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Abstract The old principle of parsimonious modelling of natural processes has regained its 

importance in the last few years. The inevitability of uncertainty and risk, and the value of 

stochastic modelling in dealing with them, are also again appreciated, after a period of growing 

hopes for radical reduction of uncertainty. Yet in stochastic modelling of natural processes 

several families of models are used which are often non-parsimonious, unnatural or artificial, 

theoretically unjustified and, eventually, unnecessary. Here we develop a general methodology 

for more theoretically justified stochastic processes, which evolve in continuous time and stem 

from maximum entropy production considerations. The discrete-time properties thereof are 

theoretically derived from the continuous-time ones and a general simulation methodology in 

discrete time is built, which explicitly handles the effects of discretization and truncation. Some 

additional modelling issues are discussed with focus on model identification and fitting, which 

are often made using inappropriate methods.  

Keywords stochastics; entropy; simulation; parsimony; model identification; model fitting 

1 Introduction 

The principle of parsimony in explaining and modelling natural phenomena is very old* but in 

the last three decades its importance may have been neglected. The power of computers 

encouraged many to seek inflationary detailed modelling approaches, hoping that these would 

provide exact descriptions of real-world systems by representing any detail thereof and would 

radically reduce uncertainty. After a period of growing hopes for dramatic reduction of 

uncertainty in modelling of natural, and particularly hydrological, processes, the inevitability of 

uncertainty and risk is again recognized. At the same time, the value of stochastic modelling in 

dealing with uncertainty and risk is also again appreciated (Koutsoyiannis et al. 2009; 

Koutsoyiannis 2010; Montanari and Koutsoyiannis 2012; Montanari et al. 2013). Stochastic 

                                                             
* It was first expressed by Aristotle (384–322 BC) in the following manner: 

Ἒστω γὰρ αὕτη ἡ ἀπόδειξις βελτίων τῶν ἄλλων τῶν αὐτῶν ὑπαρχόντων, ἡ ἐξ ἐλαττόνων αἰτημάτων 
ἢ υποθέσεων ἢ προτάσεων. 
We may assume the superiority, other things being equal, of the demonstration which derives from 
fewer postulates or hypotheses or propositions. [Posterior Analytics, I, 25] 

Φανερὸν ὅτι μακρῷ βέλτιον πεπερασμένας ποιεῖν τὰς ἀρχὰς, καὶ ταύτας ὡς ἐλαχίστας πάντων γε 
τῶν αὐτῶν μελλόντων δείκνυσθαι, καθάπερ ἀξιοῦσι καὶ οἱ ἐν τοῖς μαθήμασιν. 
Obviously, it is much better to assume a finite number of principles, as few as possible yet sufficient to 
prove what has to be proved, like in what mathematicians demand. [On the Heavens, ΙΙΙ, 4] 

The principle was revived by medieval philosophers including Robert Grosseteste (c. 1168-1253), Thomas 
Aquinas (c. 1225-1274) and William of Ockham (c. 1285-1347), whose statement 

Plurality is not to be posited without necessity. 

has given the principle the alternative name Ockham’s razor (see also Gauch 2003). 
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modelling aims to make probabilistic predictions of future events, conditionally on past 

observations or not. As analytical calculation of probabilities becomes cumbersome or even 

infeasible in many cases, stochastic modelling is typically combined with Monte Carlo 

simulation, which relies on generation of synthetic time series for the processes of interest.   

 The earlier departure from the principle of parsimony may have also affected stochastic 

modelling of natural systems. The literature offers a variety of stochastic models which are 

widely used in simulation and prediction of hydrological and geophysical time series. The 

dominant approach in stochastic modelling is to choose and fit a model from a repertoire offered 

in books on time-series analysis. This includes stylized families of models mostly known by their 

acronyms, such as AR (for autoregressive), MA (for moving average), ARMA (for autoregressive 

moving average), ARIMA (for autoregressive integrated moving average), ARFIMA (for 

autoregressive fractionally integrated moving average), and so on. Despite being so common, 

most of the models are too artificial (in the sense that they were constructed by taking an 

initially simple model and expanding it mathematically using additional terms), while the typical 

modelling approach is characterized by the following problems: 

 These models refer, by definition (or by construction), to discrete time while natural 

processes evolve in continuous time. A model defined in discrete time may not 

necessarily correspond to a continuous-time process. 

 With the exception of a few cases, such as AR(1) or ARMA(1, 1), the models are over-

parameterized and thus not parsimonious. Moreover, the stochastic structure of the 

processes is tightly associated with the number of parameters (e.g. to make an 

autoregressive process with different structure from that of the AR(1) process, we need 

to use a number of additional autoregression parameters, thus constructing an AR(q) 

process with q > 1). This proves to be a problem in many cases (Koutsoyiannis 2000), as 

ideally, in parsimonious modelling, the alteration of the stochastic structure of a process 

should not require additional parameters. In cases where the stochastic model is coupled 

with a deterministic process-based model (cf. Montanari and Koutsoyiannis 2012) the 

parameters of the stochastic process are additional to those of the deterministic model 

and thus lack of parsimony in the stochastic model also affects the entire modelling 

scheme. 

 The identification of the models is typically based on the estimation of the 

autocorrelation function from data. However, this is characterized by negative bias and 

uncertainty. While in model identification much importance is typically given to the 

autocorrelation coefficients for a number of lags, the bias is effortlessly neglected. 

However, the bias may be very high, particularly when the process is characterized by 

long-term persistence (LTP), so high that it may even hide the presence of LTP 

(Koutsoyiannis 2003; Koutsoyiannis and Montanari 2007; Papalexiou et al. 2011; see 

also section 6.1 below).  

 It is not too difficult to get rid of all these model families and modelling practices, which 

are in fact unnecessary, and to construct a general method to easily generate synthetic series 

from processes with other autocorrelation structures. Koutsoyiannis (2000) proposed a 

methodology for the generation of time series from a process with any arbitrary autocorrelation 

function, provided that it is mathematically feasible (that is, it is positive definite, or, in other 

words, corresponds to a non-negative power spectrum). A specific application of this generic 
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methodology for the Hurst-Kolmogorov process (also known as fractional Gaussian noise; see 

below) has been given in Koutsoyiannis (2002).  

 This paper reports some essential developments on several issues that have been made in 

the last decade and remain unpublished, hoping that the rather simple, parsimonious and 

general framework the paper provides suffices for most applications of stationary processes, 

with emphasis on those with LTP, in hydrology and beyond, single-variate or multivariate. The 

case of cyclostationary processes is also briefly discussed. In brief, the advancements reported 

next are the following: 

 The entire framework is based on the concept of a continuous-time stochastic process 

(section 2). Inevitably, the generation of time series (similarly to the observation of a 

natural process) requires discretization of time and this can be done either by 

instantaneously sampling from the continuous-time process or by aggregating or 

averaging it at specified time intervals. However, instead of formulating stochastic 

properties for discrete time, it is possible (and much better; see section 3) to derive the 

properties of the latter from the continuous-time process. 

 The specific processes examined and presented as examples (section 3) are parameter 

parsimonious as, in addition to the marginal moments of the process and a time-scale 

parameter, contain no more than two (shape) parameters. While the simulation 

methodology discussed can be applied with as many parameters as one wishes, over-

parameterization should be avoided at any rate, particularly in stochastics (e.g. 

Lombardo et al., 2014). As far as the dependence structure of the process is concerned, 

only the parameters that suffice to determine the type of this structure (e.g., short- or 

long-range dependence or both) should (and usually can) actually be determined. 

 The framework has a tight connection with entropic considerations, which provide some 

guidance about the expected type of dependence and make the models more physically 

plausible. 

 The framework puts special emphasis on the climacogram, which is defined to be the 

variance (or the standard deviation) of the time-averaged process as a function of time 

scale of averaging (Koutsoyiannis, 2010). This tool has some convenient theoretical 

properties but, above all, it is best suited for model identification and parameter 

estimation. While, like other stochastic tools, it also involves estimation bias, this can be 

determined analytically and included in the model identification and fitting.  

 The framework is complete and stand-alone as it incorporates a general procedure to 

simulate from any stationary stochastic model. 

 The framework is illustrated with several examples (section 5.2). These are not real-world 

case studies but rather designed to underline the simplicity and effectiveness of the procedures 

in simulation. 

2 Definitions and basic concepts 

Let x(t) be a stationary stochastic process quantifying the instantaneous quantity of a certain 

hydrological or other physical process at (continuous) time t. The quantity x is assumed to be a 

(continuous) random variable and this is reflected in the notation by underlining it, adopting the 

so-called Dutch convention (Hemelrijk 1966). Regular variables such as the time t or realizations 

of x are denoted by non-underlined symbols. Since the process is stationary, the marginal 
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distribution function of x(t), F(x) ≔ P{x(t) ≤ x}, where P denotes probability, as well as the 

marginal probability density function f(x) ≔ dF(x)/dx are real-valued functions of the real 

(regular) variable x, not functions of time. (Throughout the text, definitions are denoted by the 

symbol “≔” meaning “is defined as”). 

