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Abstract 7 

Three common stochastic tools, the climacogram i.e. variance of the time averaged process over  8 

averaging time scale,  the autocovariance function and the power spectrum are compared to each 9 

other to assess each one’s advantages and  disadvantages  in  stochastic  modelling  and  statistical  10 

inference. Although in theory all three are equivalent to each other (transformations one another 11 

expressing second order stochastic properties), in practical application their ability to characterize a 12 

geophysical process and their utility as statistical estimators may vary. In the analysis both Markovian 13 

and non Markovian stochastic processes, which have exponential and power-type autocovariances, 14 

respectively, are used. It is shown that, due to high bias in autocovariance estimation, as well  as 15 

effects of process discretization and finite sample size,  the power spectrum is also  prone to  bias and  16 

discretization errors as  well  as high  uncertainty,  which may misrepresent the process behaviour 17 

(e.g. Hurst phenomenon) if not taken into account. Moreover, it is shown that the classical 18 

climacogram estimator has small error as well as  an expected value always positive, well-behaved 19 

and close to its mode (most probable value), all  of  which  are  important  advantages  in  stochastic  20 

model  building. In contrast, the power spectrum and the autocovariance do not have some of these 21 

properties. Therefore,  when  building a  stochastic  model,  it  seems  beneficial  to  start from  the  22 

climacogram,  rather  than  the  power  spectrum  or  the  autocovariance.  The results are illustrated 23 

by a real world application based on the analysis of a long time series of high-frequency turbulent 24 

flow measurements. 25 
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1. Introduction 28 

The power spectrum (or else spectral density) was introduced as a tool to estimate the distribution of 29 

the power (i.e. energy over time) of a sample over frequency, more than a century ago by Schuster 30 

(Stoica and Moses, 2004, p. xiii). Since then, various methods have been proposed and used to estimate 31 

the power spectrum, via the Fourier transform of the time series (periodogram) or its autocovariance 32 

or autocorrelation functions (for more information on these methods see in Stoica and Moses, 2004, ch. 33 

2 and Gilgen et al., 2006, ch. 9). Most common (and also used in this paper) is that of the 34 

autocovariance which corresponds to the definition of the power spectrum of a stochastic process (for 35 

details, see sect. 2.3). However, this accurate mathematical definition lacks immediate physical 36 

interpretation since the Fourier transform of a function is nothing more than a mathematical tool to 37 

represent the function in the frequency domain in order to identify any periodic patterns which are 38 

not easily tracked in the time domain. 39 

Several researchers have tried in the past to evaluate the statistical estimator of the power spectrum 40 

concluding that its major disadvantage is that of its large variance (Stoica and Moses, 2004, p. xiv). 41 

Notably, this variance is not reduced with increased sample size (Papoulis, 1991, p. 447). To remedy 42 

this, several mathematical smoothing techniques (e.g. windowing, regression analysis, see Stoica and 43 

Moses, 2004, ch. 2.6) have been developed. In cases of short datasets, trend-line approaches are most 44 

commonly used to obtain a very rough estimation of the model behaviour or simple rules to 45 
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distinguish exponential and power-type behaviours (e.g., Fleming, 2008). In cases of long datasets, the 46 

most commonly used approach is the windowing (data partitioning), also known as the Welch 47 

approach, where a certain window function (the simplest of which is the Bartlett window) is applied 48 

to nearly independent segments. In the latter method, one has first to divide the sample into several 49 

segments (but only after insuring these segments have very small correlations between them), to 50 

calculate the power spectrum for each segment and then to estimate the average. Assuming that the 51 

process is stationary, this average will be the power spectrum estimate. Unfortunately, the more 52 

segments we divide the sample into, the more the cross-correlations between segments are increasing 53 

as well as the more we lose in low frequency values (since the lowest frequency is determined by the 54 

length of the segments). Thus, this method could be indeed a robust one, but only for a very long 55 

sample (which is a rare case in geophysics), only when there is no interest in the low frequency values 56 

(which can reveal large-scale behaviours) and only for an unbiased power spectrum estimator or at 57 

least for an ‘a priori’ known bias, e.g. via an analytical equation (which, as we will show in this study, 58 

is rarely the case). Based on these limitations, Dimitriadis et al. (2012) and Koutsoyiannis (2013a, b) 59 

provided examples where this smoothing technique fails to detect the large scale behaviour (i.e. Hurst 60 

phenomenon), gives small scale trends that are completely different from the ones characterizing the 61 

stochastic model and have several numerical calculation problems that could cause misinterpretation 62 

(see sect. 4 and Fig. 10d for an illustrative example of the limitations of this method). These all are due 63 

to the fact that the power spectrum estimator is biased and it is difficult to estimate this bias 64 

analytically. Nevertheless, the power spectrum is a useful tool to analyze a sample in harmonic 65 

functions and so, to detect any dominant frequencies (this is the reason behind harmonic analysis 66 

introduced by J. Fourier, 1822). 67 

In this paper, we investigate the bias in power spectrum estimator (evaluated via the autocovariance) 68 

which are caused by the bias of autocovariance, the finite sample size and discretization of the 69 

continuous-time process, complementing earlier studies (e.g. Stoica and Moses, 2004, ch. 2.4). We also 70 

examine the asymptotic behaviour when the sample size tends to infinity, investigating the question 71 

whether or not the discrete power spectrum estimator is asymptotically unbiased or not. We perform 72 

similar investigations for the climacogram, a term coined by Koutsoyiannis (2010) to describe the 73 

variance of the time averaged process as a function of time scale. The concepts of autocovariance, 74 

power spectrum and climacogram are examined using both exponential and power-type 75 

autocovariance, as well as combinations thereof, in order to obtain representative results for most 76 

types of geophysical processes. 77 

In sect. 2, we give the definitions of the concepts used in the paper and in sect. 3, we investigate the 78 

estimation of the climacogram, the autocovariance and the power spectrum for some characteristic 79 

processes, and we compare their classical estimators based on illustrative examples. In sect. 4, we 80 

present an application of these stochastic tools to a small scale turbulent process and propose certain 81 

practices to be used in stochastic modelling. Finally, in sect. 5 we summarize the analyses and derive 82 

some conclusions. 83 

2. Definitions and notations 84 

Stochastic processes are families of random variables (denoted as �(�), where underlined symbols 85 

denote random variables and t denotes time) that are often used to represent the temporal evolution 86 

of natural processes. Natural processes as well as their mathematical representation as stochastic 87 

processes evolve in continuous time. However, observed time series from these processes are 88 

characterized by a sampling time interval D, often fixed by the observer and a response time Δ of the 89 

instrument (Fig. 1). The time constants D and Δ affect the estimation of the statistical properties of the 90 

continuous time process. Two special cases, Δ → 0 and D = Δ, are analyzed by Koutsoyiannis (2013a) 91 

who shows that in most tasks the differences are small and thus, here we will focus only on the case D 92 

= Δ > 0 that is also practical for samples with small D (the Markovian process for any D and Δ, in 93 
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terms of its autocovariance, is shown in sect. 4 of the supplementary material, abbreviated as SM). 94 

Thus, the discrete time stochastic process ��(�)
, for D = Δ > 0, can be calculated from �(�) as: 95 

��(�) = 	 
(�)��
(
��)��          (1) 96 

where � ∈ �1, �� is an index representing discrete time, � = ��/�� is the total number of observations 97 

and � ⋲ ��0, ∞)� is time length of observations. 98 

 99 

Figure 1: An example of a continuous time process sampled at time intervals D for a total period T and 100 

with instrument response time Δ.  101 

2.1 Climacogram 102 

The climacogram (Koutsoyiannis, 2013a) comes from the Greek word climax (meaning scale). It is 103 

defined as the (plot of) variance of the averaged process �(�) (assuming stationary) versus averaging 104 

time scale m and is symbolized by γ(m). The climacogram is useful for detecting the long term change 105 

