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ABSTRACT

The non-parametric mathematical framework of bilinear surface smoothing (BSS) methodology
provides flexible means for spatial (two dimensional) interpolation of variables. As presented in a
companion paper, interpolation is accomplished by means of fitting consecutive bilinear surface
into a regression model with known break points and adjustable smoothing terms defined by
means of angles formed by those bilinear surface. Additionally, the second version of the
methodology (BSSE) incorporates, in an objective manner, the influence of an explanatory
variable available at a considerably denser dataset. In the present study, both versions are
explored and illustrated using both synthesized and real world (hydrological) data, and practical
aspects of their application are discussed. Also, comparison and validation against the results of
commonly used spatial interpolation methods (inverse distance weighted, spline, ordinary kriging
and ordinary cokriging) are performed in the context of the real world application. In every case,
the method’s efficiency to perform interpolation between data points that are interrelated in a
complicated manner was confirmed. Especially during the validation procedure presented in the
real world case study, BSSE yielded very good results, outperforming those of the other inter-
polation methods. Given the simplicity of the approach, the proposed mathematical framework’s
overall performance is quite satisfactory, indicating its applicability for diverse tasks of scientific
and engineering hydrology and beyond.
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1 Introduction

With the increasing number of applications for envir-

onmental purposes, there is also a growing concern

about spatially distributed estimates of environmental

variables. Analysis and simulation models, prior to

their application, require tasks such as interpolation

between measurements, prediction, filling in missing

values in time series, estimation and removal of the

measurement errors, etc.

However, most data for environmental variables

(soil properties, weather) are collected from point

sources. The spatial array of these data may enable a

more precise estimation of the value of properties at

unsampled sites than simple averaging between

sampled points. The value of a property between data

points can be interpolated by fitting a suitable model to

account for the expected variation (Hartkamp et al.

1999). Currently, a lot of methods exist which can

accomplish those tasks using appropriate computer

codes. They fall into three categories (Li and Heap

2008):

(1) Non-geostatistical methods such as: splines, thin

plate splines (Craven and Wahba 1978, Wahba and

Wendelberger 1980) and regression methods (Davis

1986);

(2) Geostatistical methods including different

approaches of Kriging, such as: ordinary and uni-

versal kriging, kriging with an external drift or

cokriging (Burrough and McDonnell 1998,

Goovaerts 1997); and

(3) Combined methods such as: trend surface analysis

combined with kriging (Wang et al. 2005) and

regression kriging (Hengl et al. 2007).

In the present study applications of an innovative con-

cept are demonstrated. The main idea, presented as

bilinear surface smoothing (BSS), is to approximate a

surface that may be drawn for the data points ðxi; yiÞ)
with consecutive bilinear surface which can be numeri-

cally estimated by means of a least squares fitting

procedure into a surface regression model with
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known break points and adjustable weights defined by

means of angles formed by those bilinear surface.

Based on this concept, the second version of the meth-

odology (BSSE) focuses in the combination of two

bilinear surface into the surface regression model. The

first surface is fitted to the available data points while

the second incorporates, in an objective manner, the

influence of an explanatory variable available at a con-

siderably denser dataset.

Both versions are illustrated using two approaches:

(a) theoretical exploration, and (b) real-world applica-

tion in spatial interpolation of rainfall data using the

surface elevation as the explanatory variable where

applicable. In the context of the second application, a

comparison with the results of commonly used meth-

odologies like: inverse distance weighted, spline, ordin-

ary kriging and ordinary cokriging is performed

(Burrough and McDonnell 1998, Goovaerts 1997,

2000). This comparison is implemented twice, firstly

by using the entire dataset as input data and secondly,

for validation purposes, the original dataset is divided

in two subsets: one acts as input dataset while the

second subset, that contains the remaining stations, is

the validation dataset.

2 Theory and definitions

The proposed mathematical framework suggests that

fit is meant in terms of minimizing the total square

error among the set of original points zi xi; yið Þ for i ¼
1; . . . ; n and the fitted bilinear surface, that in matrix

form, can be written as:

p ¼ z � ẑk k2 (1)

where z ¼ ½z1; . . . ; zn�
T is the vector of known appli-

cates of the given data points with size n (the super-

script T denotes the transpose of a matrix or vector)

and ẑ ¼ ½ẑ1; . . . ; ẑn�
T is the vector of estimates with

size n.

A brief presentation of the method and its equations

follows, while the details of the method including the

algorithms and derivations of the equations are found in

the companion paper (Malamos and Koutsoyiannis 2015).

