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Kamorte, pe ypovo 1 ywpis
Kamov, pe ywpo 1 ywpis
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Oa Eavavtapdoovye

Kai 0a Eéperg nwg eipar ey
Kai 0a §épw mwg eioar e0v

I'ia oéva matépa...



... Kat twpa Oa wpoobéow:

Ocot amé cag ma Papedixate otov kdouo
avTév Tov ddikov kat Tov PAakwdn va dysobe
kat va @épedbe amd Tovg VevTeg, amé ToOUS
ocoploTdg  Kkar  Aaomddvovg,  door  ma
Papedixate o1 Seopopvlakés oag gav Téma
tadainwpa va oag efamootéddovy €15 TOV
Kaidpa «ar wpwv am avtév otov "Avva,
npoouévovtag va éA0n n Qpa n ypvoavytg, 1y
TOAVDUVNTOS Kal evAoynuévy, ool ToTOL,
doot Leorol, oot TV onuepwhy  edeeviy
npaypatikdotnra  va  alddfetre  mobeite,
npoouévovtag va éA0n n Qpa, éoor moro,
doot {eoroi, eddte kar wg avakpdiwpev pali
(vov kar asi, vov kar asi) oav TPOoEVYN Kal
cav waidva, ag avaxpdéwuev pall, pe pia
Yoxt, ue puta gwv) OKTANA!

ANAPEAS EMIIEIPIKOS



IIPEAOYAIO

Age vidBeig timota. AAIWG TO Xe§ @avtaoTel, kanws aAwg. Keivel otpogn 1 omeipa pe
o ampoodLopLoTn OTOVAYT, KATL 0oV YEDOT TIKPY Hag VOXTAG Papldg Kat dxapng mov e
avakovton telelwvel. Towg viwbelg mwg €xelg avaykn KATL va TELG, TwG TPEMEL KATIOLEG
AéEelg va oTpaPWOELG, va TIELG KATL 0aV [LOVOLKT), KATL oav pékPLept yia Ta Xpovia. ANG Tt va
TIELG, TIWG VO TO TELG; e Ovo Ypappég povaya Ba yellioelg.

Towg va gTay ta KOkaka ov @Epvovv mavta okvho. Towg kat ov. Aev €xelg Opwg
GAn o@eln, pémet oav Sévtpo oav otabeig, atdpayog kat dikatog 600 unopeic. Aev E€pelg
av pmopeis, pupilelg axoun mupetd, ityyo kat pAoya. ®ofdoat avtr ™ {uyaptd, mov Ba
yeipovv tooa xpovia; Tt éxel amopeivel edw, Tt éxel vonua xwpic To PAéppa tov Odvooia;
Méveig evedg umpog ta xapéva xpovia. To kepdht oov mova. ITolog Ba cov melL Tt o€ dploe
Kat Tt opiCetg; Tu eivar avtd mov prjpage kat Tt ivar avtd mov avBifey; Emkaléotnkes ta
TE00EPA OTOLXELN, TIVEVHA, KapdLd, Yuxr Kal CWUa KAl lmeg 0T uvhpn va oe owoet. Kdatt
dev mdet kald, n aAyeBpd cov eivar yeHATN KATATENTEG.

Agv avtéxels, mviyeoat, Tt eival Oda avtd Tpryvpw; ITov eivat o kOKAOG TwV Xapévwy
nointwv; Evag owpog potpoyvwudvia mov mpénet va mepdoels. Ma gioat otpafog, ywvieg
Yepdtog, xticov mapdAAniog av Bélelg va mepdaoets. Tive Popd yAvkid 0TOVG TIHAPLWOTEG
TV 18ewv. Na ovpgwveig, mwg aliwg Oa BagTiotovv 6hot ot dnpokpateg; Exet kt dAa Aev
yta ta ITedia n ovvrayn, Aiya axopn kat Oa "var avBopdpa kat 1 086G, AAG pun Aeg ToANA.
Kpata to otépa cov kAelotd KL doe to kalokaipt va cOpel avtd To epmetd £€w am T
@wALd Tov. Kpdta 1o otdpa oov kAeloto, otav pe T gpikaléa elpwvia twv mepdewv Oa
oov xapoyelave. 1de o avBpwmog «mov tov matdv ot olnfeia Ta MOSIa TOv Ta iStax.
Tinota a’ 6Aa TovTa 8¢ 0" apéoel. Aev avtéxelg, mviyeoat. Kanwg aAAiwg, kamwg aAAwg
T0 X&G avTaoTel. «Avtoi mov dpametevovy, épabav Tt yvpevovvr. Tive avtd mov eioat av
mopeig ta Satpdvia gov 0AoALoLY, pa éxe KaTtd vou de omdet ) TETPa pe Ta SOVTLA.

Apketa. To Bélog Tov xpdvov éomace kat 8e Seiyvel movbeva. Kheivelg ta patia. Ola
Eepakpaivouv, Oha eivau Eéva kat Oha opopeaivovv. Eivat k&t cav mdhn pe ¢wtovia 610
oKoTAdL, évag Tuppixlog xopos, KATMWG €ToL eivat avTd mov kavels. Edw o’ avtéxel o
okehetog, edw Eexvdg. IIpoowmikdg MLOTIKIOHOG, HOVAXIKO, TUPNVIKO Kal OVECTIEPO
Spopdxt. Movo edw o komog oov akilel. ESw &€peig Tt oe petpd. Movo n 16éa ot alnBela oe

HETPA Kat VTN PETNO0EG OwoTA pe wpaio TaBog kabBapd. AAa de BéAelg va Bupdoat.



Tt Beda pe avtd va nw, iowg va avapwtiéca ITog va oto nw, dev £xel onuaoia.
Elvau mpdypata mov av dev ta «viwbeig» xwpig va ota efnyrnow de Ba ta «<vidoeig» ovte av
ota e€nynow. Na nw opws yo avlpwmovg, mov xwpig avtovg pdAlov 8 Ba "ypaga «edw».

Meydhwoa peg otny medwpta kapdid tov. Me PAéupa kabapd édive to pvOpod oe OAa
Ta Bpatd pov. Kat tdpa, mévta anwv Kat TEvTa TapdVv, He To adpato yLyavTio Tov xépt
e onkwvet 0tav Ayilw. Anuntpen Hanakegiov "Aeyav tov matépa pov. Hrav omovdaiog
LaTpaG, HEYLoTOG AvBpwmog, evBig, amhdg, avbevTikog, Pabid cogog, avevdeng kat TavToTe
«wpaiogr. Oa mpoomabw va yivw avtds. Me dvo tpeig Aé€elg av pe opiow, TOTE gipat 0 YOG
Tov Kat Timota dANo. AAALWG TTWG Va TO Tw, eival ylo Péva 1) apXn TV TAVIWY.

Eivat n Bed tov wikpwv mpaypdtwv, Ppioket To vOonua 0To O HKpO, 6TO TILO ATAO
Kat auTd eival To Mo «peydhor. Madi g pabaivew Tt givat To ovotaotikd kat To aAndva
omovdaio. Me kpatd 010 PG kat kabe opd oV TNV KOITW VIwBw WG KATOL0 VOnpa €XEL
avtdg 0 Bavpactog mapaloylopog mov eimape {wr). Kavel kdtt payko, pe kdbe xapoyelo
G yivopat kadvtepog dvBpwmog. Eivat n yvvaika pov, n Evtuyia pov. Iepdoape péoa an’
TIG QWTLEG, OAa padi, mévta padi.

Mukpr| onpacia €xet av Sta@wveig 1 ovpuewveis padi tov, mavra katt Ba mapels.
Eixape omovdaieg aAld kat avdnodeg otiypés, Oleg e§ioov onpavtikés. Iiotedw, av eipat
4&log va Kpivw, Twg eival TOAD ONUAVTIKOG EMOTAHOVAG, €XEL TTPOOPEPEL TTOANG Kat Ba
npoo@eépet aAAa Tdoa. Aev givat aAANog guotkd and tov Anuntpn Kovtooyidvvn.

Me xoapd Ba avagepfw kot oTOvG AOMODG TOL ETpene TIG €PELVEG HOVL va
«eykpivovv». Xto Niko Maudon, wpaiog 100G, aAAwTIKOG, dAAa de Ba mw. Xtn Mapia
Mupikov mov pe xapd Porndnoe omote xpetdotnka kdtl. Kat fefaiwg otovg avBpwmnovg tng
eEETAOTIKNG EMTPOTING KAl yla Ta wpaia kat yia Ta otpaPd mov Pprkav aAld mpomavtog
ylati eivat OAot Tovg avBpwmot e§atpeTikol MOV UeEG TWV AvVAPPACHO KEIVWV TWV NUEPWV
“Kavay OTL uropovoav yia va Bondroovy.

H aydamnn eivaw TogAn} yU' avtd 1 @uhia €xeL Ta HATIO TNG TAVTA KAELOTE, KATL TETOLO
eime évag peydhog. ITog Ba paldxkwvav xwpig avtovg dypleg pépeg; Motlpaotrikape idto
Xwpo kat idleg «ekmvoégy. Na 'vat kat To péAhov, va "var kt j Oktdva. Eivat ot @ilot pov o
Avdpéag Evotpatiadng o Iavaywtng Anuntpiadng, o Tavvng Mapkovng kat o
[Mavaywtng Koootépng. Mveia kat 6 OAa ta dAa dia madid Tov «opo@ov». Emdvia

OVYKEVTPpWOT) TO00 wpaiwv avBpwnwy. To evxaplotd Sev eivat yia péva Aé&n povaya.

ABnva, apyd pa voyta,
Zipwv Mixan ITamakefiov
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EKTENHY I IEPIAHYH

v mapovoa Awatpfn efetdlovtar tpia kvpiwg Oépata: (a) n Svvarotnta va
xpnotpomotnOei pa BewpnTIK apyr, CUYKEKPLUEVA ) apXn TNG UEYLOTNG EVTPOTIAG, WG
Pdon yia N Stapopewon kat TNV emAoyr mOAVOTIKOV KATAVOUDV KATEAANAwVY yla TN
Ppoxomtwon kat ev Suvapel Kal yia dAleg yew@uotkég petaPAntés, (B) n mbavotikn-
OTATIOTIKY avAAvon o€ maykoopta KAigaka TnG nuepnotag Ppoxontwong kabwg kat Tng
akpaiag nueprotag Ppoxontwong kat (y) n otoxaotikny dopn g PpoxonTtwong oe TOAD
Hkpny xpovikn kAipgaka (10 s). Baowkdg 01dX06 TG €pevvag eival va Statvmoet amhd aAld
Oepehiwdn Kkat evpéog evOLAPEPOVTOG EPWTALATA OXETIKA (e TN OTATIOTIK-CTOXAOTIKN
@von G PpoxomTwoNnG Kat va dwoel amavtioelg Oxt povo Bewpntikng oAd Kvpiwg

TPAKTIKNG aklag.

ZXETIKA [LE TNV apy1] TNG HEYLOTNG EVTPOTTAG

H ¢ugpaon divetar otn Stapdpewon kat otn Aoywkn kat BewpnTikr Tekpunpiwon amiwv
TEPLOPIOPDY TOV O OLVOVACWUO HE TOV KAAOWKO OpLopd Tng evipomiag, Sniadn tng
evtpomiag Boltzmann-Gibbs-Shannon (BGS) (EE. (1)), 0a 0dnyobv o€ evéhikteg Kt amhég
KATAVOEG KATAAANAEG yia Ty TBavoTikn meptypa@r TG Ppoxontwong aAld kat AWV

YEWPUOIKDOV HETAPANTWY.
Sy ==[ fe()In f, (x)dx (1)
0

Zuvontikd n apxn tnG puéylotng evrpomiag [E. T. Jaynes, 1957a, 1957¢] eivou éva epyaleio
ya v e€aywyn ovpnepacpdtov vid ovvlnkes afefadtnTtag 1 EAONS yviong kat
otoyevel oty e&ebpeon g mAEov KaTAANANG KaTavoung mBavoTHTwV COUPWVA UE TNV
StaBéoun mAnpogopia, n omoia ekQpaleTatl WG £va CVVOAO TEPLOPLOUWY TTOL oXNUaTiovTaL

WG AVAPEVOEVEG TIHEG GLVapTHoEWV g( ) TNG TuXaiag petaPAntrg X, fto,
E(gj(X)):Igj(x)fx(x)dx:cj, j=L..,n 2)
0

H xatavopn H€YLoTng EVIPOTiag mPoKLTTEL Ao T peylotonoinon g evrpomiag (EE. (1))

Bétovtag meplopiopovg ovppwva pe v EE. (2) kat mpaypatomoteitat pe t pébodo twv
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noMamlaoctaotwv Lagrange. H yevikr) Abon mov mpokvumtel yia avbaipetovg meploplopovg

sivat

fx<x>=exp[—% —_iajgxx)J )

omov fx(x) n mukvotnta mbavotnrag, Aj, pe j =1,..., n, ot toManlaoctaotég Lagrange mov

ovvdéovtal pe tovg meploplopots tng EE. (2). O moAamlaotaotng Lagrange Ay mpokvmtel

Ao TOV TEPLOPLOUO J.: fi(x)dx=1.

o Tati ket TWG PUTOPEL 1| APXN THG UEYIOTHS EVTPOTIIAG V& GVUPEAEL OTO OXHUATIOUO 1]
otny emdoyn KaTGAAA@Y TOKVOTIK@OY KATAVOUWDY YIa pix TUXXix HETAPANTH;
Ot yvwoTég mBavoTIkEG KaTavopég elval Leptiég dekadeg, v amod padnuatikng andyewg o
OVVOALKOG aplBHOG TV KATAvopWV eival dmelpog kabwg amelpog aplBuodg cvuvaptioewy
pmopei va oplotei pe TI§ 180TNTES fag mbavotikng katavouns. H kowvly texvikn yua tnv
emloyn plag katavopns Paciletar cvviBwg oe ueBddovg Soxipng-oedalparog, dnladn,
npooapuoletar ovvnBwe €vag pkpog aplBpdg katavopwv ota gpmetptkd dedopéva kat
eTAEYETAL 1] KATAVOUN He TNV KAADTEPN TPOCAPUOYT| TTOV TIPOKVTITEL COUPWVA [E KATIOLO
KPLTNPLO OPANHATOG 1] Ta AmOTEAEOUATA OTATIOTIKWY eAéyxwV. OewpnTikd, n Stadikacia
avtr) Oev €xel TENOG, EPOOOV ATIELPEG KATAVOEG UTTOPOVV KATAOKEVAOGTODV KAl GUVETIWG Vat
SoKIHaoTOOV WG TPOG TNV KATAAANAOTNTA TovG. AVTiBeTa ) apxn TG HEYLOTNG eVTpOTiOG
TPOoPépeL £va LoxVpo BewpnTikd vtoPfabpo yia va mpoodiopiotel éva mbavoTikd povtélo
Pdoet g Sabéong mAnpogopia. Q0TOCO, 1 EMTUXAG XPNON OAUTAG TNG APXNS
npoimoBétel TNV evowpdtwon OAng g Owabéong mAnpogopiag pe T popen

HAONHATIKWV TTEPLOPLOUWY.

o Jloix mpémer va €ival 1] HOPPH QVTWV TWV TEPLOPIOUWDY PIX YEWPUOIKEG UETAPANTEG
omws 1 fpoxi;
H Baowr mapadoxn OxeTKd He TN HOPPT| TWV TEPLOPLOUWYV Eival OTL OL TIEPLOPLOPOL TPETEL
va elvat 600 1o duvatdv Atyotepot kat amhoi kaBwg Kal va EVOWUATOVOVY TNV OOl €K
Twv mpotépwv dtabéon mAnpogopia. Avti n MAnpogopia, yia mapadetypa, pmopel va
APOPA TIG YEVIKEG IOLOTNTEG TOV OXNUATOG TG CLVAPTNONG TVKVOTNTAG TBAvOTNTAG TNG
Vo peéTn petaPAnThg kot Ba pmopovoe va €Xel TPOKVLYEL AMO eUTMELpIkEG avalvoelg. Ot
Tpelg TePLopLopol Tov peketnOnkav kat tekpnptwdnkav Paoet Aoykwv kat pabnpatikdv
emxelpnuatwy oxetiCovrat pe tn AoyaptBuikny cvuvaptnon kat T ovvdptnon Svvaung, ot

omoieg, OTWG TPOKVTITEL, eival KATAANAEG Yl BeTikd oplopéveg, Evtovng HeTaBANTOTNTAG
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Kat aoOPUETPeEG Tuxaieg HeTaPANTEG, XapakTnploTkd ta omoia evtomifovtat ovvhBwg oe
yewuowkég diepyaoies, Y. OMWG Ol PPOXONMTWOEIG KAl Ol ATMOPPOEG TWV TOTAUWY.
ZUYKEKPLUEVQ, OL TTEPLOPLOOL ELVAL OL AVAHEVOUEVEG TILEG TWV TIAPAKATW CLUVAPTHOEWV: (a)
Inx, (B) x1 xau (y) In(1+ px?)/ p. O televtaiog meplOPIOUAG, OL P-pOTIEG, ATOTEAOVV HiaL
YeVikevon Twv KAAooIKwv pomtwv kabwg ya p = 0 tooduvapovv pe TiG KAAOIKEG poTEG X1

agov x{ =lim _ In(1+px?)/ p=x".

o Ti KATAVOUEG IPOKVTITOVY UE TH XPHOH RVTWYV TWV TIEPLOPLOUWY;

H ueylotomnoinon tng evrponiag BGS ovvdvdlovrag tovg meploplopots (a)-(B) kat (a)-(y)
odnyel oe V0 €VENIKTEG KATAVOUEG, CUYKEKPLUEVA, HLA TPUTAPAUETPIKT eKOETIKOD TOTIOV
(EE. (4)), yvwot wg Generalized Gamma (GG) [Stacy, 1962] kat pia TETPATAPAUETPIKT
tomov vvaung (EE. (5)), yvwot wg Generalized Beta of the Second Kind (GB2) [Mielke Jr

and Johnson, 1974] ye TNV MpwTn KaTAvOpn va eivat pia etdikr (optaxr) mePIMTWON TNG

I 2 e
fx(x)_ﬁf(yl/yz)[ﬁ} exp[ [ﬁ] J w20 “

nys-1 Vs -1 +72)
__ Vs X x
gl (G e e

['a TpaxTikovg OKOTOVG TAVTWG TPOTELVETAL 1) XPHON WAG TPLTAPAUETPIKNG KATAVOUNG

devtepng.

(E&.(6)), yvwotng wg Burr tomov XII (BrXII) [Burr, 1942], i omoia mpokbmtel eDKOAA WG
amAomoinon tng katavopns GB2 yua y, =1.

1

fx<x>=%(%jﬁ_ [Hy[%” . x20 ©)

Toéoo n GG 600 kot 1 BrXII eivar TOAD gvéALKTEG KATAVOUEG OLOTL EKTOG ATIO (UL TTAPAUETPO
KAipakag, mepthapPavouy kat S00 TAPAPETPOVG OXHATOG TTOV EAEYXOLV TOGO T degld 600

KoL TNV apLOTEPT) OVPA THG KATAVOUNG.

ix



o Eivai amapaiTHTEG 01 YEVIKEVOELS THG EVIPOTIING Yix THV SIQUOPPWOT] KATAVOUWDY UE
«YOVTPEG» OVPEG, OTTWG VI TAPAOELYUQ 01 KATAVOUES TUTTOV SVVAUTG;
H peylotonoinon tng evrpomiag BGS «mapadooiakd» mpaypatomoleital pe tnv xpnon
TIEPLOPLOUWY IOV 081 YOUV O€ KATaVOUEG pe ekOeTikéG 1 LMepekDeTIkEG OVPEG, OTWG 1
ekOetikny 1 N kavovikr katavour. H eumepikr avdlvon opws dagdpwv @atvopévwv
UTTOSEIKVVEL OTL AUTEG Ol KATAVOUEG Of TOANEG TEPIMTWOELG eival aVeEMapKeiG va
TEPLYPAYOVY TNV TIPAYUATIKOTNTA, KAOWG amautodvTal KATAVOUES e VTTOEKOETIKEG OVPES,
T.X. 0UPEG TUTIOL SVVAUNG, Yla va ek@pacovv opBd ta akpaia yeyovota. Avto odrynoe
OTNV €L0AYOYN] YEVIKEVUEVWY PETPWV EVTPOTIAG Ta OToia OHwG €Xouv SeXTel KPLTIKN
AVAQPOPLKA UE TNV EYKVPOTNTA TOVG, OE OVYKPLOT| [e TNV KAAOIKN Kat toXupd Oepeliwpévn
evtpomia BGS. Me TV «emoTpaTeEnon» 0w TV TpoavagepfEviwy meploplopwy 1 xpron
TOV YeVIKEVUEVDOY PETpwV evTpoTiag dev eivar amapaitntn, kabdg ot ovykekpiuévol
neploptopoi, iwg ot p-pomég, odnyovv afiaota, oe cvvovaopd pe tnv kAaotkr BGS

EVTPOTILQ, O€ KATAVOUEG TUTIOV SVVAUNG.

Zyxetkd pe v neplwpla Katavopn g nuepriotag PPoxonTwong

ExmoviiBnke pia palikn epmelpik) avalvon meploodtepwyv and 170 000 pnviaiwv
Xpovooelpwv BpoxOnTwong oe meptocoTepovg and 14 000 otabpovg oe OAo Tov KOOpO pe
0toxo va anavtnfodv dvo Pacikd epwTthpata: (a) mTOLL OTATIOTIKA XAPAKTNPLOTIKA TNG
neprotag PpoxonTwong mapovotdfovy T pueyalvtepn enoxtakn Stakvpavon, kat (B) katd
OO0V LITAPYEL 1] OXL éva oXeTIKA amAo mBavoTikod HovTéNO kavo va Teptypdyel Tn OeTikn

nuepnota Bpoxontwon yia kabe priva kat oe kdbe meploxr Tov KOGHOV.

o Iloix yapaktnpioTikd THG TEPLOWPIAG KATAVOUNS THS HuepHolas PpoxonTwons
napovorilovy emoyiaxi] ueTafANTOTHTA;
H pnviaia epmepikry avalvon, avd nuogaipto apxtkd (Zxnua 1), g mbavotntag
Enpaciag, TG péong TIUNG Kat VO OTATIOTIKWV HETPWYV TOV OXNHUATOG TNG KATAVOUNG TNG
un pndevikng Ppoxontwong, dnAadn, tng L-petaPAntotntag kat tng L-acvppetpiag,
ATMOKAADTITEL OF YEVIKEG YPAUUEG NUITOVOELDT] HOTIfa Y OAa TA OTATIOTIKA UETPA TIOV
avaAvOnKav VITOJEIKVYOVTOG OLVETWG EMOXLAKT SLAKVHAVOT] AUTWV TWV XAPAKTNPLOTIKWY.
EmumAéov, yia tv akpiPéotepn avalvon KATAOKEVAOTNKE o OTATIOTIKY QOKIp TTov
eAéyxet v emoylakn Stakvpavorn (SV-Test) kat Ta amotedéopara Tng eQApUOYnG TOL
Seixvouv pia oagr pnviaio Stakdpavon g mhavotntag Enpaciag kat TG Héong TIUNG TG
un undevikng nuepnotag Bpoxontwong oe 95.1% kat 91.7%, avtiotowxa, Twv otabuwv mov

avalvOnkav, evw Ta avriotolya mOCOOTA Yl Ta VO XAPAKTNPLOTIKA oxAHaTog, dnhadn,



¢ L-petapAntotnrag kar L-aovppetpiag, eivar 66.1% kat 54.2%, avtiotorya. Avtd ta
ATMOTEAEOUATA, AV CLVOVACTOVV LE TN YEVIKT ELKOVA TIOV TIPOKVTITEL ATIO TNV AVAALOT| TWV
otaBpwv ava nuogaipto deixvouvv 6Tt Xt povo n mbavotnta Enpaciag Kat n péon T e
un undevikng Ppoxomtwong mapovotdovv emoytakn Stakvpavon aAld eniong kaL To oxrHa

TNG KATAVOUTNG.
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Ixnua 1. EKTunoeig otatioTikdv XapakTnploTKOV TG pnviaiag npepriotag Bpoxontwong twv
otaBuwv mov avaAbBnkav (kokkiva kat ykpt Onkoypappata ya to Bopeto kat Notio nuogaipto

avtiotolya).

o Iloix YApaKTHPIOTIKG TAPOVOLAOOVY THY EVTOVOTEPH EMOXIAKY SIAKVUAVOT];

H pnviaia dtakdpavon autdv Twv oTaTIoTIKOV oTotxeiwv o kabe oTabpd mov avalvbnke
nocotikomolOnke pe Stapopa HETPA AOKALONG OE OXEOT e TO HEGO OPO OAWY TWV UNVAOV.
H avélvon édei&e 6tL i vyn\otepn unviaia StakvAvoTn Tapatnpeitat 0T Héon T TG un
undevikng Ppoxomtwong evw émovrat katd oetpd n mbavornta Enpaciag, n L-acvupetpio
kat Téhog, n L-petaPAntotnta, vmodeikvvovrag OTL 1 emoxtakn Stakdpavon Twv

XAPAKTNPLOTIKWV OXNHATOG, AV Kol VITAPKTH, dev eivat ToAd vynAn.

o Iloix €ival T YEVIKK YRPAKTHPLOTIKE TOV OXHUATOG THG KATAVOULS THS PPOXOTTWOHG;
H petafAntotnra twv oTatioTIKOV PETpWwV oL peetnOnkav, kabdg kat oL TIHég Twv
TAPAUETPWY TWV KATAVOUWV TIOL Tpooappdotnkav ota dedopéva, Seixvovv oTL 0

OVVAPTNOT TUKVOTNTAG TNG [N HNOEVIKAG BPOXOTTWONG UMopel va Sla@épel ONUAVTIKA amo
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otabpd oe otabpo. H dagopomoinon avtr dev evromiletal povo oTn yeviky Hop@r TOv
oxNuatog katavopng, dnhadn av eivar oxnuatog J (J-shaped) 1 kwdwvoedovg poperig
(bell-shaped) (ta mocootd mapovoldlovtat oto ZxAua 2), ol emiong kat oTn
OVUTIEPLPOPA TNG OVPAG TNG TOV CLVETAYETAL OLAPOPETIKY CUUTEPLPOPE OTA aKpaia

yeyovoTa.

o Mmopotv Ta Snquoily] SimapaueTpikd HOVTEA® v TEPLYPAYOVY EMAPKWS THV
nuepriolx fpoxonTwon;

H emoxiakn kat 1 xwptkn] HeTaPAnTOTNTA OV TapatnpnOnke oTa XapakTnpLoTIKA TOL

oXNHaTog VIodelkvhouy Twg Ta SNUOPIAT StmapapeTpikd povtéla Omwg n Gamma, 0

Weibull, n Lognormal, n Pareto, kAm., dev pmopodv va xpnotpevoovv wg «kaboAukd»

HOVTEAQ yla TN povTelomoinon g nuepnotag Ppoxomtwong kabwg n eveki&io Tovg eivat

TIEPLOPLOPEVT] KAL 0G EK TOVTOV SV UTTOPOVY VA TIEPLYPAYOVY EMAPKWG TO KUPLO OWHA TNG

KATAVOUNG KAl CLYXPOVWS Kat TNV aptotepr| kat Tn Se&id ovpa tng.

J—shaped BrXII Bell-shaped BrXII

J—shaped GG Bell-shaped GG
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Ixnua 2. ITooooto eumepikwv onueiwv L-pomtwv (L-acvppetpia ovvaptioet L-petapAntotntag)

TIOL AVIKOLY (€00 0TO BewpnTIKO XWPO TTOV OXNUATI{OVV OL KATAVOEG.

r»

o Ymapyer éva “kalolikd” povrédo tkavo va mepryphyel THY NuepoIx fpoxonTwon oe
0Aeg TIG EMOYEG KL O€ OAEG TIG TEPLOYEG TOV KOOUOU;

Eva "kaBoAkd" mbavotikd povrédo yia tnv nueprola PpoxOmTwon TpEmeL va Exel

TOVAAXLOTOV OVO TTAPAPETPOVG OXNUATOG, OTOV 1) pia Ba eEAéyxel TNV aploTepr ovpd Kat 1

AN TV Sefld. AVO KATAVOES e TA AVWTEPW XAPAKTNPLOTIKA TIOV TIPOEKLYAV ATIO TNV

gQappoyn g apxng e uéytotng evrpomiag eivau n BrXII xou  GG. H enidoon apgotepwv

TOV KATAVOHWV gival oAV kahn pe v GG va anodidet akopn kahvtepa and v BrXII

TPOoPEPOVTAG £TOL uia e§atpeTikr| emhoyr). Kamota and ta xapaktnplotikd avtwv twv 0o
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Katavopwv aAAnhoovunmAnpwvovtal, étot 1 GB2 katavour, n onoia meplapPavet kat Tig
Vo wg edikég mepimTwOoELS, pmopel va xpnotpomnonBel yia va povtelomotroel 0AOKANpo TO
ovvolo dedopévwv yia OAovg Tovg upnveg kat OAovg Tovg otabpovg. To Xxnua 2
TapovotdleL TO TOOOOTO TWV EUTELPIKWY onpeiwv L-pomwv (L-acvppetpia cvvaptroet L-
HETAPANTOTNTAG) TWV XPOVOOELPWY TOL avalvBnkav oe pnviaia Baocn MoV avikovy péoa
010 BewpnTikd xwpo Tov oxnuatiCovy ot katavopés. Av éva onpeio avrkel péoa oTo
OewpnTikd XWPO TNG KATAVOUNG ONUAIVEL WG 1) KATAVOUN UTOpPel va MPOoappooTel

Satnpwvrag TG TpwTEG Tpelg L-pomé.

o Ti vmodeikviovy o1 TIUEG TV TAPAUETPWY THG KATAVOUNS HE THV KAAUTEpH
npocapuoyn ota dedouéva;
H napdapetpog oxnpatog y. GG katavopng, n onoia ehéyxet tn Se&Ld ovpd Kat CLVETWDG TIG
aKpaieg TIHEG, Yl TN OULVTPITTIKY TAELOVOTNTA TV SelypdTwy Tov avalvbnkav toxvel
Y2 < 1, Tiun mov avtiototyei o€ voekBeTikéG OVPEG, evw yia . = 1 1 GG amlomoteitat oty
Katavopur] Gamma. AvTO OULVETAYETAL OTL UEPIKA ATIO T EVPEWG XPNOLUOTIOLOVUEVA
povtéla pe ekBetikn ovpd omwe n ExBetikn, n Gamma 1 piktd povtéla pe exbetikég ovpég
ev Ovvaper amotelovv emikivovvn emloyn kat Oev TPEMEL VA XPNOLLOTIOLOVVTOL
adtkatohoynta atnv mpadn, dedopévov OTL Umopovy va VIOTIUHooLY coBapd To péyeBog

KAl Tr ouXVOTNTA TV akpaiwv PpoxonTwoewy oe nueprota KAipaka.

ZXETIKA PE TNV OVPA TNG NEEPTOLAG fPOXOTTWONG

E€etdletat n de€id ovpd tng katavoung g nuepnotag fpoxontwong, dnhadr, To pépog g
KATAVOUNG Tov TepLypd@el Ta akpaia yeyovota. AvaldOnkav akpaieg Ppoxontwoelg o€
nePLoooTEPOVG amd 15000 otabuovg oe OAo TOV KOOHO Kat ovykpiOnke n amodoon
TEOOAPWY KOLVWV KAl HOVOTIAPAUETPIKWV TILHAVOTIKWV HOVTEAWY OVPAG TIOV AVTIOTOLXOVV
oTiG katavouég Pareto type II, Weibull, Lognormal kat Gamma pe ovvaptnoeig véppaong

mBavotnTag (exceedance probability function) mov Sivovtal, avtiototxa, and Tig

B, (x) = (1+ y%j y (7)

F(x) =%erfc 1n(%j (8)
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F, (x)=exp —(%} )

E.(x)= F(%%J/F(y) (10)

Ykomdg frav va anokalvglei molog TOTOG oVPAg TEPLYpAPEL KAADTEPA TN CUUTEPLPOPA
TV akpaiwv yeyovotwv. H uébodog mpooappoyng nrav apeon, dnhadn, mpooappoyn (ue
eEAAXLOTOTIOINGT WIOG TPOTOTONUEVIG VOPUAG EAAYIOTWVY TETPAYDVWV) TWV TEGOAPWY
OVPWV OTNV EUTELPIKT ovpd kdOe Selypatog n omoia opiotnke yia éva deiypa N etwv wg ot

N peyahdTepeg TIEG TOL deiypatos.

o Jloiog TUmOG OUPAS KATAVOUHS TIEPLYPAPEL KAAVTEPX THYV QKPXIKX HUEPHOIX
Bpoxomrwon &vw katweliov (above threshold);
H avdlvon deixvel mwg ot mo «XovTpéc» ovpés, N aAAlwG oL KaTavopég pe vtoekDeTikég
OVPEG £XOVV KAADTEPEG ETILOOOELG OE OXEOT) LE TIG «AETTEGH OVPEG. ZVYKEKPLUEVQ, 0TO 72.6%
TV oTabuwv mov peetOnkayv, ot LITOeKOETIKOV TOTIOL OVPEG TTPOTAPUOCTHKAV KAV TEPQ,
evw ol ekBeTikég-vmepekOeTikég ovpég eixav kaAvTepn mpooapuoyr povo oto 27.4% Twv
otaBuwv. H katatadn anod v ka\vtepn mpog Tn xelpdtepn €midoon OXeTIKA e TNV
Tpocappoyn Twv ovpwyv eivat: (a) n Pareto, (f) n AoyapiBuokavovikr (Lognormal), (y) n
Weibull, kot (§) n Tapa (Gamma). Zto ZxAua 3 mapovotd{etal (ua cOYKPLON TV
ATIOTEAEOUATWY TIPOCAPHOYNG TWY 0VpwV avd {evyn. Onwg mpokdnTtel petadd tTwv §vo

KATAVOU®YV TIOL CLYKPIVOVTAL 1) KATAVOUT e TNV TILO «XOVTPT» ovpd amodidet kaAdTepa.

100
80
60
40 -
20
0k

Pareto Pareto Pa.reto Lognormal Lognormal Welbull

Percentage of records with better fit (%)

Lognormal Welbull Gamma We1bull Gamma Gamma

Ixnua 3. ZOyKpLon Twv TpocaprocHEVWY ovpwy ot (gvydpla PACEL TOV TETPAYWVIKOD OQAAUATOG.
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o Mmopoidv Ta mio Kowvk povréda va meprypayovy aliomora v axpaia fpoxontwor;

H avdAlvon anokdvye 0Tt T0 o SNUOPINEG HOVTEAO TIOV XpNOLHOTIOLELTAL OTNV TIPAEN, N
katavopn Tapa, eixe tn xewpotepn emidoon, mMpAypa MOV ONUALVEL OTL I KATAVOUN AUTH
VTIOEKTIUA TOOO TN GLXVOTNTA 00 Kat To péyebog Twv akpaiwv garvopévwy. Avtd odnyel
OTO OLUTEPAOUA OTL Ol LTOEKOETIKOD TUTOL KATAVOUEG €lval TPOTIUOTEPEG Yla TN

HOVTEAOTIOINOT TWV aKPaAiWY YEYOVOTWV PPOoXOTTWOTNG.

o Iloieg eivai o1 ovvémeies yix Tov v8poLoyiko ayediaouo;

Eva yevikod ovpmépacpa mov TPOKVTTEL Atd aUTH TNV avalvon eivat 0Tt 1 ouxvOTNTA Kot
10 péyebog Twv akpaiwv avopévwv £xovy yevikd vrotiundei oto maperBov, dedopévov
OTL OL IO OLXVA XPNOLHOTIOLOVUEVEG KATAVOHEG Yoo TNV akpaia npepnota Ppoxontwon
EXOUV «AemTr» oVLPd OMwG NG katavopng I'dpa. Avtd onpaiver 6Tt 0 VEPOAOYLKOG
oxeSLaopog PAoEL AVTWV TWV KATAVOHMVY glval pia eMKIVOUVI TIPAKTIK KAl WG €K TOVTOV
npénel va avaBewpnBei avayvwpifovrtag 0Tt Ta akpaia yeyovota dev eivat 1000 omavia 660
¢xouv OewpnBel oto mapeABov. Ev katakAeidt, yia tnv opBdtepn povrelomoinon twv

aKkpaiwv PPoXONTWOEWY TIPOTEIVETAL 1] XPTIOT) KATAVOUWY UE VITOEKOETIKEG OVPES.

