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Abstract 7 

Turbulence is considered to generate and drive most geophysical processes. The simplest case is the 8 

isotropic turbulence. In this paper, the most common three-dimensional power-spectrum-based 9 

models of isotropic turbulence are studied in terms of their stochastic properties. Such models often 10 

have a high-order of complexity, lack in stochastic interpretation and violate basic stochastic 11 

asymptotic properties, such as the theoretical limits of the Hurst coefficient, in case that Hurst-12 

Kolmogorov behaviour is observed. A simpler and robust model (which incorporates self-similarity 13 

structures, e.g. fractal dimension and Hurst coefficient) is proposed using a climacogram-based 14 

stochastic framework and tested over high resolution observational data of laboratory scale as well as 15 

hydrometeorological observations of wind speed and precipitation intensities. Expressions of other 16 

stochastic tools like the autocovariance and power spectrum are also produced from the model and 17 

show agreement with data. Finally, uncertainty, discretization and bias related errors are estimated for 18 

each stochastic tool, showing lower errors for the climacogram-based ones and larger for power-19 

spectrum ones. 20 
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1. Introduction 23 

Turbulence originates from the Greek word ‘τύρβη’ (cf. ‘…τὴν τύρβην ἐν ᾗ ζῶμεν’:‘…for the 24 

turbulence in which we live’, Isokrates, 15.130) which means disorder, confusion, turmoil. Turbulence 25 

is considered to generate and drive most geophysical processes, e.g. wind turbulence giving birth and 26 

spatiotemporal variability in cloud rainfall (cf. Falkovich et al. 2002), yet it is regarded as mystery 27 

within classical physics (McDonough 2007 ch. 1). Studying turbulent phenomena is of high 28 

importance for hydrology (e.g. Mandelbrot and Wallis 1968, Rinaldo 2006) as the microscopic 29 

processes (related to turbulence) can help understand the macroscopic ones (related to hydrology), 30 

since they enable the recording of very long time-series and with a high resolution, a rare case for 31 

hydrological processes (cf. Koutsoyiannis 2014). The simplest case of turbulent state (in terms of 32 

mathematical calculations) is the stationary, isotropic and homogeneous turbulence. While this is a 33 

physical phenomenon that has been recognized hundreds of years ago, still there is no universally 34 

agreed mathematical definition for the so-called ‘turbulent state’ (Tessarotto and Asci 2010). Leonardo 35 

da Vinci tried to give a definition 500 years ago, based on his observations that water falling into a 36 

sink forms large eddies as well as rotational motion (cf. Richter 1939). Interestingly, Heisenberg (1948) 37 

commented on the definition of turbulent state of flow that it is just the result of infinite degrees of 38 

freedom developed in a liquid flowing without friction and thus, by contrast, laminar flow is a state of 39 

flow with reduced degrees of freedom caused by the viscous action. In 1880, Reynolds introduced one 40 

of the most important dimensionless parameters in fluid mechanics, the ratio of momentum over 41 

viscous forces which is called Reynolds number ever since. Based on this dimensionless parameter, it 42 
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was observed that irrotationality in the streamlines occurred for values much greater than 1 and led to 43 

somehow confine the occurrence of turbulence to Reynolds number values greater than 44 

approximately 1000 to 2000. Richardson (1922) introduced the idea of turbulence ‘energy cascade’ by 45 

stating that turbulent motion, powered by the kinetic energy, is first produced at the largest scales 46 

(through eddies of size comparable to the characteristic length scale of the natural process) and then to 47 

smaller and smaller ones, until is dissipated by the viscous strain action. Taylor (1935) was the first to 48 

use stochastic tools to study this phenomenon modelling turbulence by means of random variables 49 

rather than deterministic ones. Following this idea, Kolmogorov (1941a-c) managed to derive the 50 

famous ‘5/3’ law (K41 theory) using the Navier-Stokes equations. That law describes the energy 51 

dissipation rate from larger to smaller turbulence scales within the inertial wavenumber sub-range, 52 

with the power spectrum no longer dependent on the eddy size and fluid viscosity. Since then, many 53 

scientists (including Von Karman 1948, Heisenberg 1948, Kraichnan 1959, Batchelor 1959, Pope 2000), 54 

have significantly contributed to the current power-spectrum-based models of turbulence. 55 

A general view of the stochastic approach of stationary and isotropic turbulence (in which the random 56 

variables describing turbulence have the same statistical properties in all directions) can be seen in 57 

many text books, e.g. Pope (2000). In this paper, we focus on the investigation of the second-order 58 

statistics (e.g. power spectrum) and the preservation of the marginal probability density function 59 

(pdf). We are mainly interested in the local and global stochastic properties of a process, by calculating 60 

its fractal dimension and by examining whether it exhibits HK behaviour, respectively. Furthemore, 61 

we investigate the stochastic properties of the most common three-dimensional power-spectrum-62 

based models of stationary and isotropic turbulence in time domain and we detect some model 63 

weaknesses despite their widespread use. A simpler and more robust model, which incorporates both 64 

fractal and Hurst-Kolmogorov (HK) possible behaviours, is proposed using a second-order stochastic 65 

framework based on the concept of climacogram. This model is tested over high resolution nearly 66 

isotropic observational data of laboratory scale. Moreover, we show that the same model can be used 67 

for small-scale hydrometeorological processes generated by turbulence such as atmospheric wind 68 

speed and precipitation intensities. Expressions of other stochastic tools such as the autocovariance 69 

and power spectrum are also produced directly from the model and are in agreement with data. 70 

Finally, uncertainty, discretization and bias related errors are estimated for each stochastic tool, 71 

showing, in general, lower errors for the climacogram-based model and larger ones for power-72 

spectrum based ones. It is noted that the HK process corresponds to Fractional Gaussian Noise (cf. 73 

Mandelbrot and Wallis 1968) and is named after Hurst (1951), who first detected the long-term 74 

behaviour in geophysical time-series and Kolmogorov (1940) who first introduced the mathematical 75 

form of the process (cf. Koutsoyiannis 2011a). 76 

2. Definitions and notations 77 

Stochastic modelling and probabilistic approaches have been proven useful in the investigation of 78 

processes that resist a deterministic description, such as turbulence (e.g. Kraichnan 1991 ch. 1, Frisch, 79 

2006 ch. 3, McDonoug, 2007 ch. 1, Koutsoyiannis 2014). Using stochastic mathematical processes one 80 

can represent, and thus interpret, a natural process based on its statistical properties whose values can 81 

be estimated through stochastic tools such as autocovariance-based ones defined in the equations 82 

below: 83 

����: = Cov
����, ��� + ���         (1) 84 

����: = ��0� − ����          (2) 85 

����: = 4 � ���� cos�2π��� d���          (3) 86 
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where ���� is the continuous time process (underscore denotes a random variable), ���� is the 87 

autocovariance function, ���� the variogram (else known as 2nd structural function), ���� the power 88 

spectrum and �, � the continuous time lag and frequency, respectively (see in Appendix for details). 89 

