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Abstract Bilinear surface smoothing is an alternative concept which provides flexible means for 

spatial interpolation. Interpolation is accomplished by means of fitting a bilinear surface into a 

regression model with known break points and adjustable smoothing terms. Additionally, as an 

option, the incorporation in an objective manner, of the influence of an explanatory variable 

available at a considerable denser dataset is possible. The parameters involved in each case (with or 

without an explanatory variable) are determined by a nonparametric approach based on the 

generalized cross-validation (GCV) methodology. A convenient search technique of the smoothing 

parameters was achieved by transforming them in terms of tension parameters, with values 

restricted in the interval [0, 1). The mathematical framework, the computational implementation 

and details concerning both versions of the methodology, as well as practical aspects of their 

application are presented and discussed. In a companion paper, examples using both synthesized 

and real world (hydrological) data are presented to illustrate the methodology. The proposed 

mathematical framework constitutes a simple alternative to existing spatial interpolation 

methodologies. 
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INTRODUCTION 

In multidimensional interpolation, we seek estimates of the dependent variables at 

points placed inside the analysis space that forms regular or irregular sized grids. In 

order to achieve such an objective, various techniques have been deployed; many of 

them can be applied to perform spatial interpolation of environmental variables that 

are usually collected from point measurements. 

These methodologies fall into three main categories (Li and Heap 2008):  

(1)  non-geostatistical methods such as: Splines, Thin Plate Splines (Craven and 

Wahba 1979, Wahba and Wendelberger 1980) and Regression Methods (Davis 

1986); 

(2)  geostatistical methods including different approaches of Kriging, such as: 

Ordinary and Universal Kriging, Kriging with an External Drift or Cokriging 

(Goovaerts 1997, Burrough and McDonnell 1998); and  

(3) combined methods such as: Trend Surface Analysis Combined with Kriging 

(Wang et al. 2005), Regression Kriging (Hengl et al. 2007) and Stochastic 

Interpolation (Sauquet et al. 2000).  

Koutsoyiannis (2000) presented the so-called Broken Line Smoothing (BLS) 

as a simple alternative to numerical smoothing and interpolating methods, related to 

piecewise linear regression and to smoothing splines. The idea was to approximate a 

smooth curve that may be drawn for the data points (xi, yi) with a broken line or open 

polygon which can be numerically estimated by means of a least squares fitting 
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procedure. The abscissae of the vertices of the broken line did not necessarily 

coincide with xi’s but they form a series of points with some chosen, lower or higher, 

resolution.  

Malamos and Koutsoyiannis (2014) extended the previous method by utilizing 

the combination of two broken lines into a regression model with known break points 

and adjustable weights (BLSI). The first broken line was fitted to the available data 

points while the second incorporates, in an objective manner, the influence of an 

explanatory variable available at a considerably denser dataset. The objective was to 

improve the accuracy of interpolation across the data points. 

The concept, for both methodologies, was the trade-off between the two 

objectives of minimizing the fitting error and the roughness of the broken lines. The 

larger the relative weight of the second objective is, the smoother the broken lines 

resulting by the fitting procedure will be. 

In the present study the method is generalized for the case of 2D data. The 

main idea, presented as Bilinear Surface Smoothing (BSS), is to approximate a 

surface that may be drawn for the data points (xi, yi) with consecutive bilinear surfaces 

which can be estimated by means of a least square fitting procedure into a surface 

regression model with known break points and adjustable weights. The concept was, 

once more, the trade-off between the two objectives of minimizing the fitting error 

and the roughness of the bilinear surface.  

Additionally, a second version of the methodology (BSSE) is presented, which 

is focused on the combination of two bilinear surfaces into the same regression model, 

in order to improve the interpolation accuracy across the data points. The first surface 

is fitted to the available data points while the second incorporates, in an objective 

manner, the influence of an explanatory variable available at a spatially denser 

dataset. 

The estimation of parameters, i.e. the number of surface segments and the 

values of the corresponding smoothing parameters, is accomplished by a 

nonparametric approach based on the generalized cross-validation (GCV) 

methodology (Craven and Wahba 1979, Wahba and Wendelberger 1980) and the 

linear smoothers theory (Buja et al. 1989). The simplified but efficient parameter 

estimation technique was established after numerical investigation and contributed to 

performance enhancement and accuracy of the mathematical framework. 

MATHEMATICAL FRAMEWORK 

Bilinear surface smoothing interpolation (BBS) 

Let zi(xi, yi) be a set of n points at the three dimensional space (x, y, z) for i = 1, …, n. 

Also, let cxl, l = 0, …, mx, be mx+1 points on the x-axis and cyk, k = 0, …, my, be 

my+1 points of the y-axis, so that the rectangle, with vertices (cx0, cy0), (cxmx, cy0), 

(cx0, cymy) and (cxmx, cymy) contain all (xi, yi). For simplicity we will assume that the 

points on both axes are equidistant, i.e. cxl – cxl–1 = įx and cyk – cyk–1 = įy.  