Let ðcxl; cykÞ, l ¼ 0; . . . ;mx; k ¼ 0; . . . ; my, be a grid of

ðmxþ 1Þ � ðmy þ 1Þ points on the xy plane, so that the

rectangle with vertices ðcx0; cy0Þ; ðcxmx; cy0Þ; ðcx0; cymyÞ

and ðcxmx; cymyÞ contain all ðxi; yiÞ. For simplicity we

assume that the points on both axes are equidistant, i.e.

cxl � cxl�1 ¼ δx and cyk � cyk�1 ¼ δy.

The general estimation function for point u on the

(x y) plane, according to the BSS method is:

ẑu ¼ du (2)

while according to the bilinear surface smoothing with

explanatory variable (BSSE) is:

ẑu ¼ du þ tueu (3)

where, du, eu are the values of the two bilinear surface

at that point and tu is the corresponding value of the

explanatory variable.

The above equations can be more concisely written,

for all given points ziðxi; yiÞ simultaneously, in the

form:

ẑ ¼ Πd (4)

and

ẑ ¼ Πd þ T Πe (5)

where d ¼ ½d0; . . . ; dm�
T is a vector of unknown appli-

cates of the bilinear surface d, with size mþ 1 ðm ¼

ðmxþ 1Þ � ðmy þ 1Þ � 1Þ; e ¼ ½e0; . . . ; em�
T is a vec-

tor of unknown applicates of the bilinear surface e, with

size mþ 1; T is a n� n diagonal matrix with elements:

T ¼ diagðtðx1; y1Þ; . . . ; tðxn; ynÞÞ (6)

with tðx1; y1Þ; . . . ; tðxn; ynÞ being the values of the

explanatory variable at the given data points; and Π is

a matrix with size n� ðmþ 1Þ, whose ijth entry (for

i ¼ 1; . . . ; n; j ¼ 0; . . .m) is:

πij ¼

ðcxl�xiÞðcyk�yiÞ
δxδy

; when cxl�1 < xi � cxl and cyk�1 < yi � cyk
ðcxl�xiÞðyi�cyk�1Þ

δxδy
; when cxl�1 < xi � cxl and cyk � yi < cykþ1

ðxi�cxl�1Þðyi�cyk�1Þ
δxδy

; when cxl � xi < cxlþ1 and cyk � yi � cykþ1

ðxi�cxl�1Þðcyk�yiÞ
δxδy

; when cxl � xi < cxlþ1 and cyk�1 < yi � cyk
0; otherwise
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The calculation of the unknown vectors d and e

requires also the definition of matrices Ψx and Ψy

with size ðm� 1Þ � ðmþ 1Þ (for i ¼ 1; . . . ;m� 1 and

j ¼ 0; . . .m) and ijth entry:

where k ¼ 0; . . . ; my, while:

with l ¼ 0; . . . ;mx (note that Ψx and Ψy are identical

when mx ¼ my).

In the case of BSS the solution that minimizes error,

has the following form:

d ¼ ðΠTΠ þ λxΨ
T
x Ψx þ λyΨ

T
y ΨyÞ

�1ðΠTzÞ (10)

Likewise, in the case of BSSE the solution is:

The minimum number of mþ 1 points required to

solve equations (10) or (11) is 6, since the minimum

number points needed to define the bilinear surface, is

the number of points that define two consecutive

planes oriented according to either x or y direction.

Based on the above equations, we can estimate the

applicate of any point that lies in the two-dimensional

interval ð½cx0; cxmx� � ½cy0; cymy�Þ by using either ver-

sion of the proposed methodology.

3 Choice of parameters

The adjustable parameters required to implement each

of the two versions of the methodology, can be esti-

mated by transforming the smoothing parameters λ

and μ in terms of tension: τλ and τμ, whose values are

restricted in the interval [0, 1), for both directions

(Malamos and Koutsoyiannis 2015). This transforma-

tion provides a convenient search in terms of compu-

tational time and is based on the generalized cross-

validation (GCV; Craven and Wahba 1978, Wahba

and Wendelberger 1980) methodology and symmetric

linear smoothers (Buja et al. 1989, Carmack et al.

2012). Thus, for a given combination of segments mx,

my, the minimization of GCV, results in the optimal

values of τλx; τλy and τμx; τμy. This can be repeated for

several trial combinations of mx, my values, until the

global minimum of GCV is reached.

4 Results and comments

We present two applications, the first being synthesized

for exploration purposes, while the second corresponds

to a real–world problem, namely spatial interpolation

of a rainfall field.

