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1. Introduction 9 

This is the supplementary material of the main paper ‘Climacogram vs. autocovariance and power 10 

spectrum in stochastic modelling for Markovian and Hurst-Kolmogorov processes’. Here, we provide 11 

investigations (graphical, numerical and analytical) for the Hurst-Kolmogorov (HK) process (sect. 2.1) 12 

as well as additional results of the analysis in sect. 3.3 of the main paper, for the investigation of the 13 

dimensionless classical estimators of the climacogram (described in sect. 3.2 of the main paper), 14 

autocovariance and power spectrum (sect. 2.2). Moreover, in sect. 3, we describe a stochastic 15 

generation model (based on the combination of a finite number of Markovian processes) used in the 16 

Monte-Carlo sensitivity analysis of sect. 3.3 and 4 of the main paper. Finally, in sect. 4, we describe a 17 

methodology for a discrete time series generation of a continuous time Markovian process, for any Δ 18 

and D, using an ARMA(1,1) model and we show in Fig. 5  the possible errors produced in case that an 19 

AR(1) model is used instead. We use the same notation as in the main paper. 20 

2. Additional investigations of the climacogram, autocovariance and 21 

power spectrum 22 

The sections below provide additional analyses of sect. 3.2 and 3.3 of the main paper. 23 

2.1 Graphical investigation of the classical estimators of climacogram, 24 

autocovariance and power spectrum for an HK process 25 

Here, we apply the same graphical investigation in sect. 3.2 of the main paper for an HK process. In 26 

Table 1, we define the climacogram, autocovariance and power spectrum of an HK process based on 27 

the framework of sect. 2 of the main paper and in Fig. 1, we present its graphical investigation. 28 

 29 

Table 1: Climacogram, autocovariance and power spectrum mathematical expressions of a positively 30 

correlated HK process, with 0 < � < 1, in continuous and discrete time. 31 

Type HK process  

Autocovariance 

(continuous) 

���� = 
|�/
|�� 

with � = 2 − 2�            

(1) 

Autocovariance 

(discrete) 
�������� = 
 |� − 1|��� + |� + 1|��� − 2|�|���

��/
���1 − ���2 − ��  

for j ≥ 0, with ������0� = ���� 

(2) 
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Climacogram   

(for continuous 

and discrete) 

���� = 2
��/
���
�1 − ���2 − �� 

with ��0� → ∞ 

(3) 

Power spectrum 

(continuous) ���� = 4

 Γ�1 − ��Sin %&�2 '�2π
|�|�)��  (4) 

Power spectrum 

(discrete) 
not a closed expression* - 

* eq. 12 of the main paper couldn’t be further analysed 32 

 33 

 34 

 35 

 36 

 37 

Figure 1: True values in continuous and discrete time and expected values of the climacograms (a), 38 

autocovariances (c) and power spectra (e) as well as their corresponding NLDs (b, d and f, 39 

respectively) of HK processes with b = 0.2, 0.5 and 0.8, λ = q = 1 and n = 103. Note that the continuous 40 

and discrete values of the climacogram are identical. 41 

 42 
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2.2 Additional investigations of the estimators of power spectrum, 43 

autocovariance and climacogram 44 

Here, we apply the same analysis as in sect. 3.3 of the main paper for an HK process for n = 103 (Fig. 2) 45 

and for Markovian, HK and gHK processes for n = 102 (Fig. 3) and n = 104 (Fig. 4). 46 

 47 

 48 

  49 

  50 

  51 

Figure 2: Dimensionless errors of the climacogram estimator (continuous line), autocovariance (dashed 52 

line) and power spectrum (dotted line), calculated from 104 HK synthetic series with n = 103 (for b = 0.2, 53 

q = 1, 10 and 100 and λ = q-b): (a) *+ (dimensionless MSE of variance); (b) *, (dimensionless MSE of 54 

bias); (c) ε (total dimensionless MSE); and (d) *# (total dimensionless MSE of NLD); as well as the 55 

sample skewness of their regular values and NLDs in (e) and (f). 56 
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Figure 3: Dimensionless errors ε and *# of the climacogram estimator (continuous line), autocovariance 64 