We wish to find the m + 1 values of dj (where j = 0, …, m and m = (mx + 1) 

(my + 1) – 1, on the three dimensional space (x, y, z), so that the bilinear surface 

defined by the m+1 points (cxl, cyk, dj) ‘fit’ the set of points zi(xi, yi). This fit is 

defined in terms of minimizing the total square error among the set of original points 

zi(xi, yi) and the fitted bilinear surface: 

 p = 
i = 1

n

(zi – zi

 
)

2
 (1) 

https://www.researchgate.net/publication/38359250_Linear_Smoothers_and_Additive_Models?el=1_x_8&enrichId=rgreq-d47ac77e103caae5d10e0cbb00adbf93-XXX&enrichSource=Y292ZXJQYWdlOzI3NzAwNTY3NztBUzoyMzE4NDE1ODQxMTk4MDlAMTQzMjI4Njc0OTkzNg==
https://www.researchgate.net/publication/226233794_Wahba_G_Smoothing_noisy_data_with_spline_functions_Numer_Math_24_383-393?el=1_x_8&enrichId=rgreq-d47ac77e103caae5d10e0cbb00adbf93-XXX&enrichSource=Y292ZXJQYWdlOzI3NzAwNTY3NztBUzoyMzE4NDE1ODQxMTk4MDlAMTQzMjI4Njc0OTkzNg==
https://www.researchgate.net/publication/258901802_Some_New_Mathematical_Methods_for_Variational_Objective_Analysis_Using_Splines_and_Cross_Validation?el=1_x_8&enrichId=rgreq-d47ac77e103caae5d10e0cbb00adbf93-XXX&enrichSource=Y292ZXJQYWdlOzI3NzAwNTY3NztBUzoyMzE4NDE1ODQxMTk4MDlAMTQzMjI4Njc0OTkzNg==
https://www.researchgate.net/publication/247073375_Smoothing_noisy_data_with_spline_functions?el=1_x_8&enrichId=rgreq-d47ac77e103caae5d10e0cbb00adbf93-XXX&enrichSource=Y292ZXJQYWdlOzI3NzAwNTY3NztBUzoyMzE4NDE1ODQxMTk4MDlAMTQzMjI4Njc0OTkzNg==
https://www.researchgate.net/publication/247073375_Smoothing_noisy_data_with_spline_functions?el=1_x_8&enrichId=rgreq-d47ac77e103caae5d10e0cbb00adbf93-XXX&enrichSource=Y292ZXJQYWdlOzI3NzAwNTY3NztBUzoyMzE4NDE1ODQxMTk4MDlAMTQzMjI4Njc0OTkzNg==


where zi

 
 is the estimate given by the bilinear surface for each known zi. 

In matrix form, this can be written as: 

 p = ||z – z
 

||
2
 (2) 

where z = [z1,…, zn]
T
 is the vector of known applicates of the given data points with 

size n (the superscript T denotes the transpose of a matrix or vector) and 

z
 

 = [z1

 
,…,zn

 
]
Τ
 is the vector of estimates with size n.  

 

 

Fig. 1 Definition sketch for bilinear surface d, similar for bilinear surface e 

 

The general estimation function will be: 

 zu


 = du (3) 

where u refers to a point on the (x y) plane, while du is the value of the bilinear surface 

at that point (Fig. 1). 

The relation of du to its four surrounding points, d1,…, d4, as presented in Fig. 

2, is simply an application of bilinear interpolation (Press et al. 2002): 

 du = 
1

įx įy
 [d1 (cxl – x) (cyk – y) + d2 (x – cxl–1) (cyk – y) + 

 ]+ d3 (x – cxl–1) (y – cyk–1) + d4 (cxl – x) (y – cyk–1)  (4) 

where cyk, cyk–1, cxl, cxl–1 are the coordinates of the four points and  x, y, are the 

corresponding coordinates of  du. Notice that the bilinear function in (4) is not actually 

linear with respect to x and y as it contains products thereof. 

 

 

Fig. 2 Definition sketch for the du calculation 
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Assuming that a point zi(xi, yi), lies in the two-dimensional space ([cxl–1, cxl]  

[cyk–1, cyk]) for some cxl, (cxl–1 ≤ xi ≤ cxl) and some cyk, (cyk–1 ≤ yi ≤ cyk), then 

obviously the zi

 
 estimate is given by: 

 zi(xi, yi)
^  = 

1

įx įy
 [d1 (cxl – xi) (cyk – yi) + d2 (xi – cxl–1) (cyk – yi) + 

 ]+ d3 (xi – cxl–1) (yi – cyk–1) + d4 (cxl – xi) (yi – cyk–1)  (5) 