4.1 Exploration application

The first application is the implementation of the above

presented versions of the methodology, namely BSS

and BSSE, in interpolation—fitting to random data

points obtained from the generating function (Fig. 1):

zðx; yÞ ¼ ðxþ 2y� tÞ2 þ ð2x þ y� tÞ2 þ ε (12)

where ε represents an intentionally added lognormal

error with mean of logarithms 0 and standard devia-

tion of logarithms 0.05.

Variable t depends on both x and y and acts as the

explanatory variable in the case of interpolation with

BSSE (Fig. 2):

tðx; yÞ ¼ xeðy�0:5xÞ (13)

The main objective of this application, apart from

illustrating the proposed methodology performance, is

the investigation of the adjustable parameters variation

and the confirmation that the proposed technique for

ψx i;j ¼
2; when i ¼ j and i� kðmxþ 1Þ‚f1; mxþ 1g
�1; when ji� jj ¼ 1 and i� kðmxþ 1Þ‚f1; mxþ 1g
0; otherwise

8

<

:

(8)

ψy i;j ¼
2; when i ¼ j and i� lðmxþ 1Þ‚f1; mxþ 1g
�1; when ji� jj ¼ 1 and i� lðmxþ 1Þ‚f1; mxþ 1g
0; otherwise

8

<

:

(9)

d

e
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¼
ΠTΠ þ λxΨ

T
xΨx þ λyΨ

T
yΨy ΠTTΠ

ΠTTΠ ΠTTTTΠ þ μxΨ
T
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T
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acquiring the global minimum through the GCV satis-

fies the method’s requirements.

In order to achieve this, we implemented both ver-

sions for different numbers of segments mx and my

(1 � mx � 15 and 1 � my � 15, while mþ 1 � 6)

using 22 data points (i ¼ 22), derived from equation

(12). The size of the analysis grid was selected to be

0.05 for 0 � x � 1 and 0 � y � 0:5, resulting in a total

of 231 points at which the generating function was

estimated.

4.2 Interpolation using bilinear surface Smoothing

(BSS)

After the implementation of the iterative procedure for

acquiring the global minimum of GCV, as described

previously, we obtained the optimal values of the four

adjustable parameters: the number of intervals, mx,

my, and the smoothing parameters τλx and τλy, as

presented in Table 1:

The optimal value of the smoothing parameter τλx
was the minimum allowed value used during the mini-

mization procedure, suggesting that the optimal solu-

tion of the problem required that the difference of

slopes between the consecutive segments of the bilinear

surface according to x direction should be as small as

possible. The use of a smaller number as lower limit for

the smoothing parameters did not significantly

improve the results so for practical reasons the mini-

mum value for the smoothing parameters was set to

0.001.

Figure 3 presents the bilinear surface d acquired

from the solution of equation (10), along x and y

axes, by using the above presented parameters. The

open circles represent the values of vector d, while

the available data points are indicated with stars. The

consistency to the mathematical framework is verified

by the obvious difference of slopes between the con-

secutive segments of the bilinear surface according to

both directions and also the fact that at least one data

point is included in each one of the formed rectangles.

Figure 4 depicts the variation of the minimum GCV

and the corresponding MSE vs all possible combina-

tions of segments mx, my. The location of the global

minimum for GCV is placed at mx = 3, my = 2, while

minimum MSE is placed at mx = 7, my = 15. Also,

Fig. 4 confirms that the proposed mathematical formu-

lation ensures the presence of a single global minimum

Figure 1. Generating function, z, along with the 22 data points
used for the purpose of the exploration application.

Figure 2. Explanatory function t(x, y) for the purpose of the
exploration application.

Table 1. BSS parameters optimal values and performance
indices for the exploration application.

Number of
segments, mx

Number of
segments, my

τλx τλy MSE Global
minimum

GCV

3 2 0.001 0.002 1.63 × 10–3 7.87 × 10–3

Figure 3. Bilinear surface d (circles) fitted to the 22 data points
(stars) derived from function z (minimum GCV: mx = 3, my = 2).
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value of GCV according to equation (10) and therefore

the applicability of the objective way to assess the

optimal values of adjustable parameters, as previously

noted.

When GCV is minimized the two indices follow

similar patterns with the most characteristic one to be

the variation along mx = my, where GCV’s small values

are encountered. Also, the similarity along the patterns

of the two indices along axis y, for optimal number of

segments on the x axis (mx ¼ 3, Fig. 5) is obvious and

respectively similar are the patterns of the two indices

along axis x, for optimal number of segments on the Y

axis (my = 2, Fig. 6).

