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Abstract 

A time series generator is presented, employing a robust three-level multivariate scheme for 

stochastic simulation of correlated processes. It preserves the essential statistical characteristics 

of historical data at three time scales (annual, monthly, daily), using a disaggregation approach. It 

also reproduces key properties of hydrometeorological and geophysical processes, namely the 

long-term persistence (Hurst-Kolmogorov behaviour), the periodicity and intermittency. Its 

efficiency is illustrated through two case studies in Greece. The first aims to generate monthly 

runoff and rainfall data at three reservoirs of the hydrosystem of Athens. The second involves the 

generation of daily rainfall for flood simulation at five rain gauges. In the first emphasis is given 

to long-term persistence – a dominant characteristic in the management of large-scale 

hydrosystems, comprising reservoirs with carry-over storage capacity. In the second we highlight 

to the consistent representation of intermittency and asymmetry of daily rainfall, and the 

distribution of annual daily maxima. 

Keywords: stochastic simulation; hydrometeorological processes; disaggregation; long-term 

persistence; intermittency; hydrosystems 

Software availability 

Name of Software: Castalia 

Developer: ITIA research team (www.itia.ntua.gr)  

Contact: Demetris Koutsoyianns / Andreas Efstratiadis, Department of Water Resources & 

Environmental Engineering, National Technical University of Athens, Heroon 

Polytechneiou 5, 157 80 Zographou, Athens, Greece 

Year first available: 2000 (version 1); 2004 (version 2); 2011 (version 3); 2014 (version 4 beta) 

Hardware required: PC 

Program language: CodeGear Delphi 2009 

Availability: Castalia is freely provided upon request to the authors. 

1 Introduction 
Stochastic simulation is aimed to generate synthetic data that represent non-deterministic 

inputs to the system under study. This allows accounting for uncertainty and large variability of 
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input into the related processes. Particularly, design and management of water resources systems 

is a suitable field for the implementation of such approaches, due to the intrinsically uncertain 

nature of hydro-meteorological phenomena, which are often unpredictable for even short-term 

control horizons. Moreover, the use of synthetic time series instead of historical records is 

essential for providing sufficiently large samples (e.g., with length of hundreds or thousands of 

years) or ensembles of different time series of the same process, in order to evaluate a wide range 

of possible outcomes.  

Probabilistic assessment through stochastic simulation is of high importance for all typical 

water-related problems. For instance, a major objective in the optimal planning and management 

of hydrosystems is the maximization of system reliability, namely the probability of satisfying 

the associated water uses and constraints. In this context, a hydrosystem operation model is 

driven by synthetic inflows of usually monthly time step, to evaluate the statistical regime of the 

regulated outflows (e.g. water withdrawals). For the representation of streamflows, finer time 

steps are also adopted (e.g., daily), in order to properly account for reservoir spills (Ilich, 2014) 

and small-scale regulations (e.g., through retention tanks). Another field of application of 

stochastic approaches involves the evaluation of flood risk, which requires even more detailed 

temporal resolutions (e.g., hourly). Although this problem has been traditionally tackled through 

semi-empirical methods, in particular by constructing “design storms” to be inputs to event-based 

rainfall-runoff models, during the last years much attention has been paid to continuous flood 

modelling, which make use of synthetic rainfall (Boughton and Droop, 2003). In this regard, 

there is an increasing demand for rainfall generators that properly represent not only the spatial 

and temporal variability of rainfall, but also the statistical properties of derived floods (Verhoest 

et al., 2010). Finally, synthetic meteorological (weather) data (i.e., temperature, potential 

evapotranspiration, solar radiation, wind velocity, etc.), can be important to a wide range of 

water, energy and environmental applications, including the design and management of 

renewable energy systems (Tsekouras and Koutsoyiannis, 2014). 

Stochastic simulation constitutes a widely used methodology that extends over several 

disciplines, from signal processing to econometrics. Most of related time series analysis tools 

employ rather simplistic approaches, particularly ARMA-type models, which may only ensure 

fundamental statistical consistency, by means of reproducing the mean, variance and 



-4- 

autocorrelations for short lags of the parent historical data. However, hydrometeorological (and, 

more generally, geophysical) processes exhibit much more complex statistical behaviour, 

characterized by skewed rather than Gaussian distributions, as well as statistical inter-

dependencies. The latter characteristic is important since hydrometeorological variables are 

correlated either due to cause-effect relationships (e.g., rainfall-runoff), or due to common 

hydroclimatic regimes (e.g., point rainfall at neighbouring stations). This sets the application of 

multivariate schemes that enable the preservation of cross-correlations, a necessity. 

 Finally, hydrometeorological processes exhibit several characteristic properties that are 

closely related to their temporal evolution, particularly: (a) long-term persistence, i.e. the 

tendency of wet years to cluster into multi-year wet periods or of dry years to cluster into multi-

year drought periods, which is dominant property of the annual and over-annual processes; (b) 

periodicity, which appears at the sub-annual scale (e.g., monthly) and is due to the Earth motion; 

(c) intermittency, which is a key feature of several processes at fine temporal scales (e.g., daily 

rainfall) and is quantified by the probability that the value of the process within a time interval is 

zero (often referred to as probability dry). Intermittency also results in significant variability and 

high positive skewness, which are difficult to reproduce by most generators.  

Since general-purpose approaches for time series analysis (summarized in the classic book 

by Box and Jenkins, 1970) fail to represent the characteristic properties of hydrometeorological 

processes, several specialised methodologies have been developed for hydrological applications. 

As mentioned by Koutsoyiannis (2000; see also the comprehensive review by Grygier and 

Stedinger, 1990), early efforts on stochastic hydrological modelling are found in the works of 

Barnes (1954), Maass et al. (1962), Thomas and Fiering (1962), Beard (1965) and Matalas 

(1967). The decades of 1970 and 1980 provided significant progress, including the 

implementation of cyclo-stationary and multivariate schemes, the preservation of skewness, the 

representation of long-term persistence, the effective handling of numerical problems related to 

parameter estimation, etc. The advances of this period are summarized in the classic works of 

Matalas and Wallis (1976), Salas et al. (1980), Bras and Rodriguez-Iturbe (1985) and Salas 

(1993). Such methodologies were implemented within specialized computer tools, including 

HEC-4 (USACE, 1971), WASIM (McLeod and Hipel, 1978), WGEN (Richardson, 1981; 

Richardson and Wright 1984), LAST (Lane and Frevert, 1990), SPIGOT (Grygier and Stedinger, 
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1990), CSUPAC1 (Salas, 1993), SAMS (Sveinsson et al., 2003; Salas et al., 2006), NSRP 

(Kilsby et al., 2007) and RainSim (Burton et al., 2008). Yet, most of the known modelling tools 

have important shortcomings, which mainly involve parameter estimation drawbacks, the 

preservation of narrow type of autocorrelation functions, and the inability to perform in 

multivariate problems (Koutsoyiannis, 2000), particularly in fine (i.e., sub-monthly) time scales. 

Another deficiency of many of the widely used stochastic packages is the fact that they 

merely preserve statistical characteristics at a specific temporal scale, which coincide with the 

time resolution of simulation. Yet, given that hydrometeorological processes exhibit different 

behaviour at different temporal scales, a fully consistent approach should imply the generation of 

synthetic time series that reproduce the statistical characteristics of the parent historical samples, 

not only at the time scale of simulation, but also at coarser ones. Traditionally, this problem is 

tackled by disaggregation techniques, which follow the general scheme proposed by Valencia and 

Schaake (1973). In this scheme, which major advantage is simplicity, disaggregation is 

implemented in two or more steps, where in the first step higher-level (e.g., annual) time series 

are generated that are next disaggregated to finer scales (e.g. monthly), in subsequent steps. 

