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The interpolation problem 
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• Given that 2×N observations are available, we want to estimate a missing value y : 
 
 
 
 
• A (linear) estimate of y can be expressed as: 
 
 

 
where 
xi : the observed values 
wi : weighting factors 
e : estimation error 
 

 
• The Mean Squared Error of the estimation is then defined as: 
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1st approach: Optimal Local Average (OLA) 
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• We examine the following estimate for y: 
 
 
 
 

 
 
• Assuming that the underlying process is (weakly) stationary, the MSE of the 
estimation is given by: 
 
 
 
 
 
 
 
 

 
• Which is the optimal (i.e., minMSE) number of neighbouring values (n) that should 
be used? 
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• AR(1) 
For a wide range of lag-1 autocorrelations, the 
strictly local average (i.e., n=1) provides the 
minMSE. 

• HK 
As the lag-1 autocorrelation increases, the 
time-adjacent values (n) required for a 
minMSE gradually decrease. 

See also  
Dialynas et al. (2010) 
http://itia.ntua.gr/en/docinfo/981/ 
Pappas (2010) 
http://itia.ntua.gr/en/docinfo/1065/ 

http://itia.ntua.gr/en/docinfo/981/
http://itia.ntua.gr/en/docinfo/1065/
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Optimal Local Average 

Short-term persistence -AR(1)- Long-term persistence -HK- 

ρ ≤ 0.25      n=nmax ρ ≤ 0.3      n=nmax 

0.25 < ρ ≤ 0.28 n=2 
0.30 < ρ ≤ 0.32 n=4 

0.32 < ρ ≤ 0.38 n=3 

ρ > 0.28 n=1 
0.38 < ρ ≤ 0.51 n=2 

ρ > 0.51 n=1 

ρ: lag-one autocorrelation coefficient 

n: time-adjacent values used for the infilling 

nmax: all the available observed values, i.e., total/sample average 

Markovian property:  
“The future does not depend on the past when 
the present is known” [Papoulis, 1965, p.535]. 
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For both ACS (exponential or power-type) 
when ρ>0.51 the strictly local average (n=1) 
provides the minMSE. 



2nd approach: Weighted Sum of local and total Average (WSA) 
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• Generalization of the OLA methodology, so that information from both local and 
global average will be used according to the lag-1 autocorrelation. 
 
 
• We examine the following estimate for y: 
 
 
 
 

 
 

 
 
where λ is the weighting factor for the total (sample) average and the local (strictly) 
average. 
 
 
• Parameter λ reflects the strength of the temporal autocorrelation: 
 low values →  high correlation 
 high values  → low correlation  

Total (sample) 
average 

Local (strictly) 
average 

See also: 
Pappas (2010) 
http://itia.ntua.gr/en/docinfo/1065/ 

http://itia.ntua.gr/en/docinfo/1065/
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• After some algebraic manipulations: 
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• Assuming that the underlying process is (weakly) stationary, the MSE of the 
estimation is then defined as: 
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• AR(1) & HK 
As lag-1 autocorrelation increases, the 
contribution of the local average increases 
(i.e., lower values of λ). 
 
• HK 
It takes time for the HK process to reveal its 
properties. 

• The influence of sample size ( N ) : 
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2nd approach: Weighted Sum of local and total Average (WSA) 
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• For the case of exponential ACS, the λ-ρ1 relationship does not vary significantly with 
time series length N. 



2nd approach: Weighted Sum of local and total Average (WSA) 
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• For the case of power-
type ACS, the λ-ρ1 

relationship varies signi-
ficantly with time series 
length N. 

 

 

• To circumvent this issue, 
the λ-ρ1 is approximated 
using two additional 
parameters (λ1, γ). 



Methods intercomparison 
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Conclusions 
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• We provide a definitive argument against the effortless use of global (sample) 
mean for infilling hydrometeorological (i.e., correlated) data. 
 
• Local average (n=1) is preferable for: 

o Markovian processes with ρ > 0.28 

o HK processes with ρ > 0.51 

 
 
 
 
 
 
• A generalized framework, described by the Weighted Sum of local and total 
Average (WSA), is developed and its advantages are demonstrated. 
 
• The WSA methodology is therefore tailored for a quick infilling of sporadic gaps in 
hydrometeorological time series. 

Tobler's first law in geography: 
“Everything is related to everything else, but near things are more related than distant 
things” [Tobler, 1970]  
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Many thanks to... 
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Thank you! 
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