(or else dependence, persistence, clustering) of a process. This can be quantified through the Hurst 106 

coefficient H, which equals the half of the slope of the climacogram in a log-log plot, as scale tends to 107 

infinity, plus 1. For sufficiently large scales, if 0 ≤ H < 0.5 the process is anti-correlated (for more 108 

information see e.g., Koutsoyiannis, 2010), for 0.5 < H ≤ 1 the process is positively correlated (most 109 

common case in geophysical processes) and for H = 0.5 the process is purely random (zero 110 

autocorrelation, thus white noise behaviour) at these large scales. Long-term persistence in natural 111 

processes was first discovered by H.E. Hurst (1951) while A. Kolmogorov (1941) mathematically 112 

described it, working on self-similar processes while studying turbulence. This behaviour is also 113 

known as the Hurst phenomenon or Hurst-Kolmogorov (HK) behavior (Koutsoyiannis, 2010). A 114 

stochastic process with HK behaviour with constant slope of climacogram (–2 + 2H) for all scales m 115 

(not only asymptotically), is known as a Hurst-Kolmogorov process or fractional Gaussian noise (see 116 

sect. 2 of the SM). In Table 1, we introduce the climacogram definition in case of a stochastic process in 117 

continuous time (eq. 2) and in discrete time (eq. 3), a widely used climacogram estimator (eq. 4) as 118 

well as climacogram estimation based on the latter estimator and expressed as a function of the true 119 

climacogram (eq. 5). 120 

  121 
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Table 1: Climacogram definition and expressions for a process in continuous and discrete time, along 122 

with the properties of its estimator. 123 

Type Climacogram  

continuous !("): = Var '	 �(()d(*+,* -". = Var /0 �(()d(,
1 2 /". 

where " ⋲ ℝ+ and !(0) ≔ Var6�(�)7                                                                                               
(2) 

discrete !�(�)(8): = 9:;'∑ 
=(�)>
=?>(
��)@� -AB = 9:;'∑ 
=(�)>=?� -AB = !(8�)  

where 8 ⋲ ℕ is the dimensionless scale for a discrete time process                                                    

(3) 

classical 

estimator !D�(�)(8) = EFGE ∑ HEA I∑ �J(�)A�JKA(�GE)+E L − ∑ 
=(�)N=?�F O.F�KE                          
(4) 

expectation 

of classical 

estimator 

E '!D�(�)(8)- = EGQR(�)(F)/QR(�)(A)EGA/F !�(�)(8)                                                              
(5) 

2.2 Autocovariance 124 

The climacogram is fully determined if the autocovariance is known and vice versa. The specifics of 125 

the autocovariance, including its definition and estimator, are displayed in Table 2. Note that 126 

autocovariance is an even function. 127 

 128 

Table 2: Autocovariance definition and expressions for a process in continuous and discrete time, 129 

along with the properties of its estimator. 130 

Type Autocovariance  

continuous* S(T): = Cov6�(�), �(� + T)7 = d.(T.!(T))2dT.   
where T ⋲ ℝ is the lag for a continuous time process (in time units)                                                   

(6) 

discrete S�(�)(Z): = Cov6��(�), ��+[(�)7= 12 \(Z + 1).!I(Z + 1)�L + (Z − 1).!I(Z − 1)�L − 2Z.!(Z�)] 

where Z ⋲ ℤ is the lag for the process at discrete time (dimensionless) and 
the right-hand side of the equation corresponds to the 2nd central finite 

derivative j2 γ(jΔ).                                                                                                                                                                                            

(7) 

classical 

estimator 
S�̂(�)(Z) = E`([) ∑ a��(�) − EF I∑ �J(�)FJKE Lb a��+[(�) − EF I∑ �J(�)FJKE LbFG[�KE   

where c(Z) is usually taken as: n or n – 1 or n – j                  

(8) 

expectation 

of classical 

estimator** 

E6Ŝ�(�)(Z)7 = 1c(Z) d(� − Z)S�(�)(Z) + Z.� !(Z�) − Z!(��) − (� − Z).� !((� − Z)Δ)f (9) 

*Eq. 6 can also be solved in terms of γ to yield (Koutsoyiannis 2013a): !(") = 2 	 (1 − �)S(�")d�E1 . 131 

**For proof see Appendix. 132 

It is easy to see that for Δ > 0: 133 
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S�(�)(0): = !�(�)(1) = !(�) < !(0) = S(0)        (10) 134 

2.3 Power spectrum 135 

Historically the power spectrum was defined in terms of the Fourier transform of the process x(t) by 136 

taking the expected value of the squared norm of the transform for time tending to infinity, which for 137 

a stationary process converges to the Fourier transform of its autocovariance (this is known as the 138 

Wiener- Khintchine theorem after Wiener, 1930, and Khintchine, 1934). Both definitions can be used 139 

for the power spectrum; however the latter is simpler and more operational and has been preferred in 140 

modern texts (e.g. Papoulis, 1991, ch. 12.4). In Table 3, we summarize the basic equations for the 141 

power spectrum definition and estimation. 142 

 143 

Table 3: Power spectrum definition and expressions for a process in continuous and discrete time, 144 

along with the properties of its estimator. 145 

Type Power spectrum  

continuous* h(i): = 4 0 S(T) cos(2πiT) dTn
1  

where i ⋲ ℝ is the frequency for a continuous time process (in inverse time 

units) 

(11) 

discrete** h�(�)(o): = 2�!(�) + 4� p S�(�)(Z) cos(2πoZ)n
[KE  

where o ⋲ ℝ is the frequency for a discrete time process (dimensionless; ω 

= wΔ) 

(12) 

classical 

estimator*** 
ĥ�(�)(o) = 2�S�̂(�)(0) + 4� ∑ S�̂(�)(Z) cos(2πoZ)F[KE                         (13) 

expectation 

of classical 

estimator*** 

E6ĥ�(�)(o)7 = 2��I!(�) − !(��)L/c(0) + 

+4� p cos(2πoZ)c(Z) d(� − Z)S�(�)(Z) + Z.� !(Z�) − Z!(��)F
[KE − (� − Z).� !((� − Z)�)O 

(14) 

*Eq. 11 can be solved in terms of c to yield: S(T) = 	 h(i) cos(2πiT) din1 . 146 

**Eq. 12 can be solved in terms of S�(�)
 to yield: S�(�)(Z) = 1/� 	 h�(�)(o) cos(2πoZ) doE .⁄1 . 147 

***Eq. 13 and 14 are more easily calculated with fast Fourier transform (fft) algorithms. 148 

 149 

Note that power spectrum is an even function. As easily verified from eq. 12, in discrete time the 150 

power spectrum is periodic with period 1. Continuous and discrete time power spectra can be linked 151 

to each other by the simple equation (Koutsoyiannis, 2013a): 152 h�(�)(o) = ∑ h \r+[� ] sin.Iπ(o + Z)L/uπ(o + Z)v.n[KGn       (15) 153 
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3. Statistical behaviour of the estimation of climacogram, 154 

autocovariance and power spectrum  155 

Various physical interpretations of geophysical processes are based on the power spectrum and/or 156 

autocovariance behaviour (e.g. spectral density function of free isotropic turbulence, see in Pope, 2010, 157 

p. 610). However, the estimation of these tools from data may distort the true behaviour of the process 158 

and thus, may lead to wrong or unnecessarily complicated interpretation. To study the possible 159 

distortion we use the simplest processes often met in geophysics, which could also be used in 160 

synthesizing more complicated ones. Specifically, we investigate and compare the climacogram, 161 

autocovariance and power spectrum of various simple stochastic processes (whose expressions are 162 

presented in sect. 3.1) in terms of their behaviour and of their estimator performance (sect. 3.2 and 3.3) 163 

for different values of their parameters. 164 

3.1 Testing stochastic models 165 

To investigate the statistical behaviour of the estimators of the three tools, climacogram, 166 

autocovariance and power spectrum, we use two simple models. The first is the well-known 167 