However, most of well-known disaggregation approaches exhibit difficulties in parameter 

estimation, inaccuracies in preserving skewness and cross-correlations, and computational 

inefficiency (Langousis and Koutsoyiannis, 2005). For this reason, some researchers have 

proposed non-parametric approaches, in an attempt to preserve statistical correlations without 

having to resort to disaggregation (e.g., Srinivas and Srinivasan, 2005; Ilich, 2014; Srivastav and 

Simonovic, 2014).  

An original three-level stochastic simulation framework, implemented within Castalia 

computer package, is presented in this paper. Castalia reproduces all essential characteristics and 

peculiarities of hydrometeorological processes at the annual, monthly and daily time scale. The 

whole modelling concept is unique, in terms of handling all aforementioned challenges, through 

effective and statistically consistent techniques. Next, we briefly review the key features of the 

methodological framework, which synthesizes several individual techniques that are described in 

detail in a number of research articles (Koutsoyiannis 1994, 1999, 2000, 2001; Koutsoyiannis and 

Manetas, 1996; Koutsoyiannis et al., 2003a). Castalia has been used, mostly in its early 

implementation (Efstratiadis and Koutsoyiannis, 2004), in several applications in the last years 
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(e.g., Koutsoyiannis et al., 2003b, Efstratiadis et al., 2004; Nalbantis et al., 2011; Tsekouras and 

Koutsoyiannis, 2014; Efstratiadis et al., 2014). However, a comprehensive presentation of the 

software and the methodology on which is based was never made and therefore it is the subject of 

this paper. In addition to the methodological elements, the paper illustrates the advantages of the 

modelling procedure and the software features through two case studies, involving the generation 

of synthetic monthly and daily time series, to be inputs in water management and flood modelling 

studies, respectively. 

2 Software description and model overview 

2.1 Key features 

Castalia is free software, developed by the research team ITIA, in the National Technical 

University of Athens. The initial version of the program for monthly stochastic simulations 

(Efstratiadis and Koutsoyiannis, 2004), was implemented as component of a decision support 

system for the management of the water supply system of Athens (Koutsoyiannis et al., 2003b). 

The current version also supports daily simulations, through a three-level multivariate 

disaggregation scheme (Dialynas, 2011; Dialynas et al., 2011). For intermediate time scales (e.g., 

seasonal, weekly), synthetic data is straightforwardly provided by aggregating from the closest 

finer scale. Next, the key steps of the upgraded scheme are outlined for the generation of daily 

time series; more details are provided in sections 3 to 5, dealing with each specific time scale 

(annual, monthly and daily, respectively). 

Castalia implements an original multivariate stochastic simulation scheme, in which each 

variable refers to a specific hydrometeorological process, at a specific location. All variables are 

assumed to be mutually correlated. The generating procedure preserves the marginal statistics up 

to third order (mean, standard deviation, skewness) as well as the joint second order statistics, 

particularly the first order autocorrelations and lag zero cross-correlations, at the daily, monthly 

and annual time scales. These are generally assumed as the essential statistical properties that 

should be preserved by stochastic hydrological models (Matalas and Wallis, 1976). Moreover, 

the model reproduces the long-term persistence (LTP) at the annual and over-annual scales, the 

periodicity at the monthly scale, and the intermittency at the daily scale (in terms of preserving 

the probability dry of the process of interest). We remark that the lagged cross-correlations (for 

lags higher than zero) are not explicitly preserved, to avoid complex schemes with many 
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parameters, whose estimation can be highly uncertain. On the other hand, the model already 

preserves the autocorrelations at all scales, which is indirectly transferred in approximating 

lagged cross-correlations.  

Step 3: Generation 
of auxiliary monthly 
time series through 
a PAR(1) model

Step 2: Generation of 
annual time series through 
a SMA model, for a given 
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Figure 1 Outline of computational procedures in Castalia. 

 

 
Figure 2 Characteristic screenshots of Castalia: (left) determination of autocovariance function 

for annual simulations and (right) plot of synthetic annual time series. 

Fig. 1 illustrates the flow diagram for daily simulations, which follows a typical two-phase 

disaggregation scheme. First, the statistical characteristics of the parent historical data are 

computed, through which all model parameters are estimated. At the annual time scale, LTP is 

reproduced through a symmetric moving average scheme that implements a user-defined 

autocovariance function, which enables the representation of a wide range of stochastic 

structures, i.e. from ARMA-type, which are characterized by short-term persistence, to Hurst-
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Kolmogorov behaviour, with as high long-term persistence as needed. For the monthly and daily 

time scales, auxiliary time series are initially provided by a multivariate periodic autoregression 

scheme. Next, a disaggregation procedure is employed to establish statistical consistency between 

the three temporal scales; first the monthly series are adjusted to the known annual ones. Finally, 

the daily time series are adjusted to the disaggregated monthly data, using a multivariate coupling 

scheme. Technical details are provided in sections 3, 4 and 5, describing the annual, monthly and 

daily generation schemes, respectively. The model novelties are also highlighted in section 2.2. 

The above procedure can be formulated in two alternative modes. In steady-state simulations 

long time series are generated to estimate long-term performance characteristics, such as the 

reliability or safe yield through a hydrosystem. The length of simulations may reach several 

thousands of years, in order to represent statistically rare events and evaluate extreme 

probabilities. Apparently, even for much shorter time horizons, the outcomes of simulations 

become practically independent of the initial conditions. The other mode refers to terminating 

simulations, in which the present and past states of the system under study must be considered, 

thus the observed values of the present and past must condition the hydrological time series of the 

future. In terminating simulations, the model runs in forecast mode for a time horizon of, 

typically, few years, where the observed past records of the hydrological variables are introduced 

to the generation scheme, in order to obtain statistical predictions of their future values. In this 

context, numerous “ensemble” time series of short length are generated, which represent multiple 

hydrological scenarios for relative small time horizons. 

Castalia operates on a windows environment with several graphical capabilities, comprising 

charts, tables and specific tools for adjusting the parameters of the modelling procedure (e.g., Fig. 

2). The synthetic time series, either individually or by means of hydrological scenarios, can be 

exported in text file formats. 

2.2 Comparison with other packages 

Table 1 illustrates a comparison of Castalia’s technical characteristics with two widespread 

stochastic hydrology packages, i.e. SAMS (Sveinsson et al., 2003; Salas et al., 2006), and 

SPIGOT (Grygier and Stedinger, 1990), which implement multivariate disaggregation schemes 

and temporal disaggregation at different scales (i.e., up to monthly scale for SAMS, and up to 

weekly or daily for SPIGOT). The two packages also support further spatial disaggregation to 
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generate, for instance, consistent annual flows at different stations, which at present is not the 

case in Castalia. In Castalia, the concept of “location” is extended to any kind of correlated 

variables (not particularly spatially correlated). 

The great advantage of Castalia is the preservation of long-term persistence (LTP). On the 

contrary, SAMS and SPIGOT only represent processes with short-term persistence (AR, MA and 

ARMA), which cannot reproduce the Hurst phenomenon, as discussed by Koutsoyiannis (2011). 

In fact, Castalia is capable of handling arbitrary annual autocorrelation functions, through the 

implemented generalized autocorrelation structure (section 3.1), which is also applicable for 

multivariate simulations. Moreover, Castalia has the additional advantage of simultaneous 

preservation of all essential statistical characteristics at the annual, monthly, and daily scale, with 

emphasis to characteristic peculiarities, such as skewness and intermittency that are difficult to 

handle through analytical models. Another original feature of Castalia is the use of a multicriteria 

optimization approach for the decomposition of covariance matrices, which is essential for 

preserving the observed cross-correlations at all temporal scales. Finally, it supports terminating 

simulations (i.e. generation of ensemble time series for stochastic forecast), apart from steady-

state ones. These points constitute unique elements of Castalia compared to popular packages. 

Note that SAMS and SPIGOT also include additional advantages not listed in Table 1 and thus 

may be preferable for particular types of problems. 