If we apply equation (5) for i = 1, …, n, we get: 

 z1


 = 

1

įx įy
 [d1 (cx1 – x1) (cy1 – y1) + d2 (x1 – cx0) (cy1 – y1) + 

 ]+ d3 (x1– cx0) (y1 – cy0) + d4 (cx1–x1) (y1 – cy0)  

                                  

 zn


 = 

1

įx įy
 [dk–1, l–1 (cxl – xn) (cyk – yn)  + dk, l–1 (xn – cxl–1) (cyk – yn) +  

 + dk, l (xn– cxl–1) (yn – cyk–1) + dk–1, l (cxl – xn) (yn – cyk–1)]   (6) 

The above equations can be more concisely written in the form: 

 z
 

 = Π d (7) 

where z
 

 = [z1

 
,…,zn

 
]
Τ
 is the vector of estimates with size n; d = [d0,…,dm]

T
 is the 

vector of the unknown applicates of the bilinear surface d with size m+1 (m = 

(mx + 1) (my + 1) – 1) and Π is a matrix with size n(m+1) whose ijth entry (for i=1, 

…,n; j=0, …m) is: 

 πij = 







 (cxl – xi) (cyk – yi)

įx įy
, when cxl–1 < xi  cxl and cyk–1 < yi  cyk

(cxl – xi) (yi – cyk–1)

įx įy
,  when cxl–1 < xi  cxl and cyk  yi <cyk+1

(xi – cxl–1) (yi – cyk–1)

įx įy
,  when cxl  xi < cxl+1 and cyk  yi < cyk+1

(xi – cxl–1) (cyk – yi)

 įx įy
,  when cxl  xi < cxl+1 and cyk–1 < yi  cyk

0, otherwise

   (8) 

In order to acquire the amount of smoothness of the bilinear surface d and to 

assure a unique solution of the fitting problem, we introduced the difference of slopes 

between two consecutive segments of the bilinear surface according to x direction, for 

each cyk point on the y-axis, by taking into account the fact that cxl’s are equidistant, 
as: 

 
1

įx
 (2dl, k – dl–1, k – dl+1, k) (9) 

Likewise for the y direction, for each cxl point on the x-axis, by taking into account 

the fact that cyk’s are equidistant, the slope difference will be: 



 
1

įy
 (2dk, l – dk –1, l – dk+1, l) (10) 

Therefore, the following expressions constitute adequate smoothing terms of 

the bilinear surface for both directions: 

 qdx =
k=0

my

 
l=1

mx–1

 (2dl, k – dl–1, k – dl+1, k)
2
 (11) 

and 

 qdy =
l=0

mx

 
k=1

my–1

 (2dk, l – dk –1, l – dk+1, l)
2
 (12) 

which can easily be expressed in matrix form as follows: 

 qdx = d
T
 Ψx

Τ
 Ψx d (13) 

 qdy = d
T
 Ψy

Τ
 Ψy d (14) 

where Ψx and Ψy are matrices with size (m–1)(m+1) (for i=1, …,m–1 and j=0, …m). 

As explained in Appendix A, their ijth entry is: 

 ψx i, j = 





2, when i=j and i–k(mx+1){1, mx+1}

–1,  when |i–j|=1 and i–k(mx+1){1, mx+1}

0, otherwise

  (15) 

where k = 0, …, my, while 

 ψy i, j = 





2, when i=j and i–l(my+1){1, my+1}

–1, when |i–j|=1 and i–l(my+1){1, my+1}

0, otherwise

  (16) 

with l = 0, …, mx. It is noted that matrices Ψx and Ψy are identical when mx = my. 

Combining equations (2), (7), (13), (14) and introducing dimensionless 

multipliers for both x and y directions in order to control the smoothness of the 

bilinear surface, we form the generalized objective function to be minimized: 

 f(d) = p + Ȝx qdx + Ȝy qdy = || z – z

 ||

2
 +Ȝx d

T
 Ψx

Τ
 Ψx d + Ȝy d

T
 Ψy

Τ
 Ψy d  (17) 

where Ȝx  0 for qdx and Ȝy  0 for qdy.  

Differentiation of equation (17) with respect to d, by applying the typical rules 

of derivatives involving matrices and equating to zero yields: 

 
f

d
 = – 2z

T Π + 2d
T
 ΠΤ

 Π  + 2Ȝx d
T
 Ψx

Τ
 Ψx + 2Ȝy d

T
 Ψy

Τ
 Ψy = 0 (18) 

and consequently: 

  (ΠT
 Π + Ȝx Ψx

Τ
 Ψx + Ȝy Ψy

Τ
 Ψy) d = ΠΤ

z (19) 

Finally, the solution of equation (19) that minimizes equation (17), has the 

following form:  

  d = (ΠT
 Π + Ȝx Ψx

Τ
 Ψx + Ȝy Ψy

Τ
 Ψy)

–1
 ΠΤ

z  (20) 



The vector of estimates, ẑ , is obtained from equation (7), once vector d is 

calculated from equation (20). Also, from equation (5), we can estimate the applicate 

ẑ of any point that lies in the two-dimensional interval ([cx0, cxmx]  [cy0, cymy]). 