Other stochastic tools can be based on the climacogram (e.g. Koutsoyiannis 2013a), which is defined as 90 

the (plot of) variance of the averaged process �� � ����d� �  (assumed stationary) vs averaging time scale 91 

m and is denoted as !�"�: 92 

!�"�: = #$%&� '�(�)(�* + ,           (4) 93 

The climacogram is useful to measure the variance of a process among scales (the kinetic energy, in 94 

case the variable under consideration is the velocity), and has many advantages in stochastic model 95 

building, namely small statistical as well as uncertainty errors (Dimitriadis and Koutsoyiannis 2015). It 96 

is also directly linked to the autocovariance function by the following equations (Koutsoyiannis 97 

2013a): 98 

!�"� = 2 � �1 − �����"�d�.�          (5) 99 

���� = /,01,2�1�34/1,            (6) 100 

A climacogram-based spectrum (CBS), else known as the ‘pseudospectrum’, for comparison with the 101 

classical power spectrum, can be also defined as (Koutsoyiannis 2013a): 102 

5�"�: = 42�./7�7 81 − 2�./7�2��� 9         (7) 103 

Furthermore, we introduce here, a climacogram-based variogram (CBV) for comparison with the 104 

classical variogram: 105 

:�"�: = !�0� − !�"�          (8) 106 

Note that both CBS and CBV include the process variance at scale 0, i.e. !�0� and thus, they are 107 

applied only after a stochastic model is set. 108 

All the above stochastic tools definitions and expressions in discrete time as well as widely used 109 

estimators, estimations (based on the latter estimators) and expected values, can be found in 110 

Appendix. 111 

3. Most common stochastic models of stationary and isotropic 112 

turbulence 113 

It is noted that the log-log derivative (LLD) is an essential concept in turbulence as it can identify 114 

possible scaling behaviour related to asymptotic coefficients (e.g. fractal dimension and Hurst 115 

coefficient). The LLD of any function f(x) is defined as: 116 

;#��� ≔ ) >?0@�'�3) >? ' = '@�'� )@�'�)'          (9) 117 

and for the finite logarithmic derivative of f(x), e.g. in case of discrete time process, we choose the 118 

backward log-log derivative, i.e.: 119 
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;#��A� ≔ >?0@�'B�/@�'BC��3>?�'B/'BC��           (10) 120 

Based on Gneiting et al. (2012) analysis, the fractal dimension (F) can be defined as (cf. Beran et al. 121 

2013 ch. 3.6): 122 

D ≔ E + 1 − .4 lim1→� :#���         (11) 123 

where N the dimension of the field (e.g. N=1 for 1D velocity field). 124 

Based on Beran et al. (2013 ch. 1.3) analysis, the Hurst coefficient (H) can be defined as: 125 

J ≔ 1 + .4 lim →� !# �"�         (12) 126 

3.1 Commonly used processes 127 

Following the stochastic framework in Section 2 (and in Appendix), we derive in Table 1, the 1D and 128 

3D isotropic power spectra as well as their LLD’s, for a Markovian process, a special case of a 129 

powered-exponential process (e.g. Yaglom 1987 ch. 10, Gneiting et al. 2012) and a generalized HK 130 

(gHK) process (cf. Dimitriadis and Koutsoyiannis 2015), which the latter behaves as Markovian-like 131 

for small scales and HK-like for large ones. These positively-correlated mathematical processes 132 

enclose possible asymptotic behaviours in large and small scales. In particular, a positively-correlated 133 

natural process may approach zero or infinite scale, by a powered-exponential (e.g. Markovian 134 

process) or a power-type (e.g. HK process) rise or decay, respectively. The 1D power spectrum and the 135 

3D one, denoted as �KL�M�, are related by (Batchelor 1959 p. 50, Pope 2000 pp. 226-227, Kang et al. 136 

2003): 137 

���� = � ',N.'O �KL�‖M‖���. d�         (13) 138 

�KL��� = 7O4 /Q �RS0T�R�3SR U/7           (14) 139 

where M is the isotropic 3D frequency vector, with ‖M‖ = � ≥ 0. 140 

As mentioned above, the most common used model for stationary and isotropic turbulence consists of 141 

the work of many scientists. Combining them into one equation, the power spectrum of isotropic and 142 

stationary turbulence can be written as (Pope 2000 pp. 232-233, Cerutti and Meneveau 2000, Kang et 143 

al. 2003): 144 

�KL��� = ;W��, �W, X�;Y��, �Y�;L��, �L�        (15) 145 

where �W, �Y, �L and X are model parameters (see Pope 2000, pp. 233 for description) and from the 146 

work of Von Karman (1948), for the from the work of Von Karman (1948), for the energy containing 147 

eddies (large scales):  148 

;W��, �W, X� = Q 7Z7,[\]UÔ[_
         (16) 149 

combined with the work of Kolmogorov (1941a-c) for the inertial range (intermediate scales): 150 

;Y��, �Y� = �Y�NÔ           (17) 151 

and from the work of Kraichnan (1959) for the dissipation range (small scales): 152 



5 

;L��, �L� = eN7\a          (18) 153 

Table 1: 1D and 3D power spectrum for Markovian, powered-exponential and gHK processes as well 154 

as their LLD’s (estimated from equation 9), where b is the parameter related to the true variance of the 155 

process, c the scale parameter and b is related to the power-type behaviour of the process. 156 

Markovian 
 Powered-exponential 

special case 
 gHK  

���� = beN|1|/e (19) ���� = beN�1/e�,
 (20) 

���� = b �1 − f��2 − f��1 + |�|/c�g  

with f ∈ �0,2� 

(21) 

���� = 4bc1 + 4π4c4�4 

with lim7→� �# = 0 

and lim7→� �# = −2 

(22) 

���� = bc√π2 eN�e7j�,
 

with �#��� = −2�c�π�4, 

lim7→� �# = 0 and 

lim7→� �# = −∞ 

(23) 

lim7→� � ~�gN. 

with lim7→� �# = f − 1 

(24) 

lim7→� � ~�N4 

with lim7→� �# = −2 

(25) 

�KL���= 4bc�2πc��m�1 + 4π4c4�4�K 

with lim7→� �KL# = 4 

and  lim7→� �KL# = −2 

(26) 

�KL���~cn�meN�e7j�,
 

with �#��� = 4 − 2�c�π�4 

lim7→� �KL# = 4 and 

 lim7→� �KL# = −∞ 

(27) 

lim7→��KL~�gN. 

with lim7→o �KL# = f − 1 

(28) 

lim7→��KL~�N4 

with lim7→� �KL# = −2 

(29) 

 157 

3.2 Stochastic properties of large-scale range 158 

For the 3D and 1D (derived from the 3D one) power spectra at the energy containing range, we have 159 

that: 160 

lim7→o �KL = lim7→� � ~�_         (30) 161 

where Von Karman (1948) suggests X = 4 (or else known as ‘Batchelor turbulence’, cf. Davidson 2000), 162 

while other works result in different values, e.g. Saffman (1967) suggests X = 2. 163 