Figures 5 and 6 present the variation of τλx and

τλy optimal values along axis y, for optimal number

of segments at x (mx ¼ 3) and, likewise, the variation

of τλx and τλy optimal values along axis x, for opti-

mal number of segments at y (my = 2). Even though

the scale is different, the pattern of τλy is similar to

these of the error indices in the case of retaining a

constant number of segments along axis x, while the

pattern of τλx is similar to these of the error indices

in the case of retaining a constant number of seg-

ments along axis y.

This fact constitutes a direct analogy between the

proposed methodology and the one-dimensional

method by Koutsoyiannis (2000) and Malamos and

Koutsoyiannis (2014), since the increase, beyond a cer-

tain point, of the segments’ number along one axis

results in almost constant values of the smoothing para-

meter that refers to the opposite axis. However, the

overall behaviour of the BSS method is different, due

to the implementation of the two-dimensional minimi-

zation procedure, as shown in Fig. 4.

Figure 7 presents the results obtained by the BSS

interpolation method, using twenty-two data points

(i ¼ 22) to estimate a total of 231 points derived from

the generating function described by equation (12).

Figure 4. Variation of the minimum GCV and of the corre-
sponding MSE vs the number of my, mx segments (global
minimum GCV at mx = 3, my = 2 and global minimum MSE
at mx = 7, my = 15).
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Figure 5. Variation of the minimum GCV and corresponding
MSE values along with the variation of the smoothing para-
meters τλx; τλy; vs the number of segments, my, for the
optimal number of segments mx (global minimum GCV: mx =
3, my = 2).
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Also, a graphical representation of equation (12) in

terms of filled contours is incorporated in Fig. 7.

The performance indices presented in Table 2 con-

firm the good performance of the BSS method. Notable

is the excellent modelling efficiency, EF (see Appendix

for definition) which was obtained initially with respect

to the available data points and in a second case with

respect to the entire data set, derived from the generat-

ing function described by equation (12). In both cases,

EF exceeded the value of 0.99, which is very close to its

maximum value, that is, 1. It is apparent that the

estimates are almost indistinguishable from the gener-

ating function, which suggests that the error is

negligible.

4.3 Interpolation using bilinear surface smoothing

with the incorporation of explanatory variable

Since the mathematical formulation presented above

allows the incorporation of an explanatory data set,

tðxi; yiÞ, we utilized for this purpose 231 points derived

from equation (13). These points formed a square grid

with the same dimensions as the analysis grid.

Consequently, we obtained 231 point estimates of the

generating function. After the implementation of the

iterative procedure for acquiring the global minimum

of GCV as described previously, we obtained the opti-

mal values of the six adjustable parameters: the number

of intervals, mx, my, and the smoothing parameters

λx; λy and μx and μy as presented in Table 3.

The optimal values of the τλx and τλy smoothing

parameters concerning bilinear surface d are similar

to those of the previous case. The optimal value of

the smoothing parameter τμy reached the maximum

allowed value used during the minimization procedure,

suggesting that the optimal solution of the problem

required that the difference of slopes between the con-

secutive segments of the bilinear surface e according to

y direction should be as large as possible.

Figure 8 presents the bilinear surface d and e

acquired from the solution of equation (11), along x

and y axes, by using the above presented parameters.

The open circles represent the values of vectors d and

e. The consistency to the mathematical framework is

verified by the obvious difference of slopes between the
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Figure 6. Variation of the minimum GCV and corresponding
MSE values along with the variation of the smoothing para-
meters τλx; τλy; vs the number of segments, mx, for the opti-
mal number of segments my (global minimum GCV: mx = 3,
my = 2).

Figure 7. Bilinear surface interpolation estimates of function z

(symbols), along with the generating function.

Table 2. Values of performance indices used for the BSS
evaluation.

Number of points and origin
of the evaluation dataset

MBE MSE EF

22 (data points) 0 1.63 × 10–3 0.998
231 (generating function) 1.84 × 10–2 5.83 × 10–3 0.991

Table 3. BSSΕ parameters’ optimal values and performance indices for the exploration application.

Number of segments, mx Number of segments, my τλx τλy τμx τμy MSE Global minimum GCV

4 2 0.001 0.006 0.769 0.99 2.41 × 10–4 3.70 × 10–3
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consecutive segments of the bilinear surface according

to both directions.

Figure 9 depicts the 231 points obtained by the BSSE

method using 22 data points (i ¼ 22) against the gen-

erating function described by equation (12). Also, a

graphical representation of equation (12) in terms of

filled contours is incorporated in Fig. 9.

The performance indices presented in Table 4 con-

firm the good performance of the BSSE method to

incorporate the influence of the explanatory variable

(Fig. 2) in the results. The negligible discrepancies

between the true values and the estimates are mainly

located in areas where the explanatory function t(x, y)

has low values. Nevertheless, the overall method per-

formance implies its capability to perform complicated

interpolation tasks. The modelling efficiency (EF) is

very high, similar to the previous example, exceed-

ing 0.98.