 While natural processes evolve in continuous time, observation and generation of 

synthetic time series are only made in discrete time and therefore we always need to consider 

derived discrete-time processes and to take into account the effect of discretization in the 

properties thereof. As shown in Figure 1, from the continuous time process, we may define two 

interesting discrete-time processes (with the discrete time denoted as i), for which we usually 

observe or generate time series. By sampling at spacing Δ we obtain the sampled instantaneous 

process 

𝑥𝑖 ≔ x(iΔ) (1) 

By averaging at time scale Δ we obtain the averaged process 

𝑥𝑖
(𝛥)

 ≔ (X(iΔ) – X((i – 1)Δ))/ Δ (2) 

where 

X(t) ≔ ∫ 𝑥(𝜉)d𝜉
𝑡

0
 (3) 

is the cumulative process (see Figure 1, upper panel), which obviously is nonstationary. Both the 

sampled instantaneous process 𝑥𝑖 and the averaged process 𝑥𝑖
(𝛥)

 are stationary. From them we 

can construct the nonstationary cumulative processes at discrete time i: namely, that of 𝑥𝑖
(𝛥)

is 

precisely X(iΔ)/Δ, while that of 𝑥𝑖 is different, i.e., 

Xi ≔ ∑ 𝑥𝑗
𝑖
𝑗=1  (4) 

 Without loss of generality we assume that the mean of the process x(t) is zero (E[x(t)] =0) 

and we denote 

γ0 ≔ Var[x(t)] (5) 

its variance, which is also the variance of the sampled process, i.e., Var[𝑥𝑖] = 𝛾0. Let 

Γ(t) ≔ Var[X(t)],   γ(Δ) ≔ Var[X(Δ)/Δ] = Γ(Δ)/Δ2 (6) 

be the variances of the cumulative and the averaged process, respectively (note that Γ(0) = 0 and 

γ(0)=γ0). We call γ(Δ) and Γ(t), as functions of time scale Δ or time t, the climacogram and the 

cumulative climacogram of the process, respectively (see Koutsoyiannis 2010 for the 

justification of the term and note that sometimes it has been used to describe the standard 

deviation instead of the variance). We observe that, while Γ(t) is the variance of the 

nonstationary process X(t), γ(Δ) is the variance of the stationary process 𝑥𝑖
(𝛥)

, i.e., 𝛾(𝛥) =

Var[𝑥𝑖
(𝛥)

] and thus it is not a function of time t.  
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Figure 1 Explanation sketch of the definitions. 

 Once the climacogram (or the cumulative climacogram) is known, every second-order 

property of the process, such as the autocovariance, autocorrelation, power spectrum, 

variogram or structure function, can be obtained from this (Koutsoyiannis 2013b). For example, 

the autocovariance 

c(τ) ≔ Cov[x(t), x(t + τ)] (7) 

where τ is the lag time, is related to the climacogram by 

𝑐(𝜏) =
1

2
 
d2𝛤(𝜏)

d𝜏2
=

1

2
 
d2(𝜏2𝛾(𝜏))

d𝜏2
 (8) 

while the inverse transformation is  

𝛾(𝛥) =
𝛤(𝛥)

𝛥2
=

2

𝛥2
∫(𝛥 − 𝜏)𝑐(𝜏)d𝜏

𝛥

0

= 2 ∫(1 − 𝜉)𝑐(𝜉𝛥)d𝜉

1

0

 (9) 

Also, the power spectrum s(w), where w is frequency, is, by definition, the Fourier transform of 

the autocovariance, i.e., 

𝑠(𝑤) ≔ 4 ∫ 𝑐(𝜏) cos(2π𝑤𝜏) d𝜏

∞

0

 (10) 

(note that c(τ) is an even function) while the inverse transformation is  

t0 Δ 2Δ … (i – 1)Δ iΔ

xi := x(iΔ) 
(instantaneous process 
sampled at spacing Δ)

Xi:= 

(cumulative sampled at 
spacing Δ, nonstationary)

X(t) ≔

(cumulative, nonstationary)

x(t) (instantaneous, 
continuous-time process)

t

=

= X(iΔ)/Δ – Χ((i– 1)Δ)/Δ

(averaged at time scale Δ)
t0 Δ 2Δ … (i – 1)Δ iΔ
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𝑐(𝜏) = ∫ 𝑠(𝑤) cos(2π𝑤𝜏) d𝑤

∞

0

 (11) 

From (11), we observe that the entire area under the spectrum for frequencies from 0 to ∞ 

equals the variance of the process (c(0) = γ0); for that reason the multiplier 4 was used in the 

definition of the power spectrum in (10). 

 The structure function (also known as semivariogram or variogram) of the process is 

defined as 

ℎ(𝜏) ≔ (1/2) Var[𝑥(𝑡) − 𝑥(𝑡 + 𝜏)] = 𝛾0 − 𝑐(𝜏) (12) 

i.e., it is directly connected to the autocovariance and hence can also be estimated from the 

climacogram. However, by analogy we can define a climacogram-based structure function 

(CBSF) as 

g(Δ) ≔ γ0 – γ(Δ) (13) 

which has the same asymptotic properties as the standard structure function h(τ). Combining 

the climacogram and the CBSF we can also derive a climacogram-based spectrum (CBS), defined 

as  

𝜓(𝑤) ≔
2 

𝑤𝛾0
𝛾(1 𝑤⁄ )𝑔(1 𝑤⁄ ) =

2 𝛾(1 𝑤⁄ )

𝑤
(1 −

𝛾(1 𝑤⁄ )

𝛾0
) (14) 

where w ≡ 1/Δ is frequency (as in the standard power spectrum). In most of the cases, the 

asymptotic behaviour of the CBS is the same with that of the standard power spectrum, and thus 

the CBS constitutes an easily calculated (i.e. without performing a Fourier transform) substitute 

of the standard power spectrum, particularly useful when handling data series of small length.  

 The variance (hence the climacogram) is more naturally than any other of the above tools 

associated with the uncertainty, and hence the entropy, of the process. We recall that the 

(Boltzmann-Gibbs-Shannon) entropy of the cumulative process X(t) with probability density 

function f(X; t) is a dimensionless quantity defined as:  

   Φ[𝑋(𝑡)] ≔ Ε [– ln
𝑓(𝑋;𝑡)

ℎ(𝑋)
] = − ∫ ln

𝑓(𝑋; 𝑡)

ℎ(𝑋)
𝑓(𝑋;  𝑡) 𝑑𝑋

∞

−∞
 (15) 

where h(Χ) is the density of a background measure. Entropy acquires its importance from the 

principle of maximum entropy (Jaynes, 1957), which postulates that the entropy of a random 

variable should be at maximum, under some conditions, formulated as constraints, which 

incorporate the information that is given about this variable. Its physical counterpart, the 

tendency of entropy to become maximal (2nd Law of thermodynamics) is the driving force of 

natural change.  

 Assuming that the background measure is the Lebesgue measure, with constant density 

h(Χ) = h = 1[X]–1, and using simple constraints related to the preservation of the mean and 

variance, the principle of maximum entropy yields that the probability distribution of X will be 

Gaussian. For a Gaussian process, the entropy depends on its variance Γ(t) only and is given as 

(Papoulis 1991): 

Φ[X(t)] = (1/2) ln(2πe Γ(t)/h2) (16) 



7 

 Koutsoyiannis (2011) defined entropy production as the time derivative of entropy,  

Φ΄[X(t)] ≔ dΦ[X(t)]/dt (17) 

and the entropy production in logarithmic time (EPLT) as the derivative in logarithmic time: 

φ(t) ≡ φ[X(t)] ≔ Φ΄[X(t)] t ≡ dΦ[X(t)] / d(lnt) (18) 

For a Gaussian process, by virtue of (16), the EPLT is 

φ(t) = Γ΄(t) t / 2Γ(t) (19) 

 This expresses in dimensionless terms the rate of uncertainty production at time t > 0 

when nothing is known about the past (t < 0) and the present (t = 0). When the past and the 

present are observed, instead of the unconditional variance Γ(t) we should use a variance ΓC(t) 

conditional on the past and present. For a Markovian process (see section 3), in which only the 

present (the latest known value) matters in conditioning, it is relatively easy to calculate the 

conditional variance. Using detailed results from Koutsoyiannis (2011) for a Markovian process, 

we can verify that the following relationship holds:  

ΓC(t) = 2Γ(t) – Γ(2t)/2 (20) 

while the derivative is  

Γ΄C(t) = 2Γ΄(t) – Γ΄(2t) (21) 

so that the conditional EPLT is 

𝜑C(𝑡) =
𝛤C

′(𝑡)𝑡

2𝛤C(𝑡)
=

(2𝛤′(𝑡) − 𝛤′(2𝑡))𝑡

4𝛤(𝑡) − 𝛤(2𝑡)
 (22) 

 Equations (20)-(22) are strictly valid for a Markovian Gaussian process. However, any 

persistent (positively correlated) process (under some rather general conditions) can be 

decomposed into a sum of Markovian process (Koutsoyiannis 2002, 2011), and therefore (20) 

and (21), by virtue of their linear form (subtraction of two functions), can provide 

approximations for any persistent Gaussian process. In fact Equation (20) provides a lower 

bound of the conditional variance for a non-Markovian process: it would be exact only if, by 

knowing the entire past of x(t), we would be able to decompose x(0) into the components 

corresponding to the constituents of the sum of Markovian process. This is not actually the case 

as the actual conditioning information is lower than assumed to derive (20). An alternative 

numerical method to evaluate an upper bound of ΓC(t) and consequently Γ΄C(t) can be based on 

the methodology presented in Koutsoyiannis (2005b) and Koutsoyiannis et al. (2007) for 

discretized processes. Nonetheless, if EPLT is to be calculated, Equation (22) may provide a 

sufficient approximation because, by taking the ratio of the two quantities, the errors in the 

numerator and the denominator will tend to cancel each other.  