Markovian model, else known as Ornstein-Uhlenbeck model, which has an exponentially decaying 168 

autocovariance. The second is a generalization of the HK process (abbreviation gHK), whose 169 

autocovariance decays as a power function of lag for large time lags while it is virtually an exponential 170 

function of lag, for small lags. Note that in sect. 2 of the SM, we also test the HK model. 171 

In Table 4 and 5, we provide the mathematical expressions of the climacogram, autocovariance and 172 

power spectrum of a Markovian and gHK stochastic processes, respectively, in continuous and 173 

discrete time. Their estimates can be found from eq. 5, 9 and 14 and their model parameters, λ and q 174 

have dimensions [x2] and T, respectively, while b is dimensionless.  175 

 176 

Table 4: Climacogram, autocovariance and power spectrum expressions of a Markovian process, in 177 

continuous and discrete time. 178 

Type Markovian process  

Autocovariance 

(continuous) 

S(T) = wxG|z|/{                      (16) 

Autocovariance 

(discrete) S|(�)(Z) = wI1 − xG� {⁄ L.(�/}).  eG(|[|GE)� {⁄  

for |Z| ≥ 1 and S|(�)(0) = !(�) 

(17) 

Climacogram 

(for continuous 

and discrete) 

!(") = 2w("/}). I"/} + xG, {⁄ − 1L 

with !(0) = w 

(18) 

Power spectrum 

(continuous) 
h(i) = 4w}1 + 4π}.i. (19) 

Power spectrum 

(discrete) 
h|(�)(o) = 4w} H1 − 1� }⁄  (1 − cos(2��o)) sinh(� }⁄ )cosh(� }⁄ ) − cos(2��o) O (20) 

  179 
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Table 5: Climacogram, autocovariance and power spectrum expressions of a positively correlated gHK 180 

process, with 0 < � < 1, in continuous and discrete time. 181 

Type gHK process  

Autocovariance 

(continuous) 

S(T) = w(|T|/} + 1)G� 

with � = 2 − 2�            

(21) 

Autocovariance 

(discrete) 
S|(�)(Z) = w |Z�/} − �/} + 1|.G� + |Z�/} + �/} + 1|.G� − 2|Z�/} + 1|.G�(�/}).(1 − �)(2 − �)  

for j ≥ 1, with S|(�)(0) = !(�) 

(22) 

Climacogram   

(for continuous 

and discrete) 

!(") = 2w(("/} + 1).G� − (2 − �)"/} − 1)(1 − �)(2 − �)("/}).  

with !(0) = w 

(23) 

Power spectrum 

(continuous) h(i) ≈ 4w}� Γ(1 − �)Sin \��2 + 2}�|i|](2π|i|)EG�
− 4w} FE . '1; 1 − �2 , 32 − �2 ; −�.}.i.-1 − �  

(where FE . is the hyper-geometric function) 

(24) 

Power spectrum 

(discrete) for q>0 
not a closed expression* - 

* eq. 12 couldn’t be further analysed 182 

 183 

It should be noted that the gHK process can be considered as an HK process that gives a finite 184 

autocovariance value at zero lag, which is the common case in geophysical processes (an HK process 185 

with autocovariance |T|-b gives infinity at zero lag). Thus, a parameter q is added to the HK process 186 

indicating the limit between HK processes (q << |T|) and those affected by the minimum scale limit of 187 

the process (q >> |T|). To switch to an HK process from the gHK one in the equations of Table 5, we can 188 

replace λ with w}G� and then estimate the limit } → 0 (see sect. 2.1 of the SM). 189 

The expressions in Tables 4-5 are derived starting from the true autocovariance in continuous time 190 

(since most studies have preferred autocovariance-based computations; however the easiest way 191 

would be to start from the climacogram, to avoid the more complicated integral derived from eq. 6). 192 

Then, we can estimate its true value in discrete time and its expected value expressions (from eq. 7 193 

and 9). Further, we can estimate the true values in continuous time as well as the expected values of 194 

the climacogram (from eq. 2 and 5) and finally, the true values in continuous and discrete time as well 195 

as the expected values of the power spectrum (from eq. 11, 12 and 14). From now on and for 196 

simplicity, only positive lags and frequencies will be considered as both the autocovariance and 197 

power spectrum are even functions. 198 

3.2 Graphical investigation on the climacogram, autocovariance and 199 

power spectrum 200 

We start our comparison with graphical investigations, which are actually very common in model 201 

identification. In Fig. 2-3, we have built the climacograms, autocovariances and power spectra for 202 

Markovian processes with q = 1, 10 and 100, and λ = 1 (Fig. 2) and gHK processes with q = 1, 10 and 203 

100, b = 0.2 and λ = q-b (Fig. 3), all with D = Δ = 1. In particular, in Fig. 2-3 we compare the true, 204 

continuous-time stochastic tools, along with their discrete-time versions as well as their expectation of 205 
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classical estimators, as given in the equations of Tables 4-5. For the estimator, a medium sample size n 206 

= 103 was used (apparently, as n increases the bias will decrease). The graphs also contain plots of the 207 

negative logarithmic derivative (abbreviated as NLD) of all three functions. It is noted that the NLD is 208 

an important concept in identifying possible scaling behaviour (i.e. asymptotic power-laws like in the 209 

Hurst phenomenon) in geophysical processes and a useful metric for quantifying this behaviour (e.g., 210 

see Tyralis and Koutsoyiannis (2011) for the estimation of the Hurst coefficient). The NLD of any 211 

function f(x) is defined as: 212 �#(�) ≔ − � ��I�(
)L� �� 
 = − 
�(
) ��(
)�
          (25) 213 

and for the finite logarithmic derivative of f(x), e.g. in case of  discrete time process, we choose the 214 

forward logarithmic derivative, i.e.: 215 �#(��+E) ≔ − ��I�(

@�)/�(

)L��(

@�/

)          (26) 216 

Figures 2-3 (including the analysis of the HK process in sect. 2.1 of the SM), allow us to make the 217 

following observations: 218 

(a) As shown in eq. 3, the climacogram continuous-time values are equal to the discrete-time ones (for 219 

Δ = D > 0), while in case of the autocovariance and power spectrum they are different. More 220 

specifically, the discrete-time autocovariance (S�(�)
) is practically indistinguishable from the 221 

continuous-time one (c), but only after the first lags, while the power spectrum continuous and 222 

discrete time values vary in both small and large frequencies (where this variation is larger in the 223 

latter). 224 

(b) The expectation of autocovariance, E6S�̂(�)(Z)7, departs from both the true one (c) and the discrete-225 

time one (S�(�)
), for all the examined processes and its bias is always larger than that of the 226 

climacogram and the power spectrum (e.g., see also Lombardo et al., 2013). The climacogram has 227 

larger bias, in comparison with the power spectrum, in case of a gHK process (Fig. 3) and smaller bias 228 

for the Markovian one (Fig. 2). 229 

(c) While in theory the NLD of the climacogram, autocovariance and power spectrum should 230 

correspond to each other, at least asymptotically (e.g., see Koutsoyiannis, 2013a), in practice, as 231 

observed in Fig. 2-3, this correspondence may be lost. In particular, on one hand, the NLDs of the 232 

discrete-time autocovariance (S|(�)#
) and expectation value, E6Ŝ|(�)(Z)7#

, always tend to infinity in the 233 

high lag tail (due to the negative values produced). On the other hand, the NLD of the climacogram 234 

expectation value, Ε '!D(�)-#
, is close to the true one (γ#) for a Markovian process and increases with 235 

scale, in case of a gHK process. On the contrary, while for a Markovian process, the difference 236 

between the NLDs of the discrete-time power spectra (h|(�)#
) and expectation value, E6ĥ|(�)(Z)7#