The minimum number of m + 1 points required to solve equation (20) is 6, 

according to equations (11) and (12). This is illustrated in Fig. 1 since the minimum 

number points needed to define the bilinear surface d, is the number of points that 

define two consecutive planes oriented according to either x or y direction. 

Bilinear surface smoothing interpolation with the incorporation of explanatory variable 

(BSSE) 

The incorporation of an explanatory variable available at a considerably denser 

dataset than the initial main variable constitutes a distinct interpolation method that 

extends the above presented mathematical framework. The methodology is based on 

the one-dimensional implementation presented by Malamos and Koutsoyiannis 

(2014). 

Let zi(xi, yi) be the same set of n points at the three dimensional space (x, y, z) 

for i = 1, …, n, as already defined in the previously presented case. 

In addition, we assume that for every (x, y) value we know the value of an 

explanatory variable t. Therefore, for each point zi(xi, yi) there corresponds a value 

t(xi, yi) and for point (cxl, cyk) there corresponds a value t(cxl, cyk), for l = 0, …, mx, 

and k = 0, …, my. 

We wish to find the m + 1 values of dj and ej (where j = 0, …, m and m = 

(mx + 1) (my + 1) – 1, on the three dimensional space (x, y, z), so that the bilinear 

surface defined by the m+1 points [cxl, cyk, dj + t(cxl, cyk) × ej] fits the set of points 

zi(xi, yi). This fit is meant in terms of minimizing the total square error among the set 

of original points zi(xi, yi) and the fitted bilinear surface as already presented in 

equations (1) and (2). 

In this case, the general estimation function will be: 

 zu


 = du + tu eu (21) 

where u refers to a point on the (x y) plane, while du, eu are the values of the two 

bilinear surfaces at that point and tu is the corresponding value of the explanatory 

variable. This is not a global linear relationship but a local linear one as the quantities 

du and eu change with x and y. 

Following the methodology presented above, we obtain the relation that 

provides the second bilinear surface, eu, which is: 

 eu = 
1

įx įy
 [e1 (cxl – x) (cyk – y) + e2 (x – cxl–1) (cyk – y) + 

 ]+ e3 (x – cxl–1) (y – cyk–1) + e4 (cxl – x) (y – cyk–1)   (22) 

Assuming that a point zi(xi, yi), lies in the two-dimensional interval [cxl–1, cxl] 

 [cyk–1, cyk]) for some cxl, (cxl–1 ≤ xi ≤ cxl) and some cyk, (cyk–1 ≤ yi ≤ cyk), then the zi

 
 

estimate is given by: 

 zi(xi, yi)
^  = 

1

įx įy
 { [d1 (cxl – xi) (cyk – yi) + d2 (xi – cxl–1) (cyk – yi) + 

 ]+ d3 (xi – cxl–1) (yi – cyk–1) + d4 (cxl – xi) (yi – cyk–1)  

 + t(xi, yi) [e1 (cxl – xi) (cyk – yi) + e2 (xi – cxl–1) (cyk – yi) + 



 }]+ e3 (xi – cxl–1) (yi – cyk–1) + e4 (cxl – xi) (yi – cyk–1)    (23) 

If we apply equation (23) for i = 1, …, n, we obtain the following form, 

analogous to equation (6): 

 z1


 = 

1

įx įy
 { [d1 (cx1 – x1) (cy1 – y1) + d2 (x1 – cx0) (cy1 – y1) + 

 ]+ d3 (x1– cx0) (y1 – cy0) + d4 (cx1–x1) (y1 – cy0)  +  

 + t(x1 y1) [e1 (cx1 – x1) (cy1 – y1) + e2 (x1 – cx0) (cy1 – y1) + 

 }]+ e3 (x1– cx0) (y1 – cy0) + e4 (cx1–x1) (y1 – cy0)   

                                  

 zn


 = 

1

įx įy
 { [dk–1, l–1 (cxl – xn) (cyk – yn)  + dk, l–1 (xn – cxl–1) (cyk – yn) +  

 + dk, l (xn– cxl–1) (yn – cyk–1) + dk–1, l (cxl – xn) (yn – cyk–1)] +  

 + t(xn yn) [ek–1, l–1 (cx1 – xn) (cy1 – yn)  + ek, l–1 (xn – cx0) (cy1 – yn) + 

 + ek, l (xn– cxl–1) (yn – cyk–1) + ek–1, l (cxl – xn) (yn – cyk–1) }]    (24) 

This can be more concisely written in matrix form as: 

 z
 

 = Π d + Τ Π e (25) 

where z
 

 = [z1

 
,…,zn

 
]
Τ
 is the vector of estimates with size n; d = [d0,…,dm]

T
 is the 

vector of the unknown applicates of the bilinear surface d, with size m+1 (m = 

(mx + 1) × (my + 1) – 1); e = [e0,…,em]
T
 is the vector of the unknown applicates of 

the bilinear surface e, with size m+1; T is a nn diagonal matrix: 

 T = diag(t(x1, y1), …, t(xn, yn)) (26) 

with its elements t(x1, y1), …, t(xn, yn) being the values of the explanatory variable at 

the given data points; and Π is a matrix with size n(m+1) as defined in equation (8). 