3 Effect of discretization 

As explained in the Introduction, observation and generation of synthetic time series are made 

in discrete time and therefore we always need to take into account the effect of discretization in 

the properties of the discrete-time processes. Once the continuous-time climacogram is known, 
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the discrete-time autocovariance function of the averaged process can be determined from the 

following relationship, analogous to (8), which is exact and generic (Koutsoyiannis 2013b): 

𝑐𝑗
(𝛥)

=
1

2
 
δ𝛥

2𝛤(𝑗𝛥)

𝛥2
=

1

𝛥2
 (

𝛤((𝑗 + 1)𝛥) + 𝛤((𝑗 − 1𝛥)

2
− 𝛤(𝑗𝛥)) (23) 

where δ𝛥
2 is the second order central difference operator for spacing Δ and δ𝛥

2 𝛥2⁄  is the second 

finite derivative. This is valid for j > 0, but it can be written in the following manner so that it is 

valid for any integer j: 

𝑐𝑗
(𝛥)

=
1

𝛥2
 (

𝛤(|𝑗 + 1|𝛥) + 𝛤((|𝑗 − 1|𝛥)

2
− 𝛤(|𝑗|𝛥)) (24) 

It is easily seen that for j = 0 this results in 𝑐0
(𝛥)

= 𝛾(𝛥), while 𝑐−𝑗
(𝛥)

= 𝑐𝑗
(𝛥)

, as it should. 

 For the sampled process, assuming that the discrete-time cumulative climacogram 

�̌�(𝑘) ≔ Var[Xk] (25) 

is known for any positive integer k, the following relationship, similar to (23), gives its 

autocovariance function for any positive integer lag j: 

�̌�𝑗 =
1

2
 δ1

2�̌�(𝑗) =
�̌�(𝑗+1) + �̌�(𝑗−1)

2
− �̌�(𝑗) (26) 

This holds also for any type of discrete time process, even if it is not linked to a continuous-time 

one. 

 The inverse relationships, which give the (sampled) discrete-time climacograms from the 

autocovariance function and also hold for any type of discrete-time process, are:  

�̌�(𝑘) = 𝑘𝛾0 +  2 ∑(𝑘 − 𝑗)�̌�𝑗

𝑘−1

𝑗=1

 (27) 

𝛾(𝑘) =
�̌�(𝑘)

𝑘2
=

1

𝑘
(𝛾0 +  2 ∑ (1 −

𝑗

𝑘
) �̌�𝑗

𝑘−1

𝑗=1

) (28) 

where 𝛾0 ≡ �̌�0 is the variance of the discrete time process. The following recursive relationship 

facilitates calculation of the climacogram: 

�̌�(𝑘) = 2�̌�(𝑘−1) − �̌�(𝑘−2) + 2�̌�𝑘−1,   �̌�(0) = 0,   �̌�(1) = 𝛾0 (29) 

Specifically, it is easily verified that recursive application of (29) results in (27). 

 The direct calculation of the discrete-time power spectra from that in continuous time is 

feasible but somewhat involved. Specifically, discretization makes the power spectrum a 

periodic function with period Δ and since it is, by definition, an even function it suffices to 

determine it for frequencies w in the interval (0, 1/2Δ) only, where the upper bound of this 

interval (1/2Δ) is known as the Nyquist frequency. Usually, in discrete time we use a 

dimensionless frequency ω and we also standardize the power spectrum so that its area remains 

equal to the variance, i.e.,  
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𝜔 ≔ 𝑤𝛥,    �̌�d(𝜔) ≔
�̌�(𝑤)

𝛥
,   𝑠d

(𝛥)(𝜔) =
𝑠(𝛥)(𝑤)

𝛥
 (30) 

Thus, for the sampled process the following relationship connects �̌�d(𝜔) with that in continuous 

time, s(w) (cf. Papoulis, 1991, p. 336): 

�̌�d(𝜔) =
�̌�(𝑤)

𝛥
=

1

𝛥
∑ 𝑠 (

𝜔 + 𝑗

𝛥
)

∞

𝑗=−∞

=
1

𝛥
∑ 𝑠 (𝑤 +

𝑗

𝛥
)

∞

𝑗=−∞

 (31) 

To find the relationship of 𝑠d
(𝛥)

(𝜔) of the averaged process with s(w), we utilize (31) after we 

have applied a moving average operation to the process. The power spectrum of the process 

𝑦(𝑡) obtained as the moving average of 𝑥(𝑡) at time window Δ, i.e., 𝑦(𝑡) ≔
1

𝛥
∫ 𝑥(𝜉)d𝜉

𝑡

𝑡−𝛥
 (an 

operation known as a low-pass filtering; cf. Papoulis 1991, p. 325, also noticing the different 

notational and other conventions), is: 

𝑠𝑦(𝑤) = 𝑠(𝑤) sinc2(π𝑤𝛥) (32) 

where sinc(x) ≔ sin(x)/x. By sampling 𝑦(𝑡) at intervals Δ, we find: 

𝑠d
(𝛥)(𝜔) =

𝑠(𝛥)(𝑤)

𝛥
=

1

𝛥
∑ 𝑠 (

𝜔 + 𝑗

𝛥
) sinc2(π(𝜔 + 𝑗))

∞

𝑗=−∞

 

=
1

𝛥
∑ 𝑠 (𝑤 +

𝑗

𝛥
)

∞

𝑗=−∞

 sinc2(π(𝑤𝛥 + 𝑗)) 

(33) 

 Alternatively the power spectrum of a discretized process can be calculated directly from 

the autocovariance function of the discretized process. Thus,  

�̌�d(𝜔) = 2�̌�0 + 4 ∑ �̌�𝑗

∞

𝑗=1

cos(2π𝜔𝑗),   𝑠d
(𝛥)(𝜔) = 2𝑐0

(𝛥)
+ 4 ∑ 𝑐𝑗

(𝛥)

∞

𝑗=1

cos(2π𝜔𝑗) (34) 

for the sampled and the averaged process, respectively. The former expression can also be 

applied for a discrete-time process that is not linked to a continuous-time process. Note that the 

first term in each of the right-hand parts of (34) equals the respective variance, i.e., �̌�0 ≡ 𝛾0(≡ γ0 

in case that the discrete-time process is sampled from a continuous-time process) and 

𝑐0
(𝛥)

≡ 𝛾(𝛥). The inverse transformation is 

�̌�𝑗 = ∫ �̌�d(𝜔) cos(2π𝜔𝑗) d𝜔

1 2⁄

0

,    𝑐𝑗
(𝛥)

= ∫ 𝑠d
(𝛥)(𝜔) cos(2π𝜔𝑗) d𝜔

1 2⁄

0

 (35) 

Equations (34) and (35) are the discrete-time analogues of the continuous-time equations (10) 

and (11). Notice that, even in the discrete-time case, the inverse transformation is an integral, 

not a sum.  

4 Example processes 

Three example processes have been chosen to analyse here on the basis that they have some 

properties which make them physically plausible and thus candidate to be used in hydrological 
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and other applications. Specifically, they correspond to extremization of entropy production—in 

particular extremization of EPLT, which as shown in Koutsoyiannis (2011) is equivalent to 

extremization of entropy production. The first two, the Markov process and the Hurst-

Kolmogorov (HK) process, are well-known processes which Koutsoyiannis (2011) found to 

correspond to EPLT extremization for asymptotic times, t → 0 and t → ∞; the third process, the 

hybrid Hurst-Kolmogorov process (HHK), is introduced here as a physically plausible 

modification and generalization of the HK process.  