There are many arguments about the proper value of the p parameter and its relation to the 164 

Loitsyansky integral which controls the rate of decay of kinetic energy (cf. Davidson 2000). The main 165 

debate is whether points at a large distance in stationary, isotropic and homogeneous turbulent flow 166 

are statistically independent or show a correlation that decays either exponentially (e.g. Von Karman 167 

model for wind gust, cf. Wright and Cooper 2007 ch. 16.7.1; Faisst and Eckhardt 2004, Avila et al. 2010 168 

and Kuik et al. 2010, models for pipe flow) or with a power-type law (see below for several examples). 169 

Towards the stochastic properties of the aforementioned equation, we can see from Table 1 that the 170 

case X = 2 does not correspond neither to exponential (Markovian or powered-exponential) nor to 171 

power-type (i.e. HK) decay of autocovariance. Hence, this model cannot be applied to asymptotic zero 172 
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frequencies (or infinite scales). Interestingly, the case X = 4 can be interpreted by a Markovian 173 

(equation 26) or a special case of the powered-exponential (equation 27) decay of autocovariance. 174 

However, this case also excludes the HK behaviour, i.e. autocovariance long-range dependence (e.g. 175 

equation 21), where X now equals f − 1 and is bounded to [-1, 1]. 176 

Although the aforementioned models do not include a possible power-law decay of autocovariance 177 

(i.e. HK behaviour), several works show strong indication that turbulence natural processes can 178 

exhibit HK behaviour rather than Markovian. Such works are reported by e.g., Nordin et al. (1972) for 179 

laboratory turbulent flume and turbulent river velocities, Helland and Van Atta (1978) for grid 180 

turbulence velocities, Goldstein and Roberts (1995) for magneto-hydrodynamic turbulent solar wind, 181 

Chamorro and Potre-Agel (2009) for wind turbulent wakes and grid-turbulence, Dimitriadis and 182 

Papanicolaou (2012) and Charakopoulos et al. (2014a,b) for turbulent buoyant jets, Koutsoyiannis 183 

(2013b) for grid turbulence. Koutsoyiannis (2011b) has also shown that entropy maximization results 184 

in HK dynamics at asymptotic times (zero or infinity) under the constraints of mean, variance and 185 

autocovariance of lag one preservation. 186 

We believe that the reason a possible HK behaviour is not detected in geophysical processes (which 187 

are often characterized by lack of measurements), is that mathematical smoothing techniques are 188 

applied (e.g. windowing or else Welch approaches, regression analysis, wavelet techniques, see other 189 

examples in Stoica and Moses 2004 ch. 2.6). Particularly, application of windowing techniques to any 190 

stochastic tool can be misleading since they eliminate a portion (depending on the type and length of 191 

the window applied) of the time-series’ variance (which often is incorrectly attributed to ‘noise’, cf. 192 

Koutsoyiannis, 2010). This elimination can lead to process’ misrepresentation in case of significant 193 

effects of discretization, small and/or finite record length and bias (examples of applications to the 194 

power spectrum can be seen in e.g. Lombardo et al. 2013). An example of smoothing out the HK 195 

behaviour by applying the Welch approach with a Bartlett window and no segment-overlapping to an 196 

observed time-series, is shown in Fig. 1(a). Even though the smoothing technique decreases the power 197 

spectrum variance, it also causes low frequency loss of information (e.g. see other examples in 198 

Dimitriadis et al., 2012). This loss of information may cause a process misinterpretation, as illustrated 199 

in Fig. 1(b), where the 1D autocorrelation function (derived from the 3D power spectrum model in 200 

equation 15) exhibits a Markovian-like decay, while the empirical one (derived from the windowed 201 

empirical power spectrum partitioned into 103 segments) exhibits an HK behaviour. Also, this 202 

smoothing technique should be used in caution in strong-correlated processes, as increasing the 203 

number of partitioned segments will also cause an increase in their cross-correlation (Fig. 1a). Finally, 204 

processes with HK behaviour have usually large bias and in case this is not included in the model, the 205 

empirical autocovariance’s rapid decay in large scales (or equivalently lags) may be erroneously 206 

interpreted as short-range dependence (Fig. 1b). 207 

  208 
Fig. 1: (a) Example of loss of low frequency information caused by the application of the windowing 209 

technique, in a time-series provided by the Johns Hopkins University (see also in Section 4 for more 210 

details on the dataset) as well as the maximum cross correlations between the partitioned segments; 211 
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(b) 1D autocorrelation function derived from the 3D power spectrum model in equation 15 (with 212 

parameters based on the fitting of the windowed 1D power spectrum with 1000 segments in Fig. 1(a): 213 �W = 2.5 mN4, X = 4, �Y = 13.0 mK/s4, �L = 2 × 10Nm m); a Markovian autocorrelation function, i.e. 214 uN�1/e�, for reasons of comparison; and the corresponding (to the windowed 1D power spectrum with 215 

1000 segments in Fig. 1a) empirical autocorrelation function. 216 

To incorporate possible HK behaviour in the model, we may assume an autocovariance power-type 217 

decay at large scales, where the 3D and 1D power spectra at asymptotically zero frequency are of the 218 

form �gN. (Table 1), with f bounded to �0,2�, for positively correlated processes (0.5 < J < 1), 219 

negatively-correlated processes (0 < J < 0.5) and for a process with a random decay in large scales 220 

(J = 0.5), with J the Hurst coefficient (J = 1 − f/2, from equation 12). 221 

3.3 Stochastic properties of small-scale range 222 

Similarly, for the 3D and 1D power spectra at the dissipation range, we have that: 223 

lim7→� �KL ��� = lim7→� � ���~eN7        (31) 224 

This results in autocovariance function of the form: 225 

����~ .1,[.           (32) 226 

which corresponds to Wackernagel (1995) process (he also refers to it as autocovariance-based 227 

Cauchy-class process resembling the Cauchy probability function). A generalized expression of this 228 

process can be found in Gneiting (2000), which we will refer to it as the Gneiting process (its analytical 229 

expressions are shown in Section 4.2). For small lags this process behaves like (e.g. Gneiting and 230 

Schlather 2004): 231 

lim1→� � ���~1 − �4~uN1,
         (33) 232 

which corresponds to the special case of a powered-exponential process in Table 1. Note, that this 233 

process corresponds to J = 0 (based on the definition in equation 12), if applied to large scales. 234 

  235 
Fig. 2: (a) Power spectra and (b) corresponding autocovariances, in continuous time as well as their 236 

expected values, with varying number of records (denoted as n) of a gHK process. The expected 237 

autocovariance and power spectrum are estimated from equation (A17) and (A25), respectively (see 238 