ZXETIKA [LE TIG KATAVOUEG AKPALIWY TLHW®V
Avalbovtal oL Xpovooelpég NG €TNOLAG HEYLOTNG npepnotag Ppoxontwong oe 15 137
otabpovg and 6Ao Tov KOOUO e 0TOX0 va anavtnbel iowg To PactkOTEPO EPWTNHA TNG
oTatloTikng v8poloyiag, SnAadr, ToLA €K TWV TPLOV KATAVOUWDV AKPALWY TILWV TEPLYPAPEL
KaADTEPQA TaL ETNOLA HEYLOTA TNG NHEPTTLAG PPOXOTTWOTN .

Ot tpeig katavopég akpaiwv Tipwv eivat ot tonov I 1 Gumbel (G), n tonov II 7
Fréchet (F) xat n tomov III /| avaotpoen Weibull (reversed Weibull; RW) pe ovvaptrioetg

KATAVOUNG, oL divovTal, avTioTotya, and Tig

GG(x):exp[—exp(—x_(xD, xeR (11)

G, (x) =exp _(x—ocj , x>« (12)

1/y
Gy (x) = exp _(_x—cxj ,  xZ« (13)



Ot Tpeig avToi TUTTOL KATAVOUWY UTOPOVV Va gvoronBolv o pia eviaio €KPpact yvwoTr
wg Tevikevpévn Katavoun Akpaiwv Tiwv (Generalized Extreme Value; GEV) pe

OLVAPTNOT KATAVOUNG

X—Q

-1y
Gepy (x) = exp —[1+y%j ,  1+y >0 (14)

H T g mapapétpov oxnuatog s GEV amokaldmtel kat Tov TUTO TG KATAVOWNAG
akpalwv TIHWOV, NToL, Y y < 0 avtiototkel otnv RW, yia ¥y =0 otnv G kat ya y > 0 otnv

F. TV avto xat oty avéhvon n épgaot) 660nke oTn eKTiunon avtng TG TapapETPOv.

o Jloix ek TV TPIOV TUTWY KXTAVOUWY TIEPLYPAPEL KAADTEPX TH UEYIOTH HUEPHOIX
BpoxonTwon Tov éTovg;
Eekvwvtag pe kamota Oewpnrikr tekunpiwon onueiwvetat 0Tt 1 RW mpoimobéter pa
UNTPLKN KATAVOUN yla TnV nuepnota Ppoxontwon pHe dvw Oplo TO OToIo €ival Quolkd
QOVVETIEG, YEYOVOG TTOV VIOXVETAL AAUPAVOVTAG VTTOYLY OTL AVw QPAYUEVEG KATAVOUEG dev
gxovv xpnotpomotnBei yla tnv npeprota fpoxOnTworn oe alomoTeg HeAETEG. ZVYKpivovTag
v Fréchet evavtiov g Gumbel mpoxvmtel, 600 kat av QaiveETAl AVTIPATIKO, TWG Ta
ETNOLAL PEYIOTA AKOUN KAl AV TIPOEPXOVTAL ATO UNTPLKT KATAVOUN Tov avikel 0To medio
eAENG Gumbel meprypd@ovrtar kalbTtepa v katavopr| tomov Fréchet. Avtd ovpPaiverl yia
Vo A\dyovg: Mp@TOV, 0 PLOUOG CVYKALONG TWV UNTPIKWV VTTOEKOETIKWVY KATAVOUWY OTNV
katavour] Gumbel eivar efaipetikd apyog, kat Sebtepov, 1 TAPAUETPOG OXHATOS TNG
katavoung Fréchet emtpénel otnv katavour va mpooapuoletal apketd kakd oxt povo oe
KATAVOEG e 0UpEG TOTTOL SVVaUNG, aAAd kat oe dAAeg vtoekBeTikég ovpég. Ooov agopda
TOL EUTIELPLKA OTOLXEI TTOV TTPOKVTITOVY ATIO TNV AVAAVOT] TWV XPOVOOELPWY 1] KETVUNYOpia»
elvat oagng, dSnhadn, n katavoun Fréchet emkpatel évavtt Twv A @V S0 ACLUTTWTIKWV
KATAvopwYv. 1o Zxnua 4 mapovotdfovrat Ta eumelptkd onpeia Twv L-ponwv og ovykpion
pe T BewpnTikn kaumoAn g GEV kal mapatnpeital mwg o vEQOg Twv onueiwv eivat
petatomiopévo 8e&td Tov onpeiov TG Gumbel VTOSNADVOVTAG TTWG TO UEYAADTEPO [EPOG

TV onpeiwy, ya tny akpifeta to 80%, meptypdpetal kaAbTepa and TNV katavopr Fréchet.
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GEV shape parameter y
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Ixfua 4. Eumelpika onpeia L-kOptwong ovvaptnoet L-acvppetpiag tTwv 15137 xpovooeipwv
eTNoLaG HEYLoTng Ppoxomtwong oe avykpton pe tn Oewpntikr kapmvAn g GEV kat tov onueiov
¢ Gumbel.

o Ennpealerar nj extipnon ¢ napapétpov oxquaros s katavouis GEV amé to pijxog
Tov Jeiyuatog;

H avdlvon amoko\VmTel pia 6a@r oxEon peTagd TG TIHRG TNG TApApETPOV OXHUATOS TNG

katavouns GEV kat tov prkovg delypatog, yeyovog mov onpaivet 0Tt Hovo oAy peydia

deiypata umopovv va amokaAbYouv TNV TPAYHATIKE T QUTHG TNG TAPAUETPOL 1] AAALWDG

TNV TPAYUATIKT) OVUTEPLPOPA TwV akpaiwv Ppoxontwoewv. Evéektikd 1o Zyxnua 5

TapovotAleL TPOTAPHOCHEVESG OeWPNTIKEG KAUTUAEG O€ EUTIELPIKA Onpeia.

o Tloix eivar 1] TIPAYUATIKN KATAVOUT] THG TRPAUETPOV oxuatos TS GEV;

H «aovpuntotiki» avélvon mov mpaypatomowOnke, Pdcel Twv ovvapTRoewv 7OV
TPOOAPUOCTNKAY (XxAH 5) 0T HEON TIUR KAl OTNV TUTIKY AOKALON TG TAPAUETPOV
oxnuatog TG GEV oe oxéon He To uqKog Tov Seiypatog, amokahdITEL OTL 1] KATAVOUN TNG
napapétpov oxnuatos T GEV onwg Ba mpoékvmte av efatpetikd peydla Seiypata nrav

Sabéopa eival mepimov kavovikn pe péon tiun 0.114 kat Tomikr andkAion 0.045.
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Ixqua 5. (o) Méon Ty, mocootnuopla Qs kat Qss Omwg €xovv exTiunBel yia Sidpopa pnkn
XPOVOOELpWY Kal Tpocappoouéves Bewpntikés kapmodeg (B) tumikr amokAwon; (y) moo0ooTod

OTAOUWY pe apVNTIKT T TNG TAPAUETPOV OXUATOG,.

o Y& 010 EVPOG EIVAL AVAUEVOUEVO V& KUURIVETAL 1] TIPRYUKTIKY] TIUH THG TAPAUETPOV
oxfuatos 16 GEV; Mmopodue va éyovue Tvpli] eumioTooivy OTIG EKTIUNOELS IOV
TPOKVTITOVY &0 T Sedouéva;

H napdpetpog oxnuatog tng GEV avapéverat va avikel og éva 0Tevo €0pog, Tepimov amod

10 0 fwg 0.23 pe aflomotia 99%. Ovolaotikd, 1 avélvon Seixver 6Tt 8e pmopei va

eumiotevtel kaveig TVPAG ta dedopéva kabwg ta pikpd kvpiwg deiypata pmopovv va

TAPALOPPWOOLY TNV TPAYUATIKT| elkOVa. ZTnVv katevBuvon avth, n EE. (15) StopBwvel tnv

EKTIUNOELG TNG TTapapétpov oxnuatog g GEV mov Pacilovtat otig L-pomég agapwvtag

™ pepoAnyia Aoyw tov meproptopévov peyéBoug tov deiypatog. H eiowon mpokvmtet

oVVSLALOVTAG TNV ACVUTTWTIKT] KATAVOT TNG TAPAUETPOV OXIHATOG P IOV AVAUEVETAL VO

etvatn N(yy,(f;) KOl TNV KATAVOT Yo CUYKEKPLUEVO UNKOG XPOVOOELPAG 71 IOV AVAUEVETAL
va eivan n N(p,(n), Gj (n)). Omov p,(n) =y, - 0.69 N xau 0,(n) = g, + 1.27 n7°7° givaw ot

KAPTTOAEG TIOV £XOLV TTPOCAPUOOTEL 0TI HEOT) TIUR KAl OTNV TUTIKY andkAion (Zxnua 5). H

apepOANTTN ekTIpATPLA Y(11) TIOL TEPpOKVTTEL SiveTau amod Tn oxéon
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~ O.y A
= - + (15)
v ay(m(y b))+
omov n to unkog tov deiypatog (oe €tn), § 1N KAAOWKN eKTURTPLa Twv L-pomwv kat

py = 0.114 xou 0, = 0.045.

o Eivar doxwun n xprion ts GEV pe apvnuiky tun 116 napauétpov oxfuatos (&vw
PPayuévy Katavoun);
e éva pKpO TMO000TO Twv oTabpwv mov avalvOnkav (20%) n apxikr eKTIUNON NG
napapétpov oxnuatog e GEV frav apvnrikn (reversed Weibull), wotdéoco n avéivon
ATOKAAVTITEL OTL TO TOCOOTO AWTO Hewwvetal taxvtata kabwg péyebog tov deiypatog
avEAaveTal, eV 1) CLVAPTNOT IOV €XEL TPOCAPUOOTEL Ka ekPpdlet TN oxéon pe to péyebog
detypatog deixvel 0Tt yla To priKog Seiypatog peyaldTepo amod 226 xpdvia TO TOCOOTO AVTO
Oa eivar undév (Zxnua 5). Emmiéov, kavéva and ta 16 Seiypata pe urkog HeyaAvtepo amnd
140 xpovia 8ev avTIOTOLKEL OE APVNTIKN TIUN TNG TAPAUETPOL oxAuatos. Emmpoobeta, n
TOAVOTNTA VA EUPAVIOTEL APVNTIKT] TAPAHETPOG OXNHUATOG COUPWYVA PE TNV KATAVOUT TTOV
éxel TpokLYeL elvan novo 0.005 kat ouvSvLALOVTAG AVTO TO CVUTEPATHA e TA TTPOTYOLHEVA
gupnuata mPokOTTEL OTL [ katavour; GEV pe apvntikr mapapetpo oxnuatog (avw

@payuévn) eivat evieddg akatdAAnAn yia t ppoxontwon.

o Ymapyer yewypagiki) Stagpoponoinon tns napauétpov oxfipatos tns GEV;

H pelétn tng péong tiung g mapapétpov oxniparog g GEV oe meploxég mov opilovrtat
and Stagopd yewypagkov TAATovg Ag = 2.5° kat dtagopd yewypa@ikol prkovg AL = 5°
KAl 1 KATaokevn avtiotolxov Xaptn (Zxfiupa 6) amodeikviel OTL Heydleg TePLOXEG TOV
KOOpOL potpalovtal mepimov v Sl TR TNG TAPAPETPOL OXHATOG, WOTOCO eival
TPOPAVEG TWG  OLAPOPETIKEG  TIEPLOXEG TOV  TAAVATH  Tapovstdfovy  Sla@opeTikn

OVUTIEPLPOPA OTNV akpaia BpoxdnTwon.

o [loix n onuacia avt@v Twv evpyu&TeY kot Tt O pmopovoe va mporalei ws TPAKTIKOG
Kavovag;
H katavour] akpaiov tipwv Fréchet, 1 aAhiwg n GEV pe Oetikr mapapetpo oxnuatog,
vmeployvel TG katavouns Gumbel kat mpwtiotwg Tng reversed Weibull, pe tnv tedevtaia
va amotelel emkivovvn emhoyn ya Tov vOpoloyikd oxediaopod. Qg yevikog kavovag
TPOKUTITEL TTWG AKOWUN KAl OTNV TEPIMTWOT O6mov Ta dedopéva VTOSEIKVVOLV a KATAVOUN
GEV pe apvntikny mapAapeTpo oXHHATOG TO ovpmépacpa avtd Oev mpémel va BewpnOei
aglomoto, avt’ avtol, mpoteivetar 1 katavopur; Gumbel 1 yia mpooBetn acedlela n

katavopr) GEV pe T mapapétpov oxruatog ion pe 0.114.
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Ixfua 6. I'ewypa@ikn katavopr] TnG Héong TAG TNG mapapétpov oxnuatog tng GEV. Ou

EKTIUNOELG EXOLV Yivel PAceL TNG apepOANTTNG eKTIUNTPLAG artd TV e§iowon (15).

ZYETIKA [LE TA OTOXAOTIKA XAPAKTNPLOTIKA THG PPOXOTTWONG OF HIKPH XPOVIKI)
KAlHaka

E€etalovtat ot otoxaotikég 810TNTEG TNG PPOXOMTWONG Oe AemThy XPOVIKN KAipaka,
pedetwvtag éva povadikd chvolo dedopévwv mov epthapPdvel HeTproelg eNTA enelcodiwy
Bpoxomtwong pe xpovikn Stakpironoinon 5-10 Sevtepodentwv [Georgakakos et al., 1994].
To gpwtnua mov tiBetal kat emyetpeitat va amavtndel eivat av eivat Suvatdv éva povadiko
Kal amAo OTOXAOTIKO HOVTENO VA avamapdyel Tr HEYAAN OTATIOTIKT Slagpopomoinon mov
napatnpnonke ota enelcodia avtd, kKabBwg Kal va EVTOTOTODV Ta KUPLA XAPAKTNPLOTIKA

TOVL.

o Mrnopei éva amdo oToyaoTIiKO HovTéLo va Tapaydyer xpovooeipés PpoxyonTwons mov
Siapépovy Spaotikd uetald Tovg;

Eivau e@uktd éva povadiko kot OxeTIKA amAd 0TOXAOTIKO HOVTENO Vo TIapaydyel enelcodta

Bpoxomtwong oe Aemtr XpoVIKN KAIHOKA UE OTATIOTIKA XAPAKTNPLOTIKA TIOL Stagpépovy

napa TOAD petagd tovg. To amotédeopa eivat Ta mapayopeva eneloodia Ppoxontwong va

"gaivovtat" mOAD Sta@opeTikd petald Tovg, OMWG akpiPwg éxer mapatnpndel kat oe

Katayeypappéva enelcodia avtig TG XPOVIKNG KAigakag. Xto Zxnua 7 mapovotdiovtat



ovvBeTika emeloodia PpoxonTwong and dvo oToXAoTIKA HOVTEAa pe TNV idla meplBwpla

KaTavopn aAAd Sta@opeTikr Sopr aVTOCVOXETIONG.

Rainfall intensity (mm/h)
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Time in 10—second intervals

Ixnua 7. ZvvOetikd emeiocodia Ppoxomtwong mov éxovv mapaxOel amd poviého pe Soun

AVTOOVOXETIONG TUTOL SVvapng (Ta Tpia TP Ta) kol ekBeTikov TVMoL (Ta Tpia TeEAevTaia).

o Iloii eival T YXPAKTHPLOTIKK EVOG TETOLOV HOVTELOV;

Eva tétolo povtédo xapaktnpiletar and «ioxvpr» Sour; aUTOOVOXETIONG, TIOV HELDVETAL
dnhadn otyd-otyd pe TN XpOVvIKr vOTEPNON, KaBwe emMiong Kal amd ovpd KATAVOURG TOV
HELDVETAL OLY&-OLyd pe TNy évtaon g Ppoxne. H avtoovoxétion avtov tov thmov pnopei
va Tapayel TepAoTIEG SlaQoPOTIOOELG OTN XPOVIKT Soun Twv Stapopwv eneloodiwy, eva
o eplBwpla Katavour] e TETOOV TUTOL oVPA Umopel va mapdyet e§alpeTikd LYNAEG
evtaoelg Ppoxns. Ta dbo avtd xapaktnplotikd eivat akpiPwg avtibeta pe TIG MO YVWOTEG
otoxaoTikéG avelifelg mov potalovv pe Fkaovotavo Aevkod 86pvpPo, ot omoieg Ba apnyoyav
TOAD "opald” emeloodia pe e§aLpeTIKd OTAVIA TNV EUPAVIOT] HEYAAWY EVTAOEWV. ATIO TNV
dmoyn avTr}, TOCO 1 «OXVPT» AVTOCLOXETION OCO KAl Ol «XOVTPEGH OVPEG UTOPODV va
Wdwhodv wg 1816t TEG MOV AWEAVoLY TNV TVXAOTNTA Kat TV afePatdtnTa (1} TNV evrpomia),
HLOG KA OL TIAPAYOEVEG XPOVOOTELPEG Ao aveNiEeLS pe avTd Ta XaApAKTNPLOTIKA HTOPODY Va
Stagépovv Spapatikd petald Tovg Kal oLVENWS elval ALydTepo «TPOPAEYILES GUYKPLTIKA
[LE XPOVOOELPEG IOV TPOKUTITOVY amd HovTéAa TuToV Markov pe meplBwpia katavour| pe

«\eMTN» OvLPAL.
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CHAPTER 1

“One day I will find the right words, and they will be
simple.”

JACK KEROUAC

INTRODUCTION

1.1 Motivation
The great philosopher Henry David Thoreau once said that “Our life is frittered away by

detail. Simplify, simplify.” Maybe, science suffers too from detail and complexity, and
although “axiomatically” has to go down to detail and deal with complexity, this does not
imply that the more general, the simpler, and the more fundamental questions have been
answered. A fundament question is usually simple but never simplistic and not necessarily
easy to answer. Setting this kind of questions, even if the answers can be found, is not
always enough as these answers have to be useful, of wide interest, and of theoretical and
practical value too.

This is exactly the motivation of the research presented in this thesis, i.e., to try to
reply to some fundamental and of wide interest questions, mainly regarding the statistical
properties of daily rainfall, that from the author’s perception have not been clearly
answered. The fundamental questions explored here regard:

e the seasonal variation of the marginal distribution of daily rainfall;

o the existence or not of a “universal” model capable to probabilistically describe
rainfall at all areas of the world and for every season;

o the possibility to apply well-established and theoretically justified principles like the
Principle of Maximum Entropy to derive these models;

o the probabilistic nature of the extreme daily rainfall, i.e., what type of distribution
tail better describes extremes above a threshold value or which one of the three

extreme value distributions better describes annual daily maxima;



e and last but not least the stochastic nature or rainfall at very fine temporal scales.

Most of these questions cannot be answered solely based on theoretical
considerations, and even if they would, empirical verification would still be necessary in
order to verify the theory and to shift from theory to practice. Moreover, these questions
cannot either be answered based on empirical analyses of limited datasets. Yet in our digital
era very large datasets exist that may help provide answers to these questions and also to
others too. In this direction and trying to exploit these datasets, massive analyses of
empirical data were performed (among the largest ever conducted in statistical hydrology
as far as the author is aware) from thousands of stations all around the globe, hoping that
the derived answers are scientifically sound, empirically justified, and also are consistent
with common sense—because as Pierre-Simon Laplace phrased it, almost two centuries

ago, “Probability theory is nothing but common sense reduced to calculation.”

1.2 Outline

This thesis is designed so as each chapter can be read independently from the others. It is
organized as follows:

Chapter 2 explores the prospect to use the Principle of Maximum Entropy with the
Boltzmann-Gibbs-Shannon entropy in order to derive suitable probability distributions for
rainfall, or more generally, for geophysical processes. The emphasis is on formulating and
logically justifying the constraints used with entropy maximization.

Chapter 3 investigates the seasonal variation of daily rainfall focusing on the
properties of its marginal distribution. A massive empirical analysis is performed of more
than 170 000 monthly daily rainfall records from more than 14 000 stations from all over
the globe aiming to answer two major questions: (a) which statistical characteristics of daily
rainfall vary the most over the months and how much, and (b) whether or not there is a
relatively simple probability model that can describe the nonzero daily rainfall at every
month and every area of the world.

Chapter 4 focuses on the distribution tail of daily rainfall, i.e., the distribution’s part
that describes the extreme events. More than 15 000 daily rainfall records are examined in
order to test the performance of four common distribution tails that correspond to the
Pareto, the Weibull, the Lognormal and the Gamma distributions aiming to find out which
of them better describes the behaviour of extreme events.

Chapter 5 regards the analysis of annual maxima of daily rainfall. The annual
maxima time series from more than 15 000 stations from all over the world are extracted

and analysed in order to answer one of the most basic question in statistical hydrology, i.e.,



which one of the three Extreme Value distributions better describes the annual maximum
daily rainfall.

Chapter 6 examines the stochastic properties of rainfall at fine temporal scales by
studying a unique dataset comprising measurements of seven storm events at a temporal
resolution of 5-10 seconds. The question raised and attempted to be answered is if it is
possible for a single and simple stochastic model to generate a plethora of temporal rainfall
patterns, as well as to detect the major characteristics of such a model.

Chapters 7 completes the thesis with a brief summary and the conclusions.

1.3 Innovation points

Application of the principle of maximum entropy
The principle of maximum entropy is a well-established tool to make inference under
uncertainty or to find the most suitable probability distribution under the available
information. Entropy maximization is traditionally performed using classical moments as
constraints. This practice, along with the classical definition of entropy, leads to
exponential type distributions with light tails that are in contradiction with empirical
evidence, i.e., many natural phenomena cannot be probabilistically described by these
distributions. To tackle this problem several generalizations of entropy measures emerged
that, however, have been criticized for their theoretical consistency, and additionally, from
the author’s perspective, still do not result in distributions flexible enough to describe most
of geophysical random variables. In this direction:
i. A new rationale is formed regarding the application of the principle of maximum
entropy that is based on using the classical and well-justified definition of entropy,
i.e., the Boltzmann-Gibbs-Shannon entropy (BGS), with suitable constraint that
lead to flexible distributions appropriate for positive and skewed random variables.
ii. The constraints formed and used in the maximization of the BGS entropy are
theoretically or rationally justified and differ from those that have been commonly
used. Particularly, the constraints formed are the expected value of the logarithmic
function, the classical moments but of unspecified order, and a generalization of the
classical moments.
iili. The generalization of the classical moments proposed here, named p-moments, is
justified and leads naturally to power type distribution avoiding thus the use of

generalized entropy measures.



iv.

The BGS entropy maximization under two basic combinations of the
aforementioned constraints leads to two distribution which are by far more flexible
than those emerging using the commonly used constraints along with the BGS
entropy or even along with generalized entropy measures. These distributions are:
(a) the Generalized Gamma distribution (GG) which is of exponential form yet its
right tail can be heavy depending on its parameter values, and (b) the Generalized
Beta of the Second Kind (GB2) which is an extremely flexible four-parameter power
type distribution. For practical reasons instead of the GB2 the use of a three-

parameter simplification is proposed named the Burr type XII (BrXII).

The marginal distribution of daily rainfall

Literature reveals that numerous different probability models, some of them completely

different to each other, have been used to describe daily rainfall, depending on the season

or the area of the world. Two major questions are explored here: (a) whether the marginal

distribution of daily rainfall varies or not markedly over the months and how much, and

(b) if there is a simple probability model capable to describe the nonzero daily rainfall at

every month and every area of the world. In this direction:

L.

ii.

iii.

iv.

An unprecedented massive empirical analysis was performed of more than 170 000
monthly daily rainfall records from more than 14 000 stations from all over the
globe.

In order to verify the seasonal variation of some important statistical characteristics
of daily rainfall an original test, named the SV-Test, was formed and applied
indicating that the shape characteristic of the marginal distribution, generally, vary
over the months.

The efficacy of the distributions derived previously from entropy maximization, i.e.,
the GG and the BrXII, was tested. These distributions have not been used
systematically before to describe daily rainfall yet the analysis revealed that they
both performed very well with the GG distribution performing exceptionally well.
Analytical equations of the first three L-moments were derived for the BrXII
distribution. Additionally, the theoretical L-skewness vs. L-variation space was
formed for the GG and the BrXII distributions that proved a valuable tool
providing insights on the performance of those distributions and of many other
that are special cases of them.

An ad hoc fitting method was constructed based on L-moments in order to fit these

distributions fast and with the accuracy that L-moments provide.



vi.

It was revealed that the most commonly used models for rainfall, e.g., like the
Gamma distribution or other exponential-tail distribution consist a dangerous
choice, as these model can severely underestimate the frequency and the magnitude
of extreme events. Additionally, none of the commonly used two-parameter models
can serve as a “universal” model for daily rainfall as these models cannot match the

variation in shape that the empirical analysis revealed.

Distribution tails of the daily rainfall

The upper part of the distribution, commonly named as tail, is of great importance in

hydrological design as it describes the extreme events. Yet identifying the type of tail that

better describes the daily rainfall is not trivial as the tail constitutes that part of the

distribution for which, usually, empirical data are not available. For this reason, previous

studies that analysed a limited number of records may offer a blur picture as the extreme

behaviour, by definition, needs a lot of information to be revealed. On the contrary, this

information can be found by analysing large datasets from all over the world. In this

direction:

L.

ii.

iii.

iv.

A massive analysis of more than 15000 daily rainfall records was performed in
order to draw conclusions regarding the nature of the tail, i.e,, if it is heavy or light
and more specifically to find out which one of the common type of tails better
describes extremes.

The method proposed here differs from the classical peak above threshold (POT)
analysis which essentially is based on the generalized Pareto distribution.
Specifically, the performance of four common distribution tails that correspond to
the Pareto, the Weibull, the Lognormal and the Gamma distributions was tested by
directly fitting these distributions only to the tail data.

The fitting of the distribution to the empirical tail data was accomplished by
introducing and using a modified least square norm that proved to be better than
the commonly used and almost unbiased. The fitting method was verified using
original and intensive Monte Carlo schemes.

The analysis revealed that the tail of the most commonly used model, i.e., the
Gamma distribution, performed the worst while that with the heavier tail, i.e., the
Pareto distribution, performed the best.

A world map was constructed depicting the variation of the percentage of best fitted

subexponential tails indicating thus the areas where subexponential tails prevail.



Distribution of annual maximum daily rainfall

Probably, the most basic question in statistical hydrology is which one of the three Extreme

Value distributions better describes the annual maximum daily rainfall. Literally hundreds

of studies exist using extreme value distributions and arguing against or for one of them.

Despite the importance and the popularity of the subject, most studies are of local

character, i.e., limited to specific areas, or analysing a limited number of records that fails

to provide a clear answer to the aforementioned question. To provide an answer to this

question:

i.

ii.

iii.

iv.

vi.

A massive analysis of annual maxima time series from more than 15 000 stations
was performed.

In general, most of the existing records of daily rainfall contain missing values.
Obviously extracting the annual maximum value form a record with missing values
is not completely reliable as a larger value may have occurred during the missing
days. For this reason an original method was formed for extracting the annual
maxima values from incomplete records. The method uses a combination of two
simple criteria, i.e., the percentage of missing values per year and the rank of the
year’s maximum value. The method was verified by an original Monte Carlo
scheme and proved very robust and reliable.

The Generalized Extreme Value (GEV) distribution comprises all three extreme
value distributions and “switches” to one or the other depending on the value of its
shape parameter stressing thus the parameter’s importance. The analysis indicated a
clear relationship between this parameter with the record length while a new kind
of asymptotic analysis was performed and revealed the true distribution of this
parameter. The reliability of this distribution was verified based on original Monte
Carlo simulations.

An original and practical formula that corrects the L-moments estimation bias,
induced by small or finite length records, was created.

World maps with the mean value of the GEV shape parameter were constructed
and revealed a clear geographical variation of this parameter, yet large areas can be
found that share approximately the same parameter value.

The massive number of records analysed indicated clearly that the Fréchet law
prevails over the Gumbel law and over the reversed Weibull law with the latter two

laws, in general, consisting a dangerous choice in hydrological design.



Stochastic properties of rainfall at fine temporal scales

The study of a unique dataset comprising measurements of seven storm events at a fine

temporal resolution of 5-10 seconds shows that these storm events differ significantly to

each other with some of them being completely different in terms of their statistical

properties. The question raised and attempted to be answered here is if this complexity can

emerge by a simple underlying stochastic process and if it is possible to construct a single

and simple stochastic model capable of reproducing this complexity by generating various

storm patterns that differ markedly from one another.

i.

ii.

iii.

An original and effective normalizing transformation was invented able to
normalize the original dataset having a marginal distribution that deviated severely
from the normal distribution.

An original stochastic model or else a stochastic simulation scheme was created by
using the reverse of the aforementioned normalizing transformation and
incorporating bias correction formulas.

The assumption that all these storm events are the outcome of a sole process cannot
be rejected by the analysis. On the contrary, the simulation and the synthetic storm
events produced by a single model fortify this possibility. Although it seems
counterintuitive that such a model has a very strong autocorrelation structure, as
someone would expect strong autocorrelation to generate similar events, it is
exactly this feature, combined with a marginal distribution with heavy tails, which

creates rich and different storm patterns.



CHAPTER2

“Only entropy comes easy”

ANTON CHEKHOV

ENTROPIC DISTRIBUTIONS

ABSTRACT

The principle of maximum entropy, along with empirical considerations, can provide
consistent basis for constructing a consistent probability distribution model for highly
varying geophysical processes. This study examines the potential of using this principle
with the Boltzmann-Gibbs-Shannon entropy definition in order to derive suitable
probability distributions for rainfall or more generally for geophysical processes. Specific
simple and general entropy maximization constraints are defined and theoretically justified
which lead to two flexible distributions, i.e., the three-parameter Generalized Gamma (GG)
and the four-parameter Generalized Beta of the second kind (GB2), with the former being

a particular limiting case of the latter.



2.1 Introduction
Even though long-term predictions of rainfall are not possible in deterministic terms (e.g.,

weather forecasts are skilful for no more than a week ahead), in probabilistic terms it is
possible to assign a stochastic model or a probabilistic law and to any rainfall amount
assign a return period or a probability of exceedance. Actually, most infrastructures
affected by rainfall and flood are designed this way. Rainfall is generally characterized as an
intermittent stochastic process (for fine timescales), with a mixed-type marginal
distribution, partly discrete and partly continuous. The discrete part is concentrated at zero
and defines the probability dry, while the rest is continuously spread over the positive real
axis and determines the nonzero rainfall distribution. The discrete part of the rainfall
distribution can be easily estimated as the ratio of the number of dry days to total number
of days. On the contrary, the continuous part of the distribution cannot be easily assessed.

Rainfall is usually studied in many different timescales, e.g., from sub-hourly to
yearly, yet, the daily timescale is one of the most convenient and important in hydrological
design. Specifically, it is the smallest timescale for which thousands of records exist with
some of them being more than a century long. Nevertheless, and although daily rainfall has
been extensively studied over the years, a search in the literature reveals that a universally
accepted model for the wet-day daily rainfall distribution does not exist. On the contrary,
many distributions have been proposed in specific studies for specific locations of the
world including, e.g., the two-parameter Gamma, which is probably the prevailing model,
the two- and three-parameter Lognormal, the Generalized Logistic, the Pearson Type III,
the Pareto and the Generalized Pareto, the three- and four-parameter Kappa distributions,
and many more.

The common method to construct an appropriate probability distribution model for
describing one or more samples is to try a variety of different models and choose the best
fitted using a particular mathematical norm, e.g., a least square error or a likelihood norm.
Nevertheless, this approach is rather naive and laborious; first, there are (at least
theoretically) infinitely many different models to try, and second, this method does not
offer any theoretical justification for the final choice, thus making it an ad hoc empirical
choice. This practice explains why so numerous models have been proposed. Here, the
principle of maximum entropy is used as a solid theoretical background for constructing
an appropriate probability distribution for rainfall and for geophysical processes in general.
These theoretically derived results, i.e., the resulting probability distributions, are tested for

their validity in the next chapter by using more than 180 000 daily rainfall records across



the world aiming also to assess whether a single generalized model could be appropriate for

all rainfall records worldwide.

2.2 Entropy measures
The concept of entropy dates back to the works of Rudolf Clausius in 1850, yet, it was

Ludwig Boltzmann around 1870 who gave entropy a statistical meaning and related it to
statistical mechanics. The concept of entropy was advanced later in the works of J. Willard
Gibbs in thermodynamics and Von Neumann in quantum mechanics, and was
reintroduced in information theory by Claude Shannon [1948], who showed that entropy is
a purely probabilistic concept, a measure of the uncertainty related to a random variable
(RV).

The most famous and well justified measure of entropy for continuous RVs, is the

Boltzmann-Gibbs-Shannon (BGS) entropy, which for a non-negative RV X is
Sy ==[ fe()In f, (x)dx 2.1)
0

where f, (x) is the probability density function of X. The BGS entropy is not the only
entropy measure. A search in the literature reveals that more than twenty different entropy
measures have been proposed, mainly generalizations of BGS entropy (for a summary of
entropy measures see [Esteban and Morales, 1995]). Among those measures, it is worth
noting the Rényi entropy, introduced by the Hungarian mathematician Alfréd Rényi in
1961, which have been used in many different disciplines, e.g., ecology and statistics. It is
also worth noting another entropy measure that has gained much popularity in the last
decade, the Havrda-Charvat-Tsallis (HTC) entropy. It was initially proposed by Havrda
and Charvat [1967] and was reintroduced and applied to physics by Tsallis [1988]. Apart
from its use in physics, the HTC entropy has also been used more recently in hydrology as
it gives rise to power-type distributions. The HTC entropy is a generalization of the BGS
entropy given by

I—T(fx(x))q dx

q-1

Sy(q) = (2.2)

It is easy to verify that for g =1 it becomes identical to the BGS entropy.
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2.3 The principle of maximum entropy
The principle of maximum entropy was established, as a tool for inference under

uncertainty, by Edwin Jaynes [1957a, 1957b]. In essence, the principle of maximum entropy
relies in finding the most suitable probability distribution under the available information.
As Jaynes [1957a] expressed it, the resulted maximum entropy distribution “is the least
biased estimate possible on the given information; i.e., it is maximally noncommittal with
regard to missing information”.

In a mathematical frame, the given information used in the principle of maximum
entropy, is expressed as a set of constraints formed as expectations of functions gi( ) of X,

ie.,
E(gj(X))=ng(x)fx(x)dx=cj, j=L..,n (2.3)

The resulting maximum entropy distributions emerge by maximizing the selected form of

entropy with constraints (2.3), and with the obvious additional constraint
[ fetxydx=1 (2.4)
0

The maximization is accomplished by using calculus of variation and the method of
Lagrange multipliers. Particularity, the general solution of the maximum entropy
distributions resulting from the maximization of BGS entropy and the HCT entropy,

assuming arbitrary constraints are, respectively,

fx (x) = exp[_/lo - Zn:)t]g] (x)j (2-5)

£(x) =(1+<1—q>(ao +iajgj<x>D h (2.6)

where A;, with j =1,..., n, are the Lagrange multipliers linked to the constraints (2.3) and A,
is the multiplier linked to the constraint (2.4), i.e., Ao guarantees the legitimacy of the

distribution.
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2.4 Justification of the constraints
It becomes clear from the above discourse that the resulting maximum entropy

distribution is uniquely defined by the choice of the imposed constraints. This implies that
this choice is the most important and determinative part of the method. Constraints
express our state of knowledge concerning a RV and should summarize all the available
information from observations or from theoretical considerations. Nevertheless, choosing
constraints is not trivial; they are introduced as expectations of RV functions without any
intrinsic limitation on the form of those functions.

So, how would one choose the appropriate constraints among an infinite number of
choices? In classical statistical mechanics, these constraints are imposed by physical
principles such as the mass, momentum and energy conservation. However, in complex
geophysical processes, these principles cannot help. In geophysical processes, the standard
procedure to assign a probability law is to study the available observations and infer the
underlying distribution without entropy considerations. However, whatever is inferred in
this way, is in fact based on a small portion of the past (the available record), which may (or
may not) change in the future. Nevertheless, it can reasonably assumed that some RV
features may be more likely to be approximately preserved in the future than others, e.g.,
coarse features like the mean and the variance are less likely to change in the future [Jaynes,
2003] than finer features based on higher moments (e.g., it is well known that the kurtosis
coefficient is extremely sensitive to observations and additional observations may radically
alter it). Therefore, as a first rule, constraints should be simple and express those features
that are likely to be preserved in the future.