 

 

Figure 2 (upper) Climacograms and (lower) EPLTs of the three example processes (see text and Tables 1-

2 for the definitions of processes). At time scale Δ = 1 all three processes have the same variance γ(1) = 1 

and the same autocovariance for lag 1, 𝒄𝟏
(𝟏)

 = 0.5. Their parameters are (see text for their definitions): for 

the Markov process a = 0.8686, λ = 1.4176; for the HK process a = 0.0013539, λ = 15.5032, H = 0.7925; for 

the HHK process a = 0.0013539, λ = 15.5093, κ = 0.5, H = 0.7925 (note that for the HK process the 

parameter set a = λ = 1 is equivalent to the above, but the former set was preferred in order to be 

comparable to the HHK).  

 While the three processes will be described in the following subsections, it is instructive to 

overview at this point their entropic properties. These are illustrated in Figure 2 which depicts 
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their climacograms and their EPLTs vs. time. At time scale Δ = 1 all three processes have the 

same variance γ(1) = 1 and the same autocovariance for lag 1, 𝑐1
(1)

 = 0.5. These two values are 

used as constraints in the extremization of EPLT, as detailed in Koutsoyiannis (2011). As seen in 

Figure 2, the Markov process has the highest EPLT for t → 0 (φ(0) = 1, φC(0) = 1.5) and the 

lowest for t → ∞ (φ(∞) = φC(∞) = 0.5). Conversely, the HK process has constant EPLT, φ(t) = 

φC(t) = H = 0.7925, where H is known as the Hurst coefficient and its value 0.7925 is fully 

determined from the above constraints (see section 4.2). This EPLT of the HK process is lowest 

for t → 0 and highest for t → ∞. The HHK process has the highest EPLT both for t → 0 (φ(0) = 1, 

φC(0) = 1.5 as in the Markov case) and for t → ∞ (φ(∞) = φC(∞) = H = 0.7925, as in the HK case). 

 The subsections below provide all details of the three processes, while additional 

interesting continuous-time processes are given in Gneiting et al. (2012) and Koutsoyiannis 

(2013b). 

4.1 The Markov process 

By definition, a Markov process is one in which the future does not depend on the past when the 

present is known (Papoulis, 1991). As a consequence of this, the autocovariance function of the 

process is a pure exponential function (Equation (T1.4) in Table 1, in which λ (dimension [x]2) is 

a state-scale parameter and α (dimension [t]) is time-scale parameter, while all other second-

order properties of the process are determined using the framework of Sections 2 and 3 and are 

given in Table 1.  

 The process in continuous time is also known as the Ornstein–Uhlenbeck process. By 

inspecting Table 1 and comparing with known equations in the time-series literature, it is seen 

that in discrete time the process is identical to an AR(1) process if it is sampled at equidistant 

times, or a special case of an ARMA(1,1) process if it is averaged at time windows with constant 

length.  

 Major advantages of this process are its simplicity (all its second-order properties are 

given by simple equations in Table 1) and parsimony (it contains only one parameter, α, in 

addition to those describing its marginal distribution). However, the Markovian property, which 

is an ideal case not verified in nature, does not make it quite plausible for natural phenomena. 

4.2 The Hurst-Kolmogorov process 

The HK process can be defined based on its climacogram, which is a power function of time scale 

(Equation (T2.2) in Table 2). The autocovariance function and hence the power spectrum are 

then easily determined (see Table 2).  

 The process in continuous time is also known as fractional Gaussian noise (FGN) due to 

Mandelbrot and van Ness (1968), although these authors used a more complicated approach to 

define it. In essence, though, the mathematical process had been earlier proposed by 

Kolmogorov (1940), while Hurst (1951) pioneered the detection in geophysical time series of 

the behaviour described by this process; hence the name we use for this process. Because this 

process has infinite instantaneous variance, the sampled process in discrete time is not 

meaningful (many properties take infinite values). However, the averaged process is well 

behaving with all of its properties (including its variance) finite, which makes it quite useful in 

applications.  
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Table 1 Properties of the Markov process. 

Property  Formula Ref. 

Variance   

Continuous-time and sampled 
process (Instantaneous) 

𝛾0 = 𝛾(0) = 𝑐(0) = 𝛾0 = 𝜆  (T1.1) 

Averaged process, scale Δ 
(Climacogram) 

𝛾(𝛥) =
2𝜆

𝛥 𝛼⁄
(1 −

1−e−𝛥 𝛼⁄

𝛥 𝛼⁄
)  (T1.2) 

Sampled process, scale kΔ 
(Climacogram) 

𝛾(𝑘) =
𝜆

𝑘 (1−𝜌)2  (1 − 𝜌2 −
2𝜌(1−𝜌𝑘)

𝑘
), 𝑘 = 1, 2, …  

where 𝜌 = e−𝛥/𝛼 

(T1.3) 

Autocovariance function   

Continuous-time process, lag τ  𝑐(𝜏) = 𝜆e−𝜏/𝛼 (T1.4) 

Averaged process, lag τ = jΔ  𝑐𝑗
(𝛥)

=
𝜆(1−e−𝛥 𝛼⁄ )

2

(𝛥 𝛼⁄ )2  e−(𝑗−1)𝛥 𝛼⁄ ,  𝑗 = 1,2, … (T1.5) 

Sampled process, lag τ = jΔ �̌�𝑗 =  𝜆e−𝑗𝛥/𝛼 = 𝜆𝜌𝑗  (𝑗 = 0,1,2, … ) (T1.6) 

Power spectrum   

Continuous-time process,  
frequency w  

s(w) =
4𝛼𝜆

1+(2π𝛼𝑤)2  (T1.7) 

Averaged process,  
frequency w = ω/Δ  

𝑠(𝛥)(𝑤) = 4𝛼𝜆 (1 −
1

𝛥 𝛼⁄
 
(1−cos(2π𝛥𝑤)) sinh(𝛥 𝛼⁄ )

cosh(𝛥 𝛼⁄ )−cos(2π𝛥𝑤)
)  (T1.8) 

Sampled process,  
frequency w = ω/Δ 

�̌�(𝛥)(𝑤) =
2𝜆𝛥 sinh(𝛥 𝛼⁄ )

cosh(𝛥 𝛼⁄ )−cos(2𝜋𝛥𝑤)
  (T1.9) 

 The HK process is almost equally simple and parsimonious with the Markov process; again 

it contains only one parameter, H, in addition to those describing its marginal distribution. 
Notice that the process variance is controlled by the product λ α2 – 2H, so that λ and α, are not in 

fact separate parameters. Despite that, we prefer the formulation shown in Table 2 with three 

nominal parameters for dimensional consistency: α and λ are scale parameters with dimensions 

[t] and [x]2, respectively, while H, the Hurst coefficient, is dimensionless in the interval (0, 1).  

 For H = 0.5 the process reduces to pure white noise. For 0.5 < H < 1 the process exhibits 

LTP (also called long-range dependence). For 0 < H < 0.5 it is called an antipersistent process. 

Most of the expressions shown in Table 2 are valid in the all cases. However, the autocovariance 

c(τ) has different expressions in the three cases, as shown in Table 2. Specifically, for H < 0.5, the 

autocovariance c(τ) is negative for any lag τ > 0, tending to –∞ as τ→ ∞. However, at τ = 0, c(0) = 

+∞, because this is the variance of process which cannot be negative; thus, there is a 

discontinuity at τ = 0. Consequently, the averaged process has positive variance and all 

covariances negative. Such a process is not physically realistic because real-world events at near 

times are always positively correlated, which means that for small τ, c(τ) should be positive. 

Also, the infinite variance cannot appear in nature (it would be associated with infinite energy); 

even the white noise, whose autocovariance is a Dirac delta function (corresponding to infinite 
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variance, see (T2.3) for H = 1/2), cannot describe a natural process. Thus, the HK process can 

describe natural phenomena only for 0.5 < H < 1 and for time scales not too small. Furthermore, 

values H > 1 that sometimes are being reported in the literature are mathematically invalid 

(Koutsoyiannis 2013b) and are results of inconsistent algorithms.  

Table 2 Properties of the HK process. 

Property  Formula Ref. 

Variance   

Continuous-time and sampled 
process (Instantaneous) 

𝛾0 = 𝛾(0) = 𝑐(0) = 𝛾0 = +∞  (T2.1) 

Averaged process, scale Δ 
(Climacogram) 

𝛾(𝛥) = 𝜆(𝛼/𝛥)2−2𝛨 (T2.2) 

Autocovariance function   

Continuous-time process, lag τ  

𝑐(𝜏) = 𝜆𝐻(2𝐻 − 1)(𝛼 𝜏⁄ )2−2𝛨  (H > 1/2) 

𝑐(𝜏) = 𝜆 δ(𝜏/𝛼)  (Η = 1/2) 

𝑐(𝜏) = 𝜆𝐻(2𝐻 − 1)((𝛼 𝜏⁄ )2−2𝛨  

+ δ′′(𝜏/𝛼)) (H < 1/2) 

(T2.3) 

Averaged process, lag τ = jΔ  𝑐𝑗
(𝛥)

= 𝜆(𝛼 𝛥⁄ )2−2𝛨 (
|𝑗−1|2𝐻+|𝑗+1|2𝐻

2
− |𝑗|2𝐻)  (T2.4) 

Power spectrum   

Continuous-time process,  
frequency w  

𝑠(𝑤) =
2𝛼𝜆 Γ(2𝛨 + 1)sin (π𝐻)

(2π𝛼𝑤)2𝐻−1
 (T2.5) 

Notes: (a) Γ( ) is the gamma function, δ( ) is the Dirac delta function and δ΄΄( ) is its second derivative. (b) 

The sampled process is not meaningful as its variance (instantaneous, 𝛾0, or at any time scale, 𝛾(𝑘)) is 

infinite and its spectrum, �̌�(𝑤), is also infinite. (c) The power spectrum of the averaged process exists (it is 

finite for w > 0) but it does not have a closed expression.  

