 
Model 2.  

 After preliminary investigation, it was found that a number of past values 
m = 10 and a threshold c = 0.5 work relatively well. 



Benchmark models 

 The three prediction models are checked against two naïve 
benchmark models. 

 In Benchmark 1 the prediction is the average state, i.e. 
s((t+l)Δ) = 0. Although the zero state is not permissible per 
se, the Benchmark 1 is useful, as any model worse than that 
is totally useless. 

 In Benchmark 2 the prediction is the current state, i.e. 
s((t+l)Δ) = s(tΔ), regardless of how long the lead time lΔ is. 
Because of the high autocorrelation, it is expected that the 
Benchmark 2 will work well, for relatively small lead times. 
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Results 
 For lead times lΔ ≲ 1/10 

s, all three models, as 
well as Benchmark 2 
provide relatively good 
predictions  (efficiency 
≳ 0.5) 

 Predictability is 
generally superior than 
pure statistical 
(Benchmark 1) for lead 
times lΔ ≲ 1 s. 

 Models 1 and 2 are 
virtually equivalent. 

 Model 3 can be better or 
worse than models 1 
and 2.   
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Experiment 78 
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On the stationarity 
of the error 

 Clearly, in increasing 
time, as the energy of 
the die dissipates, the 
error decreases and the 
predictability improves. 

 The improvement of 
predictability is 
spectacular for small 
lead time (naturally, the 
error for the next frame 
tends to zero before the 
die stops). 

 The situation worsens 
for larger lead times.   
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Concluding remarks 

 There is no virus of randomness that affects dice. 

 Random means none other than unpredictable or unknown. 

 Both randomness and predictability coexist and are intrinsic to 
natural systems including dice (see Koutsoyiannis, 2010). 

 Dice motion is both deterministic chaotic and random.  

 Dice uncertainty is both aleatory (alea = dice) and epistemic (as in 
principle we could know perfectly the initial conditions and the 
equations of motion but in practice we do not). 

 Dichotomies such as deterministic vs. random and aleatory vs. 
epistemic are false dichotomies. 

 Dice behave like any other common physical system: predictable 
for short horizons, unpredictable for long horizons. 

 The difference of dice from other common physical systems is that 
they enable unpredictability very quickly, at times < 1 s.  
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