, is 237 

small, in case of a gHK one, it is non-monotonic, as it varies in both low and high frequencies. Also, 238 

there is always a drop in the NLD of the power spectrum in the high frequency tail at ω = 0.5, which is 239 

attributed to the symmetry of the discrete-time and expectation of the power spectrum around ω = 0.5, 240 

leading to h|(�)#(0.5) = E6ĥ|(�)(Z)7#(0.5) = 0. 241 

(d) The expected value of the power can be estimated theoretically (through eq. 14) only up to 242 

frequency ω = 0.5 (which is the Nyquist frequency), due to the cosine periodicity. On the contrary, 243 

autocovariance and climacogram expected values can be estimated theoretically for scales and lags, 244 

respectively, up to n - 1. 245 

(e) Finally, there is a high computational cost involved in the calculation of values and expectations of 246 

the power (taken from eq. 13 and 14, respectively) as compared to the simple expressions for the 247 

climacogram (eq. 5) and autocovariance (eq. 7 and 9), which is often dealt with fft algorithms. These 248 

large sums, along with the large number of trigonometric products, can often also cause numerical 249 

instabilities (e.g. in the gHK case, with q = 100, in Fig. 3e-f). 250 

  251 
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 252 

 253 

 254 

 255 

Figure 2: True values in continuous and discrete time and expected values of the climacograms (a), 256 

autocovariances (c) and power spectra (e) as well as their corresponding NLDs (b, d and f, 257 

respectively) of Markovian processes with q = 1, 10 and 100, λ = 1 and n = 103. Note that the continuous 258 

and discrete values of the climacogram are identical for Δ = D > 0. 259 
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 262 

  263 

Figure 3: True values in continuous and discrete time and expected values of the climacograms (a), 264 

autocovariances (c) and power spectra (e) as well as their corresponding NLDs (b, d and f, 265 

respectively) of gHK processes with b = 0.2 and q = 1, 10 and 100, λ = q-b (not λ = 1, for demonstration 266 

purposes) and n=103. Note that the continuous and discrete values of the climacogram are identical for 267 

Δ = D > 0. 268 

 269 

Certainly, all the above are just indications arising from this graphical investigation of simple cases. 270 

For more complicated processes one should investigate further. 271 

Some of the observations concerning the estimated power spectrum can be explained by considering 272 

the way the power spectrum is calculated from the autocovariance: when a sample value is above 273 

(below) the sample mean, the residual is positively (negatively) signed; thus, a high autocovariance 274 

value means that, in that lag, most of the residuals of the same sign are multiplied together (++ or --). 275 

In other words, the same signs are repeated (regardless of their difference in magnitude). The same 276 

‘battle of signs’ process, is followed in the case of the power spectrum, but this time, the sign is given 277 

by the cosine function. A large value of the power spectrum indicates that, in that frequency, the 278 

autocovariance values multiplied by a positive sign (through the cosine function) are more than those 279 

multiplied by a negative one. So, the power spectrum can often misinterpret an intermediate change 280 

in the true autocovariance or climacogram. A way to track it down will be through the autocovariance 281 

itself, i.e. not using the power spectrum at all, but this is also prone to high bias (especially in its high 282 
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lag tail) which always results in at least one negative value (for proof see Hassani, 2010 and analysis in 283 

Hassani, 2012). These can be avoided with an approach based on the climacogram, i.e. the variance of 284 

the time averaged process over averaging time scale, as the calculated variance is always positive. 285 

Also, the structure of the power spectrum is not only complicated to visualize and to calculate but also 286 

lacks direct physical meaning (opposite to autocovariance and climacogram), as it actually describes 287 

the Fourier transform of the autocovariance. 288 

Furthermore, the power spectrum can often lead to process misinterpretations as the one shown in 289 

Fig. 2 (Markovian process), where almost in the whole frequency domain E6ĥ�(�)7 > h�(�)
 and (h�(�))# >290 E6ĥ�(�)(Z)7#

. This can lead to the wrong conclusion that the area underneath S�(�)
 is smaller than E6S�̂(�)7 291 

and that S�(�)
 tends to zero more quickly than E6Ŝ�(�)7. This can be easily derived from Fig. 4, if one 292 

replaces the cosine function with a simplified one (with only +1 and -1, where cosine is negative and 293 

positive, respectively). Then, the negative part of the simplified function lies with the negative part of 294 

the biased autocovariance, resulting in a positively signed value when multiplied with each other. 295 

However, this is not the case for the discrete autocovariance resulting in E6ĥ�(�)7 > h�(�)
. 296 

 297 

  298 

Figure 4: True autocovariance in discrete time for a Markov process (with q = 100) and its expected 299 

value for n = 103, along with a cosine function cos(2πfr), where f is the frequency and r the lag and its 300 

sign sign(cos(2πfr)), for (a) f = 1/n and (b) f = 2/n. 301 

3.3 Investigation of the estimators of climacogram, autocovariance and 302 

power spectrum 303 

In this section, we will investigate the performance of the estimators of climacogram, autocovariance 304 

and power spectrum. For their evaluation we use mean square error expressions as shown in the 305 

equations below. Assuming that θ is the true value of a statistical characteristic (i.e. climacogram, 306 

autocovariance, power spectral density and NLDs thereof) of the process, a dimensionless mean 307 

square error (MSE), similar to the one used for the probability density function in Papalexiou et al. 308 

(2013), is: 309 

� = �'I��G�LB-�B = �� +  ��          (27) 310 

where we have decomposed the dimensionless MSE into a variance and a bias term, i.e. 311 �� = Var6��7/�.           (28) 312 �� = I� − Ε6��7L./�.          (29) 313 

Note that θ is given by eq. 2 (for the true climacogram), eq. 7 (for the true autocovariance in discrete-314 

time) and eq. 12 (for the true power spectrum in discrete-time). �� can be found analytically through 315 Ε6��7, from eq. 5, 9 and 14, respectively, but �� cannot (because of lack of analytical solutions for Ε6��.7 316 

and hence, Var6��7, for the classical estimators of climacogram, autocovariance and power spectrum). A 317 

way of tackling this would be by a Monte Carlo method, and specifically by producing many 318 
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independent Gaussian synthetic time series with a known climacogram (and thus, autocovariance and 319 

power spectrum) and estimating the variance for each scale/lag/frequency, respectively. The 320 

methodology we used to produce synthetic time series, for any stochastic process based on a 321 

combination of Markovian processes (e.g., Mandelbrot, 1977), is given in sect. 3 of the SM. For a typical 322 

finite size n, the sum of a finite, usually small, number of Markovian processes is capable of adequate 323 

representing most processes; for example, Koutsoyiannis (2010) showed that the sum of 3 AR(1) 324 

models is adequate for representing an HK process for n < 104. Certainly, as accuracy requirements 325 

and n increase, a larger number of Markovian processes is required. Note that here, we do not use the 326 

AR(1) model to represent a process that is Markovian in continuous time (as shown in sect. 4 of the 327 

SM, the AR(1) model cannot represent a discretized continuous-time Markovian process for Δ/q > 0 as 328 

well as Δ ≠ D). Instead, we use the ARMA(1,1) model which (as mentioned in Koutsoyiannis, 2002, 329 

2013a) successfully represents any Markovian process and in sect. 4 of the SM we derive its 330 

parameters. 331 

Thus, we produce synthetic time series for Markovian processes with q = 1, 10 and 100 (Fig. 5) and 332 

gHK ones with q = 1, 10 and 100 and b = 0.2 (Fig. 6), all with D = Δ = 1. Then, for each scale, lag and 333 

frequency, we calculate for all processes the means, variances, means of the NLD, and variances of the 334 

NLD, for the climacogram, autocovariance and power spectrum, and their corresponding errors 335 

through eq. 27 to 29, for n = 103 (Fig. 5-6) and for n = 102 and 104 (sect. 2.2 of the SM). Note that, on one 336 

hand, as n decreases, both bias and variance increase and thus, for the point estimate and variance to 337 

be closer to the expected ones, we need more time series. On the other hand, as n increases, more 338 

Markovian processes have to be added and with a larger bias and variance (due to larger q). So, for the 339 

examined processes, we conclude that in order to achieve a maximum error of about 1‰ between 340 

scales 1 and n/2, we have to produce approximate 104 time series for n = 102, 103 and 104. The error is 341 

meant here as the absolute difference, between the estimated and expected value, divided by the 342 

expected value. Furthermore, the 1‰ error refers to the climacogram and corresponds to a gHK 343 

process with b = 0.2 and q = 100, which is considered the more adverse of the examined processes. 344 