Table 1 Comparison of stochastic simulation packages Castalia, SAMS, and SPIGOT 

 Castalia SAMS SPIGOT 
Multivariate analysis Yes Yes Yes 
Time scales of temporal disaggregation (A: annual; M: 
monthly; W: weekly; D: daily) 

A → M 
→ D  A → M A → M, A 

→ W→ D 
Preservation of all essentail statistical characteristics at the 
annual, monthly, and daily scales Yes No No 

Preservation of LTP Yes No No 
User-defined annual autocorrelation function Yes No No 
Preservation of seasonality Yes Yes Yes 
Preservation of probability dry, at the daily scale Yes No Yes 
Spatial disaggregation No Yes Yes 
Decomposition of covariance matrices through 
optimization Yes No No 

Applicable for terminating simulations, conditioned on 
past data Yes No Yes 
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3 Generation of annual time series 

3.1 The symmetric moving average (SMA) generating scheme 

In annual simulations, a key requirement is the reproduction of the long-term persistence, 

also referred to as scaling behaviour or Hurst-Kolmogorov dynamics, which is an omnipresent 

property of hydrometeorological (and, generally, geophysical) processes (Koutsoyiannis 2002, 

2003, 2011; Koutsoyiannis and Montanari, 2007). This behaviour has major effects on the 

management of water resource systems and the design of all related infrastructures 

(Koutsoyiannis, 2011), as dry periods tend to follow dry ones, while wet periods also tend to 

follow wet ones. In this context, long lasting droughts or wet periods can be regarded as the result 

of large-scale random fluctuations of climate. These can be represented by means of stationary 

stochastic processes with a generalized autocorrelation structure, such as the one proposed by 

Koutsoyiannis (2000): 

γj = γ0 [1 + κ β j] – 1/ β     (1) 

where γj is the autocovariance of the annual stochastic process for lag j, γ0 is the variance and κ, β 

are shape and scale parameters, respectively, that are related to the persistence of the process. By 

adjusting the values of κ and β, one can take a wide range of feasible autocovariance structures. 

In particular, for β = 0 we obtain an ARMA-type structure, corresponding to a Hurst coefficient 

H = 0.50; in that case (by applying l’Hôpital’s rule) eq. (1) is written as γj = γ0 exp(– κ j). Any 

other positive value of parameter β represents a persistent process, with H > 0.50. We remark that 

the estimation of the Hurst coefficient of the historical data is quite uncertain, due to the 

inadequate length of data records. For this reason, we recommend manually setting a plausible 

value of parameter β, and estimating κ by fitting eq. (1) to the observed (empirical) lag-one 

autocorrelation coefficient, ρ1 := γ1 / γ0. For the estimation of parameters κ and β, the program 

also offers alternative options, particularly: (a) analytical computation of κ and β by fitting eq. (1) 

to the first two autocorrelation coefficients ρ1 and ρ2, (b) calibration of eq. (1) against the N/2 first 

terms of the autocorrelogram, where N is the length of historical data, and (c) manual setting of 

parameter β and estimation of κ similarly to case (b). It is noted that in a typical Hurst-

Kolmogorov process the autocovariance decays with lag j according to a power law with 

exponent –2 – 2H; therefore the parameter β is related to H by H = 1 – 1/2β. Thus β = 2 results in 

H = 0.75, which is a common value for hydrological processes (see also section 6.1). Note that 
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eq. (1) is an expression more general than that of the Hurst-Kolmogorov process and offers a 

great number of possibilities.  

Castalia implements the autocovariance function (1) within a symmetric moving average 

(SMA) scheme introduced by Koutsoyiannis (2000), which is used to generate synthetic annual 

time series through the formula: 

  zi =
 

n

j n= −
∑ α|j| vi + j = αs vi – s + … + α1 vi – 1 + α0 vi + α1 vi + 1 + … αs vi + s  (2) 

where zi denotes the annual stochastic process for year i, vi are independent identically distributed 

innovations, and αj are numerical coefficients that can be analytically determined from the 

sequence of γj. (Notice that underlined symbols denote random variables according to the so-

called Dutch convention; cf. Hemelrijk, 1966) Koutsoyiannis (2000) has shown that the inverse 

finite Fourier transform sα(ω) of the coefficients aj is related to that of the coefficients γj by:  

sα(ω) = 2sγ(ω)      (3) 

Finally, the auxiliary variables (also referred to as noise variables or innovations) vi are 

generated through a three-parameter Gamma distribution, which ensures the preservation of the 

mean value and the coefficient of skewness of the observed annual data. This distribution, which 

is generally used for the generation of noise variables at the three time scales of interest, is quite 

flexible since it can represent from exponentially to normally-distributed variables (we note that 

at the annual scale, most of hydrometeorological variables are close to normal). Heavy-tailed 

distributions (e.g. Pareto) are not supported by the current version of the program but are 

scheduled for the future versions. The variance and lag-one autocorrelation are explicitly 

preserved through the proper evaluation of coefficients αj. 

3.2 Multivariate formulation 

The SMA scheme is easily generalized for multivariate simulations, thus also preserving the 

cross-correlations of the historical variables. Let a set m of correlated variables, with known 

covariance matrix C, which is an m × m matrix representing the historical variances, in the 

diagonal elements, and the lag zero cross-correlation coefficients, in the off-diagonal ones. At 
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each time step (i.e. year) i, correlated innovation variables are generated, in terms of an m-

dimensional vector vi := [vi
1, …, vi

m]T given by:  

vi = B wi      (4) 

where wi := [wi
1, …, wi

m]T is a vector of gamma-distributed noise variables with unit variance, 

independent both in time and location, and B is a matrix with size m × m which is obtained by 

decomposing the covariance matrix C, such that: 

B BT = C      (5) 

The methodology for solving (5) is briefly discussed in section 3.3 below. The remaining 

parameters required to define model (4) are the vector of mean values and coefficients of 

skewness of wi, which are analytically derived from the associated statistical characteristics of the 

historical data (Koutsoyiannis, 2000). 

3.3 Decomposition of covariance matrices 

The decomposition of covariance matrices is one of the most challenging numerical 

problems of operational stochastics, which appears in all multivariate stochastic schemes. This 

problem has several peculiarities. Specifically, eq. (5) has infinite number of solutions when C is 

positive definite and no (real) solution otherwise. The latter case appears very often and is due to 

inconsistencies of statistical estimation, particularly when different items of the covariance 

matrices are estimated using records of different lengths (Grygier and Stedinger, 1990). Another 

drawback is encountered when attempting to preserve the coefficients of skewness of the 

historical data, since the innovation variables associated with the stochastic model may 

potentially have too high coefficients of skewness, which are practically impossible to reproduce 

by random number generators (Todini, 1980).  

In Castalia, the above issues are effectively handled through an optimization approach 

proposed by Koutsoyiannis (1999), whether the matrix C is positive definite or not. In this 

respect, a weighted multicriteria function is formulated that comprises three components aiming 

at (a) accurate preservation of the observed variances, (b) satisfactory approximation of the 

observed covariances, and (c) minimization of the skewness coefficients of the innovation 

variables, which are proportional to the inverse of a matrix whose elements are the cubes of B. 
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Through a suitable formulation of B, one can restrict the skewness of innovations up to 

reasonable limits, which allows, in turn, preserving the skewness of the actual variables, i.e. the 

observed data. Koutsoyiannis (1999) provides analytical expressions of the objective function 

and its derivatives, which strongly facilitate the optimization procedure. Castalia employs a 

hybrid scheme, in which a conjugate gradient local search technique, i.e. the Fletcher-Reeeves 

algorithm (Press et al., 1992), runs from multiple, randomly generated initial points in the 

feasible space. This approach allows avoiding an early trapping of the algorithm to local minima, 

thus ensuring both effectiveness (i.e., satisfactory approximation of a good-compromise solution) 

and efficiency (i.e., computational speed). In this procedure, the user has to specify the maximum 

number of local searches (default value 100) as well as the convergence criterion, in terms of a 

minimum desirable value of the norm ||B BT – C||. Usually, even a single trial suffices to obtain 

an acceptable solution, with the exception of highly skewed variables, which may require several 

iterations (i.e. local optimizations) to converge. 