Appendix). 239 

Other models for the dissipation range are of the form of a powered-exponential power spectrum 240 

process (e.g. Cerutti and Meneveau 2000) which may result from a powered-exponential 241 

autocovariance function (Table 1). However, there is evidence that these models cannot interpret the 242 

frequently observed spike in the high frequency power spectrum (e.g. Cerutti and Meneveau 2000, 243 
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Kang et al. 2003). This is usually ignored and attributed to instrumental noise. Here, we show that this 244 

spike may appear in HK processes and is due to discretization and bias errors, in case the shape 245 

parameter c/w takes large values (Fig. 3). 246 

 247 
Fig. 3: Expected power spectra (estimated from equation A25) of a gHK process, with varying c/w 248 

(where Δ the sampling time interval, see in Appendix for its relation to the expected value of a 249 

stochastic tool). 250 

3.4 Stochastic properties of intermediate-scale range 251 

From Table 1, one may observe that the power spectrum asymptotic LLD’s from different processes, 252 

are often coincident with each other. For example, for both a Markovian and a gHK process with f =1, 253 

the power spectrum LLD is 0 for the low frequency tail and -2 for the high frequency one. This may be 254 

confusing and result in misinterpretation of the natural process. A solution to this may be to 255 

incorporate additional stochastic tools in the analysis as shown in Section 4. For the aforementioned 256 

example, if the autocovariance function asymptotic properties (local and global ones) are analyzed, 257 

one can decide upon a powered-exponential lag decay (e.g. a Markovian process) and a power-type 258 

one (e.g. a gHK process). At the same basis, when a power-type behaviour appears in the intermediate 259 

frequencies of a power spectrum (e.g. in case of a -5/3 LLD), it may be misleading to interpret it as a 260 

power-law function (and thus, a power-type autocovariance decay, as shown in Table 1), because this 261 

can result from different kind of processes which they do not have power-type expressions for the 262 

intermediate scale-range. An illustrative example is shown in Fig. 4, where the -5/3 LLD in the 263 

intermediate frequencies of the power spectrum results from a simple combination of a Markovian 264 

and a gHK process, both of which have a purely stochastic interpretation and they do not include 265 

power-type laws in the intermediate frequency-range. 266 

  267 
Fig. 4: Expected power spectrum (estimated from equation A25) resulted from a combination of a 268 

Markovian and a gHK process (with parameters same as in the application of section 4.1 and N=104). 269 

Note also, that the Kolmogorov (1941a-c) power-type power spectrum refers only to intermediate 270 
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autocovariance asymptotic large-scale behaviour, i.e. ����~� ÔN., gives an invalid (based on equation 272 

12) J = 4/3 > 1. 273 

4. Proposed model and applications 274 

In the previous section, we present several limitations concerning the stochastic properties of 275 

proposed turbulent models from literature. Specifically, we see that they only include exponential 276 

decay in the energy containing area and thus, completely excluding possible HK behaviour. They also, 277 

describe the dissipation area decay with only a specific case of a powered-exponential process and 278 

thus, leaving out all other possible types of decay. Moreover, they interpret a possible power-type-like 279 

intermediate area (of the power spectrum) with power-type behaviour (and particularly, only that of 280 

the K41 theory) which can also result from intermediate non power-type processes (as shown in Fig. 281 

4). Furthermore, these models are based only on the power spectrum stochastic tool (causing possible 282 

misinterpretation in other tools, e.g. climacogram, autocovariance) and on multiple processes 283 

multiplication (which may cause numerical difficulties in stochastic generation). Since turbulence 284 

generates and drives most of geophysical processes, we expect geophysical processes to exhibit similar 285 

types of decay in small and large scales. Hence, a more robust, flexible and parsimonious model is 286 

required that can incorporate all the aforementioned microscale and macroscale behaviours linking 287 

turbulence to hydrology. Here, we choose the ergodic stochastic model in Table 2, which consists of 288 

two independent processes, that of a powered exponential (controlling the small scales and fractal 289 

behaviour, cf. Gneiting et al. 2012) and a gHK (controlling the large scales and HK behaviour, cf. 290 

Dimitriadis and Koutsoyiannis, 2015), which are combined in a way to exhibit the desired expected 291 

LLD in the intermediate scales. This model can describe all linear combinations of powered-292 

exponential and HK processes, including the often observed intermediate quick drop of all the 293 

stochastic tools (see Section 4.1, 4.2 and 4.3, for an example in grid turbulence, wind and precipitation 294 

process). This particular drop may be due to the interference of boundaries and/or the existence of 295 

multiple periodic functions, as for example in case of combinations of HK with cyclostationary 296 

processes (cf. Markonis and Koutsoyiannis 2013). Furthermore, although the proposed model results 297 

in a complicated power spectrum expression (equation 37), it provides simpler expressions for the 298 

other tools if compared to the most common model described in Section 3 (which has no analytical 299 

expressions for all tools except for the power spectrum). Finally, the proposed model is also justified 300 

by the maximization of entropy production in logarithmic time (abbreviated EPLT), a term introduced 301 

and defined by Koutsoyiannis (2011c) as the LLD of entropy. Particularly, Koutsoyiannis (2015) 302 

showed that the powered-exponential process has the largest EPLT for the microscale range (time-303 

scale tending to zero) and the HK process has the largest EPLT for the macroscale range (time-scale 304 

tending to infinity). Hence, the maximization of EPLT can result from a combination of both 305 

processes. 306 

Table 2: Autocovariance, variogram, climacogram, CBV, CBS and power spectrum mathematical 307 

expressions of the stochastic model, consisted of two independent processes in continuous time, that 308 

of a powered exponential and a gHK. 309 

Type Stochastic model  

Autocovariance* ���� = b.eN�|1| e�⁄ �z + b4�1 + |�| c4⁄ �Ng
 (34) 
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Climacogram !�"� = 2b. { e� Γ>�1/}, �"/c.�~� − Γ>�2/}, �"/c.�����"/c.�4
+ 2b4��"/c4 + 1�4Ng − �2 − f�"/c4 − 1��1 − f��2 − f��"/c4�4  

(35) 

Variogram ���� = b. + b4 − ���� (36) 

Power spectrum** ���� = ICF
b.eN�|1| e�⁄ �z� + 4b4c4g  Γ�1 − f�Sin 8�g4 + 2c4�|�|9�2π|�|�.Ng
− 4b4c4 F. 4 &1; 1 − g4 , K4 − g4 ; −�4c44�4+1 − f  

(37) 

CBV :�"� = b. + b4 − !�"� (38) 

CBS 5��� = 2!���� {1 − !���b. + b4� (39) 

* b4 = b�1 − f��2 − f�, with b a parameter related strictly to the process’ variance.          310 

** Since the inverse cosine Fourier (ICF) transform of the powered-exponential function and the hyper-311 

geometric function F. 4 have not an analytical form, this cannot be written in a closed expression and 312 

numerical algorithms must be used. 313 

4.1 Application to small-scale grid turbulence 314 

In this section, we show the stochastic analysis of a grid-turbulence process based on a large open 315 

access dataset (http://www.me.jhu.edu/meneveau/datasets/datamap.html), provided by the Johns 316 