The previous rule is rather subjective in the sense that is difficult to distinguish
between simple and not simple constraints or to foresee what RV quantities will be
preserved. Furthermore, the use of a particular set of “simple” constraints may lead to a
distribution that is not supported by the empirical data. Obviously, it is difficult to reject or
verify the detailed shape features of a distribution based on a small sample which
apparently does not provide the sufficient amount of information needed. Nonetheless,
many geophysical processes, even if long records do not exist for particular regions, are
extensively recorded worldwide e.g., thousands of stations record precipitation,
temperature, etc. Thus, the study of this massive amount of information may lead in
determining some important prior characteristics of the underlying distribution that

should be preserved, e.g., a J- or bell-shaped distribution or a heavy- or light-tailed

12



distribution. Therefore, constraints should be chosen not only based on simplicity, but also
on the appropriateness of the resulting distribution given the empirical evidence.

Commonly used constraints in maximizing entropy assume known mean and
variance, i.e., known first and second moments, which are clearly two very simple
constraints. Particularly, entropy maximization assuming known first two moments leads:
(a) to the celebrated normal distribution in the BGS entropy case, or, to the truncated
normal if the mandatory constraint of non-negativity for geophysical processes is imposed,
and (b) to a symmetric bell-shaped distribution with power-type tails in the HCT entropy
case, or, its truncated version for a non-negative RV. The distribution arising in the HCT
case for zero mean is now known as the Tsallis distribution. For non-zero mean the
resulting distribution is the Pearson type VII introduced by Pearson in 1916, whose special
case is the Tsallis distribution. Both these distributions are symmetric bell-shaped, in which
asymmetry can only emerge by truncation at zero. As a consequence, those distributions
may likely fail to describe sufficiently many geophysical processes that exhibit a rich
pattern of asymmetries (e.g., it is well known that the rainfall in small time scales is heavily
skewed and likely heavy tailed).

Accordingly, this study aims to define some simple and general constraints
alternative to those of the first two moments that lead to suitable probability distributions
for geophysical processes, particularly for rainfall. Additionally, another aim is to use only
the BGS entropy, which is theoretically justified and widely accepted, avoiding the use of
generalized entropy measures.

The mean is one of the most commonly used constraints, as it is a classical measure
of central tendency. Another useful measure of central tendency, exhibiting the convenient
property for geophysical processes to be defined only for positive values, is the geometric

mean yc. An estimate of this, from a sample of size n, is given by

Ue = (ﬁxij = exp(%znllnxl} = exp(m) (2.7)

i=1

where the overbar stands for the sample average. The sample geometric mean (also referred
as a constraint in [Kapur, 1989]) is smaller than the arithmetic mean. Intuitively, this leads

to the formulation the following constraint for entropy maximization

E(InX)=Iny, (2.8)
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The expectation of In X, apart from its relationship to the geometric mean and its
simplicity, makes an essential constraint for positively skewed RVs. To clarify, samples
drawn from positively skewed distributions and, even more so, drawn from heavy-tailed
distributions, exhibit values located on the right area very far from the mean value; in a
sense, those values act like outliers and consequently strongly influence the sample
moments, especially those of higher order. Therefore, it is not rational to assume that
sample moments, especially based on samples drawn from heavy-tailed distributions, are
likely to be preserved. On the contrary, the function In x applied to this kind of samples
eliminates the influence of those “extreme” values and offers a very robust measure that is
more likely to be preserved than the estimated sample moments. Essentially for this reason,
the logarithmic transformation is probably the most common transformation used in
hydrology as it tends to normalize positively skewed data.

As stated above, the link of the mean and variance with the physical principles of
momentum and energy conservation is invalid in geophysical processes. For example, the
mean of the rainfall is not its momentum and its variance it is not its energy. Even in these
processes, mean and variance (as measures of central tendency and dispersion) provide
useful information, which can at least explain general behaviours and shapes of probability
density functions [Koutsoyiannis, 2005a]. However, this information is good only for
explanatory purposes and does not enable detailed and accurate modelling. For, there do
not exist theoretical arguments (apart from simplicity and conceptual meaning as measures
of central tendency and dispersion) which to favour mean and variance against, e.g.,
fractional moments of small order or even negative. For example, if the second moment is
likely to be preserved, then probably the square root moment is more likely to be preserved
as it is more robust in outliers. Additionally, low order fractional moments can be related

with the In x function, as it is well known that

1 _
lim*—L Zinx (2.9)
q—0 q

Thus, it could be said that the function x4 for small values of g behaves similar to In x, thus
exhibiting properties similar to those of the logarithmic function described above.

Based on this reasoning it is deemed that, instead of choosing the order of moments a
priori, it is better to let the order unspecified, so that any value can be a posteriori chosen,
including small fractional values. This leads in imposing as a constraint any moment m, of

order g, i.e.,
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m, = E(X") = [xf, (x)dx (2.10)

0

One reason that many entropy generalizations have emerged was to explain many
empirically detected deviations from exponential type distributions that arise from the BGS
entropy using standard moment constraints. Yet, generalized entropy measures have been
criticized for lacking theoretically consistency and for being arbitrary, a reasonable
argument considering the large number of entropy generalizations available in the
literature. Here, instead of using generalized entropy measures that might result in power-

law distributions, the important notion of moments is generalized inspired by the limiting

definition of the exponential function, i.e., exp(x?)= limp_)o 1+ px* )? . First the function

x? is defined as
x=In(1+px*)/ p (2.11)

which for p = 0 becomes the familiar power function x? as x{ =lim,  In(1+ px?)/ p=x".

Thus, a generalization of the classical moments can be defined, given the name p-moments,
by

m, (p) = B(X?) = % [In(1+ px)f, (x)dx (2.12)

Arguably, this generalization is arbitrary and many other moment generalizations
can be (and in fact are) constructed. Nonetheless, is deemed that there is a rationale that
supports the use of p-moments, which can be summarized as follows: (a) if generalized
entropy measures, considered by many as arbitrary, have been successfully used, then there
is no reason to avoid using generalized moments; (b) maximization of the BGS entropy
using p-moments leads, as will become apparent in the next section, to flexible power-type
distributions (including the Pareto and Tsallis distributions for ¢ = 1 and q = 2,

respectively); (c) p-moments are simple and, for p = 0, become identical to the ordinary
moments; and (d) they are based on the X! function that exhibits all the desired

properties, like those of the Inx function described above, and thus are suitable for

positively skewed RVs; additionally, compared to E(InX) they are always positive.

15



2.5 The resulting entropy distributions
Entropy optimization can be accomplished in many different combinations of the

previously defined constraints (see Table 2.1); however, here, two simple combinations of
the aforementioned constraints are used based on the type and the generality of the
distributions emerging. Particularly, the E(InX) constraint is combined, first, with the
classical moments, and second, with the p-moments, letting in both cases the moment

order arbitrary.

Table 2.1. The resulting maximum entropy distributions for various imposed constraints.

Constraints Distribution Name Density function Ref. No.
m Exponential £y (x)=Cexp(—Ax) (2.13)
m, Half-Normal £ (x) = Cexp(-A,x*) (2.14)
m; and m, Normal fy(x)=Cexp(—A,x — 1,x7) (2.15)
Generalized
— _ q
My Exponential [y (x) = Cexp(=A,x7) (2.16)
my and E(In x) Gamma fr(x)= Cx ™t exp(—A,x) (2.17)
my and E(In x) Generalized Gamma £ (x)=Cx™ exp(-A,x7) (2.18)
mi(p) Pareto type II fi(x)=CA+x/p)™* (2.19)
ma(p) Tsallis fi)=C(1+(x/ py )’*“’ (2.20)
mi(p) and ms(p) Not named fy (%) :C(1+x/p)%lp(l+(x/p)2)_lzp (2.21)
my(p) Not named fe)=C(1+erpy) " (2.22)
Beta of th d
m(p)and E(lnx) o or e secon fe)=Cx ™ (U+x/p) ™ (2.23)
kind
Generalized Beta of 0 1, p
my(p) and E(ln x) the second kind fx(x)=Cx (1 +(x/p)’ ) (2.24)

where C=exp(—A,) is the integration constant so that '[: fi(x)=1.

In the first case, the maximization of the BGS entropy, given in (2.1), with constraints

(2.8) and (2.10) results in the density function

fi(x)=exp(=A, — A, Inx —A,x?) (2.25)
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which after algebraic manipulations and parameter renaming (please see Appendix A for

details) can be written as

oy (YT (Y
ot ) o

corresponding to the distribution function

Y2
Fx(x)1—r£ﬁ,[fj J/r[ﬁ} x>0 (2.27)
Y, \ B 12

where I'(a) = I:t“‘l exp(—t)dt is the Gamma function and T'(a,x) = rt“_l exp(—t)dt is the

upper incomplete Gamma function.

This distribution, commonly attributed to Stacy [1962] appeared much earlier in the
literature in the works of Amoroso around 1920, and seems to have been rediscovered
many times under different forms [see e.g., Kleiber and Kotz, 2003].Here, a slightly
different form is used compared to the one proposed by Stacy. Essentially, it is a

generalization of the Gamma distribution and will be denoted by GG(f,y,,y,), or simply
GG. It is a very flexible distribution that includes many other well-known distributions as
particular cases, e.g., the Gamma, the Weibull, the Exponential, or even the Chi-squared
distributions and others.

The distribution includes the scale parameter >0, and the shape parameters y, >0
and y, >0. The parameter y, controls the behaviour of the left tail, i.e., if 0 <y, <1 the
density function is J-shaped and for x —> 0, f,(x) —>oo;if p, >1 the density function is
bell-shaped and mainly positively skewed; yet, for certain values of y, and y, it can be
symmetric or even negatively skewed, and for x=0, f,(x)=0; finally, for y, =1 the
distribution degenerates to a generalized exponential function and for x=0, f,(0)<co.
The parameter y, is very important as for fixed y, it controls the behaviour of the right

tail, i.e., it determines the frequency and the magnitude of the extreme events. Generally

and loosely speaking, for y, <1 the distribution can be characterized as sub-exponential or
heavy-tailed, and for yp, >1 as hyper-exponential or light-tailed [for a classification of

distribution tails see Goldie and Kliippelberg, 1998]. Figure 2.1, where several probability

density functions of the Generalized Gamma distribution are depicted, clearly,
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demonstrates its flexibility in terms of shape. Notably, the distribution is also valid if the
shape parameters are simultaneously negative (a generalized inverse Gamma distribution);
however, the distribution loses some important shape characteristics and seems not
suitable for geophysical RV like rainfall, thus, here the distribution is only considered for

positive shape parameters.
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Figure 2.1. Probability density functions of the Generalized Gamma distribution for various shape
parameter values. The values of scale parameter 8 were chosen so that mean value of each

distribution equals 1.

In the second case, the maximization of the BGS entropy with constraints (2.8) and

(2.12) results in the density function
fi(x)=exp(-A, — A Inx— A, In(1+ px?) / p) (2.28)

which after algebraic manipulations and parameter renaming (please see appendix A for

details) can be written as

=(r1+y2)
3

nys—1 b4
¥s X X
fi(x)= —(—j 1+ [—J , x>0 (2.29)
T BBOLYIA B
corresponding to the distribution function
-1
F.(x)=B,(y,,y,) I B(y,>,)s where z = (1 +(x/p)" ) (2.30)
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where B(a,b) = J‘:t”’fl(l—t)bfldt is the Beta function and B (a,b) = Jloxtafl(l—t)bfldt is the

incomplete Beta function.

This distribution has not been formed earlier on a similar rationale, yet, a search in
the literature reveals that it has been rediscovered many times under different names and
parameterizations. It is most commonly known as the Generalized Beta of the second
kind—hereafter denoted as GB2(f,y,,y,,y,), or simply GB2. It seems that Milke and
Johnson [1974] were the first that formed this distribution, and proposed it for describing
hydrological and meteorological variables. It has also been used in different disciplines,
e.g., McDonald [1984] used the GB2 as an income distribution. Nevertheless, the
distribution can be considered as a simple generalization of many well-known and much
earlier introduced distributions, e.g., the F-distribution or the Pearson type VI of the
celebrated Pearson system.

The GB2 distribution is a very flexible four-parameter distribution with >0 being
the scale parameter, and y, >0, y,>0 and y, >0 being the three shape parameters,
allowing the distribution to form very many different shapes. The GB2 distribution
includes as special or limiting cases many of the well-known distributions, e.g., the Beta of
the second kind, the Pareto type II, the Loglogistic, the Burr type XII, even the Generalized
Gamma [McDonald, 1984; Kleiber and Kotz, 2003].

Obviously, the flexibility of the GB2 distribution makes it a good model for
describing rainfall—the GB2 has already been used under the name JH distribution, to
describe the rainfall in a large range of timescales [Papalexiou and Koutsoyiannis, 2008b]
and to construct theoretically consistent IDF curves [Papalexiou and Koutsoyiannis,
2008a]. Nonetheless, as a general rule based on the principle of parsimony, a three-
parameter model is preferable than a four-parameter model, provided that the simpler
model describes the data adequately. Additionally, it is not reasonable to compare the
performance of the GG distribution, which is a three-parameter model, with GB2, which is
a four-parameter model. Thus, a simpler form of the GB2 distribution is selected based on
its flexibility and its simple analytical expression of the distribution function, and
consequently, of the quantile function.

A simple three-parameter form of GB2 is derived by setting y, =1 in Eq. (2.29). By
renaming the parameters and after algebraic manipulations a distribution is obtained

known as the Burr type XII [Burr, 1942] (denoted hereafter as BrXII), which was
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introduced by Burr in 1942 in the framework of a distribution system similar to Pearson’s.

Its probability density function is

1 x n X e
() =—| = l+y,| = , >0 (2.31)
wo=z) P57 s

and its distribution function is

1

N _E
F.(x)=1- 1+y2[%J . x>0 (2.32)

The BrXII distribution is a flexible power-type distribution that comprises the scale
parameter f3>0 and the shape parameters y, >0 and y, >0. The shape flexibility of the
Burr type XII distribution is demonstrated in Figure 2.2 where several probability density

functions, for various combinations of the shape parameters, are depicted.
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Figure 2.2. Probability density functions of the Burr type XII distribution for various shape
parameter values. The values of scale parameter 3 were chosen so that mean value of each

distribution equals 1.

The form of the BrXII distribution used here is not the one found in the literature
[see e.g., Tadikamalla, 1980]. The expression (2.31) is preferred because it is suggestive of a

generalization of the familiar Weibull distribution (for y, —0) and also because the

asymptotic behaviour of the right tail is solely controlled by the parameter y, (for large

values of X, P(X >x)~y, B x*). The distribution has a finite variance distribution for
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0<y, <0.5 and finite mean for 0 <y, <1. Finally, the shape parameter y, controls the left
tail as for 0<y, <1 the distribution is J-shaped, for y, >1 bell-shaped and for y =1

degenerates to the familiar Pareto type II distribution.

2.6 Summary and conclusions
In order to derive statistical distributions suitable for geophysical processes, and

particularly for rainfall, a rationale is proposed for defining and selecting constraints within
a BGS entropy maximization framework. Entropy maximization offers a solid theoretical
basis for identifying a probabilistic law based on the available information, in contrast to
the common technique of choosing a distribution from a repertoire based on trial-and-
error methods. This rationale is based on the premises that the constraints should be as few
and simple as possible and incorporate prior information on the process of interest. This
prior information may concern the general shapes of densities and could be obtained by
studying the process worldwide. Three particular constraints are studied and conceptually
justified that are related to the logarithmic and the power functions, which are suitable for
positive, highly varying and asymmetric RVs. Namely, the constraints are the expected
values of (a) In x; (b) x% and (c) In(1+ px?)/ p. The last constraint generalizes the classical
moments and naturally leads to power-type distributions avoiding generalized entropy
measures.

The BGS entropy maximization under two combinations of these constraints leads to
two flexible distributions, i.e., a three-parameter exponential type, known as the
Generalized Gamma (GG), and, a four-parameter power type, known as the Generalized
Beta of the second kind (GB2)—the former is a particular limiting case of the latter.
Another three-parameter model, known as the Burr type XII (power type), easily derived

from the GB2, proves to be also useful.
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CHAPTER 3

“O, wind, if winter comes, can spring be far behind?”

PERCY BYSSHE SHELLEY

A WORLDWIDE SURVEY ON THE
DISTRIBUTION OF DAILY RAINFALL

ABSTRACT

To characterize the seasonal variation of the marginal distribution function of daily
rainfall, it is important to find which statistical characteristics of daily rainfall actually vary
the most from month to month and which could be regarded to be invariant. Relevant to
the latter issue is the question whether there is a single model capable to describe effectively
the nonzero daily rainfall for every month and at every area of the world. To study these
questions a massive analysis is performed of more than 170 000 monthly daily rainfall
records at more than 14 000 stations from all over the globe. The analysis indicates that: (a)
the shape characteristics of the marginal distribution of daily rainfall, generally, vary over
the months, (b) commonly used distributions like the Exponential, the Gamma, the
Weibull, the Lognormal, or the Pareto, etc. are incapable to describe “universally” the daily
rainfall, (c) exponential-tail distributions like the Exponential, mixed Exponentials or the
Gamma can severely underestimate the magnitude of extreme events and thus they
constitute a dangerous choice, and (d) the Burr type XII and the Generalized Gamma

distributions are two good models, with the latter performing exceptionally well.
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3.1 Introduction
Most geophysical processes exhibit seasonal variation, which implies an underlying regular

pattern, which potentially enables a degree of predictability, utilizing the periodic changes
of the process’s coarse behaviour with time. This is exactly why it is important to correctly
characterize the seasonal variability of geophysical processes. Among those, rainfall is one
of the most important, as it highly affect human lives. For example, agricultural, irrigation
and water supply planning, and more generally water resources management, in order to
be efficient and competent, has to take seasonality into account. Seasonality does not
necessarily refer to the four standard seasons of the temperate zones, but it generally
describes the within year variability. An effective scale to characterize seasonality is the
monthly scale.

Rainfall, if perceived as a stochastic process, is determined by two components: its
marginal probability distribution and its dependence structure. It is reasonably expected
these components to vary periodically if rainfall is studied at any subannual time scale.
Furthermore, it is rational to assume that the daily time scale is the finest time scale in
which the seasonality could be studied without complications, because rainfall at subdaily
scales may also be affected by earth’s daily rotation (the daily cycle). In practice, estimating
and trying to reproduce the statistical characteristics of rainfall on a daily basis can be a
laborious task and, most importantly, can have questionable reliability as the estimation of
the various characteristics will be based on small samples. For this reason, daily rainfall is
typically studied and modelled on a monthly basis assuming that within a specific month
its statistical characteristics remain essentially invariant. Consequently, the daily rainfall
process can be decomposed into 12 different processes with fixed monthly autocorrelation
structure and fixed monthly marginal distribution. This study does not concern with the
autocorrelation structure [see e.g., Haan et al., 1976; Waymire and Gupta, 1981; Mimikou,
1983, 1984; Schoof and Pryor, 2008] but it is focused on the monthly variation of the
marginal distribution of the daily rainfall.

The marginal distribution of daily rainfall belongs to the so-called mixed type
distributions and comprises two parts: a discrete part describing the probability dry and
mathematically expressed as a probability mass concentrated at zero, and a continuous part
spread over the positive real numbers describing probabilistically the amount or the
intensity of nonzero rainfall. The probability dry, in general, can be easily assessed from
empirical data as the as the dry-days to total-days ratio, while the continuous part is usually

modelled by a parametric continuous distribution fitted to nonzero values. Yet this
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distribution is not unique and in practice, as a literature review reveals, various
distributions have been used for the nonzero daily rainfall. For example the Exponential
distribution [e.g., Smith and Schreiber, 1974; Todorovic and Woolhiser, 1975], mixed
Exponentials [e.g., Woolhiser and Rolddn, 1982; Wilks, 1998, 1999], the Gamma
distribution [e.g., Buishand, 1978a; Bruhn et al., 1980; Geng et al., 1986], the Weibull
distribution [e.g., Swift and Schreuder, 1981; Wilson and Toumi, 2005], the Lognormal
distribution [e.g., Biondini, 1976; Swift and Schreuder, 1981], mixed Lognormals [Shimizu,
1993], power-type distributions like the two-, three- and four-parameter Kappa
distributions [Mielke Jr, 1973; Mielke Jr and Johnson, 1973; Hosking, 1994; Park et al.,
2009], generalized Beta distributions [Mielke Jr and Johnson, 1974], as well as the Gen-
eralized Pareto [e.g., Fitzgerald, 1989] for peaks over threshold, and probably many more.

A question that can be raised based on the aforementioned studies and on many
more is whether or not all of these distributions, some completely different with each other
in structure, are indeed suitable to probabilistically describe the (nonzero) daily rainfall or
if they have prevailed and become popular for technical reasons, e.g., simplicity in their
form. Additionally, most of these studies are of local character, i.e., they are based on the
analysis of a limited number of rainfall records and from specific areas of the world. The
exceptions are very few, e.g. in a study by Papalexiou and Koutsoyiannis [2012] daily
rainfall was analysed in more than 10 000 stations worldwide. In practice, in most cases
rainfall in modelled using exponential-type distributions like the Exponential distribution,
the Gamma or mixed Exponentials [see e.g., Foufoula-Georgiou and Lettenmaier, 1987].
These, however, might be a very dangerous choice if the actual distribution of nonzero
rainfall has a significantly heavier tail than those light-tail distributions that may severely
underestimate the magnitude and the frequency of extreme events. Actually, two recent
studies [Papalexiou and Koutsoyiannis, 2013; Papalexiou et al., 2013], where daily rainfall
extremes were analysed in more than 15 000 stations worldwide, revealed that most of the
records cannot be described by exponential-tail distributions but rather by distributions
with heavier tails.

In order to characterize the seasonal variation of the marginal distribution function
of daily rainfall, the study aims in finding which statistical characteristics of daily rainfall
actually vary the most from month to month and which could be regarded to be invariant.
Relevant to the latter issue is the question whether there is a single model capable to
describe effectively the nonzero daily rainfall for every month and at every area of the

world. Obviously these questions cannot be answered by local analyses. Therefore, a
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massive analysis is performed of more than 170 000 monthly daily rainfall records from

more than 14 000 stations from all over the globe.

3.2 Thedata
The original database used here is the Global Historical Climatology Network-Daily

database (version 2.60, www.ncdc.noaa.gov/oa/climate/ghcn-daily) which comprises
thousands of daily rainfall records from stations all around the globe. Nevertheless, only a
part of these records is used as many of them are very short in length, contain a large
percentage of missing values, or have values of questionable accuracy which are assigned
with various quality flags (details on quality flags can be found in the website given above).
For these reasons and in order to create a robust subset of records with ensured quality, the
records finally chosen fulfil the following criteria: (a) record length larger than 50 years, (b)
missing values less than 20% and, (c) values assigned with quality flags less than 0.1%. As
an additional measure to ensure the quality of the data all values assigned with flags “G”
(failed gap check) or “X” (failed bounds check) were deleted as these flags are used for
unrealistically large values. Fortunately, only 594 records in total had such values and
typically no more than one or two values per record. The resulting subset comprises 15 137
stations (for further details on the dataset please Appendix B).

Although this study concerns the monthly daily rainfall, the daily rainfall of all
months is also analysed as in some cases, especially for design purposes, the focus is not on
the month that an event occurs but just on its exceedance probability or else on its return
period. In this case monthly daily values can be merged and treated as represented by a
single random variable (note that the term “daily rainfall” refers to daily rainfall values of
all months while the term “monthly daily rainfall” refers to the daily rainfall values of
individual months). From each station 13 different records were formed, one for all daily
values and 12 for the monthly daily values, resulting in a total of 196 781 different records.
Nevertheless, some months at stations located in very dry areas have very few nonzero
rainfall values or even none so that estimation of the various important statistics would be
highly uncertain or even impossible (e.g., estimation of L-skewness needs at least three
values). To overcome this problem the minimum sample size of monthly nonzero rainfall
values was constrained; so among the 15 137 records initially chosen were finally selected
those having at least 20 nonzero values for each month resulting in a total of 14157
stations and consequently 169 884 monthly daily records were formed. The locations of
these stations and their corresponding lengths in years are given in the map of Figure 3.1.

Note that in some areas the map cannot provide the clear picture of the record length
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distribution. For example in the USA, the network of stations is very dense and inevitably
points overlap, so that, below the layer of points representing high record lengths, other

points exist representing smaller records lengths.
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Figure 3.1. Locations of the 14 157 stations studied.

3.3 Seasonal variation
3.3.1 Statistics studied
To assess the seasonal variation of daily rainfall representative statistics of the marginal
distribution are studied on a monthly basis. Additionally, in order for the study to be more
complete as well as for comparison purposes these statistics were also estimated for the
daily rainfall values of all months too (indicated with “All” in the figures). Particularly, the
statistics studied are: (a) the probability dry, (b) the mean value, (c) the L-variation, and (d)
the L-skewness. The probability dry expresses the discrete part of the marginal distribution
and is simply estimated as the ratio of dry days to total days. The latter three are statistics
for the continuous part of the marginal distribution describing thus the nonzero rainfall
and obviously are calculated using only nonzero rainfall values.

The mean value of nonzero rainfall is a classical measure of central tendency while L-
variation 7, = A,/A; and L-skewness 75 = As/A,, defined as ratios of L-moments \; [Hosking,

1990], are dimensionless measures of the distributional shape. L-ratios are preferable over
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ratios based on the classical moments like the coefficients of skewness and kurtosis as they
exhibit better statistical properties, e.g., they are more robust [see e.g., Hosking, 1992].
Additionally, L-kurtosis (defined as 74 = A4/A;) is also commonly used as a measure of
shape, yet for positive random variables L-variation is well defined and actually is more
robust and more convenient as it is bounded in [0,1]. Usually, L-variation or even the
classical coefficient of variation (defined as the ratio of standard deviation to the mean
value) are interpreted as standardized measures of variance; indeed, they express,
respectively, the value of the second L-moment A, and the value of the standard deviation
of a distribution having mean value equal to 1. Yet for positive random variables, where
actually these coefficients are meaningful, both depend on the distribution’s shape
parameters only or are constants if the distribution does not have shape parameters, and
thus, they are essentially measures of distributional shape.

As already noted, it is anticipated from our experience the probability dry to vary
over the months in most areas of the world. Additionally, it may seem obvious that the
monthly mean value of daily rainfall (including zero values) will vary too as it is directly
related to probability dry, e.g., a larger number of rainy days on average in a month
logically will increase the monthly mean (estimated as the record’s total monthly rainfall
divided by the total number of month’s days). However, it is not that evident that the mean
value of the monthly nonzero daily rainfall (estimated as the record’s total monthly rainfall
divided by the total number of the month’s rainy days) will vary over the months (during
rainy days it could be possible to rain on average the same amount irrespective of the
month). Finally, our perception on rainfall may lead to assume that extreme rainfall varies
with season, e.g., it is well-known that specific weather mechanisms, responsible for
extreme rainfall, are linked with specific seasons. Consequently, this may imply that the
shape characteristics of rainfall distribution change over seasons, as the distribution’s
shape, particularly the right tail, controls the frequency and the magnitude of extreme
events. Yet this assumption may be false as extreme rainfall may emerge by a change in the
scale or else in the variance of rainfall and not necessarily by a change in its shape
characteristics. For these reasons whether or not the distributional shape characteristics

vary with season needs to be investigated and verified.

3.3.2 Variation in the hemispheres
Northern Hemisphere (NH) and Southern Hemisphere (SH) have opposite seasons and

thus, it is reasonable to assume that natural processes under seasonal variation exhibit

different behaviour between the two hemispheres. This may be generally valid, especially
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for processes like the surface temperature, yet rainfall is a more complex process that may
be affected more by regional climate conditions. For example, the celebrated Koppen
climate classification [see e.g., Kottek et al., 2006; Peel et al., 2007], which classifies climate
according to the annual and monthly average temperature and precipitation, defines
several different types and subtypes of climate for each hemisphere. Thus, different rainfall
patterns may appear even in adjacent areas of the same hemisphere.

Nevertheless, a first coarse approach that could provide a general picture is to present
the seasonal variation of the statistics by hemisphere. Among the 14 157 stations analysed,
8447 belong in the NH and 5710 in the SH. The aforementioned statistics, i.e., the
probability dry, mean value, L-variation and L-skewness, were calculated for the monthly
daily rainfall of each station; their averages and standard deviations are given, for each

hemisphere and additionally for the whole globe, in Table 3.1.

Table 3.1. Mean values and standard deviation values of the four statistics studied.

All Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Northern hemisphere

P, U 72.03 73.55 74.23 74.03 73.18 71.05 68.49 6780 6897 7137 7470 73.68 73.65
Yo 11.19 16.74 15.10 14.24 13.28 1271 13.48 1595 1530 12.78 13.50 16.45 17.36

Y 952 7.08 718 780 828 899 995 1021 10.11 1047 10.04 873 7.58

¢ o 4.67 431 426 425 414 431 486 522 470 494 520 493 457
U 059 056 056 056 057 057 058 058 059 059 059 057 0.57

5 o 0.04 0.05 005 005 0.04 004 004 004 004 0.04 0.04 0.05 0.05
Y 046 044 043 043 043 043 044 045 046 046 045 044 044

5 o 0.05 0.06 0.06 006 006 0.05 005 005 005 0.05 005 006 0.06

Southern hemisphere

P, Y 7791 77.73 76.80 7829 79.69 7832 7650 7684 7791 78.77 77.74 77.85 78.05
Yoo 10.60 14.38 14.34 1296 11.62 1335 1599 17.32 16.79 1425 1222 12.06 13.37

U 9.27 11.09 1146 10.54 906 834 771 721 681 7.5 821 901 10.08

¢ o 370 456 447 422 355 322 319 298 262 274 315 353 4.04
Y 058 059 059 059 058 058 058 057 056 056 056 056 0.57

n o 0.05 0.06 0.06 006 006 0.06 006 006 006 0.05 005 005 0.05
U 046 047 047 047 046 046 045 045 044 044 044 044 045

5 o 0.06 0.07 0.07 0.07 0.07 0.07 0.08 0.08 0.08 0.07 0.07 0.07 0.07

Global

P, U 7440 75.24 7527 75.75 75.80 7399 7172 71.44 7258 7436 7592 7536 7542
Yoo 11.33 1597 14.85 1390 13.04 13.45 1506 17.10 16.51 13.87 13.08 14.98 16.01

Y 942 870 891 890 860 873 9.05 900 878 913 930 885 8.59

# o 431 483 483 445 393 392 441 469 431 450 457 442 453
o U 0.58 057 057 057 057 057 058 058 058 058 057 057 057
o 0.04 0.05 005 005 005 005 005 005 005 005 005 005 0.05

Y 046 045 045 045 044 044 045 045 045 045 044 044 044

5 o 0.05 0.07 0.07 0.07 006 0.06 006 006 006 0.06 006 006 0.07
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Furthermore, a better picture is provided by the box plots given in Figure 3.2 which
present these statistics on a monthly basis and for each hemisphere. The left (red) box plots
are for the NH while the right (grey) are for the SH while the box plot’s inner lower and
upper fences that define the box indicate, respectively, the 25% and 75% empirical quantile
points and thus define the empirical interquartile range (IQR) or the 50% of the central
values. The line within the box indicates the median, while the lower and upper fences of
the whiskers indicate, respectively, the 5% and 95% empirical quantile points or else they

define the 90% empirical confidence interval (ECI) of the studied statistics.
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Figure 3.2. Estimated statistics of the monthly daily records analysed; red box plots on the left are
for the NH; grey boxplots on the right are for the SH; outer fences indicate the 90% ECI.

As Figure 3.2 shows, the probability dry in NH exhibits the typical anticipated
behaviour, i.e., dry summer months and wet winter months. Particularly, the median of
each box plot exhibits a sinusoidal-like variation, so it seems that most stations in NH have
this pattern. Surprisingly, the corresponding pattern in SH is not clear at all; a focus on the
median does not reveal, although it resembles a sinusoidal-like function, the familiar or the
anticipated behaviour as the median has three “local” peaks, i.e., in January, April and
August. It is also noted that the IQR seems to vary irregularly and does not follow the
variation of the median. Of course, this does not imply the absence of seasonality in

probability dry in the SH, as this result can easily emerge assuming several different
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patterns for the studied stations. Also, it is interesting that the variation of the median in
both hemispheres is not very large, especially in the SH, yet the range of the 90% ECI is
very wide expressing the large variation of probability dry around the world.

The mean value of the nonzero rainfall in both hemispheres, as Figure 3.2 shows,
exhibits a clear seasonal pattern, which reminds that of the surface temperature.
Specifically, NH and SH show essentially a contrasting behaviour to each other, yet in
terms of seasons the behaviour is the same, i.e., the warm months in both hemispheres are
those with the highest average nonzero daily rainfall. This behaviour though is not in full
correspondence as in NH the minimum and the maximum mean values (comparing the
medians) are, respectively, in January and in September, while the corresponding values in
the SH are observed, respectively, in August and in February. Remarkably, for the NH the
average nonzero daily rainfall pattern is in contrast with probability dry implying greater
rainfall depths in rainy days of dry months than of wet months. Yet this is not absolutely
precise as the driest moths are from June to August while those with the highest average of
nonzero daily rainfall are from July to September; additionally, the lowest value in
probability dry is in July while the peak average value is in September. This contrast seems
not to be valid for the SH as the probability dry exhibits an irregular pattern.

Figure 3.2 also reveals a marked monthly variation pattern for L-variation and L-
skewness. Similarly to the average of nonzero daily rainfall, both statistics exhibit a
contrasting behaviour between the two hemispheres; but again, comparing the medians,
high and low values are observed, respectively, at warm and cold months. A comparison
between the two shape statistics shows that L-variation and L-skewness in SH show an
almost identical pattern with the only difference being in the lowest value which is
observed one month later for L-skewness. Additionally, L-variation in NH takes its lower
values around February while L-skewness around April. Generally, the monthly variation
of both statistics (based on their medians) is small, i.e., in both hemispheres L-variation
and L-skewness range, respectively, from 0.55 to 0.6 and from 0.42 to 0.47. However, the
IQR or the 90% ECI is much wider in the SH compared to NH. The comparison of the
shape statistics with the mean value of daily rainfall indicates an agreement in the general
pattern in SH, while in NH especially for L-skewness the difference in the patterns is
significant.

3.3.3 A simple test to identify seasonal variation
All previous comparisons based on the monthly box plots of the statistics indicate clear

seasonal variation patterns; a surprising exception is the probability dry of the SH.
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Nevertheless, both the IQR and the 90% ECI of all those statistics are much wider allowing
at least theoretically a portion of the stations studied to have different patterns than the
characteristic one indicated by the medians in Figure 3.2.

As mentioned, it is intuitively anticipated some characteristics of daily rainfall like
the probability dry to vary with season, yet this it is not self-evident, e.g., for distributional
shape measures like L-variation and L-skewness. When dealing with a small number of
records it is relatively easy to assess if a statistic varies with season using simple means, e.g.,
a plot of the statistic vs. month would reveal the variation pattern. Yet when dealing with
thousands of stations, an “eyeball” technique would be insufficient or even subjective. For
this reason a simple test is formed here to assess and quantify the seasonal variation of the
various statistics investigated.

Seasonal variation evokes sinusoidal-like functions; however, even if a statistic is
expected to obey a sinusoidal-like law, its sample counterpart may deviate significantly
from the anticipated law due to sample variability commonly caused either by sampling
uncertainty, particularly for small samples, or by non-robust estimators, or even from local
weather characteristics modifying the expected behaviour in some months. This implies
that a precise sinusoidal variation may not be common to observe and thus a test based on
these characteristics would be inflexible and probably with doubtful efficacy. For this
reason, a non-parametric test is proposed allowing for the statistic under investigation to
deviate from the exact sinusoidal form.

The seasonal variation test (SV-Test) is described in the following steps: (a) the
desired statistic is calculated for each month, (b) the numbers 1 and -1 are assigned,
respectively, to monthly values smaller and larger than the median of all months (c) this
sequence is rotated until the first and the last value have different signs, (d) this sequence is
split into sub-sequences consisting of identical-value runs (SIVR), (e) the number of SIVR
is calculated. It is noted that due to step (c) the number of feasible SIVR that a sequence
consisting 1 and —1 can be split is 2, 4, 6, 8, 10 or 12; an odd number of SIVR indicates that
the first and the last value have the same sign and thus step (c) can be applied; also, step (c)
ensures that the resulting number of SIVR is the minimum.