The above procedure can be used regardless of the model’s autocorrelation structure, which 

makes it suitable for the three-level simulation scheme. Yet, given that in most applications the 

method is approximate (when the variance-covariance matrix C is not positive semi-definite), the 

cross-correlations of the historical data that are contained in C cannot be preserved with perfect 

accuracy in the synthetic time series. In fact, the generating scheme reproduces the cross-

correlations that are derived by performing inverse calculations of the decomposition algorithm, 

i.e. by using the resulting matrices B΄ as true ones, and thus estimating a new set of theoretical 

cross-correlations on the basis of the approximated variance-covariance matrix C΄ = B΄B΄T. 

4 Generation of monthly time series 

4.1 Generation of auxiliary monthly series 

To construct the monthly synthetic time series, we initially generate auxiliary series without 

any reference to the known annual ones. In this temporal scale, a key specification is the 

preservation of periodicity, which is achieved by employing a cyclostationary model. In 

particular, we use a periodic autoregressive scheme of first order, PAR(1), which is the most 

parsimonious among linear stochastic models. In multivariate terms, it is given by the recursive 

equation: 
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x~i,s = As x~ i s-1 + Bs vi,s     (6) 

where x~i,s := [x~i,s
1, …, x~ i,s

m]Τ represents a vector of m stochastic processes in year i and month s 

(s = 1, …, 12), which represent auxiliary variables, to be next adjusted to annual synthetic data 

(see section 4.2); As and Bs are m × m parameter matrices; and vi,s is an m-dimensional vector of 

innovations, namely independent, in time and space, random variables, with unit variance. In the 

generating scheme (6) we assume diagonal matrices As, thus formulating the so-called 

contemporaneous PAR(1) model (Matalas and Walis, 1976; Salas, 1993, p. 19.31), which is 

mathematically convenient, and also suffices for preserving the essential statistical properties of 

the historical samples (Koutsoyiannis, 1999). 

For each month s, the model parameters As and Bs are determined from the joint second 

order statistics of the monthly historical samples. Specifically, the diagonal matrix As contains the 

monthly lag one autocorrelations, while matrix Bs derives through decomposing the variance-

covariance matrix of the historical data, following the optimization approach that was discussed 

in 3.3. Finally, innovations vi,s are generated through a three-parameter Gamma distribution, the 

parameters of which are estimated from the monthly means and skewness coefficients of the 

historical samples. Analytical equations are given by Koutsoyiannis (1999). 

4.2 Adjusting monthly to annual time series 

The model defined by (6) is proper for sequential generation of correlated monthly series x~i,s 

but it cannot account for the annual values zi, which are already generated through the 

multivariate SMA model. Apparently, the two data sets are not consistent, since for any year i, 

the annual sum of x~i,s, denoted as z~i, is not equal to the corresponding vector of annual variables, 

zi. To establish consistency, we employ an adjusting procedure, introduced by Koutsoyiannis and 

Manetas (1996) and generalized by Koutsoyiannis (2001), in terms of the transformation: 

xi,s = x~i,s + Hs (zi – z~i)     (7) 

where Hs is a matrix of monthly parameters, estimated by: 

Hs = Cov[xi,s, zi] {Cov[zi, zi]}–1     (8) 
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In the case of a single variable, a linear transformation is employed that distributes the 

departure ∆zi = (zi – z~i) of the additive property to each lower-level (i.e. monthly) variable 

proportionally to the covariance of this lower-level variable with the higher-level (i.e. annual) 

variable; at the multivariate case the definition of Hs is still provided by (8) but there is no easy 

interpretation (see details in Koutsoyiannis, 2001). It is proved that this adjusting procedure, 

defined by (7) and (8), preserves the vectors of means, the variance-covariance matrix and any 

linear relationship that holds among xi,s and zi, including correlations between annual and 

monthly variables. 

The above transformation has two disadvantages. First, skewness is hard to preserve in an 

analytical manner, yet such preservation is of great importance, as most of hydrometeorological 

processes, particularly at small time scales, exhibit non-symmetric distributions. Moreover, 

highly negative departures ∆zi may result in negative values of the adjusted variables. To remedy 

these problems, we employ a simple repetitive procedure based on conditional sampling, as 

proposed by Koutsoyiannis and Manetas (1996). This procedure, which is a type of Monte Carlo 

simulation, aims at minimizing the departures ∆zi, by repeating the generation process for the 

variables of each year (rather than performing a single generation for the entire simulation 

horizon), until the distance ∆zi becomes lower that an accepted limit, which is expressed as 

percentage (default value, 1%) of the annual standard deviation of the associated variable. 

5 Generation of daily time series  

5.1 Generation of auxiliary daily series 

The general scheme for generating synthetic daily data resembles the case of monthly data, 

since auxiliary time series are produced through a PAR(1) model initially, which are then 

adjusted to the known monthly ones. Yet, the computational procedure is somewhat more 

complicated, given that, apart from the essential statistical characteristics that are, similar to 

monthly simulations, periodic functions of time, it is also necessary to reproduce intermittency, 

i.e. the proportions of intervals with zero values of the modelled variables. In the case of rainfall, 

this characteristic is often referred to as probability dry. 

The PAR(1) model for multivariate daily simulations is formulated as: 
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y~s,τ = As y~s τ–1 + Bs vs,τ     (9) 

where y~s,τ := [y~s,τ
1, …, y~s,τ

m]Τ represents a vector of m stochastic processes with indices denoting 

month s and day τ (s = 1, …, 12; τ = 1, …, 30 or 31), As is an m × m diagonal matrix containing 

the lag-1 autocorrelations of historical data, Bs is an m × m matrix of parameters, which are 

estimated by decomposing the variance-covariance matrix, and vs,τ is an m-dimensional vector of 

innovations, independent in time and space, which are generated through a Gamma distribution 

that preserves the mean values and the skewness coefficients of historical data. For convenience, 

in eq. (9), annual indices for y~s,τ and vs,τ are omitted.  

A key assumption of (9) is the homoscedasticity of y~s,τ and hence of innovations vs,τ, namely 

the hypothesis of constant variance of y~s,τ regardless of the value y~s,τ–1. However, this prohibits 

from properly representing the high variability and asymmetry of historical data, which becomes 

more significant as the time scale of simulation decreases. Koutsoyiannis et al. (2003a) studied 

this problem within a simplified multivariate rainfall model, which resulted in synthetic 

hyetographs characterized by unrealistically similar peaks. One of the suggested methods was the 

power transformation of daily variables, such as: 

y~΄s,τ = y~s,τ
 (n)     (10) 

where (n) denotes that all items of y~s,τ are raised to a common power n, where 0 < n < 1 (n is 

assumed to be the same at all locations). Preserving the statistical characteristics of the 

transformed variables does not necessarily ensure that the characteristics of the original (i.e. 

untransformed) variables will also be preserved. However, Koutsoyiannis et al. (2003a) showed 

that for relatively high values of n (e.g., n ≥ 0.5), the discrepancies are insignificant. Moreover, 

thanks to the power transformation it is much easier to reproduce the (usually) particularly high 

coefficients of skewness of the daily historical data. In this respect, for the generation of auxiliary 

daily time series, Castalia employs a modified expression of the PAR(1) model, where the 

auxiliary variables y~s,τ are replaced by y~΄s,τ.  
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5.2 Adjusting daily to monthly time series 