Hopkins University. Microscale turbulence description has many applications in hydrometeorological 317 

processes which often lack small scale measurements (cf. Koutsoyiannis 2011c), thus introducing 318 

limitations in the fitted models (e.g. the fractal dimension of the process cannot be estimated based on 319 

the definition of equation 11). An illustrative example of an application to atmospheric wind speed is 320 

shown in Section 4.2. 321 

Here, we only consider the longitudinal wind velocity dataset along the flow direction since the other 322 

two components are limited by the experiment’s construction boundaries. This dataset consists of 40 323 

time-series (Fig. 5a), measured by X-wire probes placed downstream of the grid (Kang et al. 2003). The 324 

first 16 time-series correspond to velocities measured at transverse points abstaining r = 20M from the 325 

source, where M = 0.152 m is the size of the grid. The next 4 time-series correspond to distance r = 326 

30M, the next 4 to 40M and the last 16M to 48M. For details regarding the experimental setup and 327 

datasets see Kang et al. (2003). All time-series are considered to be stationary with a nearly-Gaussian 328 

probability density function (see in Fig. 5c), are nearly isotropic with isotropy ratio 1.5 (Kang et al. 329 

2003) and very long (each contains n = 36×106 data points), covering all three aforementioned scale 330 

ranges of equation (15). Moreover, the sampling time interval, denoted as D, is considered small (2.5 331 

μs), therefore equality D = Δ, where Δ ( ≤ D) the instrument response time, can be assumed valid. In 332 

Appendix, we noted that if D is small the differences between stochastic processes in discretized time 333 

with Δ > 0 and Δ ≈ 0 are also expected to be small. Finally, following the same analysis of Dimitriadis 334 

and Koutsoyiannis (2015), the expected value of each examined stochastic tool can be roughly 335 

estimated as the average value of all 40 time-series (Fig. 6a-g), after homogenization is applied (the 336 

marginal variance of the process is estimated approximately 2.272 m2/s2). Additionally, we choose the 337 

38th time-series for the empirical one, after observing that is the closest one to each stochastic tool’s 338 

averaged value (Fig.  6h). Since we expect this to be near to the process expected values, it can help us 339 

test the validity of the stochastic model. Modelling phenomena such as intermittency (which is related 340 
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to high-order derivatives, c.f. Kang et al. 2003, Batchelor and Townsend 1949) as well as preservation 341 

of high order moments (which are often characterized by high uncertainty, cf. Lombardo et al. 2014) 342 

deviate from the purpose of this paper. In this paper, we are mainly interested in the local and global 343 

2nd order stochastic properties of the process, by calculating the process fractal dimension and by 344 

examining whether the process exhibits HK behaviour, respectively. 345 

As we have already mentioned, the velocity field is not homogeneous and the root-mean-square (rms) 346 

velocity components (i.e. standard deviations of velocity) are decreasing with the distance from the 347 

grid (Fig. 5b). To make data homogeneous, we normalize each time-series by subtracting the mean 348 ����� and dividing by the standard deviation �����, both estimated from the equations of the fitted 349 

curves in Fig. 5(b): 350 

����� = 4.16�� + 0.3�N�.�n�         (40) 351 

�����/����� = 0.859� + 3.738         (41) 352 

where r is the distance from the grid. Note that coefficient 0.3 in equation (40) has been added for 353 

consistency reasons, so that the variance is finite at distances near the grid. 354 

We also observe that the pdf of the time-series are not exactly Gaussian, since for example the 355 

empirical skewness is approximately equal to 0.2 (Fig. 5c and 5d). Here, we propose a normalization 356 

scheme by separating the empirical pdf to multiple segments and then approximating them with 357 

multiple Gaussian distributions: 358 

;���� = � N��., �.�, −∞ < �. ≤ ℎ.N��4, �4�, ℎ. < �4 ≤ ℎ4…N��� , ���, ℎ�N. < �� < ∞�        (42) 359 

where ;���� is the model pdf of the velocity �, N��� , ��� is a Gaussian pdf for the �� branch of the 360 

empirical pdf (consisted of all quantiles ℎ�N. < �� ≤ ℎ�), with � varying from 1 to o (with ℎ� → −∞ and 361 ℎ� → ∞) and with o representing the number of branches we separate the empirical pdf. 362 

The �� and �� parameters can be calculated by simply fitting N��� , ��� to the empirical pdf of the 363 

quantiles within the l segment (subject to the constraints that the cdf and pdf values between the 364 

multiple Gaussian functions are equal). Specifically, if the � segment consists of only two quantiles, �. 365 

and �4, and with D.and D4, the empirical cumulative distribution function (cdf) at these points, then 366 

the above parameters are obviously equal to: 367 

�� = �. − ��√2erf N.�2D. − 1�         (43) 368 

�� = �,N��√40�% C��4¡,N.�N�% C��4¡�N.�3         (44) 369 

with erf N. the inverse of the error function. 370 

Then, we can easily transform �~;� to �?~N�0,1�, by simply subtracting from each set of quantiles 371 

(ℎ�N. < �� ≤ ℎ�) the mean �� and then dividing with the standard deviation ��. Furthermore, the 372 

reverse transformation scheme from a variable �?~N�0,1� to �%~;�, can be easily done by multiplying 373 

each set of quantiles (ℎ′�N. < �£,� ≤ ℎ′�) from �?, with �� and then by adding �� (where ℎ′�N. = ¤¥N.N¦¥§¥ , 374 ℎ′� = ¤¥N¦¥§¥  and �£,� = �¥N¦¥§¥ ). This scheme can be easily applied to any type of empirical pdf, however in 375 

cases where the empirical pdf highly deviates from a Normal pdf, a large number of segments may be 376 

acquired and the process’ pdf be poorly interpreted. 377 
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Here, we observe that the left and right branch of the averaged empirical pdf can be very well 378 

approximate by two Gaussian distributions. Thus, we approximate the pdf of the process with 2 379 

segments (o = 2), with parameters shown in Fig. 5(b), with Pearson correlation coefficient R2 = 0.995, 380 

between the empirical and the modelled pdf of equation (45): 381 

;���� = ¨ N�0,1�, −∞ < � ≤ 1N�−0.3,1.3�, 1 < � < ∞�         (45) 382 

  383 

  384 
Fig. 5: Data preliminary analysis: (a) 1 s time window of one of the raw time-series; (b) averaged 385 

velocity mean ����� divided by the averaged velocity standard deviation ����� (variation coefficient) 386 

and averaged velocity standard deviation ����� as a function of r, along the longitudinal axis, as well 387 

as their fitted curves (black dashed lines); (c) empirical pdf’s of the standardized time-series (multi-388 

coloured lines) by subtracting ����� and dividing with ����� each time-series and the empirical 389 

averaged pdf; (d) qq-plot of averaged empirical pdf vs standard Gaussian pdf, i.e. N(0,1), along with 390 

modelled pdf from equation 45 (all parameters in m/s). 391 

In Fig. 6, we show the climacograms, autocovariances, variograms, power spectra, CBV’s and CBS’s 392 

from all 40 standardized time-series, their averaged values and the corresponding values of the 38th 393 

time-series. Assuming that these averaged values are near the process’ expected ones, we can fit a 394 

stochastic model based on all the stochastic tools examined, and particularly the ones with the 395 

smallest statistical error for each scale, lag and frequency. We observe (Fig. 6g-h) that the large scale 396 

autocovariance and climacogram expected LLD’s are both larger than -1 and that the power spectrum 397 

and CBS low frequency expected LLD’s are larger than 0. Hence, it is most probable that the process 398 

exhibits HK behaviour. 399 
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parameters in Table 2, a dimensionless fitting error is considered (as in Dimitriadis and Koutsoyiannis 412 