 Most of the functions in Table 2 describe simple scaling laws, i.e., are depicted as straight 

lines if plotted in double-logarithmic plots. More formally, these slopes are represented by log-

log derivatives, such as  

𝛾#(𝛥) ≔
d(ln 𝛾(𝛥))

d (ln 𝛥) 
=

𝛥 𝛾 ′(𝛥)

𝛾(𝛥)
  (36) 

and likewise for 𝑐#(𝜏), 𝑠#(𝑤), etc. It can be seen that 𝛾#(𝛥) = 2𝐻 − 2 for any Δ ≥ 0,  𝑐#(𝜏) =

2𝐻 − 2 for any τ > 0 —and also for τ = 0 in the persistent process. The slope of the power 

spectrum is also constant, i.e., 𝑠#(𝑤) = 𝜓#(𝑤) = 1 − 2𝐻, which is negative for the persistent 

process, positive for the antipersistent process and zero for the purely random process. As 

footnoted in Table 2, the power spectrum of the sampled process diverges while that of the 

averaged process exists but does not have a closed expression. Numerically the latter can be 

evaluated from (34) and generally approaches the continuous-time power spectrum whose 

expression is given in (T2.5). For small frequencies the approximation is perfect, but as w 
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approaches 1/2Δ (the Nyquist frequency), the approximation worsens until the slope of 𝑠(𝛥)(𝑤) 

becomes exactly zero at w = 1/2Δ. Interestingly, in the antipersistent process there is a range of 

intermediate scales (close to ~1/5Δ) where the log-log slope becomes much steeper than 

1 − 2𝐻, close to +2. However, by choosing a higher Δ, this range moves to higher frequencies, so 

that as Δ → 0, this high-slope area disappears.  

 Notably, the HK process is the only one in which the log-log derivatives of all second order 

properties are constant for any Δ, τ and w, thereby defining simple scaling laws. In all other 

processes these log-log derivatives vary, yet scaling laws are defined asymptotically, i.e., for Δ, τ 

or w tending to 0 or tending to ∞. In any process other than the HK the respective asymptotic 

values of the log-log derivatives are different in the two asymptotic cases, 0 and ∞. Interestingly, 

combining (36) with (9) and (19) we conclude that for Gaussian processes the EPLT is related to 

the log-log derivative of the climacogram by  

φ(t) = 1 + ½ γ#(t) (37) 

This makes EPLT maximization equivalent to maximization of γ#(t). The above results confirm 

that in the HK process the EPLT is constant, φ(t)= H, and also enable generalization of the Hurst 

coefficient for any process by 

H = φ(∞) = 1 + ½ γ#(∞) (38) 

4.3 The Hybrid Hurst-Kolmogorov process 

This process in introduced here in terms of its climacogram, described by the Cauchy-type 

relationship 

𝛾(𝛥) = 𝜆(1 + (𝛥 𝛼⁄ )2𝜅)
𝐻−1

𝜅   (39) 

Here α and λ are scale parameters with dimensions [t] and [x]2, respectively, H is the Hurst 

coefficient as in the HK process, a dimensionless scaling parameter in the interval (0, 1), and κ is 

a second scaling parameter, again dimensionless and in the interval (0, 1), which will be called 

the fractal parameter. As we will see, H determines the global properties of the process (as t → 

∞) and κ determines the local properties (as t → 0). 

 This process remedies both inconsistencies of the HK process discussed above, while 

retaining the persistence or antipersistence properties. Specifically, the variance of the 

instantaneous process is always finite (γ0 = γ(0) = λ), while even for 0 < H < 0.5 the initial part of 

the autocovariance function for small lags is positive for all variants of the process (continuous 

time, discrete time, either sampled or averaged, for a small time interval Δ). 

 A similar process was proposed by Gneiting and Schlather (2004), which has a Cauchy-

type autocorrelation function rather than climacogram. However, the climacogram-based 

definition in (39) is superior, because it allows for antipersistent processes for 0 < H < 0.5, which 

have positive autocovariance for small lags and negative for large lags. (In the process with 

Cauchy-type autocorrelation function autocovariances are either all positive or all negative). The 

name “hybrid” for the process defined in (39) reflects the fact that it incorporates both the 

Markov and the HK processes. Specifically, in the special case with H = κ = 0.5, HHK is practically 

indistinguishable from a Markov process (even though not precisely identical, as can be seen by 

comparing (39) with (T1.2)). Furthermore, as α → 0, the process tends to a pure HK process with 

the same Hurst coefficient H. Also, for any specified parameter set, HHK exhibits Markov 
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behaviour for small time scales (if κ = 0.5, or similar to Markov if κ ≠ 0.5) and Hurst behaviour 

for large time scales, as seen in Figure 2.  

 The physical realism of the process is its strongest advantage. This is expressed by the fact 

that it maximizes entropy production both for small (t → 0) and large (t → ∞) times, as well as 

by the properties discussed above in comparison with the HK process. Empirical testing of the 

consistency of the process with nature is not quite easy, as the availability of observed time 

series of natural processes that have both short observation scale and large sample size is quite 

limited. Note that, if the available time series had short observation scale and small sample size, 

the process would look as Markovian, while if it had large sample size but at large discretization 

scale, HHK will look indistinguishable from the pure HK. There is one exception offered by 

laboratory measurements of turbulence, which can have high temporal resolution as well as 

very large sample size. And indeed the behaviour observed from time series of turbulence is 

consistent with that of an HHK model (see Koutsoyiannis 2013a, who fitted a special case of the 

HHK model to turbulence data).  

 The expressions of most of the HHK second-order characteristics are too complex, but the 

framework provided in Sections 2 and 3 suffices to evaluate numerically all of its properties 

based on (39). As an exception, the autocovariance in continuous time has a rather simple 

expression: 

𝑐(𝜏) = 𝛾(𝜏)
1 + (3𝐻 + 2𝜅𝐻 − 2𝜅 − 1)(𝜏/𝑎)2𝜅 + 𝐻(2𝐻 − 1)(𝜏/𝑎)4𝜅

1 + 2(𝜏/𝑎)2𝜅 + (𝜏/𝑎)4𝜅
  (40) 

 A further important feature of this process is that it allows explicit control of the 

asymptotic behaviour of all properties (γ(Δ), c(τ), s(w), ψ(w)) at both ends (for Δ, τ, w → 0 or ∞), 

which are different at each end, opposite to the HK process, which implies simple scaling laws as 

described above. Despite the expressions of these properties being involved, the asymptotic 

properties are easy to calculate, i.e., 𝛾#(∞) = 𝑐(∞) = 2𝐻 − 2, 𝛾#(0) = 𝑐#(0) = 0, 𝑠#(0) =

𝜓#(0) = 1 − 2𝐻, 𝑠#(∞) = 𝜓#(∞) = −1 − 2𝜅. From the last two values we conclude that the 

fractal properties of the process, which are local properties expressing the asymptotic behaviour 

for small scales or large frequencies, depend on the parameter κ only (with the fractal dimension 

being equal to 2 – κ; cf. Gneiting and Schlather 2004). In contrast, the behaviour for large scales 

or small frequencies depends on the Hurst coefficient H only. 

5 Methodology for stochastic simulation 

5.1 The general algorithm 

The so-called symmetric moving average (SMA) method (Koutsoyiannis 2000) can directly 

generate time series with any arbitrary autocorrelation function provided that it is 

mathematically feasible. The SMA method consists of the following generation equation: 

𝑥𝑖 = ∑ 𝑎|𝑙|𝑣𝑖+𝑙

∞

𝑙=−∞

 (41) 

where aj are coefficients calculated from the autocovariance function and vi is white noise 

averaged in discrete-time (and not necessarily Gaussian; see section 6.4). Assuming that we 

work for the sampled discrete-time process with autocovariance �̌�𝑗 and power spectrum �̌�d (the 
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procedure is the same for the averaged process), it has been shown (Koutsoyiannis 2000) that 

the Fourier transform 𝑠d
𝑎(𝜔) of the al series of coefficients is related to the power spectrum of 

the discrete time process as  

𝑠d
𝑎(𝜔) = √2�̌�d(𝜔) (42) 

Thus, to calculate al we first determine 𝑠d
𝑎(𝜔) from the power spectrum of the process and then, 

using an equation analogous to (35) we estimate all coefficients al. In other words, the 

generation of time series from any possible autocorrelation function is a matter of applying a 

couple of times the Fourier transform to estimate some coefficients. Note that the coefficients 

are internal constants of the model, not model parameters. 