In order to incorporate the amount of smoothness of the second bilinear 

surface e and following the procedure presented in equations (9) to (12), we conclude 

to the following expressions for the smoothness of the bilinear surface e at x and y 

directions: 

 qex =
k=0

my

 
l=1

mx–1

 (2el, k – el–1, k – el+1, k)
2
 (27) 

and 

 qey =
l=0

mx

 
k=1

my–1

 (2ek, l – ek –1, l – ek+1, l)
2
 (28) 

In matrix form, equations (27) and (28) along with equations (11) and (12), express 

the amount of smoothness of the bilinear surfaces d, e, for the BSSE case, as follows: 

 qdx = d
T
 Ψx

Τ
 Ψx d ,  qdy = d

T
 Ψy

Τ
 Ψy d (29) 

 qex = e
T
 Ψx

Τ
 Ψx e ,  qey = e

T
 Ψy

Τ
 Ψy e (30) 



where Ψx and Ψy  are matrices with size (m–1)(m+1) (for i=1, …,m–1 and j=0, …m) 

and ijth entry as in equations (15) and (16) respectively (see Appendix A). 

Combining equations (2), (25), (29), (30) and introducing dimensionless 

multipliers for both x and y directions in order to control the smoothness of the 

bilinear surfaces, we form the generalized objective function to be minimized: 

 

f(d,e):= p + Ȝx qdx + Ȝy qdy + ȝx qex + ȝy qey =

 = || z – z

 ||

2
 +Ȝx d

T
 Ψx

Τ
 Ψx d + Ȝy d

T
 Ψy

Τ
 Ψy d +

 + ȝx e
T
 Ψx

Τ
 Ψx e + ȝy e

T
 Ψy

Τ
 Ψy e

  (31) 

where Ȝx 0 for qdx, Ȝy 0 for qdy and ȝx 0 for qex, ȝy 0 for qey.  

Differentiation of equation (31) with respect to d and e, by applying the typical 

rules of derivatives involving matrices and equating them to zero yields: 

 
f1

d
 = – 2z

T Π + 2d
T
 ΠΤΠ + 2e

TΠΤ
T

ΤΠ + 2Ȝx d
T
 Ψx

ΤΨx + 2Ȝy d
T
 Ψy

ΤΨy = 0 (32) 

 
f2

e
 = – 2z

T 
TΠ + 2d

T
 ΠΤ

TΠ + 2e
TΠΤΤΤΤΠ + 2ȝx e

T
 Ψx

ΤΨx + 2ȝy e
T
 Ψy

ΤΨy = 0 (33) 

and consequently: 

  
[ΠT

 Π + Ȝx Ψx
Τ
 Ψx + Ȝy Ψy

Τ
 Ψy] d + ΠT

 TΠ e = ΠΤ
z

ΠT ΤΠ d + [ΠT
 ΤΤ ΤΠ + ȝx Ψx

Τ
 Ψx + ȝy Ψy

Τ
 Ψy] e = ΠΤ

T
Τ 

z
 (34) 

Finally, the solution of the above set of equations that provides the unknown 

vectors d, e which minimize equation (31), is: 

 






d

e
 = 






ΠT

 Π + ȜxΨx
Τ
 Ψx + ȜyΨy

Τ
 Ψy ΠT

 TΠ

ΠT ΤΠ ΠT ΤΤ
 ΤΠ + ȝxΨx

Τ
 Ψx + ȝyΨy

Τ
 Ψy

–1

 






ΠΤ

z

ΠΤ 
T

Τ
z

 (35) 

The vector of estimates, ẑ , is obtained from equation (25), once vectors d and 

e are calculated from equation (35). Also, from equation (23), we can estimate the 

applicate ẑ of any point that lies in the two-dimensional interval [cx0, cxmx]  [cy0, 

cymy]. 

We observe that from the four matrices with size (m+1)×(m+1) appearing in 

equations (20) and  (35), i.e. B:=ΠTΠ, C:=Ψx
TΨx, D:= ΠΤΤΤΤΠ and E:= Ψy

TΨy; B 

and D are symmetric block tridiagonal while C and E are block diagonal matrices. 

Furthermore, matrices C and E are always singular, however when Ȝx, ȝx > 0 or Ȝy, ȝy 

> 0, the sums B + ȜxC + ȜyE and D + ȝxC + ȝyE are non-singular and thus, their 

inverses exist.  