In order to establish consistency between the monthly and daily synthetic data, an adjusting 

procedure is applied to the auxiliary time series that are generated by (9), to add-up to the known 

monthly values. Yet, in daily time scales, linear transformations, such as the one used for 

adjusting monthly to annual time series (section 4.2), are not appropriate, because they fail to 

preserve the probability dry, and may also result in negative values (Valencia and Schaake, 

1973). In this context, for daily disaggregation, instead of (7), we employ a proportional adjusting 

scheme (Lane and Frevert, 1990; Grygier and Stedinger, 1990; Koutsoyiannis, 1988, 1994): 

y΄s,τ = y~΄s,τ xs / x~s     (11) 

where y΄s,τ and y~΄s,τ denote the initially generated and adjusted daily series, respectively, x~s is the 

sum of y~΄s,τ for month s, and xs is the known monthly value. The above scheme, which is 

implemented for each individual location (i.e. simulated process), never results in negative values 

of ys,τ and does not affect the preservation of probability dry, as zero values of the auxiliary 

variables remain zero after the adjusting. Moreover, whenever y~΄s,τ are independent and two-

parameter Gamma distributed, with common scale parameter, the procedure ensures accurate 

preservation of the entire distribution function (Koutsoyiannis, 1994). Numerical applications 

showed that the same procedure provides satisfactory approximations for variables with 

distributions approaching the two-parameter Gamma distribution (e.g. the three-parameter 

Gamma, which is generally employed in Castalia) even if the variables are correlated. 

Similarly to monthly time series, a Monte Carlo repetitive procedure is applied to ensure a 

minimal departure between xs and x~s. This aims to improve the approximations of the 

characteristics of historical daily data that are not explicitly preserved by (11), namely skewness 

and cross-correlation coefficients. Here the reproduction of skewness coefficients is much easier, 

as all calculations refer to power-transformed data (eq. 10). 

5.3 Preservation of probability dry 

The proportions of dry intervals or, equivalently, the probability dry of the parent time series, 

constitute major information of hydrometeorological processes at fine time scales. Since this 

characteristic cannot be explicitly preserved by single-state linear stochastic models, such as 
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PAR(1), we follow a hybrid procedure, involving the sequential application of three rules, as 

explained below. 

5.3.1 Truncation of negative values 

In order to preserve the usually high coefficients of variation in the daily time scale, the 

linear stochastic models unavoidably generate some negative values. Negative values may also 

appear in monthly simulations, e.g. in the case of summer rainfall, which in fact makes essential 

to employ the same truncation rule. Given that most hydrometeorological variables are by 

definition non-negative, all simulated negative values should be truncated to zero.  

5.3.2 Rounding off rule for small positive values 

The daily time series generation scheme often underestimates the historical probability dry, 

although the statistical characteristics that are related, to some extent, to this probability, i.e. the 

variance, skewness, and lag-1 autocorrelation, are satisfactory approximated. In particular, it 

cannot generate sequences of dry (zero) values, since there is no explicit distinction between the 

two states of the modelled process (i.e., the dry and the wet one).  

This problem was investigated by Koutsoyiannis et al. (2003a), who suggested that by 

applying a rounding off rule to the stochastic process is preferable over modelling rainfall as a 

two-state process, which is much more complicated. Thus, they argued that the rounding off rule, 

according to which small values (e.g., < 0.10 mm) are set to zero values is more convenient and 

equally precise to two-state rainfall modelling, in terms of periods with very small rainfall depths 

that are handled as dry ones.  

Castalia implements the rounding off rule suggested by Koutsoyiannis et al. (2003a), 

particularly for multivariate simulations. According to this rule, a proportion π0 of the days with 

very small positive values, which are randomly chosen among all values that are smaller than a 

threshold l0, are set to zero. The two arguments of the rounding off rule (i.e. π0 and l0) are 

constants, defined by the user. Note that this rule does not overlap with the truncation of negative 

values, because the former constitutes a probabilistic rule, and it clearly does not ensure 

truncation of all generated negative values. 
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5.3.3 Markov-based approach accounting for dry conditions in time and space 

The application of the rounding off rule significantly increases the number of dry periods, 

which is added to the number of dry periods emerging from the truncation of negative values. 

Yet, as the total proportion of dry intervals may still be smaller than the historical one, we also 

use a Markov-based approach, considering the temporal and spatial distribution of dry periods. 

Specifically, for a dry value yτ-1l
 = 0 generated in Castalia in day τ – 1 and location l, there is 

a probability µs to be followed by another dry value, thus yτl = 0. The conditional probability 

µs
l
 = P{yτl = 0 | yτ-1l

 = 0} is defined for every month s as constant proportion of the corresponding 

probability dry ps
l, i.e. µj

l = λ ps
l, where λ is an input parameter. On the other hand, for every dry 

value at location l, i.e. yτl = 0, there is also a conditional probability ξ that dry periods are forced 

to the rest of m – 1 simulated locations, in the same day τ. This is a reasonable assumption, 

particularly when dealing with rain gauges at close distances. Through appropriate selection of 

parameters λ and ξ, as explained in next section, this approach can generate extra dry periods, 

thus preserving the historical probability dry. 

The combined use of the three aforementioned procedures (i.e., the truncation and rounding 

off rules, as well as the Markov-based approach), allow for preserving even very high values of 

probability dry, which may be typical in several processes (e.g., summer rainfall in dry climates). 

Thus, long sequences of zero daily values can be provided, at individual locations. Moreover, the 

generation of such sequences, both in space and time, is also achieved through the preservation of 

cross-correlation coefficients by the multivariate daily stochastic model. 

5.3.4 Potential sources of bias 

A negative outcome of the above procedure is the introduction of bias in some key statistical 

characteristics of the historical data. For instance, the truncation of negative values may result in 

overestimation of cross-correlations, since negative values are often contemporary. Furthermore, 

forcing dry periods in space may also overestimate cross-correlations, since for several dry days 

the same (i.e., zero) value is manually assigned to all modelled variables. Nevertheless, a slight 

overestimation of cross-correlations could counterbalance the underestimation resulting from the 

adjusting procedure of section 5.2. Also, this bias only depends on the value of k, so it can be 

adjusted to be negligible, through a careful adjustment of this parameter. 
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The application of the procedures outlined in section 5.3.3 may also affect the 

autocorrelation structure of the simulated variables. In general, by setting high values to 

parameters λ and ξ, the lag-1 autocorrelations are underestimated, and this may be unavoidable in 

cases of historical data with high proportions of dry periods (e.g., see case study in section 6.2). 

To counterbalance this, an autocorrelation adjusting factor is applied, which introduces positive 

prior bias to daily autocorrelation coefficients. The adjusting factor can be estimated by a trial 

and error procedure through inspection of the model outputs.  

In terms of parameter sensitivity, λ and ξ have much greater impact than π0 and l0. A suitable 

range for λ and ξ cannot be specified a priori, since the effect of the method directly depends on 

specific characteristics of each particular case study, such as the number of simulated variables, 

the actual proportions of dry intervals, etc. In general, high values of λ and ξ should be avoided, 

as they may introduce significant bias to the statistical characteristics to be preserved. We 

recommend employing a trial and error approach to determine the aforementioned parameters 

empirically, i.e., by evaluating the statistical characteristics of the synthetic time series. 

Preliminary investigations showed that such a procedure requires at most two or three trial runs. 

6 Case studies 

6.1 Generation of monthly inflows for hydrosystem simulation 

The first case study aims at the generation of simultaneous monthly inflows, i.e. rainfall and 

runoff into three major reservoirs (Evinos, Mornos, Hylike) of the water supply system of Athens 

(Koutsoyiannis et al., 2003b). The map of Fig. 3 shows the three reservoirs and their upstream 

catchments. This constitutes a multivariate generation problem with six variables (i.e. two 

processes at three basins), for a simulation length of 2000 years. We remark that the historical 

rainfall data have been obtained from rain gauges that are located close to each of the three 

reservoirs (not shown in the map), while the runoff data have been estimated by solving the 

monthly water balance equation for the unknown naturalized inflows. Apart from the rainfall 

sample at Hylike, the rest of historical records cover a period of around 40 years (1970-2008). 
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Figure 3 Part the water resource system of Athens, in which are illustrrated the three reservoirs, 

their upstream basins, the conveyance network, and the five rain gauges used in case study 2. 
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Figure 4 Empirical and theoretical autocorrelograms of the annual rainfall at Hylike, for different 

parameters of eq. (1). 