 It is expected that the coefficients al will decrease with increasing l and will be negligible 

beyond some q (l > q), so that we can truncate (41) to read  

𝑥𝑖 = ∑ 𝑎|𝑙|𝑣𝑖+𝑙

𝑞

𝑙=−𝑞

 (43) 

This would introduce some truncation error, as the resulting autocovariance function 

�̃�𝑗 = ∑ 𝑎|𝑙|𝑎|𝑗+𝑙|, 𝑗 = 0,1,2, …

𝑞−𝑗

𝑙=−𝑞

 (44) 

would not be identical to �̌�𝑗. In processes with short-range dependence the error is small even 

for a relatively small truncation limit q (cf. section 5.2.3). However, if the dependence is of long-

range type with high H, then there may be a problem. While in hydrology the H values are rather 

moderate, recent studies have estimated values H > 0.9 for some geophysical series, e.g., Earth’s 

temperature (Koutsoyiannis and Montanari, 2007; Koutsoyiannis 2013a, Markonis and 

Koutsoyiannis 2013). In such cases q should be high to achieve good approximation of the 

autocovariance function �̌�𝑗 and even of the variance �̌�0. For example, Koutsoyiannis (2002) 

suggested q = 250 000 if H = 0.9. This entails high computational burden. 

 However, a small q is possible, if we restrict our interest to the preservation of a moderate 

number of autocovariance terms �̌�𝑗, say, two to three orders of magnitude. Our desideratum in 

this case is to restrict q in the same order of magnitude as that of the required number of 

autocovariance terms. Koutsoyiannis (2000) provided an iterative numerical algorithm for that 

problem, which does not make use of the Fourier transform, but uses an optimization procedure. 

While that algorithm is general enough, an optimization for, say, 1000 terms al, which become 

the control variables in the optimization problem, may be cumbersome.  

 Here we study a different procedure, which is direct and explicitly considers the 

truncation in the Fourier analysis. Specifically, instead of deriving al from 𝑠d
𝑎(𝜔), we consider a 

modified spectrum �̃�d
𝑎(𝜔) of al which should give �̃�𝑗 = 0 for j > q, while retaining �̃�𝑗 close to the 

actual cj for small lags. We thus estimate �̃�d
𝑎(𝜔) as the sum of two terms:  

�̃�d
𝑎(𝜔) = 𝑠d

𝑎(𝜔)(1 − sinc(2π𝜔𝑞)) + 𝜀 sinc(2π𝜔𝑞)  (45) 

where ε is a constant. The rationale of the first term is that it represents a high-pass filtered 

process (Papoulis 1991, p. 325; cf. with (32) noticing that this is a low pass filter and that 𝑠d
𝑎 is 

proportional to the square root of �̌�d), which suppresses low frequencies or high time scales (> 

q). The second term, whose inverse Fourier transform is the rectangular function (so that, with 
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respect to equation (34), it results in coefficients equal to ε/(4q+2) for lags ≤ q and 0 for lags > 

q), replaces the truncated part with a constant component for the lags of interest. In conclusion, 

both terms result in virtually zero coefficients for lags > q.  

 Let 𝑎𝑙
′ be the coefficients al corresponding to the first term of (45), while those 

corresponding to the second term are equal to each other for all l, 𝑎 ′′ = ε/(4q+2). Their sum 

𝑎𝑙 =  𝑎𝑙
′ +  𝑎   ′′ (46) 

will give the final coefficients al to be applied for the generation. The coefficients 𝑎𝑙
′ can be 

calculated from (35) by using 𝑠d
𝑎(𝜔)(1 − sinc(2π𝜔𝑞)) in place of �̌�d(𝜔). The constant 𝑎  ′′ 

requires the weight ε to be determined. Applying (44) for j = 0, so as to estimate (and preserve 

exactly) the variance, 𝛾0 ≡ �̌�0 we obtain 

𝛾0 = ∑ 𝑎|𝑙|
2

𝑞

𝑙=−𝑞

= ∑ (𝑎|𝑙|
′   +  𝑎    ′′)

2

𝑞

𝑗=−𝑞

 (47) 

Solving for 𝑎  ′′, after algebraic manipulations we find: 

𝑎′′ = √
𝛾0 − Σ𝛼′2

2𝑞 + 1
+ (

Σ𝛼′

2𝑞 + 1
)

2

 −
Σ𝑎′

2𝑞 + 1
 (48) 

where Σ𝛼′≔𝑎0
′ + 2(𝑎1

′ + ⋯ + 𝑎𝑞
′ ) and Σ𝛼′2≔𝑎0

′2 + 2(𝑎1
′2 + ⋯ + 𝑎𝑞

′2). 

 This method of truncation with adjustment will be referred to as method 1. A further 

approximation which constitutes a simpler calculation denoted as method 2, is to use 𝑠d
𝑎(𝜔) 

directly (rather than 𝑠d
𝑎(𝜔)(1 − sinc(2π𝜔𝑞))) to estimate 𝑎𝑙

′ (by taking the inverse transform of 

𝑠d
𝑎(𝜔) as in (35) but using 𝑠d

𝑎(𝜔) in place of �̌�d(𝜔)) only for j = 0 to q, set all terms beyond q 

equal to 0, and then estimate 𝑎′′ again from (48). 

 In both methods, it is expected that 𝛾0 − Σ𝛼′2
> 0. If due to numerical imperfections it 

happens that 𝛾0 − Σ𝛼′2
< 0, then it advisable not to use equations (45)-(48), but rather modify 

𝑎𝑙
′ by proportional adjustment, i.e.,  

𝑎𝑙 =  𝑎𝑙
′ √𝛾0/Σ𝛼′2  (49) 

This adjustment will be referred to as method 3.  

5.2 Application 

The preservation of the autocovariance function of any process by the SMA algorithm is 

theoretically guaranteed and therefore there is no need to test it through applications (although 

some applications can be found in Koutsoyiannis 2000). What is more meaningful to examine is 

the influence of truncation and the ability of the proposed methods of adjustment to deal with 

the truncation error. This is done in the following subsections, where we use the three models 

described above with parameter values as listed in the caption of Figure 2 (in some cases 

additional parameter sets are tested). It is recalled that in the case illustrated, the Hurst 

coefficient for the HK and the HHK process is relatively high, around 0.8.  
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5.2.1 HHK process 

Figure 3(a) presents the autocovariance function of the HHK process with and without 

truncation at q = 32 in comparison with the theoretical one. The 32 terms used are too few for a 

process with LTP but serve well illustration. If we make truncation without any adaptation, then 

even the first 32 autocovariance terms are not well approximated and there is a 3.3% 

underprediction of the variance (not shown in figure). However, truncation methods 1 and 2 

remedy this problem, with method 1 performing somewhat better than method 2. Figure 3(c) 

shows that to correct the autocovariance function the sequence of al needs to be raised in its 

right tail. Figure 3(b, d) shows that this raise adds some periodicity to the power spectrum as 

well as to the Fourier transform of the sequence of al. Generally, the results are quite satisfactory 

and obviously they would be more satisfactory if more al terms were used (q > 32).  

 

Figure 3 Comparison of the theoretical properties of the HHK process (discrete time, averaged) with 

parameter values as shown in Figure 2 with the properties after truncation at q = 32: (a-b) autocovariance 

and power spectrum of the process; (c-d) calculated coefficients al and their Fourier transform.  

5.2.2 HK process 

The application of the same method to the HK process gave quite similar results, so similar that 

they would be indistinguishable from those in Figure 3 and thus not necessary to reproduce 

here. The reason that they look similar is that for the time scales and frequencies that can be 

modelled with q = 32 terms, the HK process is indistinguishable from the HHK.  