(dashed line) and power spectrum (dotted line), calculated from 104 Markovian (for q = 1, 10 and 100, 65 

in a and b), HK (for b = 0.2, 0.5 and 0.8, in c and d) and gHK (for b = 0.2, q = 1, 10 and 100 and λ = q-b, in 66 

e and f) synthetic series of n = 102. 67 
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Figure 4: Dimensionless errors ε and *# of the climacogram estimator (continuous line), autocovariance 75 

(dashed line) and power spectrum (dotted line), calculated from 104 Markovian (for q = 1, 10 and 100, 76 

in a and b), HK (for b = 0.2, 0.5 and 0.8, in c and d) and gHK (for b = 0.2, q = 1, 10 and 100 and λ = q-b, in 77 

e and f) synthetic series of n = 104. 78 

3. Methodology for synthesis of a Gaussian stochastic process as a 79 

sum of Markovian processes 80 
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true continuous time process, represented by a function 0�1��, with k the discrete time scale and D = Δ 84 

> 0 the time step. We could use the autocovariance or power spectrum but the climacogram has the 85 

advantage of reduced computational cost, as it has identical expressions for continuous and discrete 86 

time (for D = Δ > 0). We denote 2�1�, 
, 
� the true climacogram of a Markovian process (see in Table 4 87 

of the main paper): 88 

2�1�, 
, 
�: = �5�6�/7�8 91�/
 + :�6� 7⁄ − 1<         (5) 89 

where 
 and 
 are parameters corresponding to the variance and a characteristic time scale of the 90 

process, respectively. 91 

Our target is to approximate 0�1�� with the sum of a finite number = of functions 2�1�, 
> , 
>� for l = 1 92 

to N, i.e. for all integral scales from k = 1 to n, where n is the number of data produced in the synthetic 93 

time series. We seek 
> > 0 and  
> > 0 such as for all scales 1 ≥ 1: 94 

0�1�� ≈ ∑ 2�1�, 
> , 
>� B>C)          (6) 95 

The basic assumption of this methodology is that the Markovian parameters 
> are connected to each 96 

other in a pre-defined way. Here, we choose a simple relationship based on only two parameters D) 97 

and D�: 98 


> = D)D�>�)           (7) 99 

If we know D) and D�, we can calculate analytically parameters 
> (expressed by the matrix E ≥ G) 100 

from the equation below, since the ratio 2�1�, 
> , 
>�/
> is independent of 
> for Markovian processes: 101 

HE = I → E = H�)I          (8) 102 

where H =
JK
KL

M��,7N,5N�/5NO��� ⋯ M��,7Q,5Q�/5QO���⋮ ⋱ ⋮M�T�,7N,5N�/5NO�T�� ⋯ M�T�,7Q,5Q�/5QO�T�� UV
VW, E=X
)⋮
B

Y, I=ZX1⋮1Y    [ = and 103 

H�) = �H\H��)H\, the left inverse of ] (for a > =). 104 

As minimization objective for the system of eq. 7 and 8, in order to estimate the parameters D) and D�, 105 

first we use the dimensionless error *bc between the sum of Markovian climacograms and 0�1��, to 106 

locate initial values and then, we use the error *dc (maximum absolute dimensionless residual), for 107 

fine tuning and distributing the error equally to all scales. 108 

*bc = ∑ e∑ M�6�,7f,5f�QfgN �O�6��O�h�� i�T6C)          (9) 109 

*dc = max6C),…,T n∑ M�6�,7f,5f�QfgN �O�6��O�6�� n         (10) 110 

Thus, we can estimate parameters D) and D� by minimizing eq. 9 and 10, then 
> can be easily found 111 

from eq. 7 and parameters 
> from eq. 8. Finally, the synthetic discrete time series for the X process can 112 

be estimated as: 113 

.o��� = ∑ /o����p�B>C)           (11) 114 

where /o����p� is the discrete time Markovian process corresponding to the climacogram 2�1�, 
> , 
>� in 115 

eq. 6, with parameters 
> and 
>, each one produced following the methodology in sect. 4 below. 116 

The above methodology has been tested in simple processes such as HK, gHK and combination of 117 

them and with Markovian processes and therefore, for other types of processes (e.g. anti-correlated 118 

ones with 1 < � ≤ 2) one should be cautious when applying it. For the purpose of the analysis in sect. 119 