4.4 Real-world application

For real-world application we implemented both pro-

posed versions of the methodology into spatial inter-

polation of over-annual rainfall. The objective of the

application was: (a) to verify the method’s applicabil-

ity against a hydrological variable with significant

correlation to an easily measurable, hence available

at a considerably higher resolution, explanatory vari-

able, (b) to verify the method’s versatility in terms of

handling extensive datasets and (c) to compare the

results with commonly used methodologies such as:

inverse distance weighted, spline, ordinary kriging

and ordinary cokriging (Burrough and McDonnell

1998, Goovaerts 1997, 2000, Li and Heap 2008). The

above methods form a representative set for compar-

isons of the BSS methodology as they range from

the simple and deterministic inverse distance

weighted to the more complex and stochastic

cokriging.

The study area was the region of central Greece

(Sterea Hellas; Fig. 10). The data consisted of the

mean rainfall at a network of 71 meteorological sta-

tions, derived from all available measurements start-

ing from 1992 and backwards until 1931

(Christofides and Mamassis 1995). For the majority

of the stations, the available time series were at least

30 years long. The analysis extend (mask) boundaries

were defined by the coordinates of the outermost

stations according to each one of the four cardinal

directions. This was mandatory in order to ensure

that the rainfall estimates adjacent to the boundaries

of the study area are obtained from interpolation

rather than extrapolation.

Figure 8. Acquired bilinear surface d and e, so that z ¼ d þ t e
fits the 22 data points derived from the generating function
(minimum GCV: mx = 4, my = 2).

Figure 9. Bilinear surface interpolation estimates of function z

(symbols), with the incorporation of the explanatory variable t,
along with the generating function.

Table 4. Values of performance indices used for the BSSE
evaluation.

Number of points and origin
of the evaluation dataset

MBE MSE EF

22 (data points) 0 2.41 × 10–4 1
231 (generating function) 2.35 × 10–2 8.23 × 10–3 0.987

HYDROLOGICAL SCIENCES JOURNAL – JOURNAL DES SCIENCES HYDROLOGIQUES 533



Since spatial variability of precipitation, in over-

annual scale, is influenced by orography (Hevesi et al.

1992a, 1992b, Goovaerts 2000) the topographic eleva-

tion can be used as the explanatory variable for imple-

menting the BSSE and cokriging methodologies. The

explanatory dataset was obtained from the digital ele-

vation model (DEM) SRTM Data Version 4.1 (Jarvis

et al. 2008) and aggregated to a 2km × 2 km square

grid (Fig. 10) for practical and computational reasons,

covering approximately an area of 23 920 km2 with

5980 points of known elevation.

The global minimum of GCV, for both cases, was

reached by implementing both proposed methodolo-

gies for different numbers of segments mx and my

(1 � mx � 15 and 1 � my � 15, while mþ 1 � 6)

and minimizing GCV for each one by altering the

adjustable parameters.

Additionally, we assessed larger values of mx and

my up to 30 segments in either direction (i.e. 16 �
mx � 30 and 16 � my � 30), by setting the smoothing

parameters to their minimum value (i.e. τλx ¼ τλy ¼

0:001 and where applicable τμx ¼ τμy ¼ 0:001) in order

to reduce the computational effort required to imple-

ment the GCV minimization procedure. This approach

was based on the observations made by Koutsoyiannis

(2000) and Malamos and Koutsoyiannis (2014), con-

cerning the relation between large numbers of broken

line segments and the minimum values of the smooth-

ing parameters. This behaviour can be explained from

the fact that increased numbers of bilinear surface

segments contribute to the overall surface smoothness,

thus acting as additional smoothing parameters. The

results of the above procedure are presented in Table 5.

Inverse distance weighted (IDW), spline, ordinary

kriging (OK) and ordinary cokriking (OCK) were per-

formed by means of ESRI’s ArcGIS environment. For

the case of spline interpolation, tension spline type

(Franke 1982, Mitáš and Mitášová 1988) was imple-

mented due to the smoothing term approach which is

relevant, but not similar, to the proposed mathematical

framework of bilinear surface interpolation. After

investigation between several weight values, a weight

value of 10 was utilized. According to literature, a

spherical semivariogram was fitted using regression,

in order to minimize the weighted sum of squares

between experimental and model semivariogram values

(Goovaerts 2000). The results were similar to those

already presented in the study of Koutsoyiannis and

Marinos (1995), since the occurring discrepancies

between the cokriging implementations were related

to the use of different digital elevation models.