The resulting number of SIVR quantifies seasonality. If the considered statistic
exhibits a sinusoidal-like seasonal variation the SV-Test will result exactly in two SIVR.
Figure 3.3 depicts an explanatory sketch of the SV-Test showing the monthly values of a
statistic after rotation so that the first and the last value are in opposite sides of the median;

even though the statistic does not resemble exactly a sinusoidal law, the application of the
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test results in two SIVR revealing the seasonality that is visually apparent. It should also be
expected that four SIVR still reveal seasonal variation as they could easily emerge if the
statistic’s sample estimates are sensitive, e.g., if the December’s value in the graph of Figure
3.3 was above the median, then four SIVR would result. It seems reasonable to assume that
a larger resulting number of SIVR indicates random variation or a variation that does not

resemble the “familiar” seasonal variation.
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Figure 3.3. Explanatory sketch of the seasonal variation test; values above and below the median

are denoted, respectively, with 1 and —1.

One could argue that the previous interpretation of the resulting number of SIVR is
subjective, e.g., it could be assumed that two or four SIVR could easily emerge even if there
is no seasonal variation due to randomness. Thus, in order to make the SV-Test complete
benchmark values are necessary for reference and comparison. The idea is to find the
probability for each feasible number of SIVR to emerge in the case where the variation of a
statistic is random. Theoretically, this problem can be solved analytically using
combinatorics, yet it is not that easy; in contrast a Monte Carlo approach can easily provide
the answer. In this direction, a Monte Carlo simulation is performed summarized in three
simple steps: (a) generation of 10° samples consisting of 12 random numbers each, (b)
application of the SV-Test to estimate the resulting number of SIVR for each sample, and
(c) estimation of the probability for each feasible number of SIVR as the ratio of the times
that this number of SIVR emerged to total number of samples (10°).

The results are graphically depicted in Figure 3.4 where the first number above the
bars indicates the probability for a specific SIVR number to occur and the second number
above the bars indicates the cumulative probability, e.g., the probability for up to four SIVR
to occur is 17.6%. Accordingly, if a statistic varies randomly the probability for two SIVR is
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only 1.3% and for four is 16.3%, while the most probable numbers of SIVR are six and eight
with probabilities 43.3% and 32.5%, respectively. This implies that if the studied statistic
does not exhibit seasonal variation then application of the test will result in more than two
SIVR with probability 98.7% and in more than four SIVR with probability 82.4%, and thus,

it can be safely assumed that not only two but also four SIVR indicate seasonal variation.
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Figure 3.4. Benchmark values for the SV-Test; the bars indicate the probabilities (the upper
number is cumulative) corresponding to specific number of SIVR in the case of 12 randomly

generated numbers (no seasonality).

3.3.4 Application of the test
The SV-Test was applied for each station and for the four aforementioned statistics with

the results presented in Figure 3.5. The SV-Test verifies, as Figure 3.5a shows, that indeed
probability dry exhibits seasonal variation with 64.1% of the stations resulting in two SIVR
and with only 4.9% of the stations resulting in more than four SIVR indicating random
variation. Similar results are obtained for the mean value of the nonzero daily rainfall,
given in Figure 3.5b, with only 8.3% of the stations resulting in more than four SIVR.

The results of the SV-Test regarding the shape characteristics of the nonzero daily
rainfall, i.e., the L-variation and the L-skewness are depicted, respectively, in Figure 3.5¢
and Figure 3.5d. The first observed is that the profile of the two graphs is completely
different from the “benchmark” graph describing the random case in Figure 3.3; however,
the results are not as clear as for the probability dry or for the mean value case. It is
observed that the most common SIVR number is four, both for L-variation and for L-
skewness, with 36.9% and 34.5%, respectively. Nevertheless, two or four SIVR (numbers

indicating seasonal variation) emerge at 66.2% of stations for L-variation and at 54.5% of
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stations for L-skewness, while the corresponding value for the random case is much
smaller, i.e., 17.6%. Additionally, two SIVR are observed in 29.3% and 19.7% of the records
for L-variation and L-skewness, respectively. These percentages are much larger than 1.3%,
which corresponds to the random case. Finally, the seasonality signal is it is much stronger
for L-variation than for L-skewness, a difference that may attributed in the fact that

estimation of L-variation is more robust than L-skewness.
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Figure 3.5. Results of the SV-Test applied to: (a) the probability dry, (b) mean value (c) L-variation
and (d) L-skewness.

3.3.5 Why and how much statistics vary?
The analysis of the statists by hemisphere as well as the results of the SV-Test revealed that

seasonal variation occurs not only in probability dry and in the mean value of nonzero
rainfall but also in the shape characteristics. This implies that the marginal distribution
varies over the months, yet the mechanism of this variation is not clear. Particularly,
different aspects of the rainfall process are interrelated. For example, the distributional
shape variation may be affected by seasonal variation of the average storm duration. To
clarify by an example, let us consider the random variables X and Y representing,
respectively, the amount of nonzero rainfall at the daily and at a much finer time scale, e.g.,
the one-minute scale, and let us assume that the marginal distribution of Y does not have

seasonal variation; then the distribution function of X emerges by the n-term sum of Y
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variables where n corresponds to the storm duration in minutes in that particular day.
Cleary, if the average storm duration varies per month, then the “average” n-term sum will
vary too and hence the distribution of X. This issue raised can only be answered by an
analysis of fine temporal scale data which is not the subject of this particular study.

In order to quantify the seasonal variation of the studied statistics per station, four
difference measures relative to the statistic’s average value of all months are defined. These
measures are illustrated in the sketch of Figure 3.6 depicting the monthly variation of a
statistic. Particularly, the i-th monthly difference D, =V, —u is defined as the difference
between the i-th month statistic’s value V; and the average of all V; denoted as y. Negative

differences (blue lines in the graph) are denoted with Dy and their average with Dy;
likewise, Dp denotes positive differences (red lines in the graph) and D, denotes their

average. Additionally, Dnin and Di.x denote, respectively, the minimum and the maximum
difference with reference to y. Note that this analysis in performed for each individual

station and does not provide any comparison between different stations.
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Figure 3.6. Explanatory sketch of the four difference measures studied.

The difference measures Dy, D,, Dmin and Duax are calculated in terms of percentage
change (PC) in respect to the average y, i.e., PC =100 D/u with D being any of the four
difference measures. The first two measures can be interpreted as the “expected” or the
average negative or positive percentage change in reference to the monthly average while
the latter two indicate the minimum or maximum percentage change in reference to the
monthly average. The percentage change of these measures was calculated for each station

and for the four statistics studied. The results are given in Figure 3.7 in the form of box
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plots (note that the PC of the negative differences D,, and Dumi is given in absolute values

for better presentation).
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Figure 3.7. Box plots depicting the percentage change of the difference measures relative to the
average of all months for the four statistics studied. Each box plot is constructed by the values

determined from the stations studied. Outer fences indicate the 95% ECI.

A first look in the box plots indicates that the largest monthly variation is observed in
the mean value of the nonzero rainfall, followed by the probability dry, next by L-skewness
and last by L-variation exhibiting the lowest variability. Particularly, the IQR of the
nonzero rainfall mean value, which represents the 50% of the central values, for Dui and
Drnax ranges, respectively, from —45.2% to —22.8% and from 25.5% to 50.6%; these values
indicate a large variability around the average. These ranges are lower for the probability
dry where the IQR of Dmin and Dmax ranges, respectively, from —24.3% to —9.2%) and from
8.2% to 19.2%. Regarding L-skewness it is observed that 75% of the records have
percentage change of Dpin and D less than —17.7% and 20.4%, respectively, while the
corresponding percentages for the L-variation are —9.5% and 10.7%. Comparing the box
plots of the distributional shape measures, i.e., the L-variation and L-skewness, with the
box plots of the probability dry and of the mean value it is observed that in the first two

cases D, and D, vary at a lower level relative t0 Dy and Duax than in the former two
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cases. This may indicate that the “expected” difference from the monthly average,
expressed by D, and D,, for L-variation and L-skewness for most of the months is
“small”; yet the “extreme” differences, expressed by Dmin and Dma, are relatively large; or
else, this indicates that the marginal distribution of nonzero daily rainfall for most of the

months does not vary much in terms of shape.

3.4 Insearch for the “universal” rainfall model
3.4.1 Candidate models
The shape characteristics of nonzero daily rainfall, as empirical evidence suggests, vary not
only with location but also by month; this implies that the consistent probabilistic
modelling of nonzero daily rainfall demands different models for different areas and
possibly for different months. So it would be of paramount importance if a single
parametric distribution can be used for nonzero daily rainfall for all months and for the
whole world. The fact that distributional shape varies excludes, in principle, distributions
with fixed shape, thus favouring those with great shape flexibility. Additionally, it is
reasonable to assume that a competitive model should also be physically consistent with
rainfall, i.e., defined in the positive real axis, and if possible having a theoretical basis. In
this direction, in a previous study [Papalexiou and Koutsoyiannis, 2012] the principle of
maximum entropy was used to derive consistent distributions for geophysical random
variables. These entropy derived distribution were tested in their ability to describe the
nonzero daily rainfall (but not in a monthly basis) using more than 10 000 stations with
very good results.

The distributions derived in the aforementioned study, and also used here are the
Burr type XII distribution (BrXII) [Burr, 1942; Tadikamalla, 1980] and the Generalized
Gamma distribution (GG) [Stacy, 1962]. Their probability density functions are given,
respectively, by

1

fBrXII(x) = %(%) i [1 +7, (%j | J . x>0 (3.1)

v (=2 (=)
fGG(x)_ﬁF(yl/yz)(ﬁJ eXp[ (ﬁ” = .
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Note that the parameterization used here for the BrXII is different from the most typical
found in the literature; first, it clearly shows its asymptotic behaviour (for y, -0 the
Weibull distribution emerges) and second, the two shape parameters are directly related to
each of the distribution tails (left and right). Regarding the parameterization of GG
distribution it is mentioned that other forms also exist but this is one of the commonly
used.

Both distributions are very flexible, each comprising one scale parameter 3 > 0, and
two shape parameters. The shape parameter y; > 0 controls the behaviour of the left tail,
i.e., for y1 <1 the distributions are J-shaped while for y, > 1 they are bell-shaped; the
parameter y, > 0 controls the asymptotic behaviour of the right tail, i.e., the “heaviness” of
tail and thus the frequency and the magnitude of extreme events. It is noted that although
these two distributions have a structural similarity in terms of their parameters, in
principle, they differ, i.e., the BrXII distribution is a power-type distribution having finite
moments up to order 1/y, while the GG distribution is of exponential form with all of its
moments finite. Some well-known special cases worth mentioning for the BrXII
distribution are the Pareto type II and the Weibull distributions (limiting case), while for
the GG distribution, special cases are the Weibull, the Gamma and the Exponential

distributions.

3.4.2 A first approach based on L-moments
There are some useful graphical tools, especially when dealing with a large number of

records, which help to provide an overall and general picture of the studied variable from a
statistical point-of-view. Such a tool for identifying suitable distributions for the variable
under investigation is the L-moments ratio diagram [see e.g., Vogel and Fennessey, 1993;
Peel et al., 2001]. Essentially, this diagram provides a comparison between observed
statistics calculated from the records and the theoretical ones emerging by the distribution
under investigation. Practically, any pair of L-ratios could be used to form an L-ratio
diagram; yet the most common pairs are the L-skewness vs. L-variation or the L-kurtosis
vs. L-skewness, with the latter being more popular in the literature as L-variation is not well
defined for some distributions, e.g., for distributions with mean value zero or negative.
Nevertheless, as noted, L-variation is well defined for positive random variables and is
more robust than L-kurtosis.

L-ratios as functions of the distribution’s shape parameters are essentially measures
of shape. Thus, in an L-ratio diagram a distribution with none, one or two shape

parameters forms, respectively, a point, a line or an area. Consequently, the
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aforementioned distributions, in any L-ratio diagram, form an area (denoted as L-area)
whose extent is finite (does not cover the entire plane). Here the L-skewness vs. L-variation
diagram is used aiming to form the theoretical L-area of the BrXIl and the GG
distributions and calculate the percentage of the observed L-points that lie within the L-
area of each distribution and for each month. An observed point that lies within the
distribution’s theoretical L-area implies that specific parameter values exist so the
distribution can reproduce the first three L-moments. Practically, the theoretical L-area of
a distribution is formed using equations of 7; and 7;. Unfortunately, analytical L-moment
expressions for the GG distribution do not exist; exception is the first L-moment (identical

with the mean value) and is given by

A= ﬁr[“—yl}/r(ﬁj (3.3)
v, )\

where I'(a) = IO t*" exp(~t)dt is the Gamma function. In contrast, solving the L-moments

definition integrals [see e.g., Hosking, 1990] for the BrXII distribution results in the

following expressions:
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1
where B(a,la)zj0 t*'(1—t)""dt is the Beta function. The two parametric equations

7, =g,(y,,y,) given in Eq. (3.5) and Eq. (3.6) can be used to implicitly determine the L-
area. Functions of this form, and in this particular case, can be easily plotted by fixing one
parameter to a specific value, varying the other in a dense grid and plotting the resulting

(12, 13) points. The method for determining the theoretical L-area covered by the GG
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distribution is exactly the same, with the only difference that (72, 75) points are calculated
by the numerical integration of the L-moments integrals.

The theoretical BrXII and GG L-areas are depicted in Figure 3.8, with several fixed-
value parameter lines also plotted. For the BrXII distribution values ranging from 1 to 10
(lower bound) denote fixed y, parameter values while those ranging from 0.1 to 0.9 (upper
bound) denote fixed y, parameter values. Similarly, for the GG distribution values ranging
from 0.5 to 6 (lower bound) denote fixed y; parameter values while those ranging from 0.5
to 10 (within the area) denote fixed y, parameter values. The observed L-points of the
nonzero daily rainfall for the month of January are also shown in Figure 3.8, superimposed
over the L-areas (graphs for individual months as well as for the nonzero daily rainfall of all
months are given in Appendix C). At each plot empirical points are colored in three ways;
the red-colored points lie outside the area; the dark-colored indicate a Bell-shaped
distribution; the light-colored indicate a J-shaped distribution. Interestingly, the GG and
the BrXII distributions are complementary in the sense that the observed L-points not
belonging to one’s area belong to the other’s, implying that just these two distributions can
describe all records analysed here. Note that both distributions are special cases of the
Generalized Beta of the second kind distribution [see e.g., Mielke Jr and Johnson, 1974;
Papalexiou and Koutsoyiannis, 2012], but this distribution is more complicated as it

comprises one scale and three shape parameters.
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Figure 3.8. Observed L-points for the month of January of the 14 157 daily rainfall records studied
in comparison to the theoretical L-areas of (a) the BrXII distribution and (b) the GG distribution.
Red-colored L-points lie outside the L-area; dark-colored indicate a Bell-shaped distribution; light-
colored indicate a J-shaped distribution.
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Particularly, Figure 3.9 shows the estimated percentages of the observed L-points of
monthly daily rainfall lying within the area as well as the percentages of J- and Bell-shaped
distributions that would emerge if the distributions were actually fitted. It is apparent that
both distributions, especially the GG distribution, perform very well. For example, the GG
distribution describes 99.2% of the observed L-points for the values of all months, while the
lowest percentage, observed in January, remains very high, ie., 94.2%. The BrXII
distribution also performs well by managing to describe 90.0% of the observed L-points for
the values of all months and with its lowest percentage observed in May with 81.0%. It is
noted that the actual percentages of the observed points that lie within the theoretical areas

are expected to be even higher if larger samples were available.
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Figure 3.9. Percentage of empirical L-points lying within the L-areas of the GG and the BrXII

distributions.

Clearly, the variability of the statistics decreases with increasing sample size and thus
many points that lie outside the area actually would not if the sample was larger. Actually,
this is the reason why the percentage of the observed L-points for the values of all months
is higher than those of individual months. Finally, it may seem peculiar that the
percentages of J-shaped GG distributions are significantly lower (almost half) compared to
those of the BrXII distributions. This implies that for the same record a J- and a Bell-
shaped distribution may be fitted equally well in terms of L-moments. Note that a density

function f(x) is called J-shaped if the value of flx) at its lower bound (zero for positive
random variables) is the maximum, i.e., f 0)= max(f(x)), otherwise, the distribution is

called Bell-shaped. This simple criterion may however be meaningless in several practical

situations, e.g., two GG distributions with y, values a little less and a little more than 1
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would be characterized, respectively, as J- and Bell-shaped, yet apart from this difference
they are almost identical.

The previous analysis gave a clear indication that both the GG and the BrXII
distributions are very good models for describing rainfall. Yet an important and more
specific question that naturally arises is if a single distribution can be used to describe all
months within the same station; in order to answer this question an analysis by record has
to be performed. To clarify, each record has 12 L-points, one for each month, so the idea is
to estimate the number of monthly L-points per station that lie within the theoretical L-
area. For example, if all monthly points of a station lie within the distribution’s area, then
this distribution could be used for all months in this particular station. The results are
shown in Figure 3.10. Evidently, in this test the GG distribution performs much better than
the BrXII, as it can be used as an all-month model for 78.8% of the stations, a percentage
almost double than the corresponding one to the BrXII distribution which is 43.2%.
Additionally, the percentage of record in which the GG distribution is suitable for more
than ten months is very high, i.e., 95.6% while the corresponding one for the BrXII it has

significantly increased to 69.5%.
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Figure 3.10. Percentage of records vs. the number of monthly L-points per station lying within the
theoretical L-areas of the GG and the BrXII distributions.
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3.4.3 The actual fitting
The previous analysis showed that both distributions can describe a very large percentage

of the records in terms of the first three L-moments. Additionally, it is very important to
study the actual values of the shape parameters, especially of the parameter y, as it controls
the extreme behaviour. As noted though, the GG distribution does not have analytical L-
moments equations while in the BrXII case, where analytical formulas exist, the resulting
system of equations between theoretical and sample estimates can only be solved
numerically. So it is clear that explicit functions, easily applicable, of the form 0 = g(A1,72,73)
that relate any of the distribution’s parameter ¢ with the first three L-moments measures
cannot be formed.

To overcome this issue and in order to create an accurate and fast fitting method for
both distributions, based on L-moments, a solution is inspired by the way engineers and
statisticians used to practice in the past (or even at present) using the “good-old” graphical
tools (e.g., nomograms). For example, the shape parameters y; and y, can be approximately
estimated by placing an observed (12,73) point within the L-ratio diagram in Figure 3.8 and
do an “eyeball” linear regression using the nearest fixed-value parameter lines surrounding
the observed point. Essentially, our approach is an accurate and computerized version of
this technique, i.e., the algorithmic “translation” of a (72,73) point to a (y1,y.) point. The
basic idea is to “replace” the initial functions of L-variation and L-skewness, which are
highly nonlinear and without analytical expressions in the GG case, with simple linear
interpolation functions that can be more easily handled. First, the 7, =g(y1,y.) and
73 = g3(y1,)2) are calculated from the initial expressions (g; and gs are analytical expressions
or integrals numerically estimated) in a very dense and appropriately selected grid of (y1,y2)
points; and second, from the (y1,y2,72) and (y1,92,73) points two bivariate linear interpolation
functions are formed, ie., 7> =h:(y1,y2) and 75 = hs(y1,y.) (note that any mathematical
software creates easily bivariate interpolation functions). Replacing 7, and 7; in these
equations with their counterpart estimates 7, and 7, a square error norm can be formed
that can be numerically minimized. Particularly, the estimated shape parameters y, and y,

are those emerging by the following expression

(Y1>Y2)zargminZ(hj(%’%)_%j)z (3.7)

YisYa j=2

Once the parameters y; and y, are estimated for either distribution the trivial scale

parameter 3 can be directly estimated from the corresponding expression of the first L-
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moment A, given in Eq. (3.3) and Eq. (3.4). As a final technical detail it is noted that the
titting method was tested to millions of random points to assess its accuracy and to define
the parameters’ range where the method works essentially without estimation error. It was
observed that for the GG distribution these ranges are 0.2<y, <10 and 0.1<y, <10, while
for the BrXII distribution they are 0.2<y <10 and 0.001<y, <0.9. If the fitting

procedure resulted in parameters outside these ranges it was considered inaccurate.
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Figure 3.11. Estimated shape parameters of the GG and BrXII distributions using the method of L-

moments.

The estimated values of the shape parameters for both distributions are presented in
the form of box plots in Figure 3.11 while some of their basic summary statistics are given
in Appendix C in Table C.1. Considering the theoretical range of the parameters, i.e., (0,
o), of both parameters and for both distributions it is apparent that they actually vary in a
narrow range as the 95% empirical confidence intervals indicate in Figure 3.11 (outer
fences of the whiskers). For the GG distribution the median of the parameter y, for all
months ranges from 1.08 to 1.23 while for all month and for most of the records y; > 1
indicating bell-shaped densities. The average of all monthly medians of the parameter ; is
approximately 0.59 with the majority of records having y, < 1 indicating a heavier tail than
the exponential or the Gamma tail [see also Papalexiou et al., 2013]. The median values of

the BrXII y, parameter for all months are close to 1; actually the average of all monthly
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medians is 0.97, a value very close to the Pareto type II value, i.e., y; = 1. Additionally, it is
noted that more than 50% of the records have y; <1 indicating J-shape densities and
verifying also the results presented in Figure 3.9. Finally, the monthly median values of the
y» parameter vary in a narrow range, i.e., form 0.19 to 0.25, while the upper limit in the 95%

ECI is for all months (except January) less than 0.5, indicating finite variance distributions.

3.4.4 Performance of the models
The GG distribution as the analysis showed is able to describe more records than the BrXII.

Yet as the two distributions differ significantly in the behaviour of the tail, as the former is
of exponential form and the latter is power type, it is useful to compare them in terms of
some fitting error measures. Obviously, the comparison is possible only for the samples in
which both distributions were fitted. For example Figure 3.12 presents a probability plot of
the fitted distributions to the (nonzero) daily rainfall values of a station (station code
CA006158350). Clearly, both distributions fit well and it is evident that the BrXII
distribution has a heavier tail and thus for small exceedance probabilities (large return

periods) predicts larger values.
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Figure 3.12. Probability plot of the fitted distributions to a specific station (station code
CA006158350) using the method of L-moments.
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In order to evaluate and compare the fitting performance of the distributions the

following four error measures are defined:

ER-1= lzn:|Axm| (3.8)

M in

1 n
ER-II = ;i_§+l|Ax(i)| (3.9)
ER-IIT = max(|Ax|,.... [ Ax,, | (3.10)
ER-IV = 201 (3.11)

X (n)

where Ax, =x(l.)—fc(i) is the difference between the predicted value x; and its

corresponding observed one %, with the index i indicating the position in the ordered

(i
sample, i.e., X, <,...,<X, . The predicted value is estimated by the quantile function of
each distribution, ie., x, =Q(p,), using the corresponding empirical probability
according to the Weibull plotting position, i.e., p,=i/(n+1).

Thus, ER-I is the mean value of the absolute differences of all sample values and
provides an overall measure of fitting performance; ER-II is focused on the last m largest
sample values and may be seen as a fitting measure to the extreme values or to the tail (here
m = 10); ER-III is the absolute maximum difference identified between observed and
predicted values and does not necessarily correspond to the sample’s maximum value; ER-
IV is focused on the percentage difference between the predicted maximum value and the
maximum observed value with negative and positive differences implying, respectively,
underestimation or overestimation of the maximum value by the fitted distribution.

The results are presented in Figure 3.13 (box plots of the four error measures for the
values of all months) and in Figure 3.14 (box plots for the individual months).
Additionally, Table 3.2 shows, for all months and for individual months, the number of
records that were actually compared (both distributions fitted) as well as the averages of the

€Iror measures.
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Figure 3.13. Box plots of the error measures that evaluate the fitting performance of the GG and
BrXII distributions to daily rainfall of all months.
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Figure 3.14. Box plots of the error measures of the fitting of the GG and BrXII distributions to the

monthly daily rainfall records.

In general, as the box plots and the values of Table 3.2 reveal, the GG distribution
according to all error measures performs better than the BrXII. A focus on the ER-IV,
which estimates the percentage difference between the predicted and the observed
maximum value, indicates that the GG distribution performs exceptionally well. For

example for all months (Figure 3.13) this estimate is essentially unbiased while the 95% ECI
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is between —45.6% and 52.2%; in contrast, the BrXII overestimates the maximum on
average 28.2% (see Table 3.2) while the 95% ECI is much wider, i.e., from -35.9% to
120.0%. Yet the performance of the BrXII distribution improves for each specific month
separately (Figure 3.14) where the average overestimation per month for the BrXII is 4.7%
(estimated form the values of Table 3.2) while the GG distribution underestimates on

average the maximum value by —2.2%.

Table 3.2. Mean values of the error measures evaluating the fitting performance of the
distributions, as well as percentage values of records in which the GG was better fitted compared to
Burr XII.

All Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

FitNo. 12413 10474 10684 10769 10754 10750 10879 10877 11041 11124 10967 10457 10396

Mean values of the error measures for the GG distribution

ER-I 1.4 1.0 1.0 1.0 0.9 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0
ER-II 14.1 55 55 55 4.9 5.2 5.7 59 5.8 59 55 5.0 5.1
ER-III 382 189 186 190 170 178 202 201 200 203 195 175 178
ER-IV 0.7 -6  -16 -22 -21 -7 27 -1.7 -24 -2.7 -3.1 -22 -2.2

Mean values of the error measures for Burr XII distribution

ER-I 2.2 1.1 1.2 1.1 1.0 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1
ER-II 25.4 5.8 59 59 52 5.6 6.1 6.3 6.2 6.1 5.8 53 54
ER-III 620 198 199 201 179 188 21.0 21.3 209 209 201 182 18.6
ER-IV 28.2 5.8 5.2 4.5 4.2 4.9 4.2 5.5 4.7 4.1 3.6 4.6 5.0

Percentage values that the GG distribution was better fitted compared to Burr XII (%)

ER-I 8§7.0 808 809 779 778 762 746 796 776 754 771 780 784
ER-1I 79.2 658 661 629 625 633 613 652 632 593 606 63.6 649
ER-III 69.5 599 602 566 564 568 551 587 568 541 541 583 58.6
ER-IV 67.0 558 558 531 539 533 525 555 542 525 51.7 549 553

Finally, the percentage of the records in which the GG distribution was better fitted
according to the four error measures are also given in Table 3.2 while a side-by-side
comparison of the two distributions is presented in Figure 3.15. Apparently, the GG
distribution performs better especially according to ER-I which evaluates the overall fitting.
Comparing the percentages of the two distributions, shown in Figure 3.15, it is observed
that the GG distribution improves even more its performance over the BrXII distribution
at the daily rainfall compared to the monthly daily rainfall. This might be an extra
argument for the GG distribution as the daily rainfall samples are much larger in size than

the monthly samples and thus the parameter estimation is more accurate in this case.
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Figure 3.15. Comparison of the fitting performance of the two distributions; the values within the
bars indicate the percentage of stations in which each distribution was better fitted according to the

€rror measures.

3.5 Summary and conclusions
This study investigates the seasonal variation of daily rainfall focusing on the properties of

its marginal distribution. The two major questions set are: (a) which statistical
characteristics of daily rainfall vary the most over the months and how much, and (b)
whether or not there is a relatively simple probability model that can describe the nonzero
daily rainfall at every month and every area of the world. In order to treat these questions a
massive analysis is performed of more than 170 000 monthly daily rainfall records from
more than 14 000 stations from all over the globe.

Regarding the first question, the variation in the two hemispheres of four statistics is
investigated; specifically, of probability dry and of three representative characteristics of the
marginal distribution of nonzero daily rainfall, i.e., the mean value, the L-variation and the
L-skewness. In general, a typical sinusoidal-like pattern was revealed (see Figure 3.2) for all

statistics and for both hemispheres, with a surprising exception in the probability dry of the
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SH where a more complicated picture is observed. Additionally, to explore the monthly
variation in detail at each record a test for seasonality is proposed and applied, i.e., the SV-
Test. Application of the SV-Test revealed a clear monthly variation in probability dry and
in the mean value of nonzero daily rainfall in 95.1% and in 91.7%, respectively, of the
stations studied (see Figure 3.5); the corresponding percentages of the shape
characteristics, i.e., of L-variation and L-skewness, were 66.1% and 54.2%, respectively,
these results if combined with the general picture obtained by the analysis in the
hemispheres indicate that, in general, the shape characteristic vary too. The monthly
variation of those statistics at each station was quantified by various deviation measures
with respect to the average of all months (see Figure 3.7). The analysis showed that the
highest monthly variation is observed in the mean value of nonzero rainfall followed by
probability dry, L-skewness and finally by L-variation, implying that although the shape
characteristics vary, their variability is much less than that of the mean value and the
probability dry.

Regarding the second question the performance of two flexible distributions was
assessed; specifically, one power-type, the Burr type XII distribution, and one of
exponential form, the Generalized Gamma. In order to check the suitability of these
distributions for the nonzero daily rainfall, first, L-moments ratio diagrams were used to
evaluate their potential to describe or reproduce the observed shape characteristics of all
records; and second, these distributions were actually fitted and the parameters were
estimated for all records. For the huge number of records analysed both distributions
performed very well. Particularly, the Burr type XII in the worst case, i.e., in November,
managed to describe 79.1% of the records (see Figure 3.9); the corresponding value for the
Generalized Gamma distribution was observed in January and was 94.2% while this
distribution was able to describe the shape characteristics for all months in 78.8% of the
stations (see Figure 3.10). Finally, the two distributions were compared to each other using
various error measures and the Generalized Gamma performed better in most of the cases
(see Figure 3.15).

The implications of this study are: (a) the marginal distribution of daily rainfall varies
over the months and over location suggesting the necessity for a flexible probability model;
(b) the seasonal and the spatial variability observed in the shape characteristics points out
that the commonly used two-parameter models, e.g., the Gamma, the Weibull, the
Lognormal, the Pareto, etc. cannot serve as “universal” models for the daily rainfall; (c) the

density function of daily rainfall may significantly differ not only in its general shape, i.e., J-

50



shaped or Bell-shaped, but also in its tail behaviour; this dictates that a “universal”
probability model for daily rainfall must have at least two shape parameters, one to control
the left tail and one to control the right tail; (d) two simple models with the above
characteristics that perform very well are the Burr type XII distribution and the
Generalized Gamma distribution with the latter performing even better than the former
providing thus an excellent model choice; (e) using only these two distributions, having
some of their characteristics complementary to each other, the entire dataset can be
modelled for all months and all stations; and (f) the shape parameter y, of the Generalized
Gamma distribution, which controls the right tail and thus the extreme values, for the vast
majority of records analysed is y, < 1, with 1 corresponding to the Gamma distribution;
this implies that some of the most commonly used exponential-tail distributions like the
Exponential, the Gamma or mixed Exponentials may constitute a dangerous choice and
should not be used unjustifiably in practice as they can severely underestimate the

magnitude and the frequency of the extreme daily rainfall.
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CHAPTER 4

“...the premise of probability simultaneously postulates
the existence of the improbable.”

CARL GUSTAV JUNG

A FOCUS ON THE DISTRIBUTION TAILS
OF DAILY RAINFALL

ABSTRACT

The upper part of a probability distribution, usually known as the tail, governs both the
magnitude and the frequency of extreme events. The tail behaviour of all probability
distributions may be, loosely speaking, categorized in two families: heavy-tailed and light-
tailed distributions, with the latter generating “milder” and less frequent extremes
compared to the former. This emphasizes how important for hydrological design it is to
assess the tail behaviour correctly. Traditionally, the wet-day daily rainfall has been
described by light-tailed distributions like the Gamma distribution, although heavier-tailed
distributions have also been proposed and used, e.g., the Lognormal, the Pareto, the Kappa,
and others. This study investigates the distribution tails for daily rainfall by comparing the
upper part of empirical distributions of thousands of records with four common theoretical
tails: those of the Pareto, Lognormal, Weibull and Gamma distributions. Specifically,
15 029 daily rainfall records are used from around the world with record lengths from 50 to
172 years. The analysis shows that heavier-tailed distributions are in better agreement with
the observed rainfall extremes than the more often used lighter tailed distributions. This

result has clear implications on extreme event modelling and engineering design.
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4.1 Introduction
Heavy rainfall may induce serious infrastructure failures and may even result in loss of

human lives. It is common then to characterize such rainfall with adjectives like
“abnormal”, “rare” or “extreme”. But what can be considered “extreme” rainfall? Behind
any discussion on the subjective nature of such pronouncements, there lies the
fundamental issue of infrastructure design, and the crucial question of the threshold
beyond which events need not be taken into account as they are considered too rare for
practical purposes. This question is all the more pertinent in view of the EU Flooding
Directive’s requirement to consider “extreme (flood) event scenarios” [European
Commission, 2007].

Although short term prediction of rainfall is possible to a degree (and useful for
operational purposes), long term prediction, on which infrastructure design is based, is
infeasible in deterministic terms. Thus, rainfall is treated here in a probabilistic manner,
i.e., it is considered as a random variable (RV) governed by a distribution law. Such a
distribution law enables to assign a return period to any rainfall amount, so that it could be
then reasonably argued that a rainfall event, e.g., with return period 1000 years or more, is
indeed an extreme. Yet, which distribution law is the appropriate is still a matter of debate.

The typical procedure for selecting a distribution law for rainfall is to (a) try some of
many, a priori chosen, parametric families of distributions, (b) estimate the parameters
according to one of many existing fitting methods, and (c) choose the one best fitted
according to some metric or fitting test. Nevertheless, this procedure does not guarantee
that the selected distribution will model adequately the tail, which is the upper part of the
distribution that controls both the magnitude and frequency of extreme events. On the
contrary, as only a very small portion of the empirical data belongs to the tail (unless a very
large sample is available), all fitting methods will be “biased” against the tail, since the
estimated fitting parameters will point towards the distribution that best describes the
largest portion of the data (by definition not belonging to the tail). Clearly, an ill-fitted tail
may result in serious errors in terms of extreme event modelling with potentially severe
consequences for hydrological design. For example, in Figure 4.1 where four different
distributions are fitted to the empirical distribution tail, it can be observed that the

predicted magnitude of the 1000-year event varies significantly.
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Figure 4.1. Four different distribution tails fitted to an empirical tail (P, LN, W and G stands for the
Pareto, the Lognormal, the Weibull and the Gamma distribution). A wrong choice may lead to

severely underestimated or overestimated rainfall for large return periods.

The distributions can be classified according to the asymptotic behaviour of their tail
in two general classes: (a) the subexponential class with tails tending to zero less rapidly
than an exponential tail (here the term “exponential tail” is used to describe the tail of the
exponential distribution), and (b) the hyperexponential or the superexponential class, with
tails approaching zero more rapidly than an exponential tail [Teugels, 1975; Kliippelberg,
1988, 1989]. Mathematically, this “intuitive” definition of the subexponential class for a

distribution function F is expressed as

xﬁﬁ:w, V>0 (4.1)
while several equivalent mathematical conditions in order to classify a distribution as
subexponential have been proposed [see e.g., Embrechts et al, 1997; Goldie and
Kliippelberg, 1998]. Furthermore, this is not the only classification, as several other exist
[see e.g., El Adlouni et al., 2008 and references therein]. In addition, many different terms
have been used in the literature to refer to tails “heavier” than the exponential, e.g., “heavy
tails”, “fat tails”, “thick tails”, or, “long tails”, that may lead to some ambiguity: see for
example the various definitions that exist for the class of heavy-tailed distributions
discussed by Werner and Upper [2004]. Here, the term “heavy tail” is used in an intuitive

and general way, i.e., to refer to tails approaching zero less rapidly than an exponential tail.
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The practical implication of a heavy tail is that it predicts more frequent larger
magnitude rainfall compared to light tails. Hence, if heavy tails are more suitable for
modelling extreme events, the usual approach of adopting light-tailed models (e.g., the
Gamma distribution) and fitting them on the whole sample of empirical data would result
in a significant underestimation of risk with potential implications for human lives.
However, there are significant indications that heavy tailed distributions may be more
suitable. For example, in a pioneering study Mielke [1973] proposed the use of the Kappa
distribution, a power-type distribution, to describe daily rainfall. Today there are large
databases of rainfall records that allow us to investigate the appropriateness of light or
heavy tails for modelling extreme events. This is the subject in which this paper aims to

contribute.