CHOICE OF PARAMETERS 

Transformation of smoothing parameters 

It is apparent that the number of the adjustable parameters for each of the two above 

presented versions of the methodology consists of the numbers of intervals, mx, my, 

and the smoothing parameters for the x, y directions.  

Therefore for the case of the bilinear surface interpolation (BSS) there are four 

adjustable parameters: the numbers of intervals, mx, my, and the smoothing 

parameters Ȝx and Ȝy corresponding to vector d. The incorporation of the explanatory 



variable, for the BSSE case, adds two more adjustable parameters: the smoothing 

parameters ȝx and ȝy corresponding to vector e. 

The choice of parameters can be done by using an efficient, but standard 

objective way as described by the following analysis: 

A convenient search of the smoothing parameters, in terms of computational 

time, can be achieved by transforming Ȝ and ȝ in terms of tension parameters τȜ and τȝ, 

whose values are restricted in the interval [0, 1), for both directions. The formulation 

is based on the expressions presented by Koutsoyiannis (2000), as well as Malamos 

and Koutsoyiannis (2014), and was established after a numerical investigation of the 

method on several examples. The proposed equations have the form:  

 Ȝx = 








10
İ
 m 

logτm

logτȜx

țȜ, Ȝy = 








10
İ
 m 

logτm

 logτȜy

țȜ (36) 

for the BSS case, while for BSSE the extra smoothing parameters ȝx and ȝy are set to: 

 ȝx = 





10
θ
 m 

logτm

 logτȝx

țȝ
, ȝy = 





10
θ
 m 

logτm

 logτȝy

țȝ
 (37) 

where τm = 0.99 is the maximum allowed tension, corresponding to the upper bound 

of Ȝ and ȝ, set for numerical stability equal to: 

 Ȝm = 
trace(B)

trace(C + E)
 10

9
, ȝm = 

trace(D)

trace(C + E)
 10

9
 (38) 

The exponents țȜ, țȝ in equations (36), (37) are determined by the relations: 

 țȜ = 
logȜm

 log(10
İ
 m)

 , țȝ = 
logȝm

 log(10
θ
 m)

 , m = (mx + 1) (my + 1) – 1 (39) 

which are obtained by combining equations (36) or (37) with equation (38). The 

exponents İ, θ  in equations (36), (37) and (39) are set to: 

 İ = max(1, log [ ]trace(B) ) (40) 

and  

 θ = max(1, log [ ]trace(D) ) (41) 

with İ, θ  Z
+
. The minimum allowed values of Ȝx, Ȝy, ȝx, ȝy is 0. 

Estimation of smoothing parameters 

Combining equations (7) and (20) for the BSS case, we obtain: 

 ẑ  = A z (42) 

where A is a n  n symmetric matrix given by: 

 Α = Π (ΠT
 Π + Ȝx Ψx

Τ
 Ψx + Ȝy Ψy

Τ
 Ψy)

–1
 ΠΤ

  (43) 

while combining equations (25) and (35) for the case with explanatory variable 

(BSSE) we obtain the same relationship as equation (42) with A being a n  n 

symmetric matrix now given by: 

A = Π ΤΠ  

  






ΠT

 Π + ȜxΨx
Τ
 Ψx + ȜyΨy

Τ
 Ψy ΠT

 TΠ

ΠT ΤΠ ΠT ΤΤ
 ΤΠ + ȝxΨx

Τ
 Ψx + ȝyΨy

Τ
 Ψy

–1

  



 (Π ΤΠ)
Τ
 (44) 

Equations (43) and (44) depend on all adjustable parameters: mx, my, τȜx, τȜy 

and τȝx, τȝy. 

The parameter estimation is based on the generalized cross-validation (Craven 

and Wahba 1979) methodology, defined by: 

 GCV = 

1

n
 ||(I–A)z||

2





1

n
 trace(I–A)

2 (45) 

where matrix A is called “influence” or “smoother” matrix, while the quantity:  

 trace(I–A)  (46) 

in the denominator of equation (45) describes the “residual degrees of freedom” of the 

fitted smoother used by nonparametric regression methods (Buja et al. 1989, Wahba 

1990, Carmack et al. 2012).  

Based on literature, there are two alternative definitions for residual degrees of 

freedom under independence in the context of symmetric linear smoothers, namely: 

 trace(I−AA
T
) (47) 

 trace[I−(2A−AA
T
)]  (48) 

with 0 ≤ trace[I−(2A−AA
T
)] ≤ trace(I–A) ≤ trace(I−AA

T
) ≤ n (Buja et al. 1989, 

Carmack et al. 2012). 