2015): 413 

FEª = ∑ QW
ª¬���Nª¬®�¯���W
ª¬��� U4          (46) 414 

where °±²�³�
 is the empirical stochastic tool estimated from the data, E
°±� the expected one estimated 415 

from the model and z the corresponding to the stochastic tool scale, lag or frequency. 416 

The optimization analysis results in scale parameters b. = 0.422 m2/s2 and b4 = 0.592 m2/s2, shape 417 

parameters c. = 19.6 ms and c4 = 1.45 ms, fractal parameter } = 1.4 and HK parameter f = 0.32, 418 

with correlation coefficient R2 approximating 1.0 for the climacogram and CBV, 0.99 for the CBS and 419 

variogram, 0.95 for the autocovariance and 0.8 for the power spectrum. 420 

Applying the L'Hôpital's rule and through mathematical calculations, we find that the fractal 421 

dimension of the process in Table 2 is affected only by the exponent α of the powered-exponential 422 

process and the Hurst coefficient only by the exponent b of the gHK one. Thus, process’ fractal 423 

dimension and Hurst coefficient are estimated (based on the definition in equation (11) and (12) and 424 

Gneiting and Schlather 2004, analysis) as: 425 

D = 2 − �4 = 1.3           (47) 426 

J = 1 − g4 = 0.84          (48) 427 

Finally, to test the validity of our initial assumption, that for the specific model in Table 2 and the 428 

estimated parameters the classical estimators of the climacogram-based stochastic tools have the 429 

smallest error ε if compared to the autocovariance, variogram and power spectrum ones, we proceed 430 

as follows. We calculate the statistical error for each stochastic tool via Monte Carlo analysis (since we 431 

lack analytical expressions for the variance of the expected values): 432 

´ª = W&0ª¬Nª3,+ª, = ´ª,µ +  ´ª,g         (49) 433 

where we have decomposed the dimensionless mean square error into a variance and a bias term (see 434 

in Dimitriadis and Koutsoyiannis 2015), 435 

´ª,µ = var
°±�/°4           (50) 436 

´ª,g = 0° − Ε
°±�34/°4          (51) 437 

where ° is the examined stochastic tool, ´ª,g can be easily estimated from equations in Tables A1-A6 438 

and ´ª,µ is calculated from the Monte Carlo analysis since we lack analytical expressions. 439 

Thus, we produce 40 time-series with n = 36×106 using the SMA algorithm (Koutsoyiannis 2000 and 440 

2015), which can replicate any stochastic process. Then, we compare the errors ε for each stochastic 441 

tool for 81 points logarithmically distributed from 1 to n (Fig. 8). Note that in Fig. 8, we try to show all 442 

estimates within a single plot for comparison. The inverse frequency in the horizontal axis is set to 443 

1/(2ω), in order to vary between 1 and n/2, and the lag to j+1, so as the estimation of variance at j = 0 is 444 

also shown in the log-log plot. From the results of this analysis, it can be observed that the initial 445 

choice of the climacogram-based stochastic tools (and the variogram’s for a small window of 446 

intermediate LLD’s) to interpret the empirical process, is proven valid for the current model structure, 447 

model parameters and examined range of scales, with the power spectrum exhibiting the largest 448 

errors. 449 
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 450 

  451 

  452 

  453 
Fig. 7: Stochastic modelling: true in continuous time (estimated from the model), true in discrete time 454 

(estimated from the model), expected (estimated from the model), empirical averaged (estimated from 455 

all 40 time-series) and observed (estimated from the 38th time-series), for the (a) CBS, (b) climacogram, 456 

(c) CBV, (d) power spectrum, (e) autocovariance and (f) variogram. 457 

  458 
Fig. 8: Dimensionless errors (a) ´ª and (b) ´ª# of the climacogram, autocovariance, variogram, CBV, 459 

power spectrum and CBS calculated from 40 synthetic series with n = 36×106, based on the process in 460 

Table 2. Note that the LLD’s included in ´ª# estimations are calculated using equation (10). 461 
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 462 
Fig. 9: Empirical vs modeled 10% and 95% confidence intervals based on the climacogram 463 

(approximately up to the 20% of maximum scale). 464 

Additionally, we estimate the empirical process low and high confidence intervals (for the 465 

climacogram only) for the chosen model and fitted parameters around 10% and 95%, respectively (Fig. 466 

9). Note that the reason we apply the model to the expected value of the empirical process and not to 467 

the mode is because it is much simpler due to the existence of analytical expressions of the expected 468 

values. The method of maximum likelihood is far too complicated and time-consuming (due to the 469 

lack of analytical expressions) but it offers better interpretation of the process. However, in cases 470 

where there are multiple realizations of the process (as in the current application so that we can have 471 

an estimate of the expectation of the process), the proposed in this paper method combines both 472 

simplicity and ample statistical basis. 473 

4.2 Application to atmospheric wind speed 474 

In this section we show the stochastic analysis of a time-series of one month (Fig. 10), consisted of high 475 

resolution (Δ ≈ D = 0.1 s) atmospheric longitudinal wind speed (measured in m/s). This is recorded by 476 

a sonic anemometer on a meteorological tower, located at Beaumont KS and are provided by 477 

NCAR/EOL (http://data.eol.ucar.edu/). First, we divide the time-series into 3 sets, each of which 478 

includes around 1400 time-series of 10 min duration and with marginal empirical variances 0.15, 0.5 479 

and 1.4 m2/s2, respectively (Fig. 11). We have chosen this process since it is of high importance in 480 

hydrometeorology and it includes a large variety of marginal variances. In Fig. 11, one may clearly 481 

observe the transition from a process with low marginal variance having a power spectrum with a 482 

drop in the intermediate scales (like in the grid-turbulence application), to the one with larger 483 

marginal variance power spectrum (with no drop). This again shows the importance of the type of 484 

model we propose in this paper (Table 2), which can describe a great variety of natural processes’ 485 

behaviours. 486 

 487 
Fig. 10: Part of the wind speed time-series provided by NCAR/EOL (http://data.eol.ucar.edu/). 488 
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  489 