The small length of all but one time series makes rather unreliable the estimation of the long-

term persistence characteristics of the associated processes, which are mathematically expressed 

by the generalized autocovariance function (section 3.1). Fortunately, safer conclusions can be 

obtained from the annual rainfall record at Hylike, which extends over a 100-year period (1907-
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2008). Fig. 4 illustrates the corresponding empirical autocorrelogram, i.e. the annual 

autocorrelation coefficients ρj for time lags up to j = 50 years. This exhibits a significantly long 

tail, since most of the empirical autocorrelation coefficients retain particularly high values in the 

long run (with many of them being higher than the lag-1 value, ρ1 = 0.103). Also, four theoretical 

autocorrelograms are presented, derived by different formulations of eq. (1). The first three were 

estimated by setting the scale parameter of eq. (1) equal to β = 0.0, 2.0, and 4.0, thus representing 

low (ARMA-type), moderate and high persistence, respectively, while the shape parameter κ was 

analytically computed to preserve the lag-1 autocorrelation of the observed rainfall. For β = 0.0, 

2.0, and 4.0, the corresponding values of κ were 2.3, 46.9, and 2248.0, respectively. The last 

theoretical autocorrelogram was estimated via calibration, i.e. by fitting the theoretical against the 

empirical autocorrelation coefficients; is that case we obtained β = 3.55 and κ = 100.8. Following 

a similar approach for all variables, we examined the relationship between the parameters of the 

generalized autocovariance function (1) and the resulting Hurst coefficient, H. The outcomes of 

this analysis are summarized in Table 2.  

Table 2 Simulated Hurst coefficients, estimated from synthetic series by the algorithm given by 

Koutsoyiannis (2003), at the six locations of interest, for different formulations of the generalized 

autocovariance function. 

 Low 
persistence  
(β = 0.0) 

Moderate 
persistence 
(β  = 2.0) 

High 
persistence 
(β = 4.0) 

Fitted to empirical 
autocorrelograms  
of historical data 

Evinos rain 0.55 0.63 0.69 0.56 
Evinos runoff 0.59 0.72 0.76 0.62 
Mornos rain 0.58 0.68 0.69 0.66 
Mornos runoff 0.59 0.70 0.73 0.65 
Hylike rain 0.56 0.57 0.67 0.74 
Hylike runoff 0.59 0.69 0.76 0.65 
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Table 3 Comparison of annual statistical characteristics for all modelled variables.. 

    
Mean 
(mm) 

St. deviation 
(mm) 

Skewness 
Lag-1  

autocorrelation 
Historical 1220.8 283.9 -0.487 0.172 

Evinos rain 
Synthetic 1231.0 272.4 -0.470 0.122 
Historical 785.6 230.4 -0.267 0.315 

Evinos runoff 
Synthetic 810.6 223.8 -0.359 0.272 
Historical 934.5 205.6 0.694 0.247 

Mornos rain 
Synthetic 944.9 195.5 0.533 0.201 
Historical 408.2 144.7 -0.063 0.320 

Mornos runoff 
Synthetic 418.4 137.0 -0.164 0.250 
Historical 653.6 158.3 0.509 0.095 

Hylike rain 
Synthetic 647.7 157.1 0.547 0.062 
Historical 126.0 55.6 0.194 0.297 

Hylike runoff 
Synthetic 128.1 52.1 0.249 0.248 

 

Accepting that the empirical autocorrelogram of the annual rainfall at Hylike is relatively 

reliable, and thus representative of the scaling behaviour of the associated process, a suitable 

value of parameter β should be around 4.0. However, similarly safe conclusions cannot be 

extracted for the remaining processes, as the corresponding historical records are not sufficiently 

long. On the other hand, employing such a high value of β would probably result in too 

conservative estimations, with respect to the performance of the water resource system under 

study (in terms of reliability, cost, etc.). Therefore, in the following simulations we decided to 

assign a moderate value of β = 2.0 to all variables and fit parameter κ to the corresponding lag-1 

autocorrelation, the estimation of which is relatively safer. We remark that in the case of small 

samples, significant bias and uncertainty is introduced in the estimation of autocorrelations as the 

lag increases, manifested in random fluctuations of the empirical autocorrelation coefficients 

(e.g., alternations between negative and positive values). For this reason, for lags greater than 

one, the annual synthetic data are forced to reproduce the theoretical autocorrelations derived by 

eq. (1), which are statistically consistent (their values decrease monotonically according to an 

appropriate model), and not the historical ones. The corresponding Hurst values are around 0.60 

for rainfall and 0.70 for runoff. In all cases but one (Hylike rainfall) these are somewhat greater 

than the ones obtained when the theoretical autocorrelogram is fitted to the empirical one (Table 

2, last column). However, due to the presense of negative coefficients in the empirical 
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autocorrelogram, this fitting approach is expected to provide underestimated values of parameter 

β, which in turn leads to underestimated Hurst coefficients. This further justifies the proposed 

formulation of the theoretical autocorrelation function. 

 The performance of the monthly module of Castalia is evaluated by comparing the statistical 

characteristics of simulated data to the historical ones. We remark that in the case of stochastic 

models, evaluations can only be made on statistical grounds, in contrast to typical quantitative 

evaluations employed in environmental modelling, which are based on comparisons of simulated 

data against observations (cf. Bennett et al., 2013). We also note that even the accuracy of the 

simulated statistical characteristics depends on the length of synthetic data. For infinite 

simulation horizons, the statistical characteristics of the synthetic time series should be identical 

to the historical ones, provided that the theoretical equations of the model are built to preserve the 

desirable statistics of the parent time series. Some inaccuracies may also emerge when the 

estimation of some parameters is made through numerical approaches, in the absence of 

analytical ones. The unavoidable errors of numerical methods are reflected in the representation 

of the statistical characteristics.  

Under this premise, we compare the observed and simulated annual mean, standard 

deviation, skewness coefficient and lag-1 autocorrelation at every location, which are given at 

Table 3. The same characteristics are also illustrated, by means of monthly diagrams, for the 

rainfall at Hylike (the station with the largest sample) and the runoff at the wetest basin, i.e. 

upstream of Evinos dam (Figs. 5 and 6, respectively). In Fig. 7 the monthly cross-correlations are 

also compared, for several pairs of variables. It is demonstrated that the modelling scheme 

preserves with very satisfactory accuracy all essential statistical properties for both the annual 

and the monthly time scales; this also involves characteristics that are not explicitly represented 

in the theoretical equations of the model, such as the skewness and cross-correlations. Yet, in few 

cases, the preservation of the above statistics is less satisfactory. To remedy this, we should go 

back to the numerical routines embedded in Castalia (e.g., the optimization procedure for 

covariance matrix decomposition) and assign more strict convergence and termination criteria. 
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Figure 5 Comparison of monthly statistical characteristics of rainfall at Hylike. 
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Figure 6 Comparison of monthly statistical characteristics of runoff at Evinos. 
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Figure 7 Comparison of monthly cross-correlations for several pairs of variables. 

6.2 Generation of daily rainfall for flood simulation 

In the second case study we tested the newer version of Castalia for the stochastic simulation 

of daily rainfall at five (out of the 13 available) gauges located at the Boeoticos Kephisos river 

basin, in Eastern Greece. The basin, which extends over an area of 1930 km2, is also part of the 

water supply system of Athens, since it discharges into Lake Hylike. The locations of the stations 

are shown Fig. 3. The historical records cover a common observation period of 42 years (1964-

2006). The mean annual rainfall over all stations ranges from 500 to 750 mm. Synthetic data are 

necessary for the estimation of the proper representation of the areal rainfall at the sub-basin 

scale, which can constitute inputs to semi-distributed flood models at the specific basin. 