For exploration purposes, we analyzed the methods’ performance against all 

three definitions. The results showed that when matrix A is defined by equation (43), 

the best results were obtained when the residual degrees of freedom were defined by 

equation (47). However, when matrix A is defined by equation (44), the best results 

were obtained when the residual degrees of freedom were defined by equation (46), 

which is the standard definition of the generalized cross-validation, as already 

presented in equation (45). The degrees of freedom definition presented by equation 

(48) did not perform as well as the previous mentioned expressions and thus it was 

excluded from the methods’ implementation. 
Consequently, the relation that provides GCV for the BSS method is: 

 GCV = 

1

n
 ||(I–A)z||

2





1

n
 trace(I–AA

T
)

2 (49) 

while equation (45) is used for estimating GCV for the BSSE method. 

Based on the above presented analysis, for a given combination of segments 

mx, my the minimization of GCV, results in the optimum values of τȜx, τȜy and τȝx, τȝy. 

This can be repeated for several trial combinations of mx, my values, until the global 

minimum of GCV is reached.  

COMPUTATIONAL IMPLEMENTATION 

In similar applications presented earlier by Koutsoyiannis (2000) and Malamos and 

Koutsoyiannis (2014), the implementation of the computational framework was made 

in Microsoft Excel since it provides a direct means of data visualization and graphical 

exploration. 
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Since the block matrices involved in the systems of equations (20) and (35) 

have dimensions (m + 1)  (m + 1) and (2 m + 2)  (2 m + 2), respectively, a 

considerable computational effort that could not be satisfied from Microsoft Excel 

alone, was required. This was tackled by the development of a dynamic link library in 

Object Pascal (Delphi) programming language, which was linked to Microsoft Excel. 

In this context, an Excel array formula acts as the main interface, with its 

arguments being the available points’ values and coordinates along with the unknown 

points’ coordinates, the number of points on the x and y axis that form the bilinear 

surfaces and the smoothing parameters values.  

The dynamic link library performs the following tasks: 

(1) constructs the matrices involved in the systems of equations (20) or (35), 

depending on which of the two versions of the methodology is implemented. 

(2) solves the system of equations, for each case, by decomposition into upper and 

lower triangular matrices, known as “LU Decomposition” method.  

(3) finds the inverse matrices involved in equations (43) and (44) by a straightforward 

procedure based on the above mentioned “LU Decomposition” method (Press et 

al. 2002). 

(4) returns to Microsoft Excel apart from the solution of the systems of equations (20) 

or (35), information concerning the above presented numerical procedure, such as: 

the matrices B, C, D and E, along with the GCV and mean square estimation 

error. The latter is acquired from the numerators of equations (45) and (49). 

RESULTS AND COMMENTS 

The BSS and BSSE methods, with the mathematical formulation described in the 

previous sections, were derived from extending in two dimensions, the Broken Line 

Smoothing method described by Koutsoyiannis (2000) and the Broken Line 

Smoothing with explanatory variable described by Malamos and Koutsoyiannis 

(2014).  

The main difference between bilinear surface smoothing methods and other 

known interpolation methods is the introduction of the smoothness terms Ψx
Τ
 Ψx and 

Ψy
Τ
 Ψy in the corresponding problem formulation. Those terms control the overall 

smoothness of the bilinear surface through adjustable parameters according to x or y 

direction.  

It should be obvious from the above discourse that bilinear surface smoothing 

methods do not require linearity between the involved variables, namely x, y, z and 

the explanatory variable t, but two-dimensional local bilinearity is incorporated in the 

mathematical framework in a bilinear surface approach. Also, the functional 

dependence, in terms of vectors d, e, the number of segments, mx and my, and the 

tension parameters, is neither constant nor a priori known, but in each case is 

determined through the procedure of minimizing the generalized cross-validation 

(GCV). 

Both implementations of bilinear surface smoothing require the minimization 

of generalized objective functions with respect to the total square error and the surface 

smoothness. The formulation of equation (42) allows the adaptation of the generalized 

cross-validation from the splines theory, allowing a standard and objective way to 

estimate the smoothness parameters and the number of the bilinear surfaces involved 

in the interpolation procedure. 

According to the classification presented by Li and Heap (2008), BSS and 

BSSE have the following features: 
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(1) They are both local and global. Their locality stems from the fact that they use the 

four surrounding points of the corresponding bilinear surface to derive the 

estimation of the included data point (Fig. 2). On the other hand, they are also 

global since they implement the GCV procedure to globally fit the consecutive 

bilinear surfaces to the available data points. 

(2) They can be either exact or inexact. Specifically, they are able to generate an 

estimate that is the same as the observed value at a sampled point (exactness) if 

the minimum values of the smoothing parameters are used. On the other hand, 

when the GCV procedure is implemented along with strong smoothing, they are 

inexact. 

(3) They are stochastic since the proposed mathematical framework, apart from 

estimations provides also direct means of evaluating interpolation errors across the 

available data points from the numerators of equations (45) and (49) as already 

presented in the one-dimensional implementation (Malamos and Koutsoyiannis 

2014). 