Note that in Fig. 5-6, we try to show all estimates within a single plot for comparison with each other. 345 

The inverse frequency in the horizontal axis is set to 1/(2ω), so as to vary between 1 and n/2 and the 346 

lag to j+1, so as the estimation of variance at j = 0 is also shown in a log-log plot. 347 

Moreover, we investigate the shape of the probability density function (pdf) for each stochastic tool, 348 

which, in many cases, differs from a Gaussian one, resulting in deviations between the mean 349 

(expected) and mode. To measure this difference, we use the sample skewness (denoted g), where for 350 

g ≈ 0, the difference is small and for any other case, larger. In Fig. 7, we show for each stochastic tool 351 

and for a gHK process with b = 0.2 and q/Δ = 10, an example of their 95% upper and lower confidence 352 

intervals (corresponding to exceedence probabilities of 2.5% and 97.5%), as well as their pdf for a 353 

specific scale, lag and frequency. 354 

  355 
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  357 

  358 

  359 

Figure 5: Dimensionless errors of the climacogram estimator (continuous line), autocovariance (dashed 360 

line) and power spectrum (dotted line), calculated from 104 Markovian synthetic series with n = 103 361 

(for b = 0.2, q = 1, 10 and 100 and λ = q-b): (a) �� (dimensionless MSE of variance); (b) �� (dimensionless 362 

MSE of bias); (c) ε (total dimensionless MSE); and (d) �# (total dimensionless MSE of NLD); as well as 363 

the sample skewness of each of the stochastic tools and their NLDs are also shown (e) and (f). 364 
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 366 

  367 

  368 

  369 

Figure 6: Dimensionless errors of the climacogram estimator (continuous line), autocovariance (dashed 370 

line) and power spectrum (dotted line), calculated from 104 gHK synthetic series with n = 103 (for b = 371 

0.2, q = 1, 10 and 100 and λ = q-b): (a) �� (dimensionless MSE of variance); (b) �� (dimensionless MSE of 372 

bias); (c) ε (total dimensionless MSE); and (d) �# (total dimensionless MSE of NLD); as well as the 373 

sample skewness of each of the stochastic tools and their NLDs are also shown in (e) and (f). 374 

 375 

Figures 5-6 (including the analysis in sect. 2.2 of the SM), allow us to make some observations related 376 

to stochastic model building: 377 

(1) In general, the climacogram has lower variance than that of the autocovariance, which in turn is 378 

lower than that of the power spectrum (e.g. Markovian and HK processes as well as gHK for most 379 

scales). Also, it has a smaller bias than that of the autocovariance but larger than the one of the power 380 

spectrum (for all examined processes). Since, for the Markovian and HK processes, the error 381 

component related to the variance, ��, is usually larger than the one from the bias, ��, or conversely for 382 

the gHK ones, the climacogram has a smaller total error ε, in most cases. Thus, we can state that (for 383 

all the examined cases) the expression below holds: 384 
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E �\!D − !].� /!. ≤ E 'IŜ|(�) − S|(�)L.- /S|(�). ≤ E 'Iĥ|(�) − h|(�)L.- /h|(�).
    (30) 385 

 (2) We see that as n and b (for the HK process) or q (for the Markovian and gHK processes) increase, 386 

the climacogram estimator entails much smaller error than that of the autocovariance and power 387 

spectrum for the whole domain of scales, lags and frequencies. 388 

(3) The total error for the NLD, ε#, increases with scale in the climacogram and with lag in the 389 

autocovariance for all examined processes. In case of an exponentially decaying autocovariance (e.g. 390 

in a Markovian process), the power spectrum slope ε# first decreases and then increases in large 391 

inverse-frequency values, while the autocovariance and climacogram ε# always increase. In this type 392 

of process, climacogram and autocovariance ε# are close to each other and in most cases smaller than 393 

the power spectrum ε#. For HK and gHK processes, where large scales/lags/inverse-frequencies 394 

exhibit an HK behaviour, the power spectrum always decreases with inverse frequency under a 395 

power-law decay, in contrast to the autocovariance and climacogram ε# which they always increase. 396 

Thus, in this type of processes, there exists a cross point between power spectrum ε# and the other 397 

two, where behind this point, the power spectrum has a larger ε# and beyond a smaller one. 398 

(4) The pdf of the climacogram and autocovariance have small skewness magnitude and can  399 

approximate a Gaussian pdf for most of scales and lags, while the power spectrum pdf has a larger 400 

skewness for its regular values (besides its theoretical smaller bias), which results in non-symmetric 401 

confidence intervals (very important when it comes to uncertainty in stochastic modeling, e.g., see 402 

Lombardo et al., 2014). However, the NLD of the power spectrum has a negligible skewness in 403 

comparison with those of the autocovariance and climacogram, which means that the expected NLD 404 

should be very close to the NLD mode. 405 

(5) The climacogram skewness is increasing with scale up to 3, while the autocovariance one is larger 406 

at first and then it drops to -1 (the point where it starts to drop is when the expected autocovariance 407 

reach a negative value for the first time). It is interesting that the power spectrum skewness has a 408 

value around 2 for regular values and 0 for NLDs, for all the examined processes (with the exception 409 

of the extreme gHK process with q/Δ = 100, where it is around 2.5). 410 

(6) The power spectrum has a large � in high frequencies and then it stabilizes around 1 for all the 411 

examined processes and n. This observation is also mathematically verified by Papoulis (1991, p. 449, 412 

eq. 13-59). Also, we observe that the autocovariance and climacogram � always increases with scale 413 

and lag, respectively. 414 

(7) The autocovariance � is decreasing with }, for the examined Markovian and gHK processes, and 415 

increasing with � for the examined HK ones. In contrast, the climacogram � is increasing with } (for 416 

the examined Markovian and gHK processes) and decreasing with � (for the HK ones). 417 

(8) The autocovariance and power spectrum �# are decreasing with }, for the examined Markovian 418 

and gHK processes, and increasing with � for the examined HK ones. The climacogram �# is 419 

decreasing with both } and �. 420 

(9) The climacogram exhibits sudden increases of � and �# (like a stairway) beyond scales equal to the 421 

10%-20% of n/2 (maximum possible scale for the climacogram). This is due to the small number of 422 

data from which the variance is calculated. This is also verified by Koutsoyiannis (2003, 2013a) leading 423 

to a rule of thumb of estimating the climacogram until the n/10 (20% of n/2) scale. 424 

(10) Var6ĥ#7 has a power-type decay with inverse-frequency with an exponent around -2.0 to -2.5, for 425 

all the examined processes. 426 

(11) We observe that the variance of the power spectrum, for all the examined processes and sample 427 

sizes, is approximately equal to the square of its expected value for frequencies ω ≠ 0, 0.5 and 1 and 428 

double the square of its expected value for ω = 0, 0.5 and 1. This is also verified by Papoulis (1991, p. 429 