3 and 4 of the main paper, we applied the above methodology for HK and gHK processes for λ = 1 120 

and for a variety of b, q/Δ and n values. In Tables 2 to 4, we present the results from this analysis. Note 121 

that we choose N, for each n and each process, as the minimum value of the sum of Markovian 122 

processes giving *dc ≤ 1%. 123 

 124 



7 

Table 2: Parameters p1 and p2 estimated to fit different types of HK and gHK processes (for λ = 1) with 125 

a sum of Markovian processes for n = 102. 126 

Process b q/Δ p1 p2 N *dc (‰) 

HK 0.2 - 0.069 47.358 3 6 

HK 0.5 - 0.122 22.196 3 8 

HK 0.8 - 0.101 17.045 3 9 

gHK 0.2 1 2.888 10.656 3 5 

gHK 0.2 10 11.424 27.168 2 1 

gHK 0.2 100 611.13 - 1 2 

gHK 0.5 1 1.789 7.695 3 9 

gHK 0.5 10 9.232 12.514 2 2 

gHK 0.5 100 243.46 - 1 4 

gHK 0.8 1 1.373 6.559 3 9 

gHK 0.8 10 7.676 8.807 2 2 

gHK 0.8 100 151.54 - 1 6 

 127 

Table 3: Parameters p1 and p2 estimated to fit different types of HK and gHK processes (for λ = 1) with 128 

a sum of Markovian processes for n = 103. 129 

Process b q/Δ p1 p2 N *sd (‰) 

HK 0.2 - 0.379 10.356 5 2 

HK 0.5 - 0.251 9.490 5 5 

HK 0.8 - 0.103 8.958 5 4 

gHK 0.2 1 2.656 11.873 4 3 

gHK 0.2 10 0.852 43.042 3 6 

gHK 0.2 100 111.54 27.331 2 1 

gHK 0.5 1 1.964 10.505 4 7 

gHK 0.5 10 8.744 5.801 4 2 

gHK 0.5 100 89.976 12.591 2 2 

gHK 0.8 1 1.362 8.240 4 7 

gHK 0.8 10 6.900 5.112 4 2 

gHK 0.8 100 74.712 8.861 2 3 

  130 
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Table 4: Parameters p1 and p2 estimated to fit different types of HK and gHK processes (for λ = 1) with 131 

a sum of Markovian processes for n = 104. 132 

Process b q/Δ p1 p2 N *sd (‰) 

HK 0.2 - 0.665 18.217 5 7 

HK 0.5 - 0.200 11.400 6 6 

HK 0.8 - 0.053 17.044 5 8 

gHK 0.2 1 2.695 12.006 5 4 

gHK 0.2 10 20.809 12.793 4 5 

gHK 0.2 100 7.743 44.342 3 7 

gHK 0.5 1 2.226 12.176 5 10 

gHK 0.5 10 14.831 10.788 4 10 

gHK 0.5 100 84.308 5.835 4 2 

gHK 0.8 1 1.115 6.220 6 3 

gHK 0.8 10 10.132 8.149 4 9 

gHK 0.8 100 66.249 5.123 4 2 

4. Generation of a discrete time series from of a continuous time 133 

Markovian process 134 

Here, we present a methodology to synthesize a discrete time representation of continuous time 135 

Markovian process, with parameters q and λ (used in sect. 3.2, 3.3 and 4 of the main paper). We 136 

assume sample size n and D = Δ > 0 (see in Table 4 of the main paper for its autocovariance, 137 

climacogram and power spectrum expressions). First we try to approximate the continuous time 138 

Markovian process in discrete time by an AR(1) model with variance 
tu�)�, shape parameter 
tu�)� 139 

and autocovariance 
tu�)�:�v� 7wx�N�⁄ , for � ≥ 0. We find that the AR(1) model either underestimates all 140 

autocovariances of the process for lags � ≥ 1, when we set the variance correctly (from eq. 17 in Table 141 

4 of the main paper) to 
tu�)� = ���� = �5��/7�8 9�/
 + :�� 7⁄ − 1< ≤ 
, or overestimates this variance, 142 

when we set it equal to continuous time Markovian variance, i.e. 
′tu�)� = ��0� = 
 (where in both 143 

cases the correct shape parameter 
tu�)� = 
 is used). Keeping the variance equal to 
tu�)� and setting 144 

the ratio of the lag 1 autocovariance (or first-order autocorrelation coefficient) over the discrete 145 

variance to ′ = z{�|��)�
}��� = 9)�~�| �⁄ <8

9�/7�~�| �⁄ �)<  (instead of its proper value, i.e. � = :�� 7⁄ ), the model correctly 146 