4.2 The dataset
The data used in this study are daily rainfall records from the Global Historical

Climatology Network-Daily database (version 2.60, www.ncdc.noaa.gov/oa/climate/ghcn-
daily) which includes over 40 000 stations worldwide. Many of the records, however, are
too short, have many missing data, or, contain data suspect in terms of quality (for details
regarding the quality flags refer to the Network’s website above).

Thus, only records fulfilling the following criteria were selected for the analysis: (a)
record length greater or equal than 50 years, (b) missing data less than 20% and, (c) data
assigned with “quality flags” less than 0.1%. Among the several different quality flags
assigned to measurements, the data were screened against two: values with quality flags “G”
(failed gap check) or “X” (failed bounds check) which are used to flag suspiciously large
values, i.e., a sample value that is orders of magnitude larger than the second larger value in
the sample. Whenever such a value existed in the records it was deleted (this however
occurred in only 594 records in total, and in each of these records typically one or two
values had to be deleted). Screening with these criteria resulted in 15 137 stations. The
locations of these stations as well as their record lengths can be seen in Figure 4.2 while
Table 4.1 presents some basic summary statistics of the nonzero daily rainfall of those
records (for further details on the dataset please Appendix B).

It is noted that none of the missing values was filled because this would be
meaningless for this study which focuses on extreme rainfall as any regression-type
technique would underestimate the real extreme values. Missing values only affect the
effective record length and, given the relatively high lower limit of record length set (50

years, while much smaller records are often used in hydrology, e.g. 10-30 years), the
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resulting problem is not serious. Additionally, the percentage 20% of missing daily values
refers to the worst case and actually it is much smaller in the majority of the records; thus

missing values cannot alter or modify the conclusions drawn.

Table 4.1. Some basic statistics of the 15 137 records of daily rainfall. For each record the statistics

of the first row were estimated. Apart from probability dry (Pay) these statistics are for the nonzero

daily rainfall.
Pyry (%) Nonzero values No. Median (mm) Mean (mm)  SD (mm) Skew
min 15.11 320 0.40 1.00 1.76 1.37
Qs 53.92 2121 1.70 3.61 5.01 2.36
Qs 68.55 4038 3.00 6.18 8.28 2.85
Qso 76.35 5973 4.80 9.27 12.08 3.28
Qs 83.65 8497 6.90 12.65 16.42 3.94
Qos 91.36 13 060 10.20 17.75 24.25 5.38
max 98.25 27 867 25.70 83.96 158.02 26.31
Mean 75.13 6 604 5.18 9.77 12.97 3.56
SD 11.46 3508 2.70 4.60 6.20 1.31
Skew -0.74 1.12 1.03 1.16 1.88 5.58
—180%-140%100°-60° —=20° 20° 60° 100° 140° 180°
. - .'
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Figure 4.2. Locations of the stations studied (a total of 15 137 daily rainfall records with time series
length greater than 50 years). Note that there are overlaps with points corresponding to high record
lengths shadowing (being plotted in front of) points of lower record lengths.
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Finally, it is noted that the statistical procedure, described next, failed in a few
records, for reasons of algorithmic convergence or time limits. Excluding these records, the

total number of records where the analysis was applied is 15 029.

4.3 Defining and fitting the tail

The marginal distribution of rainfall, particularly at small time scales like the daily, belongs
to the so-called mixed type distributions, with a discrete part describing the probability of
zero rainfall, or the probability dry, and a continuous part expressing the magnitude of the
nonzero (wet-day) rainfall. As suggested earlier, studying extreme rainfall requires focusing
on the behaviour of the distribution’s right tail which governs the frequency and the
magnitude of extremes.

If rainfall is denoted with X, and the nonzero rainfall with X |X >0, then the
exceedance probability function (EPF; also known as survival function, complementary
distribution function, or tail function) of the nonzero rainfall, using common notation, is

defined as

P(X>x|X>0)= FX|X>O (%) = 1= Fyy (%) (4.2)

where Fxix-o(x) is any valid probability distribution function chosen to describe nonzero
rainfall. It should be clear that the unconditional EPF is easily derived if the probability dry

po is known: F,(x)=(1— pO)FX|X>O(x). Since the focus is on the continuous part of the
distribution, and more specifically on the right tail, from this point on, for notational

simplicity the subscript in fxl v0(X) is omitted, denoting thus the conditional EPF function

simply as F(x). To avoid ambiguity due to the term “tail function” for EPF, it is clarified
that the term “tail” is used to refer only to the upper part of the EPF, i.e., the part that
describes the extremes.

At this point, however, it is necessary to define what can be considered as the upper
part. A common practice is to set a lower threshold value x. [see e.g., Cunnane, 1973;
Tavares and Da Silva, 1983; Ben-Zvi, 2009] and study the behaviour for values greater than
x1. Yet, there is no universally accepted method to choose this lower value. A commonly
accepted method (known as partial duration series method) is to determine the threshold
indirectly based on the empirical distribution, in such a way that the number of values
above the threshold equals the number of years N of the record [see e.g., Cunnane, 1973].

The resulting series, defined in this way, is known in the literature as annual exceedance
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series and is a standard method for studying extremes in hydrology [see e.g., Chow, 1964;
Gupta, 2011].

This may look similar to another common method, in which the N annual maxima of
the N years are extracted and studied. However, the method of annual maxima, by selecting
the maximum value of each year may distort the tail behaviour (e.g., when the three largest
daily values occur within a single year, it only takes into account the largest of them). For
this reason, instead of studying the N daily annual maxima, the focus is on the N largest
daily values of the record assuming that these values are representative of the distribution’s
tail and can provide information for its behaviour. Thus, the method adopted here has the
advantage of better representing the exact tail of the parent distribution.

It is worth noting that a common method of studying series above a threshold value
is based on the results obtained by Balkema and de Haan [1974] and Pickands III [1975].
According to these results, loosely speaking, as this threshold tends to infinity, the
conditional distribution above the threshold converges to the Generalized Pareto which
includes, as a special case, the Exponential distribution. It is noted though, that these
results are asymptotic results, i.e., valid (or providing a good approximation) if this
threshold value tends to infinity (or if it is very large). In the case where the parent
distribution is of power type or of exponential type, the theory is applicable even for not so
large threshold values because the convergence of the tail is fast. In other cases, e.g.,
Lognormal or stretched exponential distributions, the convergence is very slow. The same
applies to the classical extreme value theory (EVT), which predicts that the distribution of
maxima converges to one of the three extreme value distributions. For some examples
illustrating the slow convergence to the asymptotic distributions of EVT (the same
philosophy applies for Balkema-de Haan-Pickands theorem) see, e.g., Papalexiou and
Koutsoyiannis [2013] and Koutsoyiannis [2004a].

Given that each station has an N-year record of daily values and a total number # of

nonzero values, the empirical EPF F, (x,), conditional on nonzero rainfall, is defined as the

empirical probability of exceedance (according to the Weibull plotting position)

F(x,)=1-1%%) (4.3)
n+1

where r(x;) is the rank of the value x; ie., the position of x; in the ordered sample

X ... < x,, of the nonzero values. Thus the empirical tail is determined by the N largest

(n)

nonzero rainfall values of fN (x,) with n—N+1<i<n (note that x, =x ). Some basic

(n—N+1)
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summary statistics of the series of the N largest nonzero rainfall values are presented in
Table 4.2.

Table 4.2. Some basic statistics of the 15 137 tail-samples defined for an N-year record as the N

largest nonzero values. For each tail-sample the statistics of the first row were estimated.

Tail values No. Median Mean SD Max
min 50 8.90 10.42 3.01 21.50
Qs 52 28.30 31.71 8.61 68.60
Qx5 61 43.55 48.24 13.85 110.00
Qso 70 62.75 69.12 19.01 152.40
Qss 97 85.30 93.72 27.59 218.40
Qo5 122 130.30 144.70 47.48 357.60
max 172 977.00 1041.02 395.96 1750.00
Mean 79 68.78 76.01 22.50 175.06
SD 23 34.84 38.20 13.21 93.42
Skew 0.80 2.73 2.58 3.55 1.79

Obviously the number of nonzero daily rainfall values is n=(1-p,)n,N where

na = 365.25 is the average number of the days in a year. According to the Weibull plotting
position given in Eq. (4.3) the exceedance probability p(x,) of x. will be

n—-N+1_ N N 1
n+l (I-p)nyN+1 (1-p,)n,

plx)=1- (4.4)
This shows that the exceedance probability of the threshold x. depends only on the
probability dry po. Interestingly, the average po of the records analysed in this study is
approximately 0.75 which implies that the exceedance probability of xi is on average as low
as 0.01, while even for p, = 0.95 its value is 0.055. It is reasonable to assume that values
above this threshold can be assumed that belong to the tail of the distribution. It is noted
that there are studies [see e.g., Begueria et al., 2009] where the threshold value was chosen
to correspond to the 90th percentile, a value much smaller than the one corresponding to
our choice of threshold. Section 4.6 refers further to the selection of the threshold, also in
comparison with different methods of selection.

The fitting method followed here is straightforward, i.e., directly fitting and
comparing the performance of different theoretical distribution tails to the empirical tails
estimated from the daily rainfall records previously described. The theoretical tails are
fitted to the empirical ones by minimizing numerically a modified mean square error

(MSE) norm N1 defined as
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1By 2
Nl—N' > [ 1} (4.5)

i=n—N+1 FN (-x(i))

A complete verification of the method and a comparison with other norms is presented in
section 4.6. At this point it is only noted that its rationale (and advantage over classical
square error norms) as it properly “weights” each point that contributes in the sum.
Namely, it considers the relative error between the theoretical and the empirical values
rather than using the x values themselves. For example, considering the classical square
error, ie., (x,—x,)*, with x, denoting the quantile value for probability u equal to the
empirical probability of the value x;, then large values would contribute much more to the
total error than the smaller ones. This may be a problem especially for rainfall records
where the values usually differ more than one order of magnitude is, e.g., from 0.1 mm to
more than 100 mm. Obviously, the best fitted tail for a specific record is considered to be

the one with the smallest MSE.
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Figure 4.3. Explanatory diagram of the fitting approach followed. The dashed line depicts a

Weibull distribution fitted to the whole empirical distribution points while the solid red line depicts
the distribution fitted only to the tail points.

The proposed approach, which fits the theoretical distribution only to the N largest
points of each dataset, ensures that the fitted distribution provides the best possible
description of the tail and is not affected by lower values. As an example of the fitting
method, Figure 4.3 depicts the Weibull distribution fitted to an empirical sample (the
station was randomly selected and has code IN00121070) by minimizing the norm given by

(4.5) in two ways, (a) in all the points of the empirical distribution and (b) in only the
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largest N points. It is clear that the first approach (dashed line) does not adequately
describe the tail.

It is well known that several other methods have been extensively used to estimate
the parameters of candidate distributions, e.g., the lognormal maximum likelihood and the
log-probability plot regression [Kroll and Stedinger, 1996], and more recently the log
partial probability weighted moments and the partial L-moments [ Wang, 1996; Bhattarai,
2004; Moisello, 2007]. Yet, the advantage of the proposed method is that any tail can be
fitted in the same manner and can be directly compared with other fitted tails since the
resulting MSE value can clearly indicate the best fitted; in the aforementioned methods an
additional measure has to be estimated in order to compare the performance of the fitted

distributions.

4.4 The fitted distribution tails
It is clear from the previous section that any tail can be fitted to the empirical ones.

Nevertheless, here four different and common distribution tails, i.e., the tails of the Pareto
type II (PII) the Lognormal (LN), the Weibull (W), and the Gamma (G) distributions, are
fitted and compared in terms of their performance. These distributions were chosen for
their simplicity, popularity, as well as for being tail-equivalent (or for having similar
asymptotic behaviour) with many other more complicated distributions. It is reminded
that two distribution functions F and G with support unbounded to the right are called tail-
equivalent if lim _ F(x)/G(x)=c with 0<c<oo.

The Pareto and the Lognormal distributions belong to the subexponential class and
are considered heavy-tailed distributions; the Weibull can belong to both classes depending
on the values of its shape parameter, while the Gamma distribution has essentially an
exponential tail but not precisely (see below). From a practical point of view, the ordering
of these distributions, from heavier to lighter tail, is: Pareto, Lognormal, Weibull with
shape parameter < 1, Gamma and Weibull with shape parameter > 1 [see e.g., El Adlouni et
al., 2008]. Note that Pareto is the only power-type distribution while the rest three are of
exponential form.

Specifically, the Pareto type II distribution is the simplest power-type distribution
defined in [0,e0). Its probability density function (PDF) and EPF are given, respectively, by

1 X %71
(X)) =—1+y— (4.6)
Il /3( yﬁj
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l?PII(x) = (1 + )/ﬁJ y (4.7)

and it is defined by the scale parameter 8 > 0, and the shape parameter y > 0 that controls
the asymptotic behaviour of the tail. Namely, as the value of y increases, the tail becomes
heavier and consequently extreme values occur more frequently. For y = 0 it degenerates to
the exponential tail while for y > 0.5 the distribution has infinite variance. Many other
power-type distributions are tail-equivalent, i.e., exhibiting asymptotic behaviour similar to
x"” with the Pareto type II tail, e.g., the Burr type XII [Burr, 1942; Tadikamalla, 1980] the
two- and three-parameter Kappa [Mielke Jr, 1973], the Log-Logistic [e.g., Ahmad et al.,
1988] and the Generalized Beta of the second kind [Mielke Jr and Johnson, 1974].

Another very common distribution used in hydrology is the Lognormal with PDF
and EPF, respectively,

1 X "
= —In*| = .
Jin () \/;yxexp{ n [ﬁ] } (4.8)

17y
F () %erf{ln[%) J (4.9)

where erfc(x)=2n" J "¢ dt. The distribution comprises the scale parameter 5 > 0 and

the parameter y > 0 that controls the shape and the behaviour of the tail. Lognormal is also
considered a heavy-tailed distribution (it belongs to the subexponential family) and can
approximate power-law distributions for a large portion of the distribution’s body
[Mitzenmacher, 2004]. Notice that the notation in Eq. (4.8) and Eq. (4.9) differs from the
common one and illustrates more clearly the kind of the two parameters (scale and shape).
The Weibull distribution, which can be considered as a generalization of the
exponential distribution, is another common model in hydrology [Heo et al., 2001a,b] and

its PDF and EPF are given, respectively, by

fi () = %{%}y exp{[%jy} (4.10)
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F,(x)= exp[—[%] ] (4.11)

The parameter f$ > 0 is a scale parameter, while the shape parameter y > 0 governs also the
tail’s asymptotic behaviour. For y < 1 the distribution belongs to the subexponential family
with a tail heavier than the exponential one, while for y > 1 the distribution is characterized
as hyperexponential with a tail thinner than the exponential. Many distributions can be
assumed tail-equivalent with the Weibull for a specific value of the parameter y, e.g., the
Generalized Exponential, the Logistic and the Normal.

Finally, one of the most popular models for describing daily rainfall is the Gamma
distribution [e.g., Buishand, 1978b], which like the Weibull distribution belongs to the
exponential family. Its PDF and EPF are given, respectively, by

1 X " X
_ x _x 4.12
Jol®) BT(y) ﬁj exp( /3] (412
F.(x)=T y,%j/l“(y) (4.13)

where F(a,x):J.wt“fleXp(—t)dt is the upper incomplete Gamma function and

I'(a) = '[Owt“lexp( —t)dt the Gamma function. Generally, it can be assumed that the Gamma

tail behaves similar to the exponential tail. Yet, this is only approximately correct as the
Gamma distribution belongs to a class of distributions [denoted as S(y); see e.g., Embrechts
and Goldie, 1982; Kliippelberg, 1989; Alsmeyer and Sgibnev, 1998] that irrespective of its
parameter values cannot be classified as subexponential, while it is not tail-equivalent with

the exponential. This can be seen from the fact that the lim fG(x) / G(x) is 0 for B< B

X—>0©

and oo for 3> f3,, where G(x) = exp(—x/ B;) is the exponential tail. Yet, it is noted that if

compared with an exponential tail with 8 = 3, then

— 0 0<y<l
imE® _ ) y=1 (4.14)
x%wG(x)
00 y>1
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Therefore, in this case, practically speaking, for 0 <y <1 the Gamma distribution has a
“slightly lighter” tail than the exponential tail as it decreases faster, while for y >1 it
exhibits a “slightly heavier” tail as it decreases more slowly than the exponential tail.
Finally, it is worth noting that the distributions compared here, and consequently
their tails have similarities in their structure as all have two parameters and specifically one
scale parameter and one shape parameter. Nevertheless, among the various distributions
with the same parameter structure, inevitably, some are more flexible than others. One way
to quantify this flexibility is by comparing them in terms of various shape measures (e.g.,
skewness, kurtosis, etc.). For example, the feasible ranges of skewness for the Pareto,
Lognormal, Weibull and Gamma are, respectively, (2, «), (0, «), (-1.14, o0) and (0, ).
Therefore, the Weibull distribution seems to be the most “flexible” distribution among
them and the Pareto the less. Yet, this argument is not valid when the focus is on the tail
because the general shape of the tail is basically similar and what differs is the rate at which

the tail approaches zero.
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Figure 4.4. Comparison of the fitted tails in couples in terms of the resulting MSE. The heavier tail

of each couple is better fitted to the empirical points in a higher percentage of the records.

4.5 Results and discussion
The basic statistical results from fitting the four distribution tails, following the

methodology described, to the 15 029 daily rainfall records are given in Table 4.3. In order
to assess which tail has the best fit, the four tails were compared in couples in terms of the
resulting MSE, i.e., the tail with the smaller MSE is considered better fitted. As shown in
Figure 4.4, the Pareto tail, when compared with the other three distributions, was better

titted in about 60% of the stations. Interestingly, the distribution with the heavier tail of
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each couple, in all cases, was better fitted in a higher percentage of the stations, which

implies a rule of thumb of the type “the heavier, the better”!

Table 4.3. Summary statistics from the fitting of the four distribution tails into the 15029 tail-

samples of daily rainfall.

Pareto Lognormal

MSE B y MSE B y
Min 0.002 0.42 0.001 0.002 1.22 0.531
Mode' 0.011 7.54 0.134 0.012 8.78 1.060
Mean 0.017 8.80 0.140 0.018 9.46 1.087
Median 0.021 9.51 0.145 0.022 10.59 1.107
Max 0.336 54.79 0.797 0.322 76.74 2.284
SD 0.015 4.92 0.076 0.015 6.44 0.214
Skew 2.910 1.23 0.495 2.755 1.73 0.561

Weibull Gamma

MSE B y MSE B y
Min 0.002 0.02 0.230 0.002 3.79 0.010
Mode 0.013 4.33 0.661 0.015 17.50 0.092
Mean 0.019 591 0.678 0.023 23.15 0.219
Median 0.022 6.88 0.692 0.032 28.18 0.294
Max 0.298 52.72 1.491 0.482 120.00 2.433
SD 0.015 4.69 0.139 0.034 17.30 0.269
Skew 2.151 1.82 0.668 4.377 1.65 2.567

"The mode was estimated from the empirical density function (histogram) after smoothing.

Another comparison revealing the overall performance of the fitted tails was based
on their average rank. That is, the fitted tails in each record were ranked according to their
MSE, i.e., the tail with the smaller MSE was ranked as 1 and the one with the largest as 4.
Figure 4.5 depicts the average rank of each tail for all stations. Again, the Pareto performed
best, while the most popular model for rainfall, the Gamma distribution, performed the
worst. The percentages of each distribution tail that was best fitted are: 30.7% for Pareto,
29.8%, for Lognormal, 13.6% for Weibull and 25.8% for Gamma. Again the Pareto
distribution is best according to these percentages; interestingly however, the Gamma
distribution has a relatively high percentage, higher than the Weibull. This does not
contradict the conclusion derived by the average rank. The explanation is that the Gamma
distribution was ranked as best in some cases, but when it was not the best fitted, it was

probably the worst fitted.
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Figure 4.5. Mean ranks of the tails for all records. The best-fitted tail is ranked as 1 while the worst-

fitted as 4. A lower average rank indicates a better performance.

Figure 4.6 and Figure 4.7 depict, respectively, the empirical distributions of the shape
and of the scale parameters of the fitted tails. It is well-known that the most probable values
are the ones around the mode, which for the Pareto shape parameter is 0.134. Interestingly,
this value is close to the one determined in a different context by Koutsoyiannis [1999]
using Hershfield’s [1961] dataset. This implies that power-type distributions, which
asymptotically behave like the Pareto, will not have finite power moments of order greater
than 1/0.134 = 7.5. Moreover, as the empirical distribution of the Pareto shape parameter
in Figure 4.6 attests, values around 0.2 are also common, implying the non-existence of
moments greater than the fifth order. This entails that sample moments of that or higher
order (sometimes appearing in research papers) may not exist. Regarding the Weibull tail,
the estimated mode of its shape parameter is 0.661, implying a much heavier tail compared
to the exponential one. Finally, it is worth noting that the estimated mode of the Gamma
shape parameter is as low as 0.092. The shape parameter of the Gamma distribution
controls mainly the behaviour of the left tail, resulting in J- or bell-shaped densities (loosely
speaking, the right tail is dominated by the exponential function and thus behaves like an
exponential tail). A value that low corresponds to an extraordinarily J-shaped density
which would be unrealistic for describing the whole distribution body of daily rainfall. In
other words, a Gamma distribution fitted to the whole set of points would most probably

underestimate the behaviour of extremes.
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Figure 4.6. Histograms of the shape parameters of the fitted tails.
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Figure 4.7. Histograms of the scale parameters of the fitted tails.
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The existence of geographical patterns that potentially define climatic zones, in the
best fitted tails, was also investigated, i.e., the existence of zones in the world where the
majority of the records were better described by one of the studied distribution tails. The
maps in Figure 4.8, which depict the locations of the stations where each distribution tail
was best fitted, did not unveil any regular patterns in terms of the best fitted distribution

but rather seem to follow a random variation.

@\ \ (b)

(c) % (d)

Figure 4.8. Geographical depiction of the 15 029 stations where the best fitted tail is (a) Pareto in
4621, (b) Lognormal in 4 486, (c) Weibull in 2 051, and (d) Gamma in 3 871.

Another way to investigate for geographical patterns, as the previous map did not
reveal any useful information, is to study the fitted tails grouped into two coarser groups:,
the subexponential group and the exponential-hyperexponential group. The former
includes the Pareto, the Lognormal and the Weibull with y <1 tails, while the latter
includes the Gamma and the Weibull with y=>1 tails. Among the 15029 records,
subexponential tails were best fitted in 10911 cases or in 72.6% while exponential-
hyperexponential tails were best fitted in 4 118 or in 27.4%. Further, in order to get a
clearer picture instead of constructing maps with the locations where the first-group or the
second-group tails were best fitted, the study focused on the percentage of subexponential
tails that were best fitted in large regions. Specifically, a grid covering the entire earth was

constructed using a latitude difference Ap =2.5° and longitude difference AA =5°. The
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percentage of the best fitted subexponential tails in each grid cell is simply estimated by
counting the number of the best fitted subexponential tails divided by the total number of
records within the cell. These percentages are presented in the form of a map in Figure 4.9,
using a colour scale as shown in the map’s legend. The cells plotted in the map are those
containing at least two records, so that the calculation of percentages has some meaning.

The map of Figure 4.9 clearly shows that in the vast majority of cells subexponential
tails dominate (percentage > 60%). Particularly, out of 532 cells having at least two records,
255 and 163 have percentages of subexponential tails between 60-80%, and >80%,
respectively. In contrast, in only 35 and 79 cells are the percentage values in the ranges 0-
40% and 40-60%, respectively.

—-180%-140%=100°-60° —20° 20° 60° 100° 140° 180°

802

>

60° -, ‘ >

40°

20° -3

0 20 40 60 80 100
Best fitted subexponential distributions (%)

Figure 4.9. Geographical variation of the percentage of best fitted subexponential tails in cells
defined by latitude difference Ag = 2.5° and longitude difference AA = 5°. In total, in 72.6% of the
15 029 records analysed, the subexponential tails were the best fitted.

4.6 Verification of the fitting method
The use of a different norm for fitting the tail into the empirical data could potentially

modify the conclusions drawn. Nevertheless, this argument is pointless in the sense that the
main concern should be the efficiency of the norm used, i.e., if it possesses desired

properties, e.g., if it is unbiased and has lower variance in comparison to other candidates.
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Usually, the error is expressed in terms of random variable values, e.g., rainfall values, and
not in terms of probability. However, a literature search did not reveal or verify that the
commonly used norms, e.g., the classical MSE norm, are better than the norm N1 used
here (see Eq. (4.5)).

For this reason, a Monte Carlo scheme was implemented, which actually replicates
the method followed, i.e., the performance of the norm N1 was evaluated and also

compared with the more common norms N2 and N3 defined as

n

1 X, 2
NZ—F > { 1} (4.15)

i=n—N+1 x(,’)

n

N3 = %”;H(xu =X )2 (4.16)
Here x, = Q(u) is the value predicted by the quantile function Q of the distribution under
study for u equal to the empirical probability of x(; (the ith element the sample ranked in
ascending order) according to the Weibull plotting position. The norm N2 has the same
rationale as the one used but the error is estimated in terms of rainfall values, rather than in
terms of probability, while the norm N3 is the classical and most commonly used MSE
norm.

The Monte Carlo scheme performed can be summarized in the following steps: (a)
1000 random samples are generated from each one of the four distributions studied with
sample size equal to 6600 values which is approximately the average number of nonzero
daily rainfall values per record; (b) selection of the scale and the shape parameter values to
be approximately equal with the median values resulted from the analysis of the real world
dataset (see Table 4.3) in order for the generated random samples to be representative of
the real data; and (c) each distribution is fitted to its corresponding random sample and
estimated the parameters by applying our method for each one of the three norms, while N
is set equal to 80 years, which is approximately the average record length.

The results are presented in Figure 4.10. The whiskers of the box plots express the
95% Monte Carlo confidence interval of the parameters while the dashed lines show the
true parameter values. It is clear that the norm N1 used in this study results in almost
unbiased estimation of the parameters while especially for the Pareto and the Lognormal
distributions results in markedly smaller variance compared to the classical norm N3. The

norm N2 seems to perform very well for the Pareto, Lognormal and Weibull distributions
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(although somewhat biased) but the results are poor for the Gamma distribution. The
classical and the most commonly used norm N3 is by far the worst in term of bias
excepting the Gamma distribution, for which it performs equally well as N1. In particular,
for the subexponential distributions of this simulation, i.e., the Pareto, the Lognormal and
the Weibull, the classical norm N3 fails to provide good results. This may point to a more
general conclusion, i.e., that the classical MSE, which is inspired based on properties of the
normal distribution, is not a good choice for subexponential distributions. This needs to be
further investigated; however, it is reasonable to assume that there is a rationale supporting
this conclusion: subexponential distributions can generate “extremely” extreme values
compared to the main “body” of values, and thus, in the classical norm these values will

contribute “extremely” to the total error heavily affecting the fitting results.
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Figure 4.10. Results of a Monte Carlo scheme implemented to evaluate the performance of the

norm N1 used in fitting of tails in this study, in comparison to commonly used ones (N2, N3).

Another issue of potential concern for the validity of the conclusions drawn is the
impact of the sample size, i.e., the number of the N largest events, for which the four
distribution tails are fitted. As mentioned before, the annual exceedance series used here is
a standard method in hydrology in which N equals the number of the record’s years.
Obviously, N can be defined in many different ways, either with reference to record length
or as a fixed number for every record studied.

In order to assess the impact of the number of events in the performance of the four

fitted distribution tails 2 000 records were randomly selected among the 15 029 analysed
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and the four distribution tails were fitted using six different methods for defining N. The
tirst method (M1) is the one used for all above analyses, in which N equals the number of
the record’s years. In the second (M2) and third (M3) methods the threshold x. is defined
as the 90th- and the 95th-percentiles, respectively, so that N equals the number of events
included in the upper 10% and 5%, respectively, of the nonzero values. Obviously, in these
two methods N varies from record to record depending on the total number of nonzero
values and on the average it equals 667 and 333 values for M2 and M3, respectively. In the
rest three methods (M4, M5 and M6) N is defined as a fixed number for every record, i.e.,
50, 100 and 200 values, respectively.
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Figure 4.11. Performance results of the four fitted tails in 2000 randomly selected records using six
different methods for selecting the sample size: (a) Percentage of records that each distribution tail

was best fitted; (b) Average ranks of the fitted tails (lower rank indicates better performance).

The performance results comparing the six methods are given in Figure 4.11 which
presents (a) the estimated percentages that each distribution was best fitted and (b) the
average rank of each distribution tail. Again the Pareto II tail was best fitted in a higher
percentage of records in all cases (M1-M6) with the percentage values varying in a narrow
range. The results are essentially the same with those obtained from the analysis of the
whole database. The only noticeable difference regards the method M2, in which the
Weibull tail seems to “gain ground” over the Gamma and the Lognormal tails. In general it
seems that the Weibull tail increases its performance as N increases. Thus, in M4 where N
has the lowest value, i.e., 50 values, it performs the worst, while in M2 where N is
maximum (667 values on the average), it performs the best. The average rank, which is a
better measure of the overall performance of the distribution tails, remains essentially the
same for each distribution in all methods. An exception is observed again in M2 where the

Weibull tail performs better than the Lognormal tail. Apart from this exception the general
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conclusion is again that the Pareto II performs the best, followed by the Lognormal and the

Weibull tails, while the Gamma tail performs the worst in all cases.

4.7 Summary and conclusions
Daily rainfall records from 15 029 stations are used to investigate the performance of four

common tails that correspond to the Pareto, the Weibull, the Lognormal and the Gamma
distributions. These theoretical tails were fitted to the empirical tails of the records and
their ability to capture adequately the behaviour of extreme events was quantified by
comparing the resulting MSE. The ranking from best to worst in terms of their
performance is: (a) the Pareto, (b) the Lognormal, (c) the Weibull, and (d) the Gamma
distributions. The analysis suggests that heavier-tailed distributions in general performed
better than their lighter-tailed counterparts. Particularly, in 72.6% of the records
subexponential tails were better fitted while the exponential-hyperexponential tails were
better fitted is only 27.4%. It is instructive that the most popular model used in practice, the
Gamma distribution, performed the worst, revealing that the use of this distribution
underestimates in general the frequency and the magnitude of extreme events.
Nevertheless, is should not be neglected that the Gamma distribution was the best fitted in
25.8% of the records.

Additionally, it is noted that heavy tails tend to be hidden [Koutsoyiannis, 2004a,
2004b; Papalexiou and Koutsoyiannis, 2013] especially when the sample size is small. Thus,
it could be argued that even in the cases where the Gamma tail performed well, the true
underlying distribution tail may be heavier. This leads to the recommendation that heavy-
tailed distributions are preferable as a means to model extreme rainfall events worldwide. It
is also noted, that the tails studied here are as simple as possible, i.e., only one shape
parameter controls their asymptotic behaviour. Yet there are many distributions with more
than one shape parameters which may affect their tail behaviour. Particularly, the
Generalized Gamma [Stacy, 1962] and the Burr type XII distributions were compared as
candidates for the daily rainfall (based on L-moments) in an earlier study, using thousands
of empirical daily records and the former performed better [Papalexiou and Koutsoyiannis,
2012].

The key implication of this analysis is that the frequency and the magnitude of
extreme events have generally been underestimated in the past. Engineering practice needs
to acknowledge that extreme events are not as rare previously thought and to shift toward

the heavy-tailed probability distributions.

73



CHAPTER 5

“Qvoig kpvmwresOar ider”

HERACLITUS OF EPHESUS

ON THE DISTRIBUTION OF ANNUAL
MAXIMUM DAILY RAINFALL

ABSTRACT

Theoretically, if the distribution of daily rainfall is known or justifiably assumed, then one
could argue, based on extreme value theory, that the distribution of the annual maxima of
daily rainfall would resemble one of the three limiting types: (a) type I, known as Gumbel,
type II, known as Fréchet and, type III, known as reversed Weibull. Yet, the parent
distribution usually is not known and often only records of annual maxima are available.
Thus, the question that naturally arises is which one of the three types better describes the
annual maxima of daily rainfall. The question is of great importance as the naive adoption
of a particular type may lead to serious underestimation or overestimation of the return
period assigned to specific rainfall amounts. To answer this question, the annual maximum
daily rainfall of 15 137 records from all over the world is analysed, with lengths varying
from 40 to 163 years. The Generalized Extreme Value (GEV) distribution, which comprises
the three limiting types as special cases for specific values of its shape parameter, is fitted
and the fitting results are examined focusing on the behaviour of the shape parameter. The
analysis reveals that: (a) the record length strongly affects the estimate of the GEV shape
parameter and long records are needed for reliable estimates, (b) when the effect of the
record length is corrected the shape parameter varies in a narrow range, (c) the
geographical location of the globe may affect the value of the shape parameter, and (d) the

winner of this battle is the Fréchet law.
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5.1 Introduction
Arguably, the statistical behaviour of the annual maximum daily rainfall has been the

cornerstone of statistical hydrology, as it is directly related to the design of hydraulic
infrastructures and to extreme floods. In hydrology, the study of rainfall or flood extremes
has been an active research field and a matter of debate for more than half a century dating
back to the works of E. J. Gumbel in 1940s; however, the field of extreme value theory
seems to have originated more than three centuries ago in the works of Nicolaus Bernoulli
[see e.g. Gumbel, 1958]. Yet, it was during the 20th century when the theory was rapidly
evolved and found applications in astronomy, hydrology and engineering in general.

A detailed historical survey on the subject would be out of the scope of this study.
Nevertheless, here are mentioned some of the milestones of this fascinating field [for a
more complete historical note see e.g. Kotz and Nadarajah, 2000]. It seems that the first
methodical approach was due to von Bortkiewicz [1922] regarding the range of random
samples. In the sequel, Fréchet [1922]identified one of the asymptotic distributions of
maxima, and, soon after, Fisher and Tippett [1928] showed that there are only three
possible limiting distributions for extremes. These findings were strengthened by von Mises
[1936] who identified some sufficient conditions for convergence to the three limiting laws.
Yet, it was Gnedenko [1943] who set the solid foundations of the asymptotic theory of
extremes providing the precise conditions for the weak convergence to the limiting laws.
All these initial theoretical results were refined and generalized later in the works of
Juncosa [1949], Smirnov [1949], Watson [1954], Jenkinson [1955], Barndorff-Nielsen
[1963], Berman [1964], de Haan [1971], Balkema and de Haan [1972], Galambos [1972]
and Pickands III [1975] to mention some of them. Numerous real-world applications
followed this theoretical progress not only in flood and rainfall analysis. It is worth noting
in this respect Gumbel’s [1958] celebrated book who was one of the pioneers promoting
and applying the formal theory into engineering practice.

Accordingly, the central question in extreme rainfall analysis is: which one of the
three extreme value distributions, i.e., the Gumbel, the Fréchet or the reversed Weibull,
should be chosen to describe extreme rainfall? Its answer is not only of academic interest,
but mainly constitutes a practical matter of eminent significance as the wrong choice may
severely underestimate the design rainfall of hydraulic infrastructures leading thus to
infrastructure failures and other negative consequences. Overestimation can also be a
possibility, which again has negative consequences in terms of the infrastructure cost.

During the last decades, accumulation of observations and advances in computers
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facilitated the analysis of extreme rainfall and literally thousands of studies or technical
reports have been published using, or arguing for or against, a particular extreme value
distribution. Yet, most of these studies are of “local” character, e.g., case studies analysing
extreme rainfall in particular areas. As an exception, the study by Koutsoyiannis [2004a,b]
used records from several sites in the globe but the number of records was small (169
rainfall records worldwide each having 100-154 years of data). Here, the aim is to
investigate the behaviour of the annual maximum daily rainfall at a global scale, using
more than 15000 rainfall records distributed across the globe, and to provide a better

answer to the question addressed.