447, eq. 13-50) and discussed in Press et al. (2007, p. 655). 430 

 431 
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  432 

  433 

Figure 7: Expected value (continuous blue line), upper 95% confidence interval (dashed green line), 434 

lower 95% confidence interval (dashed red line) and mode for (a) climacogram, (b) autocovariance 435 

and (c) power spectrum and (d) climacogram empirical pdf (blue line), autocovariance (red line) and 436 

power spectrum (green line), at k = j = 100 and ω = 0.1, respectively, calculated from 104 gHK synthetic 437 

series, with b = 0.2, q=10, λ = q-b and n = 103. 438 

 439 

Apparently, these results are valid for the simple processes examined, and the typical estimator and 440 

sample sizes used, while to draw conclusions for more complex processes, the above analyses should 441 

be repeated. On the one hand, we can conclude that from observations 1 and 2, it is more likely for the 442 

sample climacogram to be closer to the theoretical one (considering also the bias) in comparison to the 443 

sample autocovariance or power spectrum to be closer to their theoretical values. Thus, it is proposed 444 

to use the climacogram when building a stochastic model and estimate the autocovariance and power 445 

spectrum from that model, rather than directly from the data (see application in sect. 4). On the other 446 

hand, it seems from observation 3, that in case of a power-law decay in large scales, lags and inverse-447 

frequencies (e.g. in a HK or a gHK process) the NLD of that decay (i.e. b which is related to the HK 448 

coefficient) is better estimated from the power spectrum rather than the climacogram or 449 

autocovariance. However, this applies only for inverse-frequencies beyond the cross point (discussed 450 

in the 3rd observation). This can be tricky as we do not know where this point lies and also, this rule 451 

doesn’t apply for exponential autocovariance decay (e.g. in a Markovian process) where the NLD is 452 

now very large and again, it can lead to wrong conclusions about the nature of the large scale decay 453 

(i.e. presence or not of the Hurst phenomenon). In conclusion, the observations 1-3 can be used to 454 

build a general frame of rules of thumb (described in the steps below) to build a stochastic model from 455 

a sample or to interpret its physical process, e.g. identify what type of process is (Markovian, HK, 456 

gHK etc.). This framework is based only on the three examined stochastic tools and it should be 457 

expanded in case more tools are to be used in the analysis. An application to a real-world example is 458 

presented in sect. 4 for illustration purposes. 459 

(a) First, we have to decide upon the large scale type of decay from the climacogram. For example, if 460 

the large scale NLD is close to 1 then the process is more likely to exhibit either an exponential decay of 461 

autocovariance at large lags (scenario S1) or a white noise behaviour, i.e. H = 0.5 (scenario S2). In case 462 
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where the large scale NLD deviates from 1 then the process is more likely to exhibit an HK behaviour 463 

(scenario S3). The autocovariance can help us choose between scenarios S1 and S2, as in S1 we expect 464 

an immediate, exponential-like, drop of the autocovariance (which often has the smaller difference 465 

between its expected and mode value) whereas in S2 it is unbiased and therefore, the NLD should be 466 

close to 1. In case of the scenario S1, we can estimate the scale parameter of the Markovian-type decay 467 

from the NLD of the climacogram while in case of S3, we should also look into the power spectrum 468 

decay behaviour in low frequencies. Thereafter, for the determination of the Hurst coefficient, we can 469 

use various algorithms, e.g., the one of Tyralis and Koutsoyiannis (2010), which is based on the 470 

climacogram (usually taken up to 10%-20% of its maximum scale n/2), or that of Chen et al. (2010), 471 

which is based on the power spectrum. 472 

(b) For the estimation of the rest of the properties (e.g. for intermediate and smaller scales) we should 473 

use the climacogram. 474 

(c) To build a model, we should first try to use a combination of the processes used in this paper, i.e. 475 

an combination of Markovian, HK and gHK processes, as they are the simplest ones (principle of 476 

parsimony), with an immediate physical interpretation and their combination should cover most of 477 

the cases. If they do not represent well the physical process, we can use more complicated 478 

mathematical processes but repeating for each one the graphical investigation and statistical analysis 479 

proposed in this paper (for example, as done in sections 3.2 and 3.3). 480 

(d) After we built our model, we should make the statistical analysis proposed in section 3.3, to verify 481 

our initial assumptions (null hypothesis) on the smaller ε and ε# of the process as well as their pdf 482 

skewness magnitude, concerning its climacogram, autocovariance and power spectrum. 483 

4. Application 484 

In this section, we will show a statistical analysis of a set of 40 time series derived from a large open 485 

access dataset (http://www.me.jhu.edu/meneveau/datasets/datamap.html), provided by the Johns 486 

Hopkins University, which consists of turbulent wind velocity data, measured by X-wire probes 487 

downstream of an active grid at the direction of the flow (Kang et al., 2003). The first 16 time series 488 

correspond to velocities measured at transverse points abstaining r = 20M from the source, where M = 489 

0.152 m is the size of the grid placed at the source. The next 4 time series correspond to a distance r = 490 

30M, the next 4 to 40M and the last 16 to 48M (for more details concerning the experimental setup and 491 

data, see Kang et al., 2003). We have chosen this type of dataset for our application because of the 492 

controlled environment of the experiment, as well as for its broad importance as turbulence drives 493 

almost any geophysical process. Additionally, all time series have a nearly-Gaussian probability 494 

density function (see Fig. 8b) and are nearly isotropic (isotropy ratio 1.5, see in Kang et al., 2003). Also, 495 

their sample sizes are very large, n = 106 data for each time series (the original data set consisted of 36 × 496 

106 data values but, following Koutsoyiannis (2012) approach, we averaged  every 36 observations, 497 

resulting in 106 observations, for the sake of simplicity). Yet D remains small (0.9 ms for the averaged 498 

time series) and thus, the equality D ≈ Δ can still be assumed valid. Finally, the data set gives the 499 

opportunity of cross checking the methodology proposed in section 3.3, by applying it firstly for the 500 

averaged process (Fig. 9a-d) derived from all 40 time series and then for a single one (Fig. 9d) with 501 

statistical characteristics close to the averaged one. In all cases stationarity is assumed, given that the 502 

macroscopic flow characteristics are steady. The modelling of higher moments and derivatives of the 503 

process, which are important for phenomena such as intermittency and bottleneck effects, as well as 504 

interpretation of model parameters, is not within the scope of this paper. We only focus on the 505 

preservation of the 2nd order statistics related to the three examined stochastic tools. 506 
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   507 

Figure 8: Data preliminary analysis: a) averaged velocity mean (red line) and averaged standard 508 

deviation (blue line) along the wind tunnel axis and (b) empirical pdfs of the normalized time series 509 

(by subtracting the mean and dividing with the standard deviation, for each time series) and their 510 

averaged empirical pdf (black thick line). 511 

 512 

In Fig. 9, we show the climacograms, autocovariances and power spectra of all the 40 normalized time 513 

series, their averaged values and the corresponding values for the 38th time series whose stochastic 514 

properties are closest to the averaged one. We choose to analyze this single time series to show a 515 

comparison with the averaged one. Notice here, that we do not apply the windowing technique to 516 

eliminate some of the power spectrum variance as it is causing loss of information for small 517 

frequencies (see Fig. 10d). Also, windowing should be used with caution when choosing small 518 

segment lengths and should be avoided in strongly correlated processes (e.g. the ones that exhibit 519 

Hurst behaviour) as the time series of the divided segments are not independent from each other. 520 

 521 

  522 

   523 

Figure 9: Data stochastic analysis: (a) climacograms, (b) autocovariances and (c) power spectra of all 524 

the 40 time series (multi-coloured lines) as well as their averaged values (dashed thick black line), (d) 525 

all three in one plot focusing on the comparison of the averaged values with those of the 38th time 526 

series; NLDs at large scales, lags and inverse frequencies are also shown. 527 
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The velocity field is not homogeneous in the direction of the flow, e.g. the velocity mean and standard 528 

deviation in every position is decreasing with the distance r from the source as shown in Fig. 8a. To 529 

homogenize all time series, we normalize each one by subtracting the mean (red line) and dividing 530 

with the standard deviation (blue line). 531 

Assuming that the averaged values, shown in Fig. 9d, are close to the expected values of the process, 532 

we can fit a model following the proposed methodology in section 3.3. The large scale NLD is far from 533 

1, hence, it is most likely that the process exhibits a Hurst behaviour, i.e. a power law decay of the 534 

autocovariance (scenario S3). For the identification of the process’ behaviour at intermediate and small 535 

scales, we use the climacogram as it is more likely to have the least standardized variance (as shown 536 

in sect. 3.3). We finally observe that the NLD at small scales can be very well represented by a 537 

Markovian process. Thus, we fit a stochastic model consistent with the observed behaviour (as seen on 538 

the climacogram) combining Markovian and gHK processes. Namely, we fit a model (Table 6) 539 

consisting of one Markovian process (controlling small scale behaviour) and a gHK process 540 

(controlling large scale behaviour). 541 

 542 

Table 6: Autocovariance, climacogram and power spectrum mathematical expressions, in continuous 543 

and discrete time, of a composite model consisted of a Markovian and a gHK process. 544 

Type Stochastic model  

Autocovariance 

(continuous) 

S(T) = wExG|z|/{� + w.(|T|/}. + 1)G�          (31) 

Autocovariance 

(discrete) S|(�)(Z) = wEI1 − xG� {�⁄ L.(�/}E).  eG(|[|GE)� {�⁄
 

+w. |Z�/}. − �/}. + 1|.G� + |Z�/}. + �/}. + 1|.G� − 2|Z�/}. + 1|.G�(�/}.).(1 − �)(2 − �)  

with S|(�)(0) = !(�) 

(32) 

Climacogram 

(continuous and 

discrete) 

!(") = 2wE("/}E). I"/}E + xG, {�⁄ − 1L
+ 2w.u("/}. + 1).G� − (2 − �)"/}. − 1v(1 − �)(2 − �)("/}.).  

with !(0) = wE + w. 