The three-level multivariate disaggregation scheme was applied for generating 1000 years of 

daily rainfall, at the five gauges (Dialynas, 2011). In the context of model configurations, we 

assigned the following values: for the power transformation of daily variables (eq. 10), we 

applied the exponent n = 0.8; for the rounding off rule of section 5.3.2, we assumed π0 = 0.90 and 

l0 = 0.30; finally, for the Markovian model of section 5.3.3, we set λ = 0.23 and ξ = 0.55 (the 
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basis on parameter selection is explained in section 5.3.4), and we also applied an autocorrelation 

adjusting factor equal to 1.25. 

Table 4 Comparison of daily statistical characteristics of the five rain gauges in December. 

  Pavlos Drymea Atalanti Livadia Tithorea 
Historical 2.53 2.78 2.57 4.05 3.31 

Mean (mm) 
Synthetic 2.49 2.75 2.54 3.96 3.29 
Historical 7.68 8.18 7.16 9.89 8.7 

St. deviation (mm) 
Synthetic 8.08 9.01 7.5 10.73 9.28 
Historical 5.6 5.2 4.6 3.9 4.3 

Skewness 
Synthetic 7.4 6.4 5.9 5.2 5.3 
Historical 0.15 0.28 0.22 0.27 0.24 

Lag 1 autocorrelation 
Synthetic 0.22 0.29 0.21 0.27 0.26 
Historical 0.74 0.73 0.74 0.65 0.67 

Probability dry 
Synthetic 0.69 0.71 0.69 0.65 0.66 

 

 

Table 5 Comparison of daily statistical characteristics of the five rain gauges in July.. 

  Pavlos Drymea Atalanti Livadia Tithorea 
Historical 0.29 0.63 0.46 0.58 0.62 Mean (mm) Synthetic 0.33 0.65 0.48 0.64 0.62 
Historical 2.52 3.85 3.17 4.4 3.76 St. deviation (mm) Synthetic 2.41 4.25 3.33 4.68 3.62 
Historical 13.8 9.4 9.5 14 9.2 Skewness Synthetic 12.5 10.3 12.7 12.7 9.7 
Historical 0.077 0.039 0.08 0.022 0.086 Lag 1 autocorrelation Synthetic 0.056 0.016 0.045 0.033 0.066 
Historical 0.96 0.94 0.95 0.93 0.92 Probability dry Synthetic 0.94 0.93 0.93 0.94 0.91 

 

The evaluation of the model performance is implemented for the lowest level of simulation, 

i.e. the daily scale. In this scale, apart from the reproduction of the essential statistical 

charateristics of the synthetic time series (moments up to third order, auto- and cross-correlations, 

and probability dry), emphasis is also given to the statistical regime of the extremes. In this 

context, we first compare the statistical characteristics of the simulated time series against the 

historical ones, for the wettest (December) and driest (July) month of the year, which are shown 
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in Tables 4 and 5, respectively. In general, Castalia reproduces with considerable accuracy the 

statistical behaviour of the observed data, even during summer months that are characterized by 

particularly high coefficients of skewness (~10 to 15) and significantly high percentages of dry 

days (~0.90 to 0.95), In Tables 6 and 7 the cross-correlation coefficients of the two months of 

interest are compared, which are estimated both on the basis of the power-transformed (through 

eq. 10), and the raw data series, respectively.  Even though the model is built to merely preserve 

the “theoretical” cross-correlations (the estimation of which is explained in section 3), the 

deviations appearing in Tables 6 and 7 are rather minor, which also indicates the suitability of the 

implemented decomposition approach for the variance-covariance matrices. 

Table 6 Cross-correlation coefficients of power-transformed daily data for December (upper-

diagonal table) and July (lower-diagonal table); in each triplet of rows the first shows the 

historical values, the second the “theoretical” (see definition in section 3.3) and the third the 

synthetic ones. 

 Pavlos Drymea Atalanti Livadia Tithorea

Pavlos  
 

 0.40 
0.40 
0.39 

0.39 
0.38 
0.43 

0.47 
0.47 
0.48 

0.54 
0.52 
0.54 

Drymea  
0.38 
0.38 
0.39 

 0.38 
0.39 
0.43 

0.46 
0.47 
0.48 

0.57 
0.58 
0.56 

Atalanti  
0.31 
0.31 
0.35 

0.40 
0.40 
0.57 

 0.42 
0.43 
0.46 

0.43 
0.43 
0.46 

Livadia  
0.53 
0.52 
0.46 

0.40 
0.41 
0.45 

0.32 
0.33 
0.37 

 0.64 
0.64 
0.60 

Tithorea  
0.37 
0.38 
0.35 

0.46 
0.44 
0.50 

0.45 
0.46 
0.50 

0.50 
0.48 
0.45 
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Table 7 Cross-correlation coefficients of daily data for December (upper-diagonal table) and July 

(lower-diagonal table); in each row the first value is estimated from the the historical data and the 

second from the simulated ones. 

 Pavlos Drymea Atalanti Livadia Tithorea 
Pavlos  0.39/ 0.33 0.37 / 0.40 0.46 / 0.48 0.52 / 0.48

Drymea 0.40 / 0.34  0.34 / 0.33 0.45 / 0.45 0.56 / 0.53
Atalanti  0.28 / 0.33 0.37 / 0.35  0.39 / 0.46 0.40 / 0.41
Livadia  0.54 / 0.52 0.42 / 0.38 0.27 / 0.27  0.63 / 0.58
Tithorea  0.34 / 0.39 0.43 / 0.42 0.47 / 0.43 0.48 / 0.38  

 

The average values of historical and synthetic annual daily maxima are also reported in 

Table 8 (even though these values are not directly comparable), where there seems to be a slight 

yet systematic overestimation of the average synthetic maxima. Moreover, in order to investigate 

the statistical behaviour of the simulated annual daily maxima and evaluate the ability of Castalia 

to reproduce extreme rainfall events, we fit the Generalized Extreme Value (GEV) distribution to 

daily maxima, as illustrated in the example of Fig. 8 (rainfall at Pavlos station), which constitutes 

direct graphical output of Castalia. The GEV distribution has three parameters, i.e. k (shape), λ 

(scale) and ψ (position), which are estimated via the L-moments method. The parameter values 

for the historical and synthetic samples of daily maxima are compared in Table 8. Once again we 

emphasize that the accuracy of the estimated parameters substantially differs for historical and 

synthetic data (larger samples offer more confident estimations, as the variance of estimators 

decreases with sample size), and thus comparisons should be carefully interpreted. Nevertheless, 

as shown in Table 8, the values of the three parameters are quite close for most stations, although 

the stochastic model does not explicitly reproduce the statistical characteristics of the extremes, 

as quantified through the GEV parameters. Interestingly, the shape parameter k of synthetic 

maxima, which determines the tail of the distribution, is always positive (suggesting distribution 

unbounded from above), while for two stations (Drymea and Atalanti) its analytical computation 

on the grounds of historical daily maxima results in negative values. However, negative sample 

estimates of k can be expected, as indicated by Papalexiou and Koutsoyiannis (2013), who 

analyzed numerous large-size samples of rainfall data globally. Therefore, the statistical regimes 

of the synthetic daily maxima seem to be consistent with the historical ones, which constitutes 

another important advantage of the daily generation scheme.  



-30- 

Table 8 Mean annual maxima and parameters k, λ, ψ of the GEV distribution. 