(4) The surfaces that they produce can be either gradual or abrupt depending on the 

magnitude of the smoothing parameters, e.g. if their values are close to 1, the 

resulting surface will be smooth while the opposite will occur if their values are 

close to the lower limit. Also, the numbers of bilinear surfaces along x and/or y 

directions, i.e. mx and my, contribute to the overall surface smoothness thus 

acting as additional smoothing parameters. This derives also from the one-

dimensional implementations (Koutsoyiannis 2000; Malamos and Koutsoyiannis 

2014), where increased numbers of broken lines segments were associated with 

small values of the smoothing parameters. 

(5) BSS is univariate since it implements only the primary variable in deriving the 

estimation, while BSSE is multivariate since it incorporates an explanatory 

variable available at a considerably denser dataset in the interpolation procedure. 

(6) Both BSS and BSSE implement a regular grid but this does not have to be 

necessary square since the number of bilinear surfaces along the x direction does 

not have to coincide with the number of bilinear surfaces along the y direction. 

CONCLUSIONS 

A non-parametric innovative mathematical framework which can be utilized to 

perform various interpolation tasks is described. The technique incorporates 

smoothing terms with adjustable weights, defined by means of the angles formed by 

the consecutive bilinear surfaces into a piecewise surface regression model with 

known break points. The incorporation, in an objective manner, of an explanatory 

variable available from measurements at a considerably denser dataset than the initial 

main variable, is presented in terms of an alternative implementation of the main 

methodology. 

A notable property of the proposed framework is the fact that the resolution 

(number of consecutive bilinear surfaces) does not necessarily has to coincide with 

that of the given data points, but it can be either finer or coarser, depending on the 

specific requirements of the problem of interest. This is an important property that 

makes the method applicable and reliable even in the case of scarce datasets.  

The proposed mathematical framework follows a parsimonious approach for 

fulfilling spatial interpolation tasks, without the need to make many decisions on 

parameters or complex concepts. Likewise, the computational implementation offers 

an almost automated procedure in achieving the final results.  



Further research can be focused towards the incorporation of alternative 

techniques for acquiring the global minimum value of GCV, providing means for 

faster convergence to the optimal solution.  

The method application in hydrological problems is given in a companion 

paper (Malamos and Koutsoyiannis submitted) along with comparisons to established 

interpolation methods.  
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APPENDIX A 

ΨX AND ΨY MATRIX DEFINITION  

If we apply equation (11) for the general case where l=1,…, mx–1 and k=0, …, my, 

we obtain: 

 

qdx= (2d1,0–d0,0–d2,0)
2
+(2d2,0–d1,0–d3,0)

2+…+(2dmx–1,0–dmx–2,0–dmx,0)
2
+

+(2d1,1–d0,1–d2,1)
2
+(2d2,1–d1,1–d3,1)

2+…+(2dmx–1,1–dmx–2,1–dmx,1)
2
+

+

 

 +

+(2d1,my–d0,my–d2, my)
2
+(2d2, my –d1, my –d3, my)

2+…+(2dmx–1, my –dmx–2, my –dmx, my)
2

  (A1) 

which can easily be expressed in matrix form as follows: 

 qdx = (Ψx d)
Τ
 (Ψx d) = d

T
 Ψx

Τ
 Ψx d (A2) 

where Ψx d is a vector of (m–1) elements and has the form: 

 Ψx d = 



























2d1,0–d0,0–d2,0

2d2,0–d1,0–d3,0

 


 

2dmx–1,0–dmx–2,0–dmx,0

 

2d1,1–d0,1–d2,1

2d2,1–d1,1–d3,1

 


 

2dmx–1,1–dmx–2,1–dmx,1

 

2d1,my–d0,my–d2, my

2d2, my –d1, my –d3, my

 


 

2dmx–1, my –dmx–2, my –dmx, my

  (A3) 

From equation (A3) can easily be derived that Ψx is a matrix with size (m–
1)(m+1) (for i=1, …,m–1 and j=0, …m) and ijth entry: 

 ψx i, j = 





2, when i=j and i–k(mx+1){1, mx+1}

–1,  when |i–j|=1 and i–k(mx+1){1, mx+1}

0, otherwise

  (A4) 

where k = 0, …, my. 



By following an equivalent procedure to the above presented, we concluded to 

the following expression for the smoothness of the bilinear surface according to y 

direction: 

 qdy = (Ψy d)
Τ
 (Ψy d) = d

T
 Ψy

Τ
 Ψy d (A5) 

where Ψy is a matrix with size (m–1)(m+1) (for i=1, …,m–1 and j=0, …m) and ijth 

entry: 

 ψy i, j = 





2, when i=j and i–l(my+1){1, my+1}

–1, when |i–j|=1 and i–l(my+1){1, my+1}

0, otherwise

 (A6) 

where l = 0, …, mx. We note that matrices Ψx and Ψy are identical when mx = my. 