  490 
Fig. 11: Averaged empirical (a) climacograms and autocovariances, (b) CBV and variograms, (c) CBS 491 

and power spectra (for the three sets) and (d) qq-plot of empirical pdf vs standard Gaussian pdf (for 492 

the original time-series), along with modelled pdf from equation 42 (all parameters in m/s). 493 

However, it would be more appropriate to apply separately first, the powered-exponential, gHK and 494 

Gneiting model (see equation 52), if the empirical process seems to have two distinctive areas (like the 495 

2nd and 3rd set of wind speed). In the next equations, we present stochastic tools for the Gneiting 496 

process, with some alterations to include cases of J → 0  and white noise behaviour, i.e. J = 0.5   (so 497 

as to be also consistent with the HK process, cf. Koutsoyiannis 2015): 498 

���� = ¸�.Ng��4Ng��.[�|1| e⁄ �z�¹/z           (52) 499 

!�"� = b�2 F. 4 &.º , gº , 1 + .º , −� e �º+ − F. 4 &4º , gº , 4[ºº , −� e �º+�      (53) 500 

with }, f ≥ 0 and b�1 − f��2 − f� the process’ variance (the expressions for the rest tools can be found 501 

in Appendix and cannot be written in an analytical form). 502 

Applying the same methodology as in the previous section, the optimization analysis (from the best 503 

fitted model of Table 2) results for the 1st set in scale parameters: b. = 0.115 m2/s2 and b4 = 2.502 m2/s2, 504 

shape parameters c. = 0.484 s and c4 = 103.7 s, fractal parameter } = 0.6 (D = 1.7) and HK parameter 505 f = 0.02 (J = 0.99). For the 2nd set, the best fit corresponds to the Gneiting process (equation 52): 506 b = 1.124 m2/s2, c = 0.029 s, } = 2 (D = 1) and f = 0.04 (J = 0.98). Finally, for the 3rd set, the best fit 507 

corresponds to the gHK process with parameters: b4 ≈ 6 m2/s2, c4 ≈ 0.4 s and f ≈ 0.04 (J = 0.98). The 508 

fitted model (in terms of the climacogram) can be viewed in Fig. 12. 509 
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 510 
Fig. 12: True, expected and empirical (averaged) climacogram values for the wind process stochastic 511 

simulation. 512 

4.3 Application to high resolution precipitation 513 
In this section we show the stochastic analysis of three time-series (Fig. 13) with high resolution (Δ ≈ D 514 

= 10 s) precipitation intensities (measured in mm/h). These episodes are recorded during various 515 

weather states (high and low rainfall rates) and provided by the Hydrometeorology Laboratory at the 516 

Iowa University (for more information concerning these episodes and various stochastic analyses, see 517 

Georgakakos et al., 1994; Papalexiou et al. 2011; Koutsoyiannis and Langousis 2011 ch. 1.5). 518 

 519 
Fig. 13: Three precipitation episodes provided by the Hydrometeorology Laboratory at the Iowa 520 

University (see Georgakakos et al. 1994). 521 

In this case, we treat each episode separately and so, we fit the expected value of the model to the 522 

empirical process (a more statistically correct way would be to work with the mode). Note that the 523 

normalization scheme proposed in this paper would require around five Gaussian functions (due to 524 

the highly skewed probability function) and so, we should use a simpler scheme (e.g. Papalexiou et al. 525 

2011). Applying the same methodology for the stochastic simulation as in the previous sections, the 526 

optimization analysis for T1 results to the model in Table 2, with: b. = 18.0 mm2/h2 and b4 = 110.0 527 

mm2/h2, shape parameters c. = 18.47 s and c4 = 4250.0 s, fractal parameter } = 1.44 (D = 1.28) and 528 

HK parameter f = 0.12 (J = 0.94). For the T2, the best fit corresponds to the Gneiting process 529 

(equation 52): b = 20.153 mm2/h2, c = 33.016 s, } = 1.94 (D ≈ 1) and f = 0.09 (J ≈ 0.95). Finally, for 530 

T3 the best fit corresponds to the gHK process in Table 2, with parameters: b. = 13.2 mm2/h2, shape 531 

parameters c. = 111.7 s and HK parameter f = 0.13 (J ≈ 0.93). 532 
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  533 

  534 
Fig. 14: Averaged empirical (a) climacograms and autocovariances, (b) CBV and variograms, (c) CBS 535 

and power spectra for T1, T2 and T3, and (d) true, expected and empirical (averaged) climacogram 536 

values for the rainfall processes stochastic simulation. 537 

5. Summary and conclusions 538 

Studying turbulence is very helpful in hydrology, as it can provide us with long time-series, enabling 539 

us to focus on the crucial, for hydrological processes, long term properties. Also, it is important in the 540 

interpretation of hydrological (macroscale) processes as turbulence generates and drives most of them 541 

through microscale mechanisms. In this paper, we investigate the most common power-spectrum 542 

based stochastic models of stationary and isotropic turbulence. We see that these models have a high 543 

order of complexity when they are multiplied with each other in order to be combined into a single 544 

equation. Also, most of these models lack stochastic interpretation (as they cannot easily be analyzed 545 

into basic stochastic processes such as powered-exponential or power-type decay of autocovariance 546 

with lag).  Moreover, we remark that these models can lead to natural process misinterpretation due 547 

to the power spectrum identical asymptotic power spectrum behaviours for stochastically different 548 

geophysical processes, e.g. Markovian and gHK with f=1. Finally, these models do not include 549 

important stochastic parameters, such as Hurst coefficient and fractal dimension, thus it often results 550 

in violating basic stochastic asymptotic properties such as theoretical limits of the Hurst coefficient, in 551 

case that Hurst-Kolmogorov (HK) behaviour is observed. 552 

Using the stochastic framework shown in Appendix, we propose a more simple, flexible and robust 553 

model in Table 2 that can incorporate both powered-exponential and HK behaviours in a wide range 554 

of scales. This model also exhibits the Kolmogorov’s log-log derivative of ‘-5/3’ in the intermediate 555 

frequencies without assuming intermediate power law functions. Furthermore, it gives a possible 556 

explanation of the high frequency spike frequently met in power spectra of turbulence time-series that 557 

is probably caused by the process discretization and bias. This model is also tested with high 558 

resolution grid (nearly-isotropic) turbulence velocity measurements of laboratory scale, exhibiting an 559 

excellent agreement. Additionally, we show two examples of hydrometeorological processes 560 

(including wind speed and precipitation time-series), which often present similar behaviours to the 561 
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microscale of turbulence. Moreover, we highlight the advantages of using more than one stochastic 562 

tools to interpret the natural process based on the ones with smaller uncertainty and statistical errors. 563 

More specifically, we compare the climacogram with the autocovariance, the climacogram-based 564 

variogram with the classical autocovariance-based variogram and the climacogram-based spectrum 565 

with the classical power spectrum. We find that combining together climacogram-based stochastic 566 

tools results in smaller uncertainty and statistical errors in regular and log-log derivatives over the 567 

longest range of scales, lags and frequencies, with the power spectrum giving the largest errors. 568 