Figure 11 presents the rainfall surface obtained from

BSS along with the corresponding results from BSSE,

while Fig. 12 presents the rainfall surface obtained from

IDW, spline, ordinary kriging and ordinary cokriging

interpolation techniques.

A clear west–east rainfall gradient is apparent in all

cases with high precipitation in the west due to the

Figure 10. Elevation map and meteorological stations of central Greece (Sterea Hellas).

Table 5. BSS and BSSE optimal parameter values and performance indices for the rainfall interpolation example.

Method Number of segments, mx Number of segments, my τλx τλy τμx τμy Global minimum GCV

BSS 7 23 0.001 0.001 – – 6.19 × 104

BSSE 4 8 0.965 0.04 0.946 0.606 4.96 × 104
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greater influence of the Ionian Sea (west of the area).

The influence of the Aegean Sea (east of the area) is

clear in the north-east part of the maps.

The performance of each method (Table 6) was

evaluated by using statistical criteria such as: mean

bias error (MBE), mean absolute error (MAE), root

mean square error (RMSE), mean square error (MSE)

and modelling efficiency (EF) which is calculated on

the basis of the relationship between the observed and

predicted mean deviations (Willmott 1982, Vicente-

Serrano et al. 2003, Li and Heap 2008). The relation-

ships that provide them are depicted in Appendix

(equations A1 to A5).

From Table 6 it is apparent that IDW, spline and

both kriging methods, according to the statistical

criteria used, outperform the BSS methods apart

from the MBE criterion. This is not a surprise

because:

– Kriging, from construction, minimizes the MSE.

– IDW is an exact method of interpolation so its

results respect the data points exactly.
Figure 12. Rainfall maps (mm) produced by (a) IDW, (b) spline,
(c) ordinary kriging (OK) and (d) ordinary cokriging (OCK).

Figure 11. Rainfall maps (mm) produced by bilinear surface
smoothing (BSS) and bilinear surface smoothing with explana-
tory variable (BSSE).
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– Spline is forced to pass “not too far” from the data

points (Burrough and McDonnell 1998).

Nevertheless, the results of both BSS methods are very

satisfactory.

Daly et al. (2002), emphasized that the human

factor, in terms of expert knowledge on the spatial

patterns of climate in a specific region, is capable of

enhance, control, and parameterize computer based

interpolation techniques. Based on that principle, our

interpretation of rainfall spatial patterns (Figs 11 and

12) suggests that both cases of BSS respect in a more

efficient way the dependence of rainfall on the west-

east gradient and the elevation (with increased eleva-

tion, rainfall increases as happens in reality).

Also, the above statistical criteria performance may

not be representative with respect to the validity of the

interpolation results in other locations except for those

incorporated in the interpolation procedure. So, an

alternative technique was implemented for the evalua-

tion of the BSS methods efficiency in terms of perform-

ing validation between two subsets of the available

data. The first acts as input to each one of the four

interpolation methods while their outcome is com-

pared against the second subset.

In this context, while keeping the same analysis

extent and boundaries, we divided randomly the 71

meteorological stations network of the study area into

a subset that comprised 29 meteorological stations and

acted as input dataset, while the second subset con-

tained the remaining 42 stations and acted as validation

dataset. The implementation of the interpolation pro-

cedures followed the previously presented approach

and the results concerning BSS and BSSE are presented

in Table 7.

Figure 13 presents the rainfall surface obtained from

BSS methodology along with the corresponding results

from BSSE methodology, while Fig. 14 presents the

rainfall surface obtained from IDW, spline, ordinary

kriging and ordinary cokriging interpolation

techniques.

Visual interpretation of both figures indicates that

the BSS methodology produced satisfactory results

even though a limited amount of data was available.

Especially the BSSE version of the methodology, as

shown in Fig. 13, produced a very plausible interpola-

tion surface that respects the variation due to orogra-

phy and the west-east rainfall gradient, in contrast to

IDW, spline and both kriging methods.

In order to establish how the proposed interpolation

methodology preserves the stochastic characteristics

(first and second statistical moments) of the interpo-

lated field, we present in Table 8 the mean values along

with the standard deviations of the results acquired by

the six methods against the stations data, for the vali-

dation case.

All interpolation methods present negative bias both

in mean and standard deviation, with the BSS and

BSSE corresponding to the highest bias for the mean

and the lowest bias for the standard deviation, thus

representing the variability of the rainfall field better

than the other methods.