(33) 

Power spectrum 

(continuous) h(i) ≈ 4wE}E1 + 4π}E.i. + 4w.}.� Γ(1 − �)Sin \��2 + 2}.�|i|](2π|i|)EG�
− 4w.}. FE . '1; 1 − �2 , 32 − �2 ; −�.}.i.-1 − �  

(34) 

Power spectrum 

(discrete) 

not a closed expression (see in Table 5) 
- 

 545 

As a first priority, we try to best fit the climacogram of the time series and on a secondary basis, the 546 

autocovariance and power spectrum (see Fig. 10). To estimate the parameters of the model two 547 

alternative fitting errors were considered: 548 

��  = ∑ ¡�'Q¢(�A)-GQ¢R(�)(A)�'Q¢(�A)- £.F/.AKE          (35) 549 
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�¤  = maxAKE,…,F/. ¨�'Q¢(�A)-GQ¢R(�)(A)�'Q¢(�A)- ¨        (36) 550 

where !D|(�)(8) is the empirical climacogram (estimated from data) and E '!D(�8)- the expected one 551 

(estimated from the model). Firstly, we use the ��  error to locate initial values and then the �¤  for 552 

fine tuning and distributing the error equally to all scales. The optimization analysis results in: λ1=0.81 553 

and λ2 = 0.19 m2/s2, q1 = 0.504 ms and q2 = 5.04 ms and b = 0.45 (H=0.775), with �¤  = 41% and the R2 554 

equal to ~100% for the climacogram, 99.9% for the autocovariance and 99.0% for the power spectrum. 555 

 556 

  557 

  558 

Figure 10: (a) Climacogram, (b) autocovariance and (c) power spectrum for the model of Table 6 fitted 559 

to turbulence data: true values in continuous time (estimated from the model – shown with a green 560 

line), true values in discrete time (estimated from the model – shown with an orange line), expected 561 

values (estimated from the model – shown with a red line), empirical averaged (estimated from all 40 562 

time series – shown with a purple line) and sample values (estimated from the 38th time series – shown 563 

with a dashed blue line). Note that, to avoid large computational burden, the expected values of the 564 

power spectrum are not calculated from eq. 14, but from a Monte Carlo analysis of 104 synthetic time 565 

series. In (d) Bartlett’s method is applied for the 38th time series for various numbers of segments and 566 

the cross-correlation between segments is shown. 567 

 568 

Note that in Fig. 10d, Bartlett’s method (Welch method for non-overlapping segments and with the 569 

use of a uniform window) is applied for the 38th time series. The increase of the cross-correlation with 570 

the increase of the number of segments the original time series is divided into, causes an increase to 571 

the dependence between segments, and thus, highlights the inappropriateness of this method in 572 

estimating the expected power spectrum. Finally, to test the validity of our assumption that for the 573 

specific model in Table 6, the estimator based on the climacogram has the smallest error ε compared to 574 

those based on the autocovariance and power spectrum, we use the same analysis proposed in step (d) 575 

in section 3.3. We produce 104 time series with n = 106 and we compare the errors ε for each estimator 576 

for 81 points logarithmically distributed from 1 to n (Fig. 11). Following the methodology of sect. 3 577 

and 4 of the SM, we fit the gHK process in Table 6 with 7 Markovian models, with: p1 = 26.622, p2 = 6. 578 
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377 and εrm ≈ 0.2%. As can be observed from Fig. 11, the initial choice of the climacogram based 579 

estimators to identify the true process from the sample (null hypothesis), is proven valid for the 580 

current model and for all examined scales (in comparison with the other two estimators). Specifically, 581 

for all time scales the climacogram is more skillful for the estimation of both regular and NLD values 582 

of the process. The only clear exceptions are the smallest magnitude of the sample skewness of the 583 

autocovariance in the last lags and those of the NLD of the power spectrum (which means that their 584 

pdfs are closer to Gaussian and thus, their mode value is closer to their mean). However, these 585 

advantages are diminished by their larger variance and/or bias related errors. Here, it is also observed 586 

that the power spectrum errors seem to be quite constant not only for ε (as expected from the analysis 587 

in sect. 3.3) but for ε# as well. This is due to the mixing of increasing Markovian process ε# (see Fig. 4) 588 

and to the decreasing power-type ones (see Fig. 6 for the gHK process). The larger fluctuations of the 589 

power spectrum, in contrast to the climacogram and autocovariance ones, in Fig. 11, are indicative of 590 

its larger statistical variance and thus, of the smaller likelihood that the empirical power spectrum is 591 

closer to the expected one from the model. 592 

 593 

  594 

  595 

  596 

Figure 11: Dimensionless errors (a) ε and (b) �# of the climacogram and autocovariance compared with 597 

the power spectrum, as well as their expected values, along with upper and lower 95% confidence 598 

intervals and mode (c, d and e), as well as (f) skewness, calculated from 104 synthetic series with n = 599 

106 based on the process in Table 6. 600 
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5. Summary and conclusions 601 

The applications of the autocovariance and power spectrum, in order to identify the stochastic 602 

structure of natural processes and construct models thereof, abound in the literature. Less frequent is 603 

the use of the climacogram, which is a simpler tool and is related by one-to-one transformation to both 604 

the autocovariance and power spectrum.  However, in very few cases the estimation uncertainty and 605 

bias are included in the calculations, causing possible inconsistencies and misspecifications of the 606 

model sought. Here we provide a theoretical framework to calculate the uncertainty and bias for those 607 

three stochastic tools, which also enables inter-comparison of the three tools and identification of their 608 

advantages and disadvantages.  609 

For the climacogram and the autocovariance, analytical formulae for the calculation of the bias are 610 

possible and are presented here; in particular, the expected value of the classical estimator of the 611 

autocovariance in terms of the true climacogram and true autocovariance in discrete time is derived 612 

here (Eq. 9 and Appendix) and it is shown how it can be decomposed into only four parts, which are 613 

easy to evaluate. In contrast, the power spectrum, due to its more complicated definition (based on the 614 

Fourier transform of the autocovariance), does not enable a generic, analytically derived, formula for 615 

the estimation bias. 616 

The study shows some of the advantages and difficulties presented in stochastic model building when 617 

starting from the climacogram, autocovariance or power spectrum. Specifically: 618 