5.2 Theoretical issues of extreme analysis

5.2.1 The three limiting laws

It is well known that if a random variable (RV) X follows the distribution Fx(x) then
according to the classical extreme value theory the distribution function of the maximum

of n independent and identically distributed (iid) RV’s, i.e., Y, = max(Xj,...,X,) is given by
G, (x)=(F(x)) (5.1)

Now, loosely speaking, if n — oo three limiting laws can emerge from Eq. (5.1). Actually, as

lim (F(x))’1 results in a degenerate distribution, the limiting laws are obtained from

lim (P(anx + bn))n for appropriate constants a, > 0 and b, [Fisher and Tippett, 1928]. In

addition, these limiting laws emerge not only for iid RV’s as Juncosa [1949] extended these
results to the case of non-iid random variables and Leadbetter [1974] proved that the
limiting distributions hold also for dependent random variables, given that there is no long
range dependence of high level exceedances.

The three limiting laws are the type I or Gumbel (G), the type II or Fréchet (F) and
the type III or reversed Weibull (RW) with distribution functions respectively given by

G,(x)= exp[—exp(— x;“)], xeR (5.2)

GF(x)eXp[—(x;a] } xX>a (5.3)
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GRW(x)exp[—[—xgaj ], x<a (5.4)

All three distributions comprise a location parameter « € R and a scale parameter 5> 0,
with the Fréchet and the reversed Weibull distributions having the additional shape
parameter y>0. Although the expressions of the Fréchet and the reversed Weibull
distributions look very similar, i.e., they differ in a couple of signs, the distributions behave
completely differently as the first is bounded from below while the second is bounded from
above. Noteworthy, the exponential form of the Fréchet distribution does not imply an
exponential right tail, i.e., the Fréchet distribution behaves like a power-type distribution as
it can be easily proved that for y >0 the function 1-exp(-x"?) is asymptotically
equivalent to x7 (it is reminded that two functions f(x) and g(x) are asymptotically
equivalent if lim __ f(x)/g(x)=1). Likewise, the double exponential form of the Gumbel
distribution does not imply a double exponential tail, as its right tail is asymptotically
equivalent with the exponential tail, i.e., exp(—x).

Now, any specific parent distribution Fx(x) belongs to the domain of attraction of
one the aforementioned limiting laws. To which one depends mainly on the form of its
right tail. Several formal mathematical conditions determine the distribution’s domain of
attraction (formed originally by von Mises [1936] and Gnedenko [1943] and extended by
several other authors ; [for a complete account see e.g. Embrechts et al., 1997; Reiss and
Thomas, 2007]). Generally speaking, distributions with right tail regularly varying in
infinity or, equivalently, not having all of their moments finite, belong to the domain of
attraction of the Fréchet law. These include power-type distributions like the Pareto, the
Burr type XII and III, the Log-Gamma, the Cauchy and others. In contrast, in the domain
of attraction of the Gumbel law belong all distributions with right tail tending to zero faster
than any power-type tail, or equivalently distributions having all of their moments finite,
e.g., Normal, Lognormal, Gamma, Weibull and others. Finally, in the domain of attraction
of the reversed Weibull law belong distributions bounded from above [see e.g. Kotz and
Nadarajah, 2000].

The afore mentioned three limiting distribution laws can be unified into a single
expression known as the Generalized Extreme Value (GEV) distribution (also known as

the Fisher-Tippet) with probability distribution function given by
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=17y
GGEV(x)eXp(—(1+yﬂ] J 1+yx;a20 (5.5)

This parameterization was proposed by von Mises [1936], although it is commonly
attributed to Jenkinson [1955]. The distribution comprises the location parameter o« € R
the scale parameter > 0 and the shape parameter y € R. It can be easily seen that for y > 0
it is bounded from below, (x>a—f/y) while for y<0 it is bounded from above (
x <a—pf/y) (notice that here positive y means a GEV bounded from below, while some
texts use opposite sign convention). Essentially, the GEV distribution formula can be seen
as a simple reparameterization of the Fréchet formula as the Fréchet parameters (indexed
with F in Eq. (5.3)) are related with the GEV parameters, i.e., a, =a—f/y, B, =f/y and

yp =y . This simple reparameterization exploits the limiting definition of the exponential

function, i.e., lim 1+yx)_”y =exp(—x) so that the Gumbel distribution emerges for

y—0 (

y—0.

5.2.2 Convergence to the limiting laws
The distribution of the maximum value, given in Eq. (5.1), converges to one of the three

liming laws (depending on the parent distribution) given that the maximum value is
selected from a number of variables which tends to infinity. In real world, convergence
practically holds if this number is very large. However, in daily rainfall it seems that this
number is not even large as in the best case it would equal the number of the year’s days,
i.e., 365 or 366 values. Actually, the number of rainy days N that depends on the
probability dry is always smaller than the number of year’s days and varies from year to
year. Thus, whether or not the annual maximum can actually be modelled by one the three
limiting laws should not be taken for granted [see also Koutsoyiannis, 2004a].

To demonstrate this issue, results from a previous study are used [Papalexiou and
Koutsoyiannis, 2012] where more than ten thousand daily rainfall records were analysed
and was found that the Burr type XII distribution (BrXII) and the Generalized Gamma
distribution (GG), are both very good models for describing the non-zero daily rainfall.

Their probability density functions are given, respectively, by

1

fBrXII(x) = %(%} i [1 +7, (%j | J . x=>0 (5.6)
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Hence, assuming that both of these distributions can serve as parent distributions, and
assuming a constant number of rainy days N, the exact distribution of the annual
maximum then would respectively be G, (x) = (FBrXH (x))NR and G, (x) = (FGG (x))NR Ctis
noted that the BrXII distribution as a power type distribution belongs to the domain of
attraction of the Fréchet law; in contrast, the GG distribution is of exponential type, having
all of its moments finite and thus belonging to the domain of attraction of the Gumbel law.
So, theoretically speaking the first is expected to converge to the Fréchet law and the
second to the Gumbel law.

The different daily rainfall records analysed in the aforementioned study had
different statistical characteristics, yet in order to illustrate the convergence rate based on
real world evidence the next procedure was followed. First, the medians (closer to the mode
than the mean value) of the sample estimates of the first L-moment A; (mean), of L-
variation 7> and of L-skewness 73 are considered as representative statistics of the nonzero
daily rainfall; their numerical estimates are A, = 9.86, 7, =0.58, 75 = 0.45 (all parameters
with dimensions, e.g., A1 or scale parameters, are expressed in mm). Additionally, the
median of probability dry was 76.3% corresponding approximately to Nr = 87 rainy days.
These statistics can be reproduced by a BrXII distribution with parameters S =8.47,
y1=0.91, ,=0.18, and a GG distribution with parameters = 1.83, y; =1.16, y, = 0.54.
The parameters of the exact distribution of the annual maximum, for these parent
distributions and for Ng = 87, were numerically calculated. Namely, the Ggxu would have
A =77.62, 7, =0.23, 73 = 0.30 and the Goc would have A, = 73.71, 7, = 0.20, 75 = 0.24. Next
the GEV and Gumbel distributions, corresponding to these parameters, were determined,
i.e., for the Gexu parameters the GEV will have a =60.71, f=20.85, y=0.19, and the
Gumbel will have & = 62.72, 3 = 25.80. Likewise, for the Ggc parameters the GEV will have
a =60.48, B =19.15, y = 0.10, and the Gumbel will have a = 61.43, § = 21.28.

This analysis is graphically depicted in Figure 5.1 where the fitted distributions are
formed in a Rainfall vs. Return period plot. It can be easily shown that the exact annual

maximum laws, ie, the Gpxu and the Ggs are given by the relationship
x(T) = Qyx9 ((1—1/ T)”NR), where T denotes the return period in years and Qxx-o the

quantile function of the representative BrXII or GG distribution describing the nonzero
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daily rainfall. The graph reveals that the exact annual maximum law, assuming as a parent
distribution the BrXII, quickly converges to the anticipated Fréchet law or GEV with
positive y. Noteworthy, the tail index of the representative BrXII, expressed by the shape
parameter y,, and the shape parameter y of the GEV distribution, theoretically should be
the same. In reality, while they are not exactly the same, they are very close, i.e., y, =0.19
and y = 0.18, verifying thus a satisfactory convergence. On the other hand, assuming the
GG as a parent distribution, it is observed that not only does the exact law Ggc not
converge to the Gumbel law as theoretically expected, but it is better described by the
Fréchet law. In this case the GEV overestimates the rainfall for large return periods, yet, it

is on the safe side, whereas it is clear that the Gumbel distribution severely underestimates

it.
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Figure 5.1. Demonstration of the convergence of the true distribution of maxima to the limiting

laws.

This analysis indicates that even if the parent distribution of daily rainfall is of
exponential type, belonging thus theoretically to the domain of attraction of the Gumbel
law, the annual maximum is better described by the Fréchet law [see also Koutsoyiannis,
2004a]. Is this a paradox? The answer is no. The reason is that the convergence to the
Gumbel law is very slow; actually, it does not converge satisfactorily even for n = 107 as our
tests showed. On the contrary, the additional shape parameter of the Fréchet law or of the
GEV distribution, adds the required flexibility to this distribution to “imitate” the shape
characteristics annual maxima even if the parent distribution does not belong to its domain
of attraction. Thus, although the Fréchet law has a power type tail, its flexibility enables it
to better describe, compared to Gumbel law, other heavy-type tails like the stretched

exponential or the lognormal. Noteworthy, a recent study [Papalexiou et al., 2013] where
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more than 15 000 daily records were analysed focusing on the tail behaviour of the parent
distribution, revealed that the daily rainfall tail is better described by heavy tails. This offers

a theoretical argument favouring the use of the Fréchet law in any case instead of Gumbel.

5.3 The original dataset
This study uses more than 15 000 rainfall records distributed across the globe. The original

data were daily rainfall records obtained from the Global Historical Climatology Network-
Daily database (version 2.60, www.ncdc.noaa.gov/oa/climate/ghcn-daily) which includes
thousands of records worldwide. It is mentioned though, that many records of this
database have a large percentage of missing values, are short in length, e.g., just a few years,
or, contain suspicious values in terms of quality (for the quality flags used refer to the

aforementioned website).

—180=140=100°-60° =20° 20° 60° 100° 140° 180°

60 80 100 120 163
Record length (years)

Figure 5.2. Locations of the 15 137 stations with annual maximum records of daily rainfall analysed
with number of values ranging from 40 to 163 years. Note that there are overlaps with points
corresponding to high record lengths shadowing (being plotted in front of) points of lower record
lengths.

Thus, among the several thousands of records studied only those satisfying the
following criteria: (a) record length greater or equal than 50 years, (b) percentage of

missing values per record less than 20%, and (c) percentage of values assigned with “quality
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flags” per record less than 0.1%. Special attention was given to values assigned with quality
flags “G” (failed gap check) or “X” (failed bounds check) as these values are suspiciously
large, e.g., could be orders of magnitude larger compared to the record’s second larger
value. These extremely large values (probably resulting from recording or registering
errors), could alter the record’s statistics, and thus they had to be identified and deleted
(yet, only 594 records contained such values and typically one or two values at each record
had to be deleted). The resulted number of records after screening with these criteria is
15 137 (for further details on the dataset please Appendix B). The locations of those records

are depicted in the map given in Figure 5.2.

5.4 A method for extracting the maxima

5.4.1 Selection procedure

The original dataset comprises daily rainfall records, thus, in order to study the annual
maximum daily rainfall the time series of annual maxima had to be formed. If the original
records did not contain any missing-values then forming the annual maximum time series
would be trivial. Yet, missing-values occur commonly, and specifically, in the dataset
analysed here records may contain up to 20% of missing-values. Usually, within a record
only some years are incomplete, (contain missing-values); hence, the problem is how is it
possible to extract the maximum value of incomplete years. Evidently, the recorded
maximum value of an incomplete year may not be the real one, as it is likely for a larger
value to have occurred in days of missing data. Moreover, as the percentage of missing
values gets higher the more probable it becomes that the real maximum has been recorded.
Thus, years with missing values, if not treated appropriately, could result in significant
errors that may affect the conclusions drawn from the data analysis.

Basically, one could think of three different methods to extract the annual maxima
from a daily time series containing missing values: (a) in the first method (M1), specific
criteria are used to assess the validity of the annual maxima, e.g., the annual maximum
value could be considered valid only if the missing-values percentage is small, (b) in the
second method (M2), only the maxima of complete years are accepted as valid while those
of incomplete years are assumed unknown, and (c), in the third method (M3), the annual
maxima are extracted irrespective of the years’ missing-values percentage. Clearly, the
method M3 is not safe because, if the missing-values percentage is high, it will result in
underestimated maxima. Method M2 is safe and assures that the extracted maxima are the
real ones, yet it does not fully utilize the available information. For example, a record may

contain many years with just a few missing values per year; according to method M2 all
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these years would be excluded, thus leading to an unjustifiably small sample. So, it is clear
that the most reasonable choice is to set some criteria that need to be fulfilled in order to
accept an extracted annual maximum as valid.

It is reasonable to assume that it is safe to extract the annual maximum of those years
with small missing-values percentage. Nevertheless, two problems arise. First, the
definition of “small” would be subjective, e.g., 1% or 10% could be considered small, and
second and most important, maxima of incomplete years may be much greater compared
to those of complete years. For example, a year with 90% of missing values may contain the
record’s maximum; would it be rational to exclude this value? Of course, larger values may
have occurred within an incomplete year but this would be unlikely. For these reasons it is
rational to assume that the acceptance or not of a value extracted from an incomplete year,
as the annual maximum, should be based on two criteria; first, on the missing-values
percentage, and second, on the value’s rank, i.e., its relative position in the extracted sample
of maxima after it has been sorted in ascending order (the smallest rank is given to the

smallest value).
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Figure 5.3. Explanatory plot of the maxima extraction method. The annual maximum daily rainfall
is considered unknown (red rectangles) if its rank is in the smaller 40% of ranks (red shaded ranks)
and the missing-value percentage (MV%) of the year it belongs is larger than 1/3 (red shaded
percentages).

Accordingly, the annual maxima time series are formed in two steps: (a) the
maximum of each year is extracted irrespective of the year’s missing-values percentage and,
(b) the values of this initial series are tested according to the criteria set and those not

fulfilling them are deleted from the time series, i.e., they are assumed unknown. Namely,
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two criteria, whose validity is justified in section 4.3, were set to justify deletion of a value
whenever both hold: (a) the rank is smaller or equal than 40% x N (where N is the sample
size) which means that the particular value belongs to the 40% of the lowest values, and (b)
the missing-values percentage within a year is larger than or equal to 1/3 which means that
in the particular year approximately the values of more than four months are missing. The
method is graphically explained in Figure 5.3 which depicts along with the annual maxima
time series the corresponding percentages and ranks of missing values. Essentially, the
method’s rationale is simple; if an incomplete year has a high percentage of missing values
and its maximum is small compared to the maxima of the other years, then there is a high
probability for larger values to have occurred within this year and thus this value should

not be accepted as the real annual maximum.

5.4.2 Validation of the method
One could argue that the criteria defined previously are subjective and different values

could be set as thresholds both for the rank and percentage of the missing values. Yet, these
thresholds where not selected unjustifiably, but rather emerged after extended Monte Carlo
simulations. Particularly, a Monte Carlo scheme was planned and performed in order to
validate the method performance and specify the appropriate criteria values. The Monte
Carlo scheme could be summarized in four basic steps: (a) a subset of complete daily
records is selected and the annual maxima series are created, (b) this daily-records subset is
modified to contain missing values, (c) annual maxima series are extracted from the
modified daily-records subset by utilizing the maxima extraction method for various
criteria values, and (d) the real maxima series created in step (a) are compared with those
created in step (c). In other words, the basic idea is to find, if possible, those threshold
values resulting in maxima series with statistical characteristics similar to the real ones.

Obviously, to validate the method complete daily time series are needed. Yet only few
records of the dataset are totally complete, hence, for start only those with very small
missing-values percentage were selected, i.e., less than 0.1%, while the few incomplete years
per record, if existed, were deleted in order to be absolutely certain for the resulting annual
maxima series. The result was 1 003 daily rainfall records with lengths varying from 38 to
155 years.

Now, the records of the dataset analysed here contain missing-values up to 20%, and
these values are distributed among some of the record’s years, i.e., only a percentage of the
record’s years are incomplete. To identify how the percentage of incomplete years per

record is distributed all 15137 records were studied. The empirical distribution is
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presented in Figure 5.4, as well as a fitted Beta(«,f) distribution, that will be valuable in the

sequel, with estimated parameters « = 1.32 and § =2.41.
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Figure 5.4. Empirical distribution of the year’s percentage per record having missing values as
resulted from the analysis of the 15 137 records; the solid line depicts a fitted Beta distribution.

In order to construct time series with missing values distributed similar to the real
ones each one of the aforementioned daily records was modified by the following
procedure: (a) a random number puv less than 20% that represents the missing-values
percentage of the record was generated, (b) the record’s total missing-values number is
then defined as nuv = puv X 365 x N, where N is the record’s length in years, (c) the nuv
missing values is distributed to Nuv = py X N > nuv / 365 years, where py is the percentage
of incomplete years which was randomly generated from the fitted Beta distribution
depicted in Figure 5.4, (d) the number nyy is randomly split into Nyv parts in order to
define the number of missing values for each incomplete year, and (e) Nmv years were
randomly selected from the record and the number of values previously defined were
randomly deleted from each year.

Finally, the annual maxima series extracted by the modified records were compared
to the corresponding real ones based on four basic statistics, i.e., the mean as a measure of
central tendency, the L-variation as a measure of dispersion, and the L-skewness and L-
kurtosis as measures of shape characteristics. The maxima extraction method (M1) was
repeatedly applied by altering the criteria values until the resulting series were statistically
similar to the real ones; this led to the aforementioned threshold values. The maxima series

extracted by methods M2 and M3 were also compared to the real ones. Figure 5.5 presents
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the box plots formed by the 1003 differences between the statistics of the real annual

maxima series and the ones extracted from the daily series modified to contain missing

values.
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Figure 5.5. Box plots depicting the resulting sample differences of various statistics between the real
annual maxima series and the ones created from the incomplete daily series. The advantage of the
first method compared to the others is clearly seen by the smaller range of the box plots. The lower

and upper fences of the box plots represent the sample quantiles Q; and Qoo, respectively.

As expected, method M3 (the one in which maxima are extracted irrespective of the
percentage of missing-values) is inappropriate because it significantly alters the statistical
character of the extracted maxima series while method M2 does not. Interestingly, not only
does method M1 preserve the statistical characteristics (the median is zero and
approximately equals the mean as the box plots are almost symmetric) but performs better
than method M2. The explanation is that method M1 generates time series with larger
length, compared to those of method M2, as fewer values are deleted. Apparently, larger
time series means more information and thus more accurate sample estimates. Finally, it is
worth noting that the overall range of the differences, taking into account that sample

estimates of shape characteristics are usually very uncertain, is very small.
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5.5 Analysis and results

5.5.1 Fitting results

The application of the maxima extraction method (it is noted that the annual maximum
value is determined per calendar year, which is a more appropriate time basis for a study of
global rainfall) produced 15137 annual maximum daily rainfall time series with length
varying from 40 to 163 years. To obtain a general idea of the statistical behaviour of the
annual maximum daily rainfall the basic summary statistics for all records of maxima were
calculated. The results are given in Table 5.1. Noteworthy, all statistical characteristics
(mean, standard deviation, skewness, L-skewness, L-kurtosis) vary significantly; for
example, the mean ranges, from 9.1 mm to 863.7 mm and the standard deviation from
3.9 mm to 430.7 mm. In particular, the large variation of shape characteristics indicates
that any distribution with fixed shape will be inadequate for describing the annual
maximum daily rainfall. Consequently, this portends the Gumbel distribution’s inability as

a universal model as its shape characteristics are fixed.

Table 5.1. Basic summary statistics of the 15 137 records; Q indicates the empirical quantile.

Record Length  Median Mean SD Skew  L-scaled, L-skew7; L-kurtosis 74
min 40 7.40 9.10 394  -0.71 2.15 -0.16 -0.06
Qs 49 25.60 28.51 11.00 0.53 5.80 0.10 0.09
Qs 58 39.20 43.13 17.41 0.98 9.06 0.18 0.14
Qso 68 5720 6224 2373 1.35 12.35 0.23 0.18
Qs 91 7750 8396  33.84 1.84 17.43 0.28 0.22
Qs 117 114.80 126.23  57.81 3.03 29.86 0.37 0.30
max 163 864.50  863.69 430.69 9.87  244.66 0.76 0.73
Mean 74.85 61.97 67.73 27.72 1.51 14.40 0.23 0.18
SD 21.84 30.71 33.16 1538 0.85 7.98 0.08 0.06
Skew 0.80 2.68 2.37 2.72 2.06 3.16 0.15 0.85
L-scale A, 12.07 15.97 17.35 7.80 0.43 4.01 0.04 0.03
L-skew 13 0.22 0.19 0.20 0.27 0.23 0.28 0.02 0.10

It could be expected that in some cases the Gumbel distribution suits better, while in
other cases the Fréchet, or, even the reversed Weibull are more appropriate; in fact all three
distributions have been used in the literature. Theoretically, the estimated shape parameter
of a fitted GEV distribution reveals which one of the three distributions performs better, as
all of them emerge for specific values of y. Yet, the Gumbel distribution arises for y =0,
and thus, even if the sample is indeed drawn from a Gumbel distribution the estimated
GEV shape parameter (irrespective of the fitting method used) will never be exactly zero.

In the literature more than thirteen tests can be found for testing whether the estimated
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GEV shape parameter can be assumed zero [Hosking, 1984]. Nevertheless, all these tests
examine whether the null hypothesis Ho: y = 0 can be rejected or not. Clearly, a sample not
rejecting the null hypothesis does not imply that y =0, or equally, that the underlying
distribution is the Gumbel. It is highly probable for a null hypothesis with small values of y,
e.g., Ho: y=—0.01, or, Hy: y = 0.01, not to be rejected. Hence, it is reasonable to assume that
it is not possible to conclude with certainty based on statistical tests whether the underlying

distribution is Gumbel or GEV with y close to zero.
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Figure 5.6. Observed L-kurtosis vs. L-skewness points of the 15 137 annual maximum daily rainfall

records and the theoretical point and line of the Gumbel and GEV distribution, respectively.

Nevertheless, apart from the aforementioned tests, graphical tools exist that are
especially useful when dealing with a large number of records, which can help to make
inference about the underlying distribution. A graphical tool that has gained popularity
over the last decade, introduced by Hosking [1990], is provided by the L-moments ratio
diagrams. L-ratio plots have superseded classical moments ratio plots as they are superior
in many aspects [see e.g., Hosking and Wallis, 1993; Hosking, 1992; Peel et al., 2001; Vogel
and Fennessey, 1993]. Essentially, this tool provides a graphical comparison between
observed L-ratio values and points or lines or even areas formed by the theoretical
formulas of parametric distributions. Figure 5.6 depicts in an L-kurtosis vs. L-skewness plot
the 15 137 observed points as well as the theoretical point and line corresponding to the
Gumbel and the GEV distributions, respectively. Interestingly, only 20% of points lie on
the left of the Gumbel distribution (corresponding to a GEV distribution with y < 0;
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reversed Weibull law), while 80% of points lie on the right (corresponding to a GEV
distribution with y > 0; Fréchet law). Also it is worth noting that the average point lies
almost exactly on the GEV line and corresponds to y = 0.1. Figure 5.6 may not reveal the
percentage of points that could be described by a Gumbel distribution, yet, it offers a clear

indication that the Fréchet law prevails.

Table 5.2. Summary statistics of the estimated parameter of the fitted Gumbel and GEV
distributions to the 15137 annual maximum daily rainfall records; the fitting was done by the

method of L-moments.

Gumbel parameters GEV parameters
@ B @ B y
min 6.81 3.10 6.00 2.66 -0.587
Qs 23.21 8.37 22.59 7.36 -0.107
Q2 35.26 13.07 34.67 11.71 0.020
Qso 51.54 17.82 50.82 16.16 0.093
Qs 70.07 25.15 69.24 22.69 0.169
Qs 102.54 43.09 101.14 38.53 0.283
max 659.96 352.97 688.17 401.68 0.760
Mean 55.74 20.77 54.95 18.71 0.092
SD 27.21 11.51 27.08 10.68 0.120
Skew 2.23 3.16 2.38 4.67 -0.130
L-scale A, 14.30 5.78 14.17 525 0.067
L-skewness 73 0.18 0.28 0.18 0.27 -0.017
L-kurtosis 74 0.13 0.18 0.14 0.18 0.158

As mentioned before, the GEV shape parameter value indicates the type of the
limiting law, a fact that emphasizes the importance to study in depth the behaviour of this
parameter. To this aim, the GEV distribution was fitted to all available records, and for the
completeness of the analysis the Gumbel distribution was also fitted. Both distributions
were fitted using the method of L-moments [see e.g., Hosking, 1990], as especially for the
GEV distribution it has been shown [Hosking et al., 1985] that L-moments estimators are
even better than maximum likelihood estimators in terms of bias and variance for samples
up to 100 values. The fitting results are shown in Table 5.2 where various summary
statistics of the estimated parameters are given. The table shows the large variation of the
estimated GEV shape parameter, which ranges from —0.59 to 0.76 with mean value 0.093;
the 90% empirical confidence interval is evidently much smaller, i.e., form —0.11 to 0.28 .
The empirical distribution of the GEV shape parameter is depicted on Figure 5.7 along

with a fitted normal distribution with mean 0.093 and standard deviation 0.12.
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Figure 5.7. Empirical distribution of the GEV shape parameter as resulted by fitting the GEV
distribution to the 15137 annual maximum daily rainfall records. The solid line depicts a fitted

normal distribution.

5.5.2 GEV shape parameter vs. record length
Larger samples offer more accurate estimates because, obviously, the variance of an

estimator decreases as the sample size gets larger. Unambiguously thus, the estimate of the
GEV shape parameter is expected to be more accurate if based for example on a 100-year
record rather than on a ten-year record. In this respect, the estimated GEV shape
parameter was studied in relationship with the record length as records vary in length from
40 to 163 years. First, the 15 137 estimated shape parameter values were gathered into nine
groups based on the length of the record that were estimated; and second, various statistics
were estimated for each group. The summary statistics of each group are given in Table 5.3,
while the mean value and the percentage of records with positive shape parameter in each
group are depicted in Figure 5.8. Clearly, Figure 5.8 indicates an upward “trend” in the
mean shape parameter value over record length, e.g., for the 40-50 years group the mean
value of y is 0.077 while for the last group (with > 121 years) it is markedly larger, i.e.,
0.116. Additionally, as the values of Table 5.3 attest, the standard deviation, as expected,
decreases over the record length, e.g., for the 40-50 years group it is 0.141 while for the one
with > 121 years it is 0.088. Obviously the smaller the standard deviation the smaller the
parameter range, yet a drastic decrease is observed, e.g., in the 90% empirical confidence
interval (ECI) of y, which for the 40-50 years group is [-0.152, 0.312] while for the one
with > 121 years it is [-0.029, 0.263]. Another key issue to emphasize is the upward “trend”

of the percentage of positive y over record length. This percentage is large (71.8%) even in
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the 40-50 years and for the group with > 121 years it gets as high as 91.0%, providing a

clear indication that the Fréchet law prevails.

Table 5.3. Summary statistics of the estimated GEV shape parameter for various record length

categories.
Record length
40-50 51-60 61-70 71-80 81-90 91-100 101-110 110-120 =121
(years)
Records No. 1161 3610 3972 1467 1134 1164 1132 1017 480
Records % (y > 0) 71.8 72.9 77.8 83.6 85.0 86.8 88.1 91.1 91.0
Records % (y < 0) 28.2 27.1 22.2 16.4 15.0 13.2 11.9 8.9 9.0
GEV shape parameter y
min -0.461 -0.587 -0.493 -0.307 -0.287 -0.283 -0.188 -0.193  -0.204
Qs -0.152  -0.156 -0.112 -0.086 -0.068 -0.048 -0.046 -0.035 -0.029
Q2 -0.014 -0.009  0.011 0.030  0.036 0.042 0.049 0.047  0.060
Qs 0.079  0.082 0.086 0.102  0.100 0.106 0.108 0.102  0.118
Qs 0.172 0.166 0.166 0.176  0.169 0.175 0.169 0.158  0.170
Qo5 0.312 0290 0.291 0.285  0.268 0.271 0.271 0.247  0.263
max 0.541 0.706  0.760  0.567  0.539 0.573 0.750 0.471  0.345
Mean 0.077  0.077 0.089 0.103 0.101 0.108 0.110 0.105  0.116
SD 0.141 0.138 0.124 0.112  0.102 0.100 0.096 0.088  0.088
Skew -0.135 -0.253  0.120  0.096 -0.029 0.171 0.367 0.220 -0.137
L-scale A, 0.079  0.077 0.069 0.063 0.057 0.056 0.053 0.048  0.049
L-skewness 73 -0.012  -0.034 0.015 0.006 0.002 0.014 0.023 0.024 -0.011
L-kurtosis 74 0.142 0.149 0.153 0.134 0.135 0.137 0.144 0.166  0.156
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Figure 5.8. Mean value of the GEV shape parameter for various categories of record length. The

numbers in the boxes indicates the percentage of records with positive shape parameter value.

The previous analysis gave a clear indication that a relationship between the

estimated GEV shape parameter and the record length exists, yet, this relationship is not
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exactly revealed as the variation in the mean value, as shown in Figure 5.8, does not suggest
a precise law. Nevertheless, if such a law exists, it is clear that the previous grouping
technique fails to reveal its exact form because the record length is not uniformly
distributed within the groups (e.g., the 51-60 years group contains 3610 records but this
does not imply that there are 361 records of 51 years, 361 records of 52 years, etc.). Thus, in
order to create records with exactly the same length, the existing ones were modified by
partitioning or cutting off a number of values. Specifically, only records with length greater
or equal than 80 years were selected (5 049 records; it would be extremely laborious to use
all records), and each one was partitioned into lengths ranging from ten to 115 years
increased by a step of five years. The 115-year “upper limit” emerged by demanding at least
1000 records at each record length, a number that could be reasonably assumed large
enough to offer a robust analysis (there are 1046 records with length > 115 years and only
540 with length > 120 years). For instance, applying this technique, a 112-year record is
partitioned into eleven 10-year records or yields only one 90-year record and obviously
none 115-year record. In total the 5049 selected records generated, for example, 49 270
ten-year records and 1046 115-year records. For all these records and for each record
length the GEV shape parameter was estimated using the L-moments method.

Figure 5.9a depicts the observed mean and the 95% confidence interval (CI) values of
the GEV shape parameter for the various record lengths as well as the corresponding fitted
theoretical functions. The fitted curves have the form g(L)=a+bL", with ¢>0, L
denoting the record length and a, b, ¢ parameters estimated here with a least square error
titting. This formula was figured out so as to have two desiderata: The first stems from the
fact that the observed values indicate clearly that the mean and the CI values do not
increase or decrease linearly over the record length. Rather, it is reasonable to assume that
they tend asymptotically to a fixed value. Clearly, as L > oo the function g(x) > a with a thus
expressing the limiting value. The second desideratum is this function to be simple and
flexible. Indeed, for b <0 it is concave and for b >0 it is convex, thus being suitable to
describe both upward and downward “trends” that converge to a liming value. The
estimated parameters for the fitted curves are as follows: (a) for the lower CI curve,
a=0.021, b = -3.90, ¢ = 0.80, (b) for the mean value curve, a =0.114, b = —-0.69, ¢ = 0.98,
and (c) for the upper CI curve, a =0.195, b = 1.29, ¢ = 0.55. Undoubtedly, Figure 5.9a
indicates a perfect match of the fitted functions to the observed values, unveiling thus the
underlying laws. Noteworthy, the 95% limiting CI is very narrow (0.021, 0.195) with the

lower bound positive, while the mean value of y converges to y, = 0.114.
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Figure 5.9. (a) Mean, quantiles Qs and Qs as estimated for various records lengths and their fitted

asymptotic values; (b) standard deviation; (c) percentage of records with negative shape parameter.

In order to identify the true underlying distribution of the GEV shape parameter
(assuming it is well approximated by a normal distribution), apart from the limiting mean
value estimated before, estimation of the limiting value of the standard deviation is also
necessary. Figure 5.9b depicts the estimated standard deviation values versus record length
and a fitted curve of the same form used for the mean. The estimated parameters of the
fitted curve are a =0.045, b= 1.27 and ¢ =0.70, indicating thus that the true standard
deviation of y is 0,2 0.045, a value significantly smaller than the smallest observed.
Interestingly, assuming that the shape parameter follows the estimated normal distribution,

ie, y~N(y, 0; ), the 95% CI of y would be (0.03, 0.21) which is very close to the limiting

CI estimated and depicted in Figure 5.9a. Furthermore the 99% CI (rounded at the second
decimal digit) is estimated at (0, 0.23), and apparently the probability for a negative shape
parameter to occur is only 0.005.

Additionally, Figure 5.9c depicts the percentage of records with negative y over
record length. Evidently, the observed points suggest a quickly non-linear decreasing

“trend”. The fitted curve has the same simple form as above but with ¢ < 0. With estimated
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parameters a=221.3, b=-154.1, ¢=-0.067 it crosses the horizontal axis at
L =(—a/b)™"* =226 years, implying that for record length greater than 226 years the
percentage of records with negative y would be zero. Indeed, none of the 16 records
available with length greater than 140 years resulted in negative y. This indicates a
deviation from the fitted curve; yet, the number of stations for this record length is very
small to take it into account but this is additional evidence that the Fréchet law prevails.
Finally, based on the previous findings, it is possible to create an “unbiased” or

record-length-free estimator for the GEV shape parameter that incorporates its relation

with the record length. Given that the true distribution of y is the N(u,, 0;) while for
specific record length n is the N(y,(n), O'j (n)), with p,(n)=u,-0.69n "% and

oy(n) = 0, + 1.27 n"°7° being the functions fitted previously for the mean and the standard

deviation, it can be easily proved that an “unbiased” estimator y(n) is the

O- A
7(n) = . o (5, (m)+4, (5.8)

where n is sample size (number of years), y is the L-moments estimate of y, whereas
py = 0.114 and o0, = 0.045 are the limiting mean and standard deviation values estimated

previously.

5.5.3 Monte Carlo validation of the results
In order to validate our results regarding the underlying distribution of the GEV shape

parameter a Monte Carlo simulation was performed. Specifically, 15 137 random samples
were generated, with sizes precisely equal with the original records lengths, from a GEV

distribution with the shape parameter being randomly generated from the anticipated
normal distribution, i.e., the N(y,, 0)2, ), and with the location and scale parameter fixed to
their mean values given in Table 5.2 as they do not affect the shape parameter estimates. In

sequel, the shape parameter values of those samples were estimated and the empirical

distribution shown in Figure 5.10 was formed. It is observed that while the prior

distribution of y was the N(y,, Gi) the estimated posterior is almost identical with the

empirical distribution emerged from the real records given in Figure 5.7. The comparison
of the two distributions reveals a very close match, i.e., the empirical distribution emerged

from the real records has mean and the standard deviation, respectively, equal to 0.092 and
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0.12 while the corresponding values for the empirical distribution emerged from the

synthetic records are, respectively, 0.104 and 0.11.
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Figure 5.10. Empirical distribution of the GEV shape parameter as resulted from the Monte Carlo

simulation where 15137 synthetic records generated with the shape parameter being randomly

sampled from the N(y,, 0; ). The solid line depicts the fitted normal distribution.

This minor deviation is probably justified by the fact that the L-skewness and the L-
kurtosis of the empirical distribution of y, which are —0.017 and 0.158, respectively, deviate
slightly from the theoretical values of a normal distribution which are 0 and 0.123. The
small negative skewness may have caused the slight decrease in the mean value while the
higher L-kurtosis implies more extremes y values, both negative and positive, and this
obviously leads to higher variance. The fact is that both the empirical evidence and the

Monte Carlo simulation suggest that the distribution of the GEV shape parameter is very
well approximated by the normal distribution N(y,, 0; ). Even if the shape characteristics

between the empirical and the Monte Carlo distributions do not match exactly (mainly the
L-kurtosis) this is something anticipated; when a set of 15137 real-world records is
analysed it is expected that some records may either contain incorrectly recorded values or
some extraordinary events occurred, leading thus to unrealistically small or large shape
parameter estimates. For example a couple or even one “extremely” extreme event in a
relatively small sample, e.g., 40-60 years may alter significantly the value of L-skewness and
consequently the estimate of the shape parameter y resulting thus in a distribution that
may not describe realistically the behaviour of the rainfall in general. “Errors” of this kind

are unavoidable as it is possible for a small sample to contain, e.g., the 1000-year event.
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The previous analysis also indicated that the true mean value of the underlying
distribution of the GEV shape parameter is y, = 0.114, markedly larger than zero, i.e. the
value specifying the Gumbel distribution. This consequently leads us to assume that the
Gumbel distribution is not a good model in general for annual maximum daily rainfall.
Nevertheless, it does not reveal how bad or good the Gumbel model is if compared to the
GEV model or more specifically to the Fréchet law. Obviously the GEV and the Gumbel
distributions cannot be compared directly in the sense that the first one is a three-
parameter model while the second one is a two-parameter model and a special case of the
first one. For this reason it is valuable to compare the Gumbel distribution with a
representative fixed-shape-parameter GEV distribution, i.e., a GEV with shape parameter
equal to y, = 0.114.