estimates the lag 0 and 1 discrete time Markovian autocovariances but leads to high overestimation of 147 

all the rest autocovariances, i.e. for lags � > 1. Only in case of very small �/
 (or � ≪ �), i.e. when 148 � ≈ �� ≈ 1, ������1� ≈ ����� and 
tu�)� ≈ 
, a single AR(1) model can well approximate a discrete time 149 

representation of a continuous time Markovian process (for � = 0, the model AR(1) can exactly 150 

represent it). Specifically, for �/
 ≲ 2.5%, we have 
�������� ≲ 1% and thus, the AR(1) autocovariance 151 

small deviates from the discretized continuous time Markovian one, while for large �/
, the error 152 

produced can be quite large (see analysis displayed in Fig. 5 for D = Δ > 0, while in case of D ≠ Δ > 0, 153 

the errors produced can be significant). 154 
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 155 

Figure 5: Dimensionless error maxvC�,…,T�) �z�{�|��v��z{�|��v�
z{�|��v� �, between a Markovian process in discrete time 156 

(with parameters q, λ and ������� > 0� = 59)�~�| �⁄ <8
��/7�8  e��|v|�)�� 7⁄ , with ������0� = ���� = �5��/7�8 9�/
 +157 

:�� 7⁄ − 1�) and an AR(1) model with a discrete time autocovariance �′�������, 
tu�)� = 
 and a scale 158 

parameter equal to: (a) the discrete time Markovian variance (blue), i.e. 
tu�)� = �5��/7�8 9�/
 + :�� 7⁄ −159 

1�; (b) the variance of the continuous time Markovian process (red), i.e. 
′tu�)� = 
; (c) the variance 160 

used to correctly estimate all autocovariances except the lag 0 one (green), i.e. 
′′tu�)� = z{�|��)�
~�| �⁄ =161 

5~| �⁄ 9)�~�| �⁄ <8
��/7�8  and (d) a variance in between 
tu�)� and 
 (black), i.e. 
′′′tu�)� = 9
tu�)� + 
</2. 162 

 163 

However, it is known that the discrete time representation of the Markovian process corresponds to 164 

an ARMA(1,1) model (as mentioned in Koutsoyiannis 2002, 2013a), denoted as /. Here, we show its 165 

algorithm for the general case of D ≠ Δ, where ���� = :�|�| 7⁄  now leads to: 166 

����,����� = N|8 � � ��. − /�d.d/v���v��� = 59)�~�| �⁄ <8
��/7�8 :���v��� 7⁄ = ����C�����:�v����� 7⁄    (12) 167 

Thus, ARMA(1,1) algorithm for the general case of modelling a Markovian process, i.e. ���� = :�|�| 7⁄ , 168 

in discrete time, is as follows: 169 

/o��,�� = �)/o�)��,�� + �o + ���o�) , i=1, …, n        (13) 170 

where 171 

�) = :��/7            (14) 172 

a parameter related to the shape of the process, with 0 < �) ≤ 1, 173 

�o = =9�� , ��<           (15) 174 

is the discrete time Gaussian white noise process, with mean value: 175 

�� = )��N)��8 ��           (16) 176 

with �� the mean of /. The parameters �� and �� and can be found from the solution of the equations: 177 

������0� = �)������1� + �1 + �)�� + �������       (17) 178 

������1� = �)������0� + �����         (18) 179 

where 180 
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����,���0� = ���� = �5��/7�8 9�/
 + :�� 7⁄ − 1<       (19) 181 

����,���1� = 59)�~�| �⁄ <8
��/7�8 :������ 7⁄           (20) 182 

the autocovariance of the continuous time Markovian process (represented in discrete time) for lag 183 

zero and one, respectively. 184 

Eq. C.6 and C.7 result in a 2nd order polynomial for ��: 185 

��� + �� 2�)����,���1� − �1 + �)������
����,���1� − �)���� + 1 = 0 

with ����,���1� ≥ �)���� (the equality holds only for 
 → ∞) and it has two real positive solutions: 186 

�� = ��±��8��� > 0          (21) 187 

with � = ��Nz{�|,���)��9)��N8<}���
z{�|,���)���N}��� ≤ −2         (22) 188 

and also, 189 

�� = �}�����Nz{�|,���)�
)��N�8��88           (23) 190 
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