 However, the simplicity of the HK process allows presenting a more systematic 

comparison. Moreover, this simplicity allows an analytical determination of the sequence of the 
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untruncated sequence of al. Specifically, as shown in Koutsoyiannis (2002) the coefficients al can 

be approximated as 

𝑎𝑙 =
√(2 − 2𝐻)𝛾(𝛥)

3 − 2𝐻
(|𝑙 + 1|𝐻+0.5 + |𝑙 − 1|𝐻+0.5 − 2|𝑙|𝐻+0.5) (50) 

where the multiplying term in the right hand side was found after a numerical investigation, so 

that the sum of all 𝑎𝑗
2 equals γ(Δ) as it should. Here, by refining the approximation using the 

same method, the following improvement was obtained:  

𝑎𝑙 = √
2(1 − 𝐻)𝛾(𝛥)

(3/2 − 𝐻)2 + 0.2(1/2 − 𝐻)2 (
|𝑙 + 1|𝐻+0.5 + |𝑙 − 1|𝐻+0.5

2
− |𝑙|𝐻+0.5) (51) 

 

 

Figure 4 Comparison of the theoretical autocovariance functions of the HK proses with those obtained 

after truncation with the indicated number q of al terms: (upper) persistent case with H = 0.9 and 

adjustments with method 2; K (2002) refers to the results in Koutsoyiannis (2002) without adjustment 

using q = 250 000 terms; (lower) antipersistent case with H = 0.2 and adjustments with method 3. The 

variance γ(Δ) is 1 in both cases.  
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 For H > 0.5, the proximity of the power spectrum of the averaged process with that of the 

continuous-time process (equation (T2.5) in Table 2) allows the theoretical derivation of a more 

consistent equation, i.e., 

𝑎𝑙 = √
2Γ(2𝛨 + 1) sin(π𝐻) 𝛾(𝛥)

Γ2(𝛨 + 3/2) (1 + sin(π𝐻))
(

|𝑙 + 1|𝐻+0.5 + |𝑙 − 1|𝐻+0.5

2
− |𝑙|𝐻+0.5) (52) 

For H < 0.5 the proximity is not good and thus equation (52) does not perform well. However, 

equation (51) is a very good approximation and is also valid for H < 0.5.  

 Equation (51) is readily applied with adjustment method 2 or 3, without any need to 

calculate a Fourier transform. Results of the application are shown in Figure 4 for a persistent (H 

= 0.9) and an antipersistent (H = 0.2) case for a varying number of terms q. As shown in the 

figure, the method performs quite well giving good approximation of the autocorrelation 

function for lags approaching q and outperforms the case where no adjustments are used, even if 

in the latter case a very high number of terms were used.  

5.2.3 Markov process 

Coming again to the application designated in Figure 2 but now with the Markov model, some 

results are depicted in Figure 5. The results support the conclusion that, due to the exponential 

decay of autocovariance, in this model only a few terms al are required (in this case, even q = 8 is 

too much, given that autocovariance values of the order of 10–3 can be neglected) and that no 

adjustment due to the truncation is actually needed. While the results in Figure 5 are for the 

averaged process, the application was made also for the sampled process with quite similar 

results which are aimless to reproduce here. 

 

Figure 5 (a) Comparison of the theoretical autocovariance function of the Markov process (discrete time, 

averaged) with parameter values as shown in Figure 2 with that after truncation at q = 8 without 

adjustment; (b) corresponding coefficients al.  
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applicability to any stochastic process in the same form. In addition, the SMA scheme is simpler 
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generation expression will give the variable xi as a weighted sum of two past variables (for two 

and one time step before, respectively) and some white noise variables, while the SMA model in 

the form (41) or (43) will be a weighted sum of white noise variables only. Now, if we try to 

reproduce the fourth moment (kurtosis) of the process and thus raise the generation expression 

to the fourth power, in the AR(2) model and the bivariate AR(1) model some joint fourth-order 

moments will emerge, which are not possible to handle. In the SMA model no such terms will 

appear.  

6 Final notes  

6.1 Model identification and fitting 

The typical procedure to choose an appropriate stochastic model, based on an observed time 

series, is to construct the empirical autocorrelogram of the time series and estimate which 

stochastic process (e.g., of AR or ARMA type) is suitable and how many autocorrelation terms 

should be preserved. It is not too difficult to illustrate that this technique can completely distort 

the underlying process. Figure 6(a) depicts the autocorrelogram of a time series with length 100, 

which does not seem to have any relationship with the theoretical autocorrelation function of 

the model from which was constructed. The latter is the HHK one with parameters as in the 

caption of Figure 2. Clearly, the empirical autocorrelation does not give any hint that the time 

series stems from a process with LTP. With that autocorrelogram one would conclude that an 

AR(1) model with a lag-1 autocorrelation of about 0.4 would be appropriate. Note that, 

considering the annual scale which cancels out seasonality, a length 100 of a time series is 

unusually high in hydrology and in other geophysical fields. For shorter time series the results 

would be even more disappointing. 

 The reasons for the failure of the autocorrelogram to capture the real behaviour of the 

process are two. First, from (8) and (23) it is seen that the autocorrelation (autocovariance 

standardized by variance) is by nature the second derivative of the climacogram. Estimation of 

the second derivative from data is too uncertain and makes a very rough graph. The second 

reason is that autocorrelation is biased, as explained in Koutsoyiannis (2003).  

 

Figure 6 (a) Autocorrelogram and (b) climacogram of a time series of 100 terms generated from the HHK 

model with parameters as in the caption of Figure 2 and q = 128.  
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 It is, thus, more natural to directly use the climacogram instead of the autocorrelogram for 

model identification. For our example time series, this is illustrated in Figure 6(b), which 

indicates that the long-term persistence is well captured by the empirical climacogram and the 

parameter H is correctly estimated (H = 0.79, based on the method presented in Koutsoyiannis 

2003, and Tyralis and Koutsoyiannis 2011). 

 Here it should be noted that in stochastic processes, particularly ones with LTP, almost all 

classical statistical estimators are biased and the climacogram is not excepted from this rule. 

However, the bias of the climacogram is easy to calculate a priori and actually this has been 

made in the plot of Figure 6(b), where the empirical climacogram is not compared with the 

theoretical one but with the expected one considering bias. The big distance between the two 

climacograms in Figure 6(b), theoretical and adjusted for bias, indicates how big the bias can be 

and suggests the importance of considering the bias even for model identification, let alone 

model fitting. 

 Specifically, the bias in the climacogram can be considered as follows. As shown in 

Koutsoyiannis (2011), assuming that we have n = 𝑇 𝛥⁄  observations of the averaged process 𝑥𝑖
(𝛥)

, 

where the observation period T is an integer multiple of Δ, the expected value of the empirical 

(sample) climacogram 𝛾(𝛥) is 

E [𝛾(𝛥) ] =
𝛾(𝛥) − 𝛾(𝑇)

1 − 𝛥 𝑇⁄
 =

1

1 − 𝛥 𝑇⁄
 (

𝛤(𝛥)

𝛥2
−

𝛤(𝑇)

𝑇2 ) =
1 − 𝛾(𝑇)/𝛾(𝛥)

1 − 𝛥 𝑇⁄
𝛾(𝛥) (53) 

where 𝛾(𝛥) is given by the standard statistical estimator, i.e.,  

𝛾(𝛥) ≔
1

𝑛 − 1
 ∑ (𝑥𝑖

(𝛥)
 − �̅�(𝛥))

2
𝑛

𝑖=1

=
1

𝑇 𝛥⁄ − 1
 ∑ (𝑥𝑖

(𝛥)
 − �̅�(𝛥))

2
𝑇 𝛥⁄

𝑖=1

  (54) 

whereas �̅�(𝛥) is the standard (unbiased) statistical estimator of the common mean μ of the 

instantaneous process x(t) as well as of the discrete processes xi and 𝑥𝑖
(𝛥)

, i.e., 

�̅�(𝛥)  ≔
1

𝑛
∑ 𝑥𝑖

(𝛥)
 =

𝑋(𝑇)

𝑛𝛥
=

𝑋(𝑇)

𝛵
= 𝑥1

(𝛵)
 

𝑛

𝑖=1

  (55) 

 If the observed process is the sampled (𝑥𝑖) at time steps Δ, rather than the averaged one 

(𝑥𝑖
(𝛥)

), then (53) becomes (Koutsoyiannis 2013b): 

E [ 𝛾(𝑘)  ] =
𝛾(𝑘) − 𝛾(𝑛)

1 − 1/𝑛
=

1 − 𝛾(𝑛)/�̌�(𝑘)

1 − 1/𝑛
𝛾(𝑘) ≈

1 − 𝛾(𝛵)/𝛾(𝑘𝛥)

1 − 𝛥 ⁄ 𝑇
𝛾(𝑘)  (56) 

where 

𝛾(𝑘) ≔
1

𝑛 − 1
 ∑ (𝑥𝑖

(𝑘)
 − �̅�)

2
𝑛

𝑖=1

  
(57) 

�̅�  ≔
1

𝑛
∑ 𝑥𝑖 = 𝑥1

(𝑛)
 

𝑛

𝑖=1

  (58) 

𝑥𝑖
(𝑘)

≔ (𝑋𝑖𝑘 − 𝑋(𝑖−1)𝑘)/𝛥 (59) 
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Notice that in this case 𝛾(1) = 𝛾(0).  