Specifically, 15 137 random samples were generated, with sizes equal to those of the
original records using: (a) a Gumbel distribution, and (b) a GEV distribution with
y = 0.114 (the location and scale parameters were fixed in both distributions as their values
do not affect the shape characteristics). Next, the Monte Carlo (MC) L-kurtosis vs. L-
skewness points were estimated and depicted them in comparison with the observed ones
already presented in Figure 5.6. The idea is to compare the extent of the area formed by the

MC points with the area formed by the points of the real records.
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Figure 5.11. Monte Carlo points estimated (a) for the Gumbel distribution, and (b) for the GEV

distribution with fixed shape parameter y = 0.114, depicted in comparison to the observed ones.

The results of this Monte Carlo simulation are presented in Figure 5.11. For the
Gumbel case (left graph) it is observed that indeed there is a spread around the theoretical

Gumbel point, yet, the area covered by the MC points is significantly smaller than the one
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formed by the observed points and the cloud of points are placed toward the left. Clearly,
the Gumbel distribution fails to generate points with high values of L-skewness. In the
GEV case with fixed y (right graph) it is observed that not only the expected shift of the
cloud of the MC points toward the right, but also the expansion of this cloud, so that the
area formed is much larger compared to that of the Gumbel case. In addition, the MC area
better fits the one formed by the empirical points. This reveals that the GEV distribution

with fixed y performs in general much better compared with the Gumbel distribution.

5.5.4 Geographical variation of the GEV shape parameter
The previous analysis reveals that the GEV shape parameter estimates depend on the

record length and that essentially the parameter varies in the interval (0, 0.23). Thus, the
question that naturally arises is how the parameter varies over geographical location, as it is
reasonable to expect that different areas of the world exhibit different behaviour not only in
the mean annual rainfall but also the in the shape of distribution of the annual extremes.
Yet it is stressed that that even if the behaviour of extreme rainfall is the same in a big area,
in practice the estimated GEV shape parameters in different locations within the area will
differ due to sampling effects. As a consequence, the different estimates may lead to false
conclusions.

Thus, in order to reduce the sampling effect and to investigate the geographical
distribution of the GEV shape parameter seeking to reveal any kind of geographical
pattern, the earth’s surface was divided into cells and the mean value of the GEV shape
parameter within the cells was studied; obviously the mean value offers a simple and
rational smoothing. Each cell is defined by a latitude difference of A¢g = 2.5° and longitude
difference of AA = 5° as latitude ¢ ranges from —90° to 90° and longitude A from —180° to
180°, a total of 5 184 cells emerged. The mean value of the GEV shape parameter of each
cell is simply estimated as the average of those shape parameter estimates that correspond
to stations lying within the cell, given that the cell contains at least two records, Clearly, the
number of stations within each cell is not constant, and most of the cells (notably those in
the oceans) do not contain any stations while there are 258 cells containing only one
record. Specifically, from the 5184 cells formed, only 792 cells had available records and
only 534 had at least two records, while there are 46 cells with more than 100 records each.

The results using the typical (record-length dependent) estimates of the GEV shape
parameter are depicted in the world map given in Figure 5.12 where the cell’s mean value is
expressed by colouring the cell according to the map’s legend. It is noted that the values

defining the bins in the map’s legend are defined by the minimum value, the Qio, Qas, Qso,
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Q7s, and Qo empirical quantile (or percentile) points and the maximum value of the 534
mean shape parameter values after rounding off to the second decimal, e.g., the central 50%
of values or the interquartile range is approximately form 0.06 to 0.14. The numbers of cells
with mean values at each successive bin (from low to high values) are: 57, 76, 146, 115, 89
and 51, while the number of cells with negative mean values is 52. Clearly, the map reveals
that large and discrete areas exist with the same behaviour in extreme rainfall manifested

by the approximately equal GEV shape parameter values.
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Figure 5.12. Geographical distribution of the mean value of the GEV shape parameter (estimated
by the standard L-moment estimator) in regions of latitude difference A =2.5° and longitude
difference AA = 5°.

Nevertheless, the analysis of the previous section unveiled the clear relationship of
the estimated GEV shape parameters with the record length. Consequently, a more
accurate map should incorporate these findings as a region contains records of variable
length leading thus to a record-length depended estimate of the mean value. Additionally,
it was shown that the GEV shape parameter estimates can be corrected by Eq. (5.8) to be

record-length free and follow the normal distribution N(u,, 0;) which constitutes a very

good approximation of the true distribution of the GEV shape parameter. For these

reasons, a reconstructed map was formed by using the unbiased (free of record-length
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dependence) estimate of the shape parameter values according to Eq. (5.8). The results are
presented in Figure 5.13. As in the previous map, the bins are defined the same way but
obviously the values differ as the range of variation is much smaller. The numbers of cells
with values spotted in each successive bin are different from the previous map, i.e., 59, 88,
105, 143, 93 and 46 (due to rounding of the quantile values), while the number of points
representing negative values is now zero. Comparing the two maps it is observed that they
look almost the same but in fact they differ. Finally, it is notable that large areas or zones
are formed by points representing shape parameter values belonging in a very narrow
range. For example, in the US there are two large zones where the shape parameter ranges
from 0.10 to 0.11 in the one (green colour) and from 0.11 to 0.13 in the other (yellow-green
colour); additionally, in the entire Atlantic coasts of South America a zone of low values is

formed while a large area of high values can be spotted in South-West Australia.
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Figure 5.13. Geographical distribution of the mean value of the GEV shape parameters estimated
by the unbiased estimator of Eq. (5.8) that corrects the sample-size effect; notice the difference in
the values of the legend with the legend of Figure 5.12.

Obviously, the accuracy in the estimation of the shape parameter mean values is not
the same for every cell as the number of records per cell is not constant. Thus, in order to

provide a measure of uncertainty or a measure of estimation error, the map given in Figure
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5.14 was constructed that presents each cell’s standard error (SE) values with respect to the

mean values given in the map Figure 5.13 (unbiased estimates). The SE is defined as

SE=0/+/n and in this case o is the sample standard deviation of the shape parameter
values of the cell and #n the number of those values. In order for the estimates of SE to be
relatively accurate, only those cells that contain at least six records (a total of 281 cells) were
selected, as it is well-known that the estimation of the standard deviation is markedly
biased for very small samples. A cell's SE expresses the standard deviation of the cell’s
shape parameter mean value, and can be used directly to calculate the 95% CI of this

estimate as it is well-known that the 95% CI is given by 7 £1.96 SE, where y is the cell’s

shape parameter mean value. The values defining the bins of SE in the map’s legend
(Figure 5.14) are defined by the minimum value, the Qus, Qso, Q75 empirical quantile (or
percentile) points and the maximum value of the 281 SE values after rounding off to the
third decimal, e.g., the 50% of SE values are less than 0.008. The numbers of cells with SE
values at each successive bin (from lower to higher values) are: 67, 75, 68, and 71. As

expected, areas with high density of stations and large records have very low values of SE.
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Figure 5.14. Standard error values of the GEV shape parameter mean values that are given in the

map of Figure 5.13.
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5.6 Summary and conclusions
Extreme value distributions have been extensively used in hydrology for more than half a

century as a basic tool for estimating the design rainfall of infrastructures or assessing flood
risks; however, selecting the appropriate law is usually based on small samples without
guaranteeing the correct choice or the accurate estimate of the law’s parameters. In this
study, 15 137 rainfall records are analysed from all over the world aiming to assess which
one of the three limiting distributions better describes the annual maximum daily rainfall.
Initially, a method was formed comprising two simple criteria, in order to treat the very
common problem of extracting annual maxima of daily rainfall from records containing
missing values. The method was successfully validated and applied to form the annual
maximum daily rainfall records.

The question, which of the three limiting extreme value distributions to use, is the
focus of this study. Starting from the reversed Weibull distribution, it is noted that it
implies a parent distribution for daily rainfall with an upper bound; a fact that seems to be
physically inconsistent and moreover distributions bounded from above have never been
used for daily rainfall in competent studies. With reference to the Fréchet vs. Gumbel
“battle”, it was shown that, as strange it may seem, annual maxima extracted from a parent
distribution that belongs to the domain of attraction of the Gumbel law, are better
described by the Fréchet law. This occurs for two reasons: first, the convergence rate to the
Gumbel law is extremely slow, and second, the shape parameter of the Fréchet law enables
the distribution to approximate quite well not only distributions with power-type tails but
also other heavy-tailed distributions.

The empirical investigation using 15 137 records started with an L-moments ratio
plot which reveals that 80% of observed points are located on the right of the “Gumbel
point” providing clear evidence that the Fréchet law prevails. Additionally, the analysis of
the estimated GEV shape parameters unveils a clear relationship between the shape
parameter value over the record length, implying that only very large samples can reveal its
true distribution or the true behaviour of the extreme rainfall. The “asymptotic” analysis
performed, based on the fitted functions to the mean and standard deviation of the GEV
shape parameter over record length, suggests that the distribution of the GEV shape
parameter that would emerge if extremely large samples were available is approximately
normal with mean value 0.114 and standard deviation 0.045. The meaning of this finding is
that the GEV shape parameter is expected to belong in a narrow range, approximately from

0 to 0.23 with confidence 99%. Essentially, the analysis shows that data cannot be trusted
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blindly, as small samples may distort the true picture. In this direction, the use of Eq. (5.8)
is proposed that corrects the L-moments estimate of the GEV shape parameter removing
the bias due to limited sample size.

While originally a small percentage of records have negative shape parameter
(reversed Weibull law), the analysis reveals that this percentage rapidly decreases over
sample size, while the fitted function indicates that for record length greater than 226 years
this percentage would be zero. Interestingly, none of the 16 records available with length
greater than 140 years resulted in negative y. Moreover, the probability for a negative shape
parameter to occur, according to the distribution fitted, is only 0.005, and combined with
the previous findings suggests that a GEV distribution with negative shape parameter
(bounded from above) is completely inappropriate for rainfall. Concerning the
geographical distribution of the GEV shape parameter, the constructed maps show that
large areas of the world share approximately the same GEV shape parameter, yet different
areas of the world exhibit different behaviour in extremes.

It seems that the “verdict” is clear: the Fréchet law, or else the GEV law with positive
shape parameter, should prevail over the Gumbel law and a fortiori over the reversed
Weibull law, with latter suggesting a dangerous choice. If a rule of thumb had to be formed,
then it would be this: even in the case where the data suggest a GEV distribution with
negative shape parameter, it should not be used; instead it is more reasonable to use a
Gumbel or, for additional safety, a GEV distribution with a shape parameter value equal to
0.114. The prevailing practice of the past that favoured the use of the Gumbel distribution
does not suggest a proof of its outperformance over the Fréchet law, as it seems it takes a
long time to reveal Nature’s “secrets” and its true behaviour. As Heraclitus of Ephesus
stated more than 2500 years ago in the aphorism given in the introduction (loosely

translated) “Nature loves to hide”.
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CHAPTER 6

“Simplicity is the ultimate sophistication.”

LEONARDO DA VINCI

CAN A SIMPLE RAINFALL MODEL MEET
THE COMPLEX REALITY?

ABSTRACT

Several of the existing rainfall models involve diverse assumptions, a variety of uncertain
parameters, complicated mechanistic structures, use of different model schemes for
different time scales, and possibly classifications of rainfall patterns into different types.
However, the parsimony of a model is recognized as an important desideratum as it
improves its comprehensiveness, its applicability and possibly its predictive capacity. To
investigate the question if a single and simple stochastic model can generate a plethora of
temporal rainfall patterns, as well as to detect the major characteristics of such a model (if it
exists), a dataset with very fine timescale rainfall is used. This is the well-known dataset of
the University of Iowa comprising measurements of seven storm events at a temporal
resolution of 5-10 seconds. Even though only seven such events have been observed, their
diversity can help investigate these issues. An evident characteristic resulting from the
stochastic analysis of the events is the scaling behaviours both in state and in time. Utilizing
these behaviours, a stochastic model is constructed which can represent all rainfall events
and all rich patterns, thus suggesting a positive reply to the above question. In addition, it
seems that the most important characteristics of such a model are a power-type
distribution tail and an asymptotic power-type autocorrelation function. Both power-type
distribution tails and autocorrelation functions can be viewed as properties enhancing

randomness and uncertainty, or entropy.
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6.1 Introduction and motivation
Rainfall has been traditionally regarded as a random process with several peculiarities,

mostly related to intermittency and non Gaussian behaviour. However, many have been
not satisfied with the idea of a pure probabilistic or stochastic description of rainfall and
favoured a deterministic modelling option. For example, Eagleson [1970] states “The
spacing and sizing of individual events in the sequence is probabilistic, while the internal
structure of a given storm may be largely deterministic”. Such a perception of rainfall is
also reflected in common engineering practices, such as the construction of design storms,
in which the total depth may be determined by probabilistic considerations but the
arrangement of rainfall depth increments follows a deterministic procedure, e.g. a pre-
specified dimensionless hyetograph.

More recently, developments of nonlinear dynamical systems and chaos allowed
many to apply algorithms from these disciplines in rainfall and claim for having discovered
low dimensional deterministic dynamics in rainfall [Puente and Sivakumar, 2007; see e.g.,
Sivakumar, 2000]. However, such results have been disputed by others [Koutsoyiannis,
2006b; e.g., Schertzer et al., 2002]. In the latter study, among other datasets, a high temporal
resolution data record was used, in which the application of chaos detection algorithms did
not give any indication of low dimensional chaos.

This high resolution record is one of seven storms that were measured by the
Hydrometeorology Laboratory at the University of Iowa using devices that are capable of
high sampling rates, once every 5 or 10 seconds [Georgakakos et al., 1994]. This unique
dataset allows inspection of the rainfall process at very fine time scales and was the subject
of several extensive analyses including multifractal analysis and multiplicative cascades
[Carsteanu and Foufoula-Georgiou, 1996] and wavelet analysis [Kumar and Foufoula-
Georgiou, 1997]. However, apart from such more technical analyses, this unique dataset
offers a basis for simpler yet more fundamental investigations that could provide insights
for the characterization and mathematical modelling of the rainfall process; this will be
attempted in the next sections. In this respect, the Iowa dataset allows revisiting and
acquiring better insight on the questions whether a single model can or cannot generate
different types of events with enormous differences among them and, if yes, how such a
model would look like. First, will it be deterministic or stochastic? A deterministic
perception of the rainfall process may seem in accord to the high temporal dependence
(autocorrelation) of the rainfall process at small lag times. However, this may indicate a

misconception because au fond high autocorrelation without a specified underlying reason
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(an a priori known deterministic control) may increase rather than reduce uncertainty
[Tyralis and Koutsoyiannis, 2010] and thus may require a stochastic description. In the
latter case, fundamental behaviours to be explored are (a) the long (e.g., power-law) or
short (e.g., exponential) tails in probability distribution function and (b) the long or short
tails of the autocorrelation function. In both cases, long tails imply high uncertainty and
may comply with the maximum entropy principle applied with certain constraints
[Koutsoyiannis, 2005a, 2005b].

It should be emphasized from the beginning that this paper is more explanatory than
descriptive. In this respect, some general properties of a candidate rainfall modelling
approach, rather than the construction of a complete and accurate model, are sought.
Besides, as the empirical basis of this study is the Iowa dataset which comprises only seven
uninterrupted single storms, it is impossible to study all aspects of the rainfall process and
generalize the validity of our findings for other seasons or other locations. For example
intermittency, a very important peculiarity of the rainfall process is left out of this study.
For the latter, and especially its relationship to the maximum entropy principle, the

interested reader is referred to a study by Koutsoyiannis [2006a].

6.2 General properties of rainfall dataset

6.2.1 The data

Seven storm events of high temporal resolution, recorded by the Hydrometeorology
Laboratory at the Iowa University [Georgakakos et al., 1994], are the dataset of this study.
The original measurements were taken every 5 or 10 seconds; however, for uniformity here
the 10-second resolution is used for all events. Figure 6.1 illustrates the patterns of the

seven storms.

Table 6.1. Summary statistics of the seven storm events.

Event No. 1 2 3 4 5 6 7 All
Sample size 9697 4379 4211 3539 3345 3331 1034 29536
Mean (mm/h) 3.89 0.50 0.38 1.14 3.03 2.74 2.70 2.29
Standard deviation (mm/h) 6.16 0.97 0.55 1.19 3.39 2.20 2.00 4.11
Skewness 4.84 9.23 5.01 2.07 3.95 1.47 0.52 6.54
Kurtosis 47.12 11024  37.38 552  27.34 291 -0.59 91.00
Hurst Exponent 0.94 0.79 0.89 0.94 0.89 0.87 0.97 0.89

The events are characterized by a variable duration and also exhibit large statistical
differences among them. Specifically, summary statistics like the mean, the standard

deviation, the skewness and the kurtosis, shown in Table 6.1, differ notoriously among the
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events, up to two orders of magnitude (e.g., the kurtosis coefficient). In the following
analyses, the different events are analysed either separately or jointly. For the latter type of
analysis, which is consistent with the scope of the paper to seek whether a single model can

or cannot generate all different types, a merged sample of all events is used.
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Figure 6.1. The seven storm events recorded by the Hydrometeorology Laboratory at the Iowa

University.

6.2.2 Scaling in state
The term scaling in state [see e.g., Koutsoyiannis, 2005a] refers to the power-law behaviour

of the probability distribution of a process. Whether or not a natural process is
characterized by a power-law distribution is of great importance, as a power-law process
implies that extreme events are not only more frequent in comparison to an exponential-
law process, but also more severe. Clearly, the frequency and the magnitude of extreme
events in natural processes like rainfall, have many practical applications, e.g., in the design
of hydraulic works.

In practice, the identification and the characterization of a natural process as a
power-law process is a difficult task. Natural processes that are considered to be power-law,
do not exhibit a single power law distribution over the entire domain. Thus, the range over
which the power-law holds, i.e. the distribution tail, must be identified and this is not
trivial. Actually, inferences related to distribution tail that are based on sample data are

uncertain. Therefore, in the best case, the validity of a power law might be conjectured, if
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the empirical data are consistent with the hypothesized power law and do not falsify the
power-law hypothesis.

Generally, there are several methods for identifying power-law behaviour in
empirical data, e.g., methods based on least-square fitting or maximum likelihood, but
none of them seems to be universally accepted [see e.g., Clauset et al., 2009 and references
therein]. Nevertheless, one of the most common procedures used for discerning power-law
behaviour in empirical data, which dates back to the end of 19th century in the works of

Pareto, is based on least-square fitting.
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Figure 6.2. Empirical probability distribution (Weibull plotting position) of the merged Iowa

dataset and the least-square-fitted line to the empirical tail.

Mathematically, a random variable X follows a power-law distribution, if its

probability density function is of the form
fre(x)~ L(x)x ™ (6.1)

where y >0 is a constant known as the scaling exponent or the tail index, and L(x) is a
slowly varying function, that is a function satisfying lim__ L(cx)/L(x)=1, where c is a
constant. The essence of a slowly varying function is that asymptotically it does not affect
the power-law behaviour of the distribution, thus controlling the shape of the distribution

only over a finite domain of values. Straightforwardly from Eq. (6.1), the gth moment of a

power-law distribution, defined as m_ := Ijoxq fx(x)dx, diverges if g > y.

107



It is also apparent from Eq. (6.1) that in a double-logarithmic plot, a power-law
distribution (for both the probability density function and the probability distribution
function) would be depicted as a straight line—at least in the range of values where the
power law holds, i.e. the distribution tail. Thus, the slope of the least-square-fitted line to
the tail of the empirical distribution (which, by virtue of Eq. (6.1) is proportional x7) is an
estimate of the state-scaling exponent. Using the aforementioned Pareto’s method, Figure
6.2 depicts the empirical probability distribution (constructed by using the Weibull
plotting position) of the merged Iowa dataset and the least-square-fitted line to the
empirical tail. A power law with y=3 seems to describe the tail (at probability of

exceedance smaller than 1%).

6.2.3 Scaling in time
Since Hurst [1951] empirically discovered scaling in time, else known as long-term

persistence (LTP), this same behaviour has been identified in many other natural processes,
as well as time series from many other scientific disciplines, e.g., in economy and in
network traffic [e.g., Baillie, 1996; Leland et al., 2002]. Ever since, LTP has been an active
research field, as its importance necessitated not only theoretical accounts, but also,
practical approaches concerning primarily the estimation of its strength and the
development of models capable of generating synthetic time series with LTP behaviour.
Basically, scaling in time can be defined in terms of the averaged process on several

time scales k, i.e.

kT

X(k>(T):=% S xe) (6.2)

=(7-1)k+1

In a scaling process the following expression holds, i.e.,
(XO ()= ) £ (X8~ 1y ) (6.3)

for any t and 7, where H is the scaling exponent or the so-called Hurst coefficient, and 4
stands for equality in probability distribution. This process has recently been termed the
Hurst-Kolmogorov process (HK; to give credit to Kolmogorov, 1940, who was the first to

propose it). If X is Gaussian the process is also called fractional Gaussian noise (fGn), due
to Mandelbrot and Van Ness [1968]. As can be easily derived by Eq. (6.3), 0 4 = kH_lax,

that is, the aggregated process's standard deviation is proportional to k"' and not to k™°°
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as is in the case of independent processes. In addition, the autocorrelation function

2H-2

p(r)~7 as 7 —> o and the spectral density S(w)~ " . While in the HK process the
property in Eq. (6.3) holds for all time scales, in other processes it may hold only
asymptotically, as scale tends to infinity. Again the Hurst coefficient H is an important
characteristic of the asymptotic behaviour. For example, in a Markovian process, H = 0.5
(as in independent processes).

With reference to LTP identification and parameter estimation—a non-trivial issue—
many methods have been developed (e.g. based on maximum likelihood, the periodogram,
the variance, the rescaled range and others concepts [e.g., Taqqu and Teverovsky, 1998;
Taqqu et al., 1995; Tyralis and Koutsoyiannis, 2010], each having its advantages and
drawbacks.

In this study, the Hurst coefficient H is estimated for each of the seven storm events,

and additionally for the merged dataset, by using a method that is based on the scaling
property of the standard deviation, i.e., 0 4 = k"o, . Taking the logarithms, it follows
that Ino ,, =(H-1)Ink+Ino,, and consequently, the aggregated sample standard
deviation o, versus the timescale k in a double-logarithmic plot, would be depicted as a

straight line (at least in the timescale range where the scaling holds) and the estimated

Hurst coefficient is H = 1 + #, where 7 is the slope of the fitted linear regression line.

Figure 6.3. Double logarithmic plot of sample standard deviation versus scale of averaging for the

normalized merged event.

The estimated Hurst coefficients of the seven storm events are presented in Figure

6.3; the variation among the estimated coefficients is high, from 0.77 to 0.97 with a mean
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value 0.88. Nevertheless, under the assumption that the seven storm events can be
considered as the realizations of a single process, a better estimate of the Hurst coefficient
would result if the estimation is carried out on the merged dataset, taking care in the
aggregation procedure that individual storm events do not interfere with each other. As
Figure 6.3 reveals, the scaling in the merged event seems to hold over the whole range of

timescales, while the estimated Hurst coefficient is 0.94.

6.3 Stochastic analysis of the rainfall dataset
6.3.1 The simulation scheme
As previously mentioned, the major target of this study is first to explore if the seven storm
events could be considered as the outcome of a sole and simple stochastic process, and
second, to identify the basic characteristics of this process. To this aim the approach
followed is heuristic; that is, a stochastic simulation scheme was formed in order to
generate synthetic rainfall series whose statistics are subsequently compared with those of
the observed records. The aim is to check whether one cannot reject the hypothesis that the
statistics themselves are coincident and therefore the observed and synthetic records could
be regarded as realizations of the same stochastic process. Different stochastic processes are
considered; in principle, candidate processes should include power law as well exponential
solutions for both the marginal probability distribution and the autocorrelation. As
mentioned above, there are two major questions that need to be answered: the first,
concerns the scaling in state, i.e., whether or not, the stochastic process's marginal
probability distribution is power type or exponential type. The second, concerns the scaling
in time, i.e., whether or not, the autocorrelation structure is power type or exponential.

Regarding the marginal distribution, it is straightforward that realizations from a
stochastic process with a power-type marginal distribution would exhibit large differences
from an exponential marginal distribution, mainly because a power-type distribution
assigns large probabilities to the extreme events, which signifies high variability and
uncertainty. Clearly, this behaviour is in agreement with the large variability observed in
the seven recorded storm events, and in addition, the whole dataset does not falsify the
power-law hypothesis of the marginal distribution (see section 6.2.2). Consequently, the
power-law hypothesis of the marginal distribution is accepted as rational and valid and
only stochastic processes with power law marginal distribution were considered for the
simulation.

In contrast to the choice of the marginal distribution, the a priori decision of a

particular autocorrelation structure for the stochastic process is not simple. Short term
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persistence (STP) models have been a frequent choice in simulating natural phenomena,
but they are often unjustifiably adopted [see e.g., Koutsoyiannis and Montanari, 2007]. In
fact, an LTP autocorrelation structure, in many cases, may be more appropriate [see, for
instance, Mandelbrot and Van Ness, 1968, 1968]. Additionally, it is not clear, how
intensively the autocorrelation structure of a stochastic process—taking into account that
the marginal distribution remains the same—affects the variability of the sample statistics
among different realizations, e.g., the statistics among the simulated storm events
addressed in this study. Thus, even in the case when the empirical evidence supports the
adoption of a certain autocorrelation structure, and in view of the intrinsic uncertainty of
this choice, it is valuable to perform a comparison of different scenarios, i.e., a comparison
between STP and LTP autocorrelation structures. Therefore, this rationale suggests a side-
by-side comparison between an STP model and an LTP model in view of the behaviours of
the observed data.

The following sections present the simulation scheme which consists of the following
seven steps: (1) application of an appropriate normalizing transformation to the original
dataset (section 6.3.2); (2) analysis of the empirical ACF (section 6.3.4); (3) identification
and calibration of an STP model and an LTP model (sections 6.3.5 and 6.3.6) to the
normalized dataset; (4) correction of the model standard deviation bias (section 6.3.7); (5)
simulation of normal synthetic time series (section 6.3.8); (6) generation of the synthetic
rainfall time series by applying the inverse transformation (see section 6.3.2) to the normal

synthetic time series; and (7) statistical analysis of the synthetic time series (section 6.4).

6.3.2 Normalizing the original data
The Gaussian or the Normal distribution is probably the most known and the most widely

used distribution in statistics, with applications also in natural sciences. There are two
theoretical reasons that justify the ubiquity of the Normal distribution in statistics and its
application in other scientific fields. The first relates to the central limit theorem (CLT)
that—loosely speaking—states that the sum of independently and identically distributed
(i.i.d) random variables tends to the Normal distribution as the number of summands
tends to infinity. The second is the principle of maximum entropy [E. T. Jaynes, 1957b],
which states that, among all possible distributions with known mean and variance, the
normal distribution is the one that maximizes the Boltzmann-Gibbs-Shannon information
entropy [see also Shannon Claude and Weaver, 1948].

Nevertheless, it seems that geophysical data are seldom normal. Empirical data show

that many geophysical processes, like rainfall and river discharge, may depart mildly or
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severely from normality, especially at small time scales. A relevant example is the dataset
addressed in this study. Specifically, departures from normality may be identified in
skewness, e.g., positively or negatively skewed empirical data, in the asymptotic behaviour
of the distribution tail, e.g., a stretched exponential tail or a power-type tail, and of course,
in the variable's domain. Thus, as there exist theoretical reasons that favour normality in
many cases, theoretical reasons also exist that do not support it [see e.g., Koutsoyiannis,
2005a; Papalexiou and Koutsoyiannis, 2012].

For instance, it is well known that a normal variable ranges over the whole real axis,
while many natural processes are positively defined, that is, have a lower limit at zero, while
a solid reason to fix an upper limit very rarely exists. While the previous reasons explain
why departures from normality are so common in nature, a formal and generalized method
for simulating non-normal data with a certain autocorrelation structure does not exist,
although heuristic solutions were frequently proposed [for a hydrological example, see
Montanari et al., 1997]. In contrast, several methods exist addressing the simulation of
normal data with STP or LTP autocorrelation structures [e.g., Box et al., 1994; Brockwell
and Davis, 2009; Koutsoyiannis, 2000]. A common technique for simulating non-normal
data consists of transforming the non-normal dataset to normal, by applying a normalizing
transformation, next, simulating normal data by implementing a standard model, and
tinally, de-normalizing the normal data by applying the inverse transformation. Basically,
this is the methodology followed also in this study, which presents the inconvenience that
finding an appropriate normalizing transformation is not always a trivial task, and clearly,
a general method for normalizing all types of data does not exist. It is well known that there
are some general and commonly used families of transformations, like the Box-Cox family
of transformations [Box and Cox, 1964], that in many cases give satisfactory results.
Unfortunately, such general and simple transformations were not effective for the case of
the Iowa dataset. In particular, while the application of the Box-Cox transformation
resulted in approximately normal data for the upper empirical tail, it failed to normalize
the lower tail, namely the values near zero. A frequently used solution to solve this problem
is the normal quantile transform [also called normal quantile score; Kelly and
Krzysztofowicz, 1997] which, however, is an empirical transformation that is defined over
the range of the observed data only and cannot be extrapolated.

Therefore, in order to normalize the Iowa dataset a five-parameter normalizing
transformation is introduced here heuristically [by extending a transformation by

Koutsoyiannis et al., 2008] given by
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2(0)= g (x() = (ax(t)“ + ﬂ)[y +((1 +1/8)In(1+6(x()-y)’ ))mj (6.4)

where z(t) and x(#) are the transformed and original values of the rainfall intensity, which
are realisations of the stochastic processes Z(t) and X(f), respectively, and «, f3, y, 6, ( are
the parameters to be estimated. The two factors of the product in the right hand side are
introduced to normalize the lower and the larger values, respectively.

While this transformation was identified heuristically, its construction was based on
two theoretical aspects. First, Eq. (6.4) ensures that the random variable Z ~ N(0,1) ranges
from—oo to oo. Obviously, inspection of (6.4) reveals that for {0(, B,0,¢ } €(0,1) and
y € (=0,0), the random variable Z €(-0,%0), as lim _ . g(x)=- and lim _ g(x)=oo.
Second, the probability density function (pdf) of the random variable X should be long
tailed as the empirical evidence supports this assumption (see section 6.2.2). Again,
inspection of Eq. (6.4) reveals that for large values of x, g(x)~ (2/52(1+1/ 8)lnx)1/2, and

taking into account that f,(z)~exp(z™”/2) and combining the two equations, we get

fx(x)~ f,(g(x)~ x P09 and thus the pdf of the variable X is long tailed.

4+ | | | 4120
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Normalized rainfall intensity
Rainfall intensity (mm/h)

Standardized normal variate

Figure 6.4. Probability plot of the natural (recorded) and the normalized rainfall intensity data.

Finally, the parameters of Eq. (6.4) were estimated for the transformed merged Iowa
dataset by using the method of least-squares, and particularly, by numerically minimizing
the sum of squared errors between values of the standardized normal variate that
correspond to the values of the empirical normal distribution (obtained by applying the

normal quantile transformation) and the respective values result from the application of
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Eq. (6.4) to the original rainfall values. The resulted estimates were «a = 0.41, 8 =2.49,
y=-2.13,8 =4.09 and { = 1.18. The transformed data in comparison with the original data
are presented in Figure 6.4. Clearly, as the Figure 6.4 demonstrates, the transformed data

are satisfactorily normalized.

6.3.3 Identification and calibration of the stochastic models
A Gaussian (normal) stochastic process is completely characterized when its second-order

distribution, i.e., FX(xi,xj;ti,tj)=P(X(ti)£xi,X(tj)£xj) for any i#j, is known.

Normalizing the marginal distribution of a stochastic process by a transformation, does not
necessarily result in jointly normal distribution [Feller, 1971, p.70]. However, it is
important to check if a particular, marginally normalized, data has also become Gaussian
in terms of the multivariate joint distribution or not. A rough indication of joint normality
is provided by the linear relation of conditional expectation of a variable X; given X; for
i #j. Figure 6.5 depicts the normalized rainfall intensity versus the 1-time-step and 10-
time-step shifted normalized rainfall intensity. It can be seen that the empirical points are
spread around a straight line, which is an indication of joint normality. This linearity
should not be regarded as a surprise, given that it is consistent with the principle of
maximum entropy applied on a multivariate setting with constraints of known mean,

variance and lag-1 autocorrelation.

i
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Normalized rainfall intensity at time £

Normalized rainfall intensity at time ¢

-2 -1 0 1 2 3 4 -2 -1 0 1 2 3 4

Normalized rainfall intensity at time f—1 Normalized rainfall intensity at time f—10

Figure 6.5. Scatter plot of normalized rainfall intensity for time lags 1 and 10.

As discussed in section 6.2.3, scaling in time exists and is quantified by an estimated
Hurst coefficient H = 0.94. Similarly, analysis of the transformed dataset, using the same
methods as in section 6.2.3, reveals also a high value of the Hurst coefficient, i.e., H = 0.92.

Thus, accepting the assumption of scaling in time, a serious issue arises; that is, almost all
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classical estimators of statistics (exception is the mean value) are highly biased [e.g.,
Koutsoyiannis, 2003]. So in order to set up an accurate and consistent stochastic model to
simulate a normal process—that is, a model that sufficiently reproduces the mean, the
standard deviation and the autocorrelation structure of the observed sample—unbiased

and accurate estimates of the aforementioned statistics are necessary.

6.3.4 Empirical autocorrelation function (ACF)

It is well known, that for finite samples the typical estimate p, of the lag-I autocorrelation
is a biased estimator of the true autocorrelation p, and the more intense the

autocorrelation structure is the more biased the estimator becomes. In particular, in the
presence of scaling in time the bias can be corrected by the following formula [see

Koutsoyiannis, 2003 and the references therein],

~ A 1 1
pl:Pl(l_ 2—2Hj+ 22H (6.5)

n n

where p, stands for the unbiased estimator and H is the Hurst coefficient.

In this study, the unbiased estimator given in Eq. (6.5) is used to estimate the
empirical autocorrelation coefficients. It is clarified, that to estimate p, and consequently
to estimate the unbiased estimator given in Eq. (6.5), the transformed merged sample was
used that comprises the seven transformed storm events. This is a reasonable choice if the
seven events are considered as the outcome of a single process; and thus, while the
empirical ACF may differ among events, all events share the same theoretical ACF.
Furthermore, it is noted that special care was taken in the estimation of the covariance in

order to avoid overlapping among the events; specifically, all products of the form
(xt —ﬁx)(xt_l —/:tx) were eliminated when x, and x, ; do not belong in the same storm

event, and adjusted accordingly the number n of the sample size. The estimated unbiased
empirical ACF—given a Hurst coefficient equal to H = 0.92, and for lags approximately up
to 1000—is depicted in Figure 6.6. Clearly, as Figure 6.6 attests, the empirical
autocorrelation structure is very intense, and particularly, the values of the small-lag
autocorrelation coefficients are near to 1, while for lags near to 1000 the values are as high

as 0.85.

6.3.5 The short-term persistence model
Probably, the most common STP stochastic model is the lag-one autoregressive model

AR(1). This model belongs to the general family of stochastic models known as
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autoregressive moving-average models ARMA (p,q)—comprehensively presented in Box et
al. [1994]. It is important to note that the ARMA(p,q) family, and especially the AR(1)
model are not able to reproduce the scaling behaviour in time or to preserve the Hurst
coefficient [e.g., Box et al., 1994]. Consequently, they may be inappropriate for simulating
natural phenomena exhibiting LTP.