• The climacogram has the smallest estimation error in estimating the true values (in all 619 

examined cases as described in eq. 30) as well as the true logarithmic derivatives, i.e. slopes in 620 

log-log plots (with few exceptions). Also, its bias can be estimated through a simple and 621 

analytical expression (Eq. 5). Moreover, the climacogram is always positive (a property 622 

helpful in stochastic model building, e.g. the logarithmic derivative always exists), well-623 

defined (with an intuitive definition through the variance of the time averaged process over 624 

averaging time scale) and typically monotonic (observed in all the examined processes and in 625 

the NLDs, in Fig. 2-3 and in sect. 2.1 of the SM). Finally, it has (for all the examined processes) 626 

values of sample skewness close to 0, for the small scale tail, while in the large scale tail, its 627 

skewness is increasing up to 3 (Fig. 5-6 and sect. 2.2 of the SM). 628 

• The autocovariance has estimation errors larger than those of the climacogram. Besides its 629 

large bias, it is also prone to discretization errors as its value (eq. 7) can never be equal with 630 

the true value in continuous time (eq. 6), even for an infinite sample size. Moreover, it has 631 

negative values in the high lag tail (creating difficulties in stochastic model building, e.g. the 632 

logarithmic derivative does not exist). However, it is well-defined (with an intuitive 633 

definition), and with the help of Eq. 9, its bias can be estimated through a simple and 634 

analytical expression. Finally, it has (for all the examined processes) values of skewness close 635 

to 0, for the small lag tail, while in the large lag tail, its skewness is decreasing down to -1 (Fig. 636 

5-6 and sect. 2.2 of the SM). 637 

• The power spectrum has the largest values of estimation error (in all examined cases it is 638 

mostly around 100% of the true value in discrete time). Besides its bias, it is also prone to 639 

discretization error as its value (eq. 12) can never be equal to the true value in continuous time 640 

(eq. 11) even for an infinite sample size. Moreover, while theoretically its values are positive, 641 

numerical calculations based on data can result in negative values. In addition, it has a 642 

complicated definition (based on the Fourier transform of the autocovariance), which also 643 

involves complicated and high computational cost calculations for the discrete time and 644 

expected values (eq. 12-14 and Fig. 6e-f), as well as a non-monotonic NLD (observed in all the 645 

examined processes; Fig. 2-3 and sect. 2.1 of the SM). Finally, it often has the highest value of 646 

skewness for its regular values (mostly constant around 2) and the smallest one (around 0) for 647 

its NLD values (Fig. 5-6 and sect. 2.2 of the SM). The latter advantage of the power spectrum 648 

means that its mode should be close to the expected one, which however, is difficult to 649 

estimate, due to the aforementioned reasons. 650 
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The above theoretical and experimental results allow us to draw a general conclusion that the 651 

climacogram could provide a more direct, easy and accurate means both to make diagnoses from data 652 

and build stochastic models in comparison to the power spectrum and autocovariance. 653 

As incidental contributions of the paper, we mention in the SM (sect. 3) the proposed methodology to 654 

produce synthetic Gaussian distributed time series of a process by decomposing it in multiple 655 

Markovian processes. This methodology is based only on an equation providing the scale parameters 656 

of the Markovian processes. Furthermore, we developed an ARMA(1,1) model in the SM (sect. 4), 657 

appropriate for simulating discrete-time Markovian processes; the need to introduce this, is related to 658 

the fact that the errors produced by a discrete-time AR(1) model (whose equivalent continuous-time 659 

process exhibits Markovian properties only when Δ = 0) when Δ > 0, can be significant for large first-660 

order autocorrelation coefficient (see Fig. 5 of the SM). 661 
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Appendix 718 

Here, we express the expected value of the discrete time autocovariance in terms only of its true 719 

continuous time value using the corresponding true climacogram. This is very useful in stochastic 720 

modelling as it saves computational time (compared to a direct calculation where a sum throughout 721 

all the discrete time autocovariances is needed) and also because it gives a physical interpretation of 722 

the expected discrete time autocovariance. 723 

Eq. 2 can be expressed in terms of the true discrete autocovariance: 724 !(8�) = EAB ∑ ∑ S|(�)(� − Z)A[KEA�KE = .AB ∑ (8 − �)S|(�)(�)AGE�KE + Q(�)A      (37) 725 

The estimation of autocovariance in eq. 9 can be analysed to: 726 E6S|̂(�)(Z)7 = Ε ' E`([) ∑ a�D�(�) − EF I∑ �DJ(�)FJKE Lb a�D�+[(�) − EF I∑ �DJ(�)FJKE LbFG[�KE - = E`([) ∑ Ε 'aI�D�(�) − ©L −FG[�KE727 

\EF I∑ �DJ(�)FJKE L − ©]b aI�D�+[(�) − ©L − \EF I∑ �DJ(�)FJKE L − ©]b- = E`([) ∑ ªΕ 'I�D�(�) − ©L \�D�+[(�) − ©]-«¬¬¬¬¬¬¬­¬¬¬¬¬¬¬®�E −FG[�KE728 

Ε 'I�D�(�) − ©L \EF I∑ �DJ(�)FJKE L − ©]-«¬¬¬¬¬¬¬¬¬¬­¬¬¬¬¬¬¬¬¬¬®�. − Ε '\�D�+[(�) − ©] \EF I∑ �DJ(�)FJKE L − ©]-«¬¬¬¬¬¬¬¬¬¬­¬¬¬¬¬¬¬¬¬¬®�¯ + Ε �\EF I∑ �DJ(�)FJKE L − ©].�«¬¬¬¬¬¬­¬¬¬¬¬¬®�° ±
 (38) 729 

where © = Ε6�D�(�)7. 730 

Below we will express the above sums of expressions E1, E2, E3 and E4 in terms of the true 731 

climacogram !(�8) and true autocovariance in discrete time S|(�)(Z) for j ≥ 1. Firstly, the sum of E1 is: 732 ∑ E1FG[�KE = (� − Z)S| (�)(Z)         (39) 733 

We observe that ∑ E2FG[�KE = ∑ E3FG[�KE  and thus, we only calculate the sum of E3: 734 
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∑ E3FG[�KE = EF ∑ ∑ Ε6I�D�+[(�) − ©LI�DJ(�) − ©L7FJKEFG[�KE = EF ∑ ∑ S|(�)(² − � − Z)FJKEFG[�KE = (FG[)BQ(�(FG[))F +735 

EF ∑ ∑ S|(�)(² − � − Z)[JKEFG[�KE«¬¬¬¬¬¬¬­¬¬¬¬¬¬¬®�³
         (40) 736 

The sum of E4 can be expressed in terms of the true climacogram: 737 ∑ E4FG[�KE = (� − Z) Var 'EF I∑ �DJ(�)FJKE L- = (� − Z) !(��)      (41) 738 

For the estimation of E5, we distinguish two cases, j ≤ n/2 and j  > n/2. For the first case, we have: 739 

E5 \Z ≤ �2] = Z� p S|(�)(�)FG[
�K[ + 1� p �S|(�)(�) + 1� p S| (�)(�)(� − �)FGE

�KFG[+E
[GE
�KE = 

= [Q(�)G[BQ([�).F + EF ∑ S| (�)(�)(� − �)FGE�KFG[+E + Z ∑ S|(�)(�)FG[�KE«¬¬¬¬¬¬¬¬¬¬¬¬­¬¬¬¬¬¬¬¬¬¬¬¬®�´
      (42) 740 

For the estimation of E6, we have: 741 

E6 = �!(��)/2 − !(�)/2 + EF ∑ S|(�)(Z − � + �)FG[�KE«¬¬¬¬¬­¬¬¬¬¬®�¶
       (43) 742 

and E7 can be expressed as: 743 E7 = (� − Z)!(�)/(2�) − (� − Z).!I(� − Z)�L/(2n)      (44) 744 

For j > n/2, E5 is the same as for j ≤ n/2 but with replacing j with n-j and thus, in the general case of E5: 745 E5 = �!(��)/2 − Z.!(Z�)/(2�) − (� − Z).!I(� − Z)�L/(2�)     (45) 746 

Thus, eq. 38 results in: 747 

Ε6S|̂(�)(Z)7 = E`([) H(� − Z)S| (�)(Z) + [BF !(Z�) − Z!(��) − (FG[)BF !I(� − Z)�LO    (46) 748 

where c(Z) is usually taken as: n or n – 1 or n – j. 749 

It is interesting to notice that using eq. 7 we can express the expected discrete time autocovariance of 750 

the above using only the true climacogram. 751 