  Pavlos Drymea Atalanti Livadia Tithorea 
Historical 58.8 65.0 54.6 69.3 59.4 Mean annual  

maximum (mm) Synthetic 62.5 74.1 61.1 77.6 68.0 
Historical 0.084 -0.389 -0.042 0.144 0.082 

Shape parameter k 
Synthetic 0.104 0.036 0.030 0.030 0.081 
Historical 13.409 22.565 16.751 17.743 15.034 

Scale parameter λ 
Synthetic 18.308 21.556 18.491 22.367 19.009 
Historical 3.721 2.594 2.721 3.162 3.288 

Position parameter ψ 
Synthetic 2.723 2.826 2.696 2.860 2.913 
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Figure 8 Fitting of GEV distribution to historical (left) and synthetic (right) daily rainfall 

maxima at Pavlos. 

7 Summary and discussion 
Castalia employs a stochastic simulation framework for generating synthetic time series at 

multiple locations and at three time scales (daily, monthly, and annual). This constitutes a 

synthesis of several individual methodologies, combining analytical and numerical procedures 

that allow preserving simultaneously all important statistical characteristics of the observed data, 

at all time scales. The two case studies dealing with different simulation problems, illustrated the 

model advantages, as well as the software capacities, e.g. its flexibility on representing a wide 

range of autocovariance structures, and thus respecting the Hurst-Kolmogorov behaviour of the 

annual stochastic processes, in addition to preserving high proportions of dry intervals and 
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representing GEV-distributed maxima at the daily scale. However, they also revealed some issues 

that require further investigation, such as: (a) the ability to handle variables with fat 

(subexponential) distributions (i.e., tails approaching zero less rapidly than an exponential tail); 

(b) the improvement of the parameter estimation procedures by taking into account the statistical 

bias and uncertainty in estimation; and (c) the automatic tuning of several algorithmic 

parameters, particularly within the daily simulation procedures. With respect to the latter issue, it 

is recalled that Castalia, in addition to autocovariance and cross-covariance parameters, also 

requires the estimation of several other parameters and algorithmic constants, to be implemented 

within hybrid or numerical procedures. All these are directly or indirectly associated with the 

preservation of the statistical characteristics that are not explicitly reproduced by stochastic 

models. Apparently, the performance of these parameters should be systematically evaluated in a 

wide range of problems, in order to provide generalized guidance for their estimation. In our 

opinion, a full automatization is not possible, since most of associated routines are iterative, thus 

it is impossible to make a priori estimations on the basis of the available information. Yet, some 

of these routines could be improved by embedding hybrid, self-tuning rules that are based on the 

additional information gained during the trials.  

Another possible improvement is related to the number of variables that can be represented 

in multivariate stochastic simulations. If this number is large, numerical problems that emerge are 

related to a large number of parameters to be estimated, combined with the error accumulation 

issues (e.g., Kottegoda et al., 2003). For instance, at the decomposition of the variance-

covariance matrix, which is a common procedure at all time scales, a nonlinear optimization 

problem of m × m control variables is to be solved, which is characterized by significant 

sensitivity of the objective function against its parameters as well as the existence of many local 

optima. Efstratiadis (2001) found that well-recognized evolutionary optimization algorithms were 

easily trapped to local optima, which in turn resulted to improper representation of the associated 

statistical characteristics (i.e., skewness and cross-correlations). At the daily time scale, 

additional perplexity arises due to the implementation of hybrid approaches to preserve the 

probability of dry historical data, which may introduce significant bias to the rest of statistical 

properties. Nevertheless, it is not possible to set a specific upper limit for the number of modelled 

variables, since this depends on each specific hydrological problem. In our limited experience 

with daily rainfall simulation, the use of more than 7 or 8 variables may not ensure satisfactory 
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preservation of the statistical characteristics of historical data, especially when the latter exhibit 

considerably high proportions of dry intervals; nonetheless up to 20 variables have been 

simulated  by Ilich (2014) using a different approach. At any rate, if the number of variables of 

interest is quite high, the multivariate module can be individually applied to each subset, and thus 

indirectly represent the total set of variables, as practiced e.g., in LAST (Lane and Frevert, 1990), 

SPIGOT (Grygier and Stedinger, 1990), and SAMS (Sveinsson et al., 2003; Salas et al., 2006). 

Even though this implies that cross-correlations among different datasets are ignored, this is 

preferable over employing single-site simulations, since simultaneous preservation of cross-

correlations at the three time scales of interest leads to more sufficient representation of 

hydrological reality. In this case, cross-correlations between variable subsets could either be 

considered unimportant and thus, be neglected, or be treated by alternative approaches. For 

instance, Koutsoyiannis et al. (2008) applied a method based on maximization of joint entropy to 

optimally estimate unknown cross-correlation values for a multivariate stochastic model. 

The first case study (section 6.1) highlights the significant uncertainty on the estimation of 

parameters β and κ, which are associated with the generalized autocovariance function and 

identify, in turn, the Hurst coefficient of the simulated time series. Theoretically, if large data 

records were available, of 100 years as an order of magnitude, the obvious and most reliable 

practice would be the calibration of these parameters against the empirical autocorrelation 

coefficients. However, the majority of hydrometeorological data sets do not exceed few decades, 

thus making the estimation of historical autocorrelations (apart from few time lags) unreliable; as 

already mentioned, the fewer the historical data the more uncertain the autocorrelation estimation 

is. In this context, it is essential to employ systematic analyses using a few in number, yet large in 

size samples, in order to provide representative regional values for the Hurst coefficients, over 

broader regions, for all typical hydrometeorological variables. The outcomes of such analysis 

would allow formulating realistic autocovariance functions, and consequently generate synthetic 

time series that properly reproduce the Hurst-Kolmogorov behaviour of the associated processes.  

Until now, Castalia was mainly applied for generating monthly rainfall and runoff, as well as 

daily rainfall, in the context of water resources management and flood modelling studies, 

respectively. However, a wider spectrum of hydrometeorological variables can be simulated by 

Castalia (Venediki et al., 2013). Tsekouras and Koutsoyiannis (2014) produced synthetic time 
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series of daily wind speed and sunshine duration time series, which are essential in renewable 

energy studies. Next research steps can be the investigation of the model performance against 

other hydrometeorological variables, particularly at the daily time scale. This may require some 

improvements in order to efficiently represent the peculiarities of each individual process (e.g., 

baseflow characteristics and snowmenlt effects of daily discharge, negative values of daily 

temperature, etc.). Regarding streamflow generation, our preliminary investigations in wet basins 

with permanent runoff showed that Castalia generated realistic patterns of daily discharge, due to 

the preservation of lag-1 autocorrelations and cross-correlations with rainfall. However, to ensure 

the generation of physically consistent streamflow data under any hydroclimatic regime, it is 

essential to account for complex interactions throughout the rainfall-runoff transformation, 

including both physical regulations (due to soil moisture storage, snow accumulation, flow 

routing, etc.) and man-made interventions (e.g., abstractions). In this context, Efstratiadis et al. 

(2014) proposed a nonlinear stochastic framework, comprising effective coupling of Castalia, for 

the generation of meteorological inputs, deterministic hydrological models, as well as stochastic 

error models to represent structural and parameter uncertainties. 

A further research objective is the implementation of a fourth temporal level, e.g. hourly, 

which is more convenient for flood simulations. We expect that, by employing the robust 

disaggregation methodology of section 4.2, it is rather straightforward to couple fine-scale 

stochastic models, such as the one proposed by Koutsoyiannis et al. (2003a), within higher-level 

simulation schemes. While some models include weekly and seasonal time scales, following a 

disaggregation methodology, in order to explicitly preserve weekly or seasonal statistical 

properties, we do not see the reason to incorporate such scales or intermediate ones; by choosing 

key time scales, a disaggregation framework ensures preservation of statistics at these scales and 

one can expect that the statistics at intermediate scales (in between two explicitly considered in 

the disaggregation) would be appropriately interpolated if the finer scale data are aggregated to 

any desired time scale. 
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