Nevertheless, while from a theoretical viewpoint ARMA(p,q) models are considered
STP models, for increasing values of the autoregressive and moving average order p and g
they can provide very good approximations of the LTP structure and thus manage to
reproduce, from a practical point of view, the scaling in time or to preserve the Hurst
coefficient at least for small sample sizes [Papalexiou, 2007]. It is clear, though, that high
order ARMA(p,q) models are not parsimonious, i.e., many parameters need to be

estimated therefore increasing the estimation variance.
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Figure 6.6. Empirical ACF of the normalized merged event (corrected for bias), theoretical ACF of
the fitted STP model, fitted power-type ACF given in Eq. (6.9), and approximation of the latter by

the sum of five AR(1) processes.

Here, the ARMA(2,2) model was chosen for the simulation of the normalized rainfall
intensity. It is a model frequently used in hydrology that is able to generate time series that

preserve the mean value uy, the variance o3 and the first four autocorrelation coefficients
P1> P2, P3, p+. The stochastic process {X (t), te T} that results from an ARMA(2,2) model is
defined by

X(t) =, X(t—1)+ 0, X(t —2) + e(t —1) + Be(t —2) + £(t) (6.6)
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where a1, az, B1, B> are parameters, and £(¢) is a normal white-noise process, i.e. consisting

of independently, identically and normally-distributed random variables with mean y, =0
and variance o?. Using typical estimation methods [Box et al, 1994], the resulting

parameters for the transformed merged Iowa dataset are a; = 1.51, a; =0.51, 1 = -0.57,
Br=—0.19, 0. = 0.11.

Once the model parameters are estimated, the theoretical ACF of the ARMA(2,2) for
lags 7>3 degenerates to the ACF of an AR(2), i.e.,, p(7) =a,p(t —1)+a,p(r —2) and thus
can be calculated recursively. Figure 6.6 depicts the theoretical ACF of the fitted
ARMA(2,2) model in comparison with the empirical ACF. Clearly, it preserves the first
four autocorrelation coefficients, as expected, and also performs well for lags up to 50.
Nevertheless, for higher lags, it clearly deviates from the empirical ACF as the exponential

character of the theoretical ACF unfolds.

6.3.6 The long-term persistence model
Since the time when Hurst [1951] discovered the LTP behaviour, the necessity to

consistently simulate natural phenomena that exhibit LPT has led to the development of
several stochastic processes and algorithmic procedures that reproduce the LTP behaviour.
Among the most common models are several algorithmic approximations of the HK (or
tGn) process by Mandelbrot and Wallis [1969], Mandelbrot [1971], O’Connell [1974],
Koutsoyiannis [2002], and the FARIMA(p,d,q) models introduced by Granger and Joyeux
[1980] and Hosking [1981], that have gained popularity mainly in the last decade [for an
application to hydrology see Montanari et al., 1997].
The theoretical ACFs of the HK and FARIMA(0,d,0) processes are

Pron (T) = %(| 1" 2|7 " +|r+1 |2H) ~ 1 (6.7)

_TU-dlG+d)

Prariua (T) = Iz +1-d) (6.8)

respectively. Clearly, the ACFs of those two models are asymptotically coincident, with
d=H - 1/2,as Eq. (6.7) and Eq. (6.8) attest, whereas, time series generated by both of them
preserve the scaling exponent H. Moreover, while the HK process model is a very simple
model—essentially is one-parameter model, the FARIMA(p,d,q) models are much more

flexible as the orders of p and g controls the STP behaviour of the model.
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Here a simple yet general approach was used to simulate LTP, obtained by
approximating the real process with the sum of five independent AR(1) processes (note
that Koutsoyiannis [2002] has shown that good approximations can be obtained even with
summing three independent AR(1) processes). The implementation comprises two steps:
first, fitting a generalized power-type (GP) ACF to the empirical ACF (see 6.3.4) and
second approximating the fitted ACF by the ACF obtained as the sum of five independent
AR(1).

Regarding the first step of this approach, a theoretical ACF was fitted (consistent with
the empirical evidence) to the empirical ACF in order to be able to extrapolate the
correlation coefficients for lags as high as desired, instead of being confined in the lag-
range provided by the estimated empirical ACF.

Here, a theoretical three-parameter power-type ACF was used that has the form

P (1) = (HCGJ ] (6.9)

where a>0, b>0 and ¢ >0 are parameters. The form of (6.9) can be considered as a
natural generalization of an exponential ACF as the lim_,, p.,(7)=exp(-7/ a).
Asymptotically Eq. (6.9) behaves as pGP(T)~T’b/C and therefore, Eq. (6.9) and Eq. (6.7)
possesses the same asymptotic behaviour if b/c=2(1-H). As a result, the fitted Pep(T)
would be consistent with the estimated H = 0.92 if b/c = 0.16. Thus, the p_,(7) is fitted by
minimizing the square error between the p_,(7) and the empirical ACF and by setting as a
constraint b/c = 0.16. The estimated parameters are a = 12 881, b = 0.51, ¢ = 3.18. The fitted
pep(T) is depicted in Figure 6.6, which shows that the fit is satisfactory.

Turning to the second step of the LTP simulation procedure mentioned above, an
LTP model was used made up by the sum of five independent AR(1) process by following
the idea that was first introduced by Mandelbrot [1971], to approximate the HK process.
The same method was used by Koutsoyiannis [1994], for the same purposes, while
Mudelsee [2007] proved empirically that the sum of n inflows generated by an AR(1) model
in a river network, with n sufficiently large, ends up with a collective river discharge that
exhibits LTP behaviours.

Therefore the LTP model that was used herein to simulate the normalized rainfall

intensity is given by
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Y=Y (6.10)

where Y,(t)=aY,(t—1)+¢,(t) is the i-th AR(1) process with mean ¢, =0, variance 0,
lag-one autocorrelation coefficient a; and and ¢,(¢) is a normal white-noise process, with

mean H, =(1-a)u, =0 and variance o =(1—a’)o;. Under the assumption of

independence of the five AR(1) processes it can be easily proven that the theoretical ACF of
Eq. (6.10) is given by

5 5
pup(m) =D a0y, with ) o7 =1 (6.11)
i=1 i=1

The parameters of the five independent AR(1) processes were estimated by minimizing the

square error between the Eq. (6.9) and Eq. (6.11) for lags as high as 10*. The resulting
estimates are a, = 0.9943, 0y =0.075, a,=0.8719, gy =0.029, a;=0.9999, 0, =0.179,

as = 0.9994, 012(4 =0.138 and as = 0.9999, Gi =0.578. As the Figure 6.6 reveals, the fitted

P (T) > up to the lag-10* is satisfactory.

6.3.7 The standard deviation bias
One issue in stochastic modelling that may have serious consequences on the validity and

accuracy of the simulation, and is often neglected, concerns the differences in statistics that
may occur between the theoretical process and its realizations. While the estimate of the
mean is unbiased regardless of the dependence structure, this does not hold for the
standard deviation. In fact, it is well known that the standard estimator § of the standard
deviation is slightly biased even in the case of normally distributed and independent data
[e.g., Bolch, 1968]. However, the bias may become very large in a time dependent process as
it increases monotonically with the increase of the autocorrelation. For certain known
ACFs, like the one of the HK process, unbiased estimators have been developed [see
Koutsoyiannis, 2003 and references therein].

In order to assess the standard deviation bias in random samples generated by the
STP and the LTP models described in section 6.3.5 and 6.3.6, and for several different
sample sizes, a Monte Carlo simulation was performed. Specifically, at first, 5000
independent samples were generated by each model and for several sample sizes, and in

turn, a standard deviation correction factor was calculated, defined by ¢, := o/ E(S) where
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o is the true standard deviation of the STP and the LTP models, chosen as 1 in our
simulations and E(S) is calculated by Monte Carlo simulation.

The results that are depicted in Figure 6.7, are remarkable, especially in the case of
the LTP model. In fact, the bias correction factors, for a sample size of 1 000, are as high as
1.9 and 3.1 for the STP and the LTP models, respectively, while even for a very large sample
size equal to 50 000, in the LTP case, the correction factor sustains a value of 1.7. Given that
the correction factor depends of the sample size, the choice of the appropriate correction
factor should be carried out by considering the number of the data generated with the
simulation. Given that the normalizing transformation was applied to a sample of 29 536
values that comprised the seven storm events, it follows that a unit standard deviation was
imposed to that complete sample. Consequently, all samples generated in this study,
irrespective of their size, were multiplied by the correction factor that corresponds to a size

of 29 536 size, that is, ¢y, = 1.04 for the STP model and ¢y, = 1.81 for the LTP model. In

SD

this way the correction to the standard deviation was imposed depending on the sample
size that was used to constrain the standard deviation itself during the normalizing

transformation.
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Figure 6.7. Standard deviation bias correction factors for the STP and the LTP models for various

sample sizes (dots and triangles) calculated by Monte Carlo simulation.

6.3.8 Sample size and number of samples
As shown in Figure 6.1, the seven recorded storm events have all different sample lengths

varying from 1 034 to 9 697 values. In order to compare the observed statistics with those as
the synthetic series, it would be appropriate that the simulations have the same length of

the observed records. For practicality only 3 sample sizes were used namely: 1 000 (L1),
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which is very close to the size of event 7; 4 000 (L2), close to the size of events from 2 to 6;
and 10 000 (L3) representing event 1.

Finally, 10 000 synthetic series were generated for each sample length and for each
model. In sequel, the mean, the standard deviation, the skewness, the kurtosis and the
autocorrelations, were calculated for every synthetic series and were compared with the

respective statistics of the observed records.

6.4 Results of the stochastic simulation
Figure 6.8 reports an example of visualized simulated events for the three different sample

sizes (L1, L2 and L3) considered here and the two different models (three events generated
by the LTP model on the left and three by the STP model on the right). Some differences in
the patterns generated by the models are visible. For example, the pattern of the LTP model
is characterized by a higher variability (although the marginal distributions are the same).
By comparing the patterns with those of the observed records, which are shown in Figure
6.1, one may notice that the variability of the observed record looks better reproduced by

the LTP model.

Rainfall intensity (mm/h)

1 10000 1 4000 11000 1 10000 1 4000 11000

Time in 10—second intervals

Figure 6.8. Synthetic rainfall events generated by the LTP (the first three) and the STP (the last

three) models for three characteristic samples sizes.

Figure 6.9 shows box plots of selected statistics computed on the simulated data (in
this case also by referring to the original probability distribution), namely, mean, standard

deviation, skewness and kurtosis. The observed statistics are also shown with dots. The box
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and the whiskers encompass 50% and 99%, respectively, of the computed statistics, while
the median is indicated by a horizontal straight line. The box plots clearly show the
different behaviours of the two models. Looking at the mean value, one should note that,
not surprisingly, the two models are characterized by nearly the same median of the mean,
but the variability in the LTP model is higher. Also expected is the higher variability of the
standard deviation, skewness and kurtosis that is depicted in the other box plots. One may
note that the LTP model is more skewed than the STP one. This result is explained by the
higher variability of a process (rainfall) that is bounded at zero. In general one may note
that the higher uncertainty of the LTP model makes the fit more satisfactory, even though
the observed points are very few and therefore do not allow more than a qualitative
assessment.
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Figure 6.9. Box plots of sample statistics estimated from the synthetic rainfall events generated by
the LTP and STP models for the three characteristic sample sizes L1, L2 and L3. The dots represent

the empirical points of the seven rainfall events.

Figure 6.10 shows a comparison between the observed autocorrelation functions with
those simulated by the models. First of all, one notes that the autocorrelation coefficients of
the LTP model are higher in the tail of the autocorrelation function. This result is expected.
Another relevant feature is the higher correlations shown by the STP model for low lags.

This result, which is not intuitive, is due to the fact that the STP model, in order to reach a
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better fit of the tail of the ACF, reacts by increasing also the autocorrelation coefficients for
low lags. Conversely, the power law behaviour of the LTP model allows one to reach a
better fit of the tail of the ACF without increasing much the correlation for low lags. Even
in this case, the autocorrelation function of the LTP appears to be more convincing in view
of the observed pattern. One should note that this assessment is again qualitative in view of
the small number of observed events.

However, apart from the comparison between the two models, one relevant
conclusion is that both models look able to provide, within a relatively simple framework, a

satisfactory fit of the observed behaviours.
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Figure 6.10. Empirical autocorrelation functions of the seven rainfall events and 99% prediction
intervals of ACF for the LTP and STP models.

6.5 Conclusions and discussion
Summarizing the above investigations, it can be said that a single and rather simple

stochastic model can represent all rainfall events and all rich patterns appearing in each of
the separate events making them look very different from one another. From a practical
view point, such a model is characterized by high autocorrelation at fine scales, slowly
decreasing with lag, as well as by distribution tails slowly decreasing with rainfall intensity.

Such an autocorrelation form can indeed produce huge differences among different events
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and such a distributional form can produce enormously high rainfall intensities at times.
Both these behaviours are just opposite to the more familiar processes resembling Gaussian
white noise, which would produce very “stable” events with infrequent high intensities. In
this respect, both high autocorrelations and distribution tails can be viewed as properties
enhancing randomness and uncertainty (or entropy).

Whether the tails of both the marginal distribution and autocorrelation functions are
long (meaning that are described by power-law functions) is difficult to conclude based
merely on the dataset of this study. Both these power-law functions are by definition
asymptotic properties, and the exponents of power laws are theoretically defined for state
or lag tending to infinity. In this respect, it seems impossible to verify such asymptotic laws
by empirical studies, which necessarily imply finite sample sizes. But it is important that
the empirical evidence presented in the current study does not falsify the hypothesis that
both tails are long. Other empirical studies published recently [Papalexiou et al., 2013] do
not falsify this hypothesis as well.

If the hypothesis of a long tail of the distribution function is accepted, it seems that
this can be quantified by an exponent a of about 3, which implies that only the first three
moments of the distribution exist whereas all others are infinite. If the hypothesis of a long
tail of the autocorrelation function is accepted, it seems that this can be quantified by a
Hurst coefficient H as high as 0.94. Based on these findings, the construction of a stochastic
model admitting asymptotically long tails from the outset seems a reasonable choice. After
all, in a dynamical systems context, even the randomness is an asymptotic property per se,
in the sense that it implies an infinite number of degrees of freedom. The fact that an
infinite number of degrees of freedom cannot be verified (and perhaps neither falsified)
empirically, does not preclude us from successfully using probabilistic descriptions and
stochastic models of several processes including rainfall.

As mentioned earlier, long tails can be viewed as an enhancement of randomness and
uncertainty in these processes. In the framework of this enhanced randomness, it seems to
be useless to analyse each rainfall event separately as an attempt to infer dynamics of
rainfall. Such an attempt, even using sophisticated methods such as wavelets, can perhaps
be paralleled with one’s attempt to explain the dynamics of the tossing of a coin by
observing a series of "heads" and "tails". In both cases, it may be misleading to seek
substantial information in extremely random occurrences. A more useful target for such
cases would be to elevate from the obscurity the underlying randomness and seek its own

laws.
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CHAPTER 7

”

“Beauty will save the world

FYODOR DOSTOEVSKY

CONCLUSIONS

7.1 Summary

This research has been focused on three main topics: (a) the use of a theoretical principle,
i.e., the Principle of Maximum Entropy as a theoretical basis to derive probability
distributions suitable for geophysical processes, (b) the statistical analysis, at a global scale,
of daily rainfall and of daily rainfall extremes, and (c) the stochastic analysis of rainfall at
fine temporal scales. The major objectives of this research were to formulate some simple
yet fundamental and of wide interest questions and try to give answers not only of
theoretical value but mainly of practical one.

With respect to the Principle of Maximum Entropy, the study focused on the
possibility to use the classical definition of entropy, i.e., the Boltzmann-Gibbs-Shannon
entropy, avoiding thus the use of generalized entropy measures, to derive suitable
probability distributions for rainfall, or more generally, for positively defined geophysical
random variables. The emphasis was on formulating and theoretically or logically justifying
specific constraints, with the premise to be as simple and general as possible that would
lead into flexible and simple distributions.

Regarding the statistical analysis of daily rainfall, which constitutes the largest part of
this research, three different aspects of daily rainfall were examined. First, the seasonal
variation of daily rainfall was investigated focusing on the properties of its marginal
distribution. A massive empirical analysis of more than 170 000 monthly daily rainfall
records was performed from more than 14 000 stations from all over the globe aiming to
answer two major questions: (a) which statistical characteristics of daily rainfall vary the

most over the months and how much, and (b) whether or not there is a relatively simple
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probability model that can describe the nonzero daily rainfall at every month and every
area of the world. Second, the focus was on the distribution tail of daily rainfall, i.e., the
distribution’s part that describes the extremes events. Data from more than 15 000 stations
were used to test the performance of four common tails that correspond to the Pareto, the
Weibull, the Lognormal and the Gamma distributions aiming to find out which type of tail
better describes the behaviour of extreme events. Third, annual maxima of daily rainfall
from thousands of stations from all over the world were extracted and analysed trying to
answer one of the most basic questions in statistical hydrology, i.e., which one of the three
Extreme Value distributions better describes the annual maximum daily rainfall.

Finally, rainfall was examined at fine temporal scales by studying a dataset
comprising measurements of seven storm events at a temporal resolution of 5-10 seconds
and tried to answer the question if a single and simple stochastic model can generate a
plethora of temporal rainfall patterns, as well as to detect the major characteristics of such a

model.

7.2 Conclusions
7.2.1 On the Principle of Maximum Entropy

o Why and how could the Principle of Maximum Entropy help derive or choose suitable
probability distributions for a random variable?
The number of well-known distributions may be less than a hundred while from a
mathematical point of view this number is literally infinite as an infinite number of
functions can be formed with the properties of a probability distribution. The common
technique to choose a distribution is usually based on trial-and-error methods, i.e.,
fitting the commonly used distributions to the data and selecting the best fitted
according to a fitting measure. Moreover, this procedure, at least theoretically, could be
endless if one decides to form new distributions to test. On the contrary entropy
maximization offers a solid theoretical basis for identifying a probabilistic law based on
the available information. Yet the key issue in using successfully this principle is to

incorporate all available information in the form of constraints.

o What form should these constraints have for geophysical variables, e.g., like rainfall?
The rationale formed here is based on the premises that the constraints should be as few
and simple as possible and incorporate prior information on the process of interest. This
prior information for example may concern the general shape properties of the density

function of the variable under study and could be obtained by an intensive empirical

126



analysis. Three particular constraints were studied and conceptually justified that are
related to the logarithmic and power functions, which can be suitable for positive, highly
varying and asymmetric RVs, characteristics that are usually in geophysical processes,
e.g., like rainfall. Namely, the constraints are the expected values of (a) the In x; (b) the
x% and (c) the In(1+ px?)/ p, with the last constraint, named p-moments, offering a

generalization of the classical moments.

o What types of distributions are derived using these constraints?
The BGS entropy maximization under two simple combinations of these constraints
leads into two flexible distributions, i.e., a three-parameter exponential type, known as
the Generalized Gamma (GG), and, a four-parameter power type, known as the
Generalized Beta of the second kind (GB2) with the former being a particular limiting
case of the latter. For practical purposes the use of a three-parameter power type
distribution is proposed, known as the Burr type XII, which is easily derived as
simplification of the GB2 distribution. Both the GG and Burr type XII distributions are
very flexible as, apart from a scale parameter, comprise two shape parameters giving

control over both tails (left and right).

o Are generalized entropy measures necessary to obtain heavy-tailed distributions?
Maximization of the BGS entropy has been “traditionally” used by imposing constraints
that led to exponential type distributions having light right tails, e.g., like the
Exponential or the Normal distributions. The empirical analysis of various phenomena,
however, indicated that these distributions in many cases are inadequate to describe
reality since heavy-tailed distributions are also common. This led in the introduction of
generalized entropy measures which however raised doubts regarding their validity
compared to the classical and well justified BGS entropy. Instead of using these kinds of
generalized measures, the constraints formed here and used with the BGS entropy,
especially p-moments, naturally lead to power-type distributions adhering to the

classical entropy definition.

7.2.2 On the seasonal variation of rainfall

o Which characteristics of the marginal distribution of daily rainfall exhibit seasonal
variation?
The empirical analysis of the monthly variation of probability dry, of the mean value,
and of two measures of shape of nonzero daily rainfall, i.e., the L-variation and the L-

skewness, revealed, in general, sinusoidal-like patterns for all statistics indicating thus
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seasonal variation. According to the seasonal variation test that was formed and applied,
it was observed a clear monthly variation in probability dry and in the mean value of
nonzero daily rainfall in 95.1% and in 91.7%, respectively, of the stations studied while
the corresponding percentages of the shape characteristics, i.e., of L-variation and L-
skewness, were 66.1% and 54.2%, respectively. These results if combined with the
general picture obtained by the analysis in the hemispheres indicate that the shape of the

marginal distribution varies too, in addition to the probability dry and the mean value.

o Which statistics have higher seasonal variation?
The monthly variation of those statistics at each station was quantified by various
deviation measures with respect to the average of all months. The analysis showed that
the highest monthly variation is observed in the mean value of nonzero rainfall followed
by probability dry, L-skewness and finally by L-variation, implying that, although the

shape characteristics vary, their variability is not very high.

o What is the general shape of the nonzero daily rainfall distribution?
The variations of statistical measures studied, as well as the fitted distributions, indicate
that the density function of nonzero rainfall may significantly differ from station to
station not only in its general shape, i.e., J-shaped or Bell-shaped, but also in its tail

behaviour implying different behaviour of the extremes.

o Are the commonly used two-parameter models adequate models for daily rainfall?
The seasonal and the spatial variability observed in the shape characteristics point out
that the commonly used two-parameter models, e.g., the Gamma, the Weibull, the
Lognormal, the Pareto, etc. cannot serve as adequate or “universal” models for the daily
rainfall as their flexibility is limited and thus they cannot describe sufficiently both the
main body and left and the right tails of the distribution.

o Is there a “universal” model capable of describing daily rainfall at all seasons and at
every area of the world?
This analysis suggests that a “universal” probability model for daily rainfall must have at
least two shape parameters, one to control the left tail and one to control the right tail.
Two distributions with the above characteristics which were derived using the Principle
of Maximum Entropy are the Burr type XII distribution and the Generalized Gamma
distribution. Both distributions performed very well with the latter performing even
better than the former providing thus an excellent model choice. These two

distributions have some of their characteristics complementary to each other, thus the
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the GB2 distribution, which includes both of them as special cases, can be used to model

the entire dataset for all months and all stations.

e What do the parameter values of the best fitted distribution reveal?
The shape parameter y, of the Generalized Gamma distribution, which controls the
right tail and thus the extreme values, for the vast majority of records analysed is y, < 1,
with y, = 1 corresponding to the Gamma distribution; this implies that some of the most
commonly used exponential-tail distributions like the Exponential, the Gamma or
mixed Exponentials may constitute a dangerous choice and should not be used
unjustifiably in practice as they can severely underestimate the magnitude and the

frequency of the extreme daily rainfall.

7.2.3 On the rainfall extremes

o What type of distribution tail better describes daily rainfall extremes above threshold?
The analysis suggests that heavier-tailed, or else, subexponential distributions in general
performed better than their lighter-tailed counterparts. Particularly, in 72.6% of the
records studied subexponential tails were better fitted while the exponential-
hyperexponential tails were better fitted is only 27.4%. The ranking from best to worst
in terms of their performance is: (a) the Pareto, (b) the Lognormal, (c) the Weibull, and

(d) the Gamma distributions.

o Are the most commonly used models for rainfall adequate and reliable to model the
extreme events above threshold?
The analysis revealed that the most popular model used in practice, the Gamma
distribution, performed the worst, implying that the use of this distribution
underestimates in general the frequency and the magnitude of extreme events. This
leads to the recommendation that subexponential distributions are preferable to model

extreme rainfall events worldwide.

o What are the implications of subexponential distribution tails in practice?
The key implication of this analysis is that the frequency and the magnitude of extreme
events have generally been underestimated in the past given that the most commonly
used distributions for daily rainfall are light-tailed. This implies that the hydrological
design based on these distributions might be a dangerous choice and thus, engineering
practice needs to recognize that extreme events are not as rare as it is believed and to

shift toward the heavy-tailed probability distributions.
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o Which one of the three extreme value distributions can better describe annual
maxima?
Starting with some theoretically based arguments it is noted that the reversed Weibull
distribution implies a parent distribution for daily rainfall with an upper bound which
appears physically inconsistent, while distributions bounded from above have not been
used for daily rainfall in competent studies. With reference to the Fréchet vs. Gumbel
“battle”, it was shown that, as strange it may seem, annual maxima extracted from a
parent distribution that belongs to the domain of attraction of the Gumbel law, are
better described by the Fréchet law. This occurs for two reasons: first, the convergence
rate of subexponential parent distributions to the Gumbel law is extremely slow, and
second, the shape parameter of the Fréchet law enables the distribution to approximate
quite well not only distributions with power-type tails but also other heavy-tailed
distributions. In terms of empirical evidence the investigation of more than 15000

records provided a clear “verdict”, i.e., the Fréchet law prevails.

o Is there any relationship between the estimated value of the GEV shape parameter and
the record length?
The analysis unveils a clear relationship between the shape parameter value over the
record length, implying that only very large samples can reveal its true distribution or

the true behaviour of the extreme rainfall.

o What is the true distribution of the GEV shape parameter?
The “asymptotic” analysis performed, based on the fitted functions to the mean and
standard deviation of the GEV shape parameter over record length, suggests that the
distribution of the GEV shape parameter that would emerge if extremely large samples
were available is approximately normal with mean value 0.114 and standard deviation

0.045.

o In which interval the GEV shape parameter is expected to vary and can we trust the
usual estimators?
According to the analysis the GEV shape parameter is expected to belong in a narrow
range, approximately from 0 to 0.23 with confidence 99%. Essentially, the analysis
shows that data cannot be trusted blindly, as small samples may distort the true picture.
In this direction, an equation (Eq. (5.8)) was developed that corrects the L-moments

estimates of the GEV shape parameter removing the bias due to limited sample size.
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o Is it valid to use the GEV distribution with negative shape parameter which implies a
bounded from above distribution?
In small percentage of the records initially studied the estimated GEV shape parameter
value was negative (reversed Weibull law), yet the analysis reveals that this percentage
rapidly decreases over sample size, while the fitted function expressing the relationship
with sample size indicates that for record length greater than 226 years this percentage
would be zero. Additionally, none of the 16 records available with length greater than
140 years resulted in negative shape parameter. Moreover, the probability for a negative
shape parameter to occur, according to the distribution fitted, is only 0.005, and
combined with the previous findings suggests that a GEV distribution with negative

shape parameter (bounded from above) is completely inappropriate for rainfall.

o Does the GEV shape parameter vary in different areas of the world?
The study of the average GEV shape parameter value within regions defined by latitude
difference A¢g = 2.5° and longitude difference AA =5° and the constructed maps show
that large areas of the world share approximately the same GEV shape parameter, yet

different areas of the world exhibit different behaviour in extremes.

o What is the importance of these findings and what can be suggested as a rule of thumb?
The analysis revealed that the Fréchet law, or else the GEV law with positive shape
parameter, prevails over the Gumbel law and a fortiori over the reversed Weibull law,
with the latter being a dangerous choice in hydrological design. As a rule of thumb it is
proposed that even in the case where data suggest a GEV distribution with negative
shape parameter, it should not be used. Instead it is more reasonable to use a Gumbel

or, for additional safety, a GEV distribution with a shape parameter value equal to 0.114.

7.2.4 On the stochastic properties of rainfall at fine temporal scales

e Can a simple stochastic model generate rainfall events that differ significantly with
each other?
The analysis showed that it is feasible for a single and rather simple stochastic model to
generate rainfall events at fine temporal scales with sample statistics varying enormously

making them “look” very different to each other.

o What are the characteristics of such a model and how do they relate to uncertainty?
Such a model is characterized by an intense autocorrelation structure, slowly decreasing
with lag, as well as by distribution tail slowly decreasing with rainfall intensity. Such an

autocorrelation form can produce huge differences among different events and such a
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distribution tail can produce enormously high rainfall intensities at times. Both these
behaviours are just opposite to the more familiar processes resembling Gaussian white
noise, which would produce very “stable” events with infrequent high intensities. In this
respect, both high autocorrelations and distribution tails can be viewed as properties

enhancing randomness and uncertainty (or entropy).
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APPENDIX A

“Science commits suicide when it adopts a creed.”

THOMAS HENRY HUXLEY

DERIVATION OF THE ENTROPIC
DISTRIBUTIONS

The maximum entropy distributions given in Chapter 1 and sequentially used in the
statistical analysis of daily rainfall in Chapter 2, emerged by maximizing the classical
definition of entropy, i.e., the BGS entropy given in Eq. (2.1). These distributions can easily
arise by using the general solution of the maximum entropy distributions given in Eq. (2.5)
and by replacing the arbitrary constraints with specific ones. Particularly, the Generalized

Gamma distribution emerged by using the constraints given in Eq. (2.8) and Eq. (2.10) as

follows:
fio(x)= exp(—/\o -YA gj(x)] =exp(—A, — A, Inx—1,x")
j=1
= exp(—)to +Inx ™ — A x ) =exp(—4, )exp(ln x™h )exp(—/lzxq ) (6.12)
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which is the familiar form the GG distribution.
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The Generalized Beta distribution of Second Kind emerged by imposing the
constraints given in Eq. (2.8) and Eq. (2.12) as follows:

fr(x)= exp[—/lo - Zn:/\jgj(x)] =exp(—A, — A, Inx—A,In(1+ px?)/ p)
j=1
=exp(—A, +Inx™ +In(1+ px?) ") (6.14)
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which is the familiar form the GB2 distribution.

If we set A, =—In A, =1-y,, A, =7 and g =7y, we find that
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APPENDIX B

“It is a capital mistake to theorize before one has data.
Insensibly one begins to twist facts to suit theories,
instead of theories to suit facts.”

ARTHUR CONAN DOYLE

THE DATASET

The original database used in this thesis, i.e., the Global Historical Climatology Network-
Daily (GHCND) database (version 2.60, www.ncdc.noaa.gov/oa/climate/ghcn-daily)
comprises more than 80 000 daily precipitation records from stations all over the world.
The spatial distribution of those stations is given in Figure B.1 which presents the number
of stations in geographical cells defined by latitude and longitude differences Ag = 2.5° and
AL = 5°, respectively.

Nevertheless, for the purposes of the analyses contacted here among those thousands
of stations only those satisfying the following criteria were selected: (a) record length
greater or equal than 50 years, (b) percentage of missing values per record less than 20%,
and (c) percentage of values assigned with “quality flags” per record less than 0.1%. These
criteria resulted in a total of 15 137 stations. The spatial distribution of those stations in
depicted in the map of Figure B.2, while the map given in Figure B.3 presents the average
record length of those stations per cell. Obviously, many stations have the same record
length, yet the period they cover might differ. The graphs of Figure B.4 present the number
of stations vs. the starting (Figure B.4a) and ending (Figure B.4b) recording year.
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Figure B.1. Spatial distribution of the stations comprised in the original database which contains
more than 80 000 stations.
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Figure B.2. Spatial distribution of the 15 137 stations selected.
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Figure B.4. Number of the 15 137 stations vs.: (a) starting record year, and (b) ending record year.

Additional information is given in the graphs of Figure B.5 that present the empirical
distributions or the histograms of: (a) the record length, (b) the probability dry, (c) the

percentage of missing values, and (d) the number of quality flags. It is noted that the
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majority of records studied have record length less than 100 years, yet there are a few
thousand larger records. The most common probability dry values lie between 70% and
90%. The Figure B.5¢ indicates that most stations have missing values less than 10% while
the most common value lies in between 0% and 2%. Regarding the quality flags, it is
apparent from the Figure B.5d that the vast majority of stations have only up to two daily
values assigned with quality flags. Moreover, Figure B.6 present the empirical distributions
or the histograms of: (a) the total number of daily values, (b) the number of nonzero daily
values, (c) the number of zero values, and (d) the number of missing daily values of the

15 137 stations studied.
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Figure B.5. Empirical distributions of the 15137 stations for: (a) the record length, (b) the

probability dry, (c) the missing values, and (d) the number of quality flags.

Finally, Table B.1 provides a summary of the data used in the chapters of this thesis.
The data used in Chapters 2, 3 and 4 were extracted from the 15137 records of daily
precipitation resulted from the aforementioned criteria applied to the original GHCND

database.
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Figure B.6. Empirical distributions of the 15 137 stations for: (a) the total number of daily values,
(b) the number of nonzero daily values, (c) the number of zero values, and (d) the number of

missing daily values.

Table B.1. A summary of the data used in this thesis.

Chapter Data type Records No.  Comments

The monthly daily records were constrained to
i. Daily precipitation 14157 have at least 20 nonzero values to assure the

Ch.2 Ly . . .
ii. Monthly daily precipitation 169 884 rehablhty of the analysm. This additional
criterion excluded 980 stations.
Ch. 3 Annual exceedance 15029 The fit of the theoretical tails failed in 108
' precipitation records due to algorithmic convergence issues.
Annual maxima of daily Annual maxima records were successfully
Ch. 4 e . 15137 . .
precipitation extracted from all available daily records.
. . The original resolution of some records was
Prec1p1tat10n events with A .
Ch.5 7 5 s; these records, for uniformity, were

temporal resolution 10 s
P transformed also to the 10 s resolution.
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APPENDIX C

“Somewhere, something incredible is waiting to be

known.”

CARL SAGAN

L-RATIO PLOTS OF DAILY RAINFALL

Figures C.1-C.4 present the observed L-points of the nonzero daily rainfall for individual
months while Figure C.5 present the observed L-points of the nonzero daily rainfall of all
months. The observed L-points are superimposed over the theoretical L-areas formed by
the GG and Burr type XII distributions. At each plot empirical points are colored in three
ways; the red-colored points lie outside the area; the dark-colored indicate a Bell-shaped
distribution; the light-colored indicate a J-shaped distribution. Additionally, Table C.1
presents some basic summary statistics of the estimated shape parameters of the fitted GG

and BrXII distributions.
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Figure C.1. Observed L-points of the 14 157 stations studied for the months January to March.
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Figure C.2. Observed L-points of the 14 157 stations studied for the months April to June
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Figure C.4. Observed L-points of the 14 157 stations studied for the months October to December.
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Figure C.5. Observed L-points of the 14 157 stations studied for all months.

Table C.1. Basic summary statistics of the estimated shape parameters of the GG and BrXII

distributions.

Al Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

GG distribution

FitNo. 13826 12729 13012 13116 13353 13445 13491 13292 13317 13509 13620 13410 13000

Parameter y,

Qs 120 123 122 117 113 1.09 108 1.09 1.10 1.09 110 1.13 1.21

Y 1.50 163 159 153 145 139 136 141 143 141 142 149 1.61
o 094 122 115 107 100 097 094 101 104 1.02 1.02 1.11 1.20
T2 029 034 033 032 031 030 030 031 032 031 031 033 034
T3 038 043 042 042 042 043 043 043 044 044 043 043 042

Parameter y,

Qso 052 054 054 058 061 062 061 060 059 059 060 0.60 0.56

U 053 058 058 059 062 062 062 061 060 060 061 0.63 0.60
o 022 030 031 028 028 026 027 028 027 027 028 032 031
T2 023 028 028 026 025 023 023 024 024 023 024 026 028
T3 0.06 0.14 0.14 0.08 006 004 0.08 0.09 009 010 0.10 0.12 0.13

Burr XII distribution

FitNo. 12744 11900 11827 11810 11555 11460 11544 11737 11878 11768 11503 11203 11551

Parameter y,

Qso 094 1.00 098 098 097 09 095 095 095 095 09 099 1.01

U 096 1.05 1.03 101 100 099 098 099 099 098 099 1.02 1.05
o 0.16 024 023 021 018 018 019 021 020 019 0.19 023 024
T2 0.09 o0.12 0.1z o0.11 0.10 0.10 0.10 0.11 0.11 0.10 0.10 0.11 0.11
T3 0.14 021 021 020 018 019 021 022 019 019 0.16 0.18 0.19

Parameter y,

Qso 021 025 024 022 020 019 019 020 020 019 020 021 0.24

U 022 025 024 023 022 021 020 021 021 021 021 022 024
o .11 0.13 0.13 0.3 0.3 0.13 0.3 0.13 0.13 0.12 0.12 0.13 0.13
T2 030 030 030 033 035 036 035 035 034 033 033 032 031
T3 0.02 0.05 0.04 0.07 009 011 012 012 012 010 0.09 0.07 0.04
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