Additionally, Table 9 summarizes the values of the

statistical criteria acquired with respect to the second

subset. BSSE clearly outperformed IDW, spline and

both kriging methods in estimating the mean annual

rainfall measured at the 42 meteorological stations,

apart from the MBE criterion. BSS outperformed spline

and both kriging methods and performed similarly to

IDW, apart from the MBE criterion.

Apart from the above presented criteria, an inter-

comparison technique in terms of an ideal point error

(IPE) which is calculated by identifying the ideal point

to a multi-dimensional space that each model should

be evaluated against (Domínguez et al. 2011), was

implemented in order to demonstrate the performance

of the proposed methodology against the other four

methods. The comparison was based on the use of a

combined evaluation vector comprising from three tra-

ditional metrics, as shown in the Appendix (equation

(A6)). The acquired values of the IPE3 criterion

Table 6. Values of the statistical criteria used to assess the
performance of the spatial interpolation methods.

Interpolation
method

MBE
(mm)

MAE
(mm)

RMSE
(mm)

MSE EF

BSS 0.0 129.3 172.9 3:0� 104 0.82

BSSE 0.0 140.1 185.7 3:4� 104 0.80

IDW –0.2 5.3 9.4 8:8� 101 1.00

Spline 3.5 11.8 18.4 3:4� 102 1.00

Ordinary kriging 1.5 70.3 88.7 7:9� 103 0.95

Ordinary cokriging 3.5 86.5 110.7 1:2� 104 0.93

Table 7. Optimal values of BSS and BSSE parameters and performance indices for the rainfall interpolation example validation
procedure.

Method Number of segments, mx Number of segments, my τλx τλy τμx τμy Global minimum GCV

BSS 13 14 0.01 0.01 – – 5.68 × 104

BSSE 13 14 0.697 0.01 0.845 0.913 3.20 × 104
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presented in Table 9 verify that BSSE outperformed all

other methods while BSS performed similarly to them.

Based on the above discourse, it is clear that the BSS

methodology is able to perform complex interpolation

tasks even in cases of scarce data sets.

5 Conclusions

A non-parametric spatial interpolation methodology

(BSS) which approximates a surface that may be

drawn for the available data points with consecutive

bilinear surface with known break points and adjusta-

ble weights is utilized to perform various interpolation

tasks. Additionally, an alternative to the main metho-

dology (BSSE) that incorporates, in an objective man-

ner, an explanatory variable by combining two bilinear

surfaces into the same regression model, was imple-

mented. The mathematical framework, the computa-

tional implementation and details concerning both

versions of the methodology are discussed in a compa-

nion paper (Malamos and Koutsoyiannis 2015).

Figure 13. Rainfall maps (mm) produced by bilinear surface
smoothing (BSS) and bilinear surface smoothing with explana-
tory variable (BSSE) for the validation procedure (29 of 71
meteorological stations available).

Figure 14. Rainfall maps (mm) produced by (a) IDW, (b) spline, (c)
ordinary kriging (OK) and (d) ordinary cokriging (OCK) for the
validation procedure (29 of 71 meteorological stations available).
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Both versions were illustrated and tested against two

applications, a theoretical one with synthetic data from

a known generating function and a real world example:

the spatial interpolation of rainfall data with or without

the use of surface elevation, as explanatory variable.

The interpolations performed to the synthetic data

were successful by all means, either with respect to the

available data points or with respect to the entire data

set, according to the performance indices used, espe-

cially for BSS. The behaviour of the proposed mathe-

matical framework was analogous to the single

dimension methods presented by the authors in pre-

vious studies. This is clearly demonstrated by the var-

iation patterns of the minimum GCV and

corresponding MSE values when plotted against the

number of segments of the bilinear surface.

Also, a comparison to the results of commonly used

methodologies like IDW, spline, ordinary kriging and

ordinary cokriging was conducted. Additionally, for

validation purposes, the original dataset was divided

into two subsets. One served as input dataset, while

the second subset that contained the remaining stations

was the validation dataset. In every case, the methods’

efficiency to perform interpolation between data points

that are interrelated in a complicated manner was

confirmed.

The applicability and consistency of the mathemati-

cal framework against not only dense but also scarce

data sets, is supported by the fact that the method’s

resolution (number of consecutive bilinear surface)

does not necessarily have to coincide with that of the

given data points, but it can be either finer or coarser

depending on the specific requirements of the problem

of interest. This was verified by the validation proce-

dure presented in the real world case study in which

BSSE gave very good results outperforming those of the

other interpolation methods in many aspects.