 It becomes clear from the above equations that direct estimation of the variance 𝛾(𝛥), let 

alone that of the instantaneous process γ(0), is not possible merely from the data. We need to 

know the ratio 𝛾(𝑇) ∕ 𝛾(𝛥) and thus we should assume a stochastic model which evidently 

influences the estimation of 𝛾(𝛥). Once the model is assumed and its parameters estimated 

based on the data, we can expand our calculations to estimate the variance for any time scale, 

including the instantaneous one γ(0). This applies to both cases of discretization, sampled and 

averaged, and therefore the need to assume a model in order to estimate the process statistics is 

imperative, irrespective of the type of observations, instantaneous or averaged. One may 

counter-argue that the standard statistical estimation offered in statistics books is free of model 

assumptions in estimating the true (population) parameters from data. However, this is not 

correct: a model is always assumed. In classical statistics the assumption is the independence in 

time and hence the model is the white noise process. In fact, such independence can hardly be a 

realistic assumption for natural processes. 

 In other words, model identification and fitting cannot be separated from each other. The 

climacogram, thanks to its analytical expression of bias and its smother shape, in comparison to 

that of the autocorrelogram, offers a basis to perform both tasks simultaneously. Once the model 

is identified, at a later step its parameters can be fine-tuned by using additional methods, for 

example the maximum likelihood method. Tyralis and Koutsoyiannis (2011) have streamlined 

the maximum likelihood method for the HK process, in which the autocovariance matrix 

introduced in calculations is unavoidably huge. The same method can be adapted for the HHK 

process without difficulty. In addition, Tyralis and Koutsoyiannis (2011) compared several 

parameter estimation methods and concluded that the maximum likelihood is generally 

superior, while other methods they examined performed much worse, except two climacogram-

based methods. These latter performed only slightly worse than the maximum likelihood 

method but have the advantage of combining model identification and parameter estimation.  

 The maximum likelihood method (in most cases approximated by a least squares objective 

function) has also been in common use in ARIMA-based stochastic modelling. Obviously, this is a 

much more reliable practice in comparison to fitting the model through empirical estimates of 

autocorrelations, based on the Yule–Walker equations. Yet in standard modelling practice, the 

empirical autocorrelation function remains the primary tool for model identification and, as 

explained above, this is not a good modelling practice. If the model identified is inappropriate, 

then seeking the proper values of its parameters is less important and perhaps misleading. In 

particular, if the actual process is characterized by LTP, then a time series may contain rich 

patterns even if the underlying process is quite simple and parsimonious (Papalexiou et al. 

2011). However, if the model identification failed to detect the LTP, then it is quite likely that it 

would need a complicated model with many parameters to describe these rich patterns.  

 A more thorough investigation of problems related to model identification and parameter 

estimation has been made by Dimitriadis and Koutsoyiannis (2015) who compared the 

climacogram, autocovariance and power spectrum and concluded that the former is more 

advantageous. 
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6.2 Multivariate modelling 

Most applications of hydrological simulation require multivariate setting as it is usually 

important to simulate cross-correlation coefficients among different processes. While the above 

discourse is for single-variate setting, the multivariate extension is direct and easier than in 

other modelling approaches, as already indicated in section 5.2.3. The details required for this 

extension are given in Koutsoyiannis (2000). 

6.3 Prediction 

Whenever future prediction, rather than unconditional simulation, is required, while past 

observations are available, then those observations can be used to condition the distribution of 

the future realizations of the process x(t). A general method to handle this case, which has been 

described in Koutsoyiannis (2000), can easily be implemented within a Monte Carlo prediction 

framework (Efstratiadis et al. 2014). Such type of prediction is vital in water management 

applications (Koutsoyiannis et al. 2003). Conditioning on past data within a Monte Carlo 

framework is particularly important when LTP is present, as clarified by Koutsoyiannis et al. 

(2007) using a classical statistical framework and by Tyralis and Koutsoyiannis (2014) using a 

Bayesian framework. 

6.4 Non-Gaussian distributions 

If the marginal distribution of x(t) is Gaussian, then no consideration additional to already 

exposed is required. However, non-Gaussian distributions (mostly positively skewed and 

possibly heavy tailed), are very common in hydrology and their emergence has some theoretical 

justification again based on entropic considerations (Koutsoyiannis 2005a, 2014). For non-

Gaussian distributions two strategies are commonly used. The first is to convert the process, 

using a nonlinear transformation, to a Gaussian process (e.g. Koutsoyiannis et al. 2008). This is 

not quite easy as the transformation cannot be invariant with respect to the time scale 

(Lombardo et al. 2012). The second strategy is to explicitly preserve, at the time scales of 

interest, higher-order marginal moments, in particular the third moment or, equivalently, the 

skewness coefficient. The SMA model allows easy handling of high-order moments, as already 

indicated in section 5.2.3. The details of the latter technique have been studied in Koutsoyiannis 

(1999, 2000). It should be emphasized, though, that high-order moments cannot be reliably 

estimated from data (Lombardo et al. 2014) and hence a model for the marginal distribution is 

again required to better specify the values of the moments to be preserved.  

6.5 Intermittency 

Hydrological processes are often intermittent at small time scales (e.g. rainfall). Intermittency is 

not easy to handle. Some techniques have been implemented in Koutsoyiannis et al. (2003) and 

Efstratiadis et al. (2014). However, they contain some ad hoc elements and therefore further 

research is needed to develop a fully consistent theoretical approach. 

6.6 Cyclostationarity 

At sub-annual time scales, hydrological and other geophysical processes exhibit periodicity in 

their statistical properties. This behaviour is also known as seasonality or cyclostationarity. A 
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popular technique to deal with this problem is to “stationarize” the time series by standardizing 

by the mean and standard deviation of each separate “season” (e.g., month or day). However, it 

should be kept in mind that such “stationarization” applies only to the marginal distribution (in 

particular, only to the first two moments of the marginal distribution if this popular linear 

transformation procedure is used). It has no effect on the dependence structure, which may also 

be characterized by cyclostationarity. Two different techniques can deal more effectively with 

this problem. One (Langousis and Koutsoyiannis 2006) generates times series of each “season” 

separately, thus accounting for long-term (multiyear) persistence, and then modifies the 

separate time series to establish proper autocorrelations between consecutive months. The 

other technique, more widely implemented so far in hydrology, uses a disaggregation approach. 

This first generates the annual time series, thus accounting for LTP, and then disaggregates them 

into sub-annual (e.g., monthly or daily) quantities (Koutsoyiannis 2001; Efstratiadis et al. 2014). 

7 Conclusions 

It is more natural and better from many aspects to formulate the stochastic processes that are 

used in modelling of hydrological (and other geophysical) processes in continuous time rather 

than using the recipes of discrete-time processes (e.g. AR, ARMA, etc.) of the literature. The 

theoretical framework provided here allows derivation, with easily applicable equations, of the 

stochastic properties in discrete time, whether these correspond to sampling of the continuous-

time process at equidistant times or averaging it at time intervals with equal length.  

 Among continuous-time processes, the HHK process introduced and studied here, proves 

to have such properties that make it a good candidate for several hydrological applications. First 

of all, it is associated with maximum entropy production both at small and large time scales, thus 

combining Markovian behaviour at small scales and Hurst-Kolmogorov behaviour at large 

scales. It also incorporates both these processes as special cases. Second it is parameter 

parsimonious as, in addition to marginal distributional properties, it uses one time-scale 

parameter and up to two dimensionless parameters to define the dependence structure. One of 

the latter (κ) determines its behaviour on small scales (the fractal properties) and the other one 

(H) the long-term persistence (the HK properties). Third, it is free of some unnatural properties 

of the HK process per se, namely the infinite variance of the instantaneous process and the 

discontinuity of its autocovariance function in the case of antipersistence (H < 1/2), which 

results in negative autocorrelation even for arbitrarily short lags.  

 Despite those shortcomings, the HK process which is also thoroughly studied here 

provides a perfect approximation of the HHK process for intermediate and large time scales, 

being even more parsimonious than the HHK process and enabling analytical expressions of its 

properties in continuous time and of most of those in discrete time (for the averaged process). 

 Whichever of the three above processes is used, or even anyone else, the general 

simulation methodology (SMA) allows easy application and also correction of possible 

truncation errors. The results of the case studies examined show that these errors can be almost 

eliminated by the adjustment methodologies studied.  

 As regards model identification and fitting, an example is provided that illustrates the 

inability to specify the appropriate model if the common practice based on the empirical 

autocorrelogram is used. The framework supports the use of the climacogram for this purpose. 

While, like other stochastic tools, the climacogram also involves estimation bias, its bias can be 
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determined analytically and included in the model identification and fitting. Furthermore, it is 

shown that the latter two tasks are closely related to each other. Even fundamental statistical 

estimators, such as the sample variance, cannot be applied without specifying a model type. 

 Overall, the methodology developed is not demanding in terms of computational means. 

For instance, all examples presented here have been prepared in common spreadsheet software. 

However, it is planned that all presented advances be implemented in the next version of the 

stochastic simulation framework Castalia (Efstratiadis et al. 2014). 
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