Given the simplicity of the approach, the overall

performance of the proposed mathematical framework

is quite satisfactory, indicating its applicability for

diverse scientific and engineering tasks related to

hydrology and beyond, without the need to make arbi-

trary decisions on parameters. The approach seems

promising in all respects but further research and

applications need to be conducted to investigate the

strengths and weaknesses of the method.
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Appendix

Statistical criteria

The statistical criteria used for the evaluation of the

methodologies performance are: mean bias error

(MBE), mean absolute error (MAE), root mean square

error (RMSE), mean square error (MSE) and modelling

efficiency (EF) (Nash and Sutcliffe 1970, Willmott

1982, Loague and Green 1991). Willmott (1982) sug-

gests that RMSE and MAE are among the “best” overall

measures of model performance, as they summarize

the mean difference in the units of observed and pre-

dicted values. The problem is that RMSE provides a

measure of model validity that places a lot of weight on

high errors whereas MAE is less sensitive to extreme

values. The relationships that provide them are:

MBE ¼
1

n

X

n

i¼1

ðPi � OiÞ; (A1)

MAE ¼
1

n

X

n

i¼1

jPi � Oij; (A2)

RMSE ¼
1

n

X

n

i¼1

ðPi � OiÞ
2

" #1=2

(A3)

HYDROLOGICAL SCIENCES JOURNAL – JOURNAL DES SCIENCES HYDROLOGIQUES 539

http://dx.doi.org/10.3354/cr022099
http://dx.doi.org/10.2166/hydro.2010.116
http://dx.doi.org/10.1016/0898-1221(82)90009-8
http://dx.doi.org/10.1016/0898-1221(82)90009-8
http://dx.doi.org/10.1016/S0022-1694(00)00144-X
http://dx.doi.org/10.1016/S0022-1694(00)00144-X
http://dx.doi.org/10.1016/j.cageo.2007.05.001
http://dx.doi.org/10.1175/1520-0450(1992)031%3C0677:PEIMTU%3E2.0.CO;2
http://dx.doi.org/10.1175/1520-0450(1992)031%3C0677:PEIMTU%3E2.0.CO;2
http://dx.doi.org/10.1175/1520-0450(1992)031%3C0661:PEIMTU%3E2.0.CO;2
http://dx.doi.org/10.1175/1520-0450(1992)031%3C0661:PEIMTU%3E2.0.CO;2
http://srtm.csi.cgiar.org
http://dx.doi.org/10.1016/S1364-8152(99)00026-2
http://dx.doi.org/10.1016/0169-7722(91)90038-3
http://dx.doi.org/10.1016/0169-7722(91)90038-3
http://dx.doi.org/10.1080/02626667.2014.899703
http://dx.doi.org/10.1080/02626667.2015.1051980
http://dx.doi.org/10.1080/02626667.2015.1051980
http://dx.doi.org/10.1016/0898-1221(88)90255-6
http://dx.doi.org/10.1016/0022-1694(70)90255-6
http://dx.doi.org/10.1016/0022-1694(70)90255-6
http://dx.doi.org/10.3354/cr024161
http://dx.doi.org/10.1175/1520-0493(1980)108%3C1122:SNMMFV%3E2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(1980)108%3C1122:SNMMFV%3E2.0.CO;2
http://dx.doi.org/10.1175/1520-0477(1982)063%3C1309:SCOTEO%3E2.0.CO;2
http://dx.doi.org/10.1175/1520-0477(1982)063%3C1309:SCOTEO%3E2.0.CO;2


MSE ¼
1

n

X

n

i¼1

ðPi � OiÞ
2 (A4)

EF ¼ 1�

P

n

i¼1

ðPi � OiÞ
2

P

n

i¼1

ð�O� OiÞ
2

(A5)

where n is the number of observations, Oi are the

observed values, Pi are the predicted values, while �O

is the mean of the observed values. The optimum

(minimum) for the MBE, MAE, RMSE, MSE statistics

is 0 while the optimum (maximum) for EF is 1.

Ideal point error

The ideal point error (IPE) (Domínguez et al. 2011)

measurement is calculated by identifying the ideal

point, up to a five-dimensional space, that each

model should be evaluated against. For the purposes

of the present study, the three-dimensional IPE3 is

implemented by normalizing RMSE, MBE and the

coefficient of determination (R2), so the individual

IPE3 for each measure ranges from 0 for the best

model to 1 for the worst.

The coordinates of the ideal point are: RMSE ¼ 0;

R2 ¼ 1;MBE ¼ 0: IPE3 measures how far a model is

from this ideal point by the relationship:

IPE3 ¼ 0:33
RMSEi

max RMSE

� �2

þ
R2

i � 1

min R2 � 1

� �2
 "

þ
MEi

max jMEj

� �2
!#1=2

(A6)

In equation (A6), i represents each of the models under

investigation.
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