Finally, we estimate the two parameters characterizing the self-similarity of the examples of 569 

turbulence, wind speed and precipitation processes, namely the fractal dimension and Hurst 570 

coefficient, which refer to small and large time scales respectively. 571 
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Appendix 697 

Here, we present a climacogram-based stochastic framework (Koutsoyiannis 2013a; Dimitriadis and 698 

Koutsoyiannis 2015). All observed time-series are subject to a sampling time interval D, often fixed by 699 
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the observer and a response time Δ (≤ D) of the instrument (Fig. A1), that both affect the estimation of 700 

the statistical properties of the continuous time process ����. Thus, the discrete time stochastic process 701 �A�³�
, can be calculated from ���� as: 702 

�A�³,¼� = � '�½�)½�BC��¾¿¯�BC��¾ ³          (A1) 703 

where À ∈ Á1, ÂÃ is an index representing discrete time, Â = ÄÅ/wÆ is the total number of observations 704 

and Å ⋲ Á�0, ∞�� is the time length of observations. 705 

For simplicity reasons here, we assume that D≈Δ>0, which is also practical for samples with small D 706 

(as the one shown in the application in Section 4). An example of the Markovian process with D≠Δ can 707 

be found in Dimitriadis and Koutsoyiannis (2015). Additional examples and stochastic tools for the 708 

two special cases D=Δ>0 and D>Δ=0, can be found in Koutsoyiannis (2013a). From these analyses, one 709 

can conclude that the differences between the two extreme cases are often small for small D. 710 

  711 
Fig. A1: An example of a continuous time process sampled at time intervals D for a total period T and 712 

with instrument response time Δ. 713 

In Table A1, we introduce the climacogram definition in case of a stochastic process in continuous 714 

time (equation A2) and in discrete time (equation A3), a widely used climacogram estimator (equation 715 

A4) and climacogram estimation (based on the latter estimator) and expressed in function with the 716 

true climacogram (equation A5). In Tables A2 and A3, we introduce the CBV as well as the CΒPS. 717 

Moreover, in Table A4, we define the autocovariance function in case of a stochastic process in 718 

discrete time (equation A15), a widely used autocovariance function estimator (equation A16) as well 719 

as an estimation based on the latter estimator and expressed in function with the true climacogram 720 

(equation A17, derived in Dimitriadis and Koutsoyiannis 2015). In Tables A5 and A6, we define the 721 

autocovariance-based classical variogram and power spectrum.  722 
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Table A1: Climacogram definition and expressions for a process in continuous and discrete time, 723 

along with the properties of its estimator. 724 

Type Climacogram  

continuous !�"�: = Var ÉÊ ��:�d: 
� Ë /"4 

where " ⋲ ℝ[ 

(A2) 

discrete !)�³��Í�: = Var
∑ ���³,¼�Î�Ï. �Í4 = !�Íw� 

where Í ⋲ ℕ is the dimensionless scale for a discrete time process 

(A3) 

classical 

estimator !Ñ)�³��Í� = 1Â − 1 Ò Ó1Í Ó Ò ���³�ÎA
�ÏÎ�AN.�[. Ô − ∑ ���³�£�Ï.Â Ô4£

AÏ.  

(A4) 

expectation 

of classical 

estimator 

E &!Ñ)�³��Í�+ = 1 − !�Âw�/!�Íw�1 − Í/Â !�Íw� 
(A5) 

 725 

Table A2: Climacogram-based variogram definition and expressions for a process in continuous and 726 

discrete time, along with the properties of its estimator. 727 

Type Climacogram-based variogram  

continuous :�"�: = !�0� − !�"� (A6) 

discrete :)�³��Í�: = !�0� − !�Íw� (A7) 

classical 

estimator 
:Õ)�³��Í� = !�0� − :Õ)�³��Í� (A8) 

expectation 

of classical 

estimator 

E &:Õ)�³��Í�+ = !�0� − E &:Õ)�³��Í�+ (A9) 

  728 
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Table A3: Climacogram-based spectrum (pseudospectrum) definition and expressions for a process in 729 

continuous and discrete time, along with the properties of its estimator. 730 

Type Climacogram-based spectrum  

continuous 5�"�: = 2!�1/��� {1 − !�1/��!�0� � 

where � ⋲ ℝ is the frequency for a continuous time process (in inverse 

time units) and is equal to �=1/m. 

(A10) 

 

discrete 5)�³��Ö�: = 2!�1/Ö�Ö {1 − !�1/Ö�!�0� � 

where Ö ⋲ ℝ is the frequency for a discrete time process (dimensionless; 

ω = wΔ) 

(A11) 

classical 

estimator 
5±)�³��Ö� = 2!�1/Ö�Ö {1 − !�1/Ö�!�0� � 

(A12) 

expectation 

of classical 

estimator 

E &5±)�³��Ö�+ = 2EÁ!�1/Ö�ÃÖ {1 − EÁ!�1/Ö�Ã!�0� − VarÁ!�1/Ö�Ã!�0�EÁ!�1/Ö�Ã� 
(A13) 

 731 

Table A4: Autocovariance definition and expressions for a process in continuous and discrete time, 732 

along with the properties of its estimator. 733 

Type Autocovariance  

continuous ����: = cov
����, ��� + ��� 

where � ⋲ ℝ is the lag for a continuous time process (in time units)                                                                     

(A14) 

discrete �)�³��×�: = Δ4Á×4!�×w�Ã2ΔÁ×4Ã= 12 8�× + 1�4!0�× + 1�w3 + �× − 1�4!0�× − 1�w3 − 2×4!�×w�9 

where × ⋲ ℤ is the lag for the process at discrete time (dimensionless)                                                                                 

(A15) 

classical 

estimator �)̂�³��×� = 1Û�×� Ò Ó�A�³,¼� − 1Â ÜÒ ���³�£
�Ï. ÝÔ Ó�A[Þ�³,¼� − 1Â ÜÒ ���³�£

�Ï. ÝÔ£NÞ
AÏ.  

where Û�×� is usually taken as: n or n – 1 or n – j 

(A16) 

expectation 

of classical 

estimator 

E
�)̂�³��×�� = 1Û�×� Ü�Â − ×��)�³��×� + ×4Â !�×w� − ×!�Âw� − �Â − ×�4Â !0�Â − ×�w3Ý (A17) 

 734 
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Table A5: Variogram definition and expressions for a process in continuous and discrete time, along 735 

with the properties of its estimator. 736 

Type Variogram  

continuous ����: = ��0� − ���� (A18) 

discrete �)�³��×�: = !�w� − �)�³��×� (A19) 

classical 

estimator 
�Ñ)�³��×� = !Ñ�w� − �)̂�³��×� (A20) 

expectation 

of classical 

estimator 

E
�Ñ)�³��×�� = E &!Ñ�w�+ − E
�)̂�³��×�� (A21) 

 737 

Table A6: Power spectrum definition and expressions for a process in continuous and discrete time, 738 

along with the properties of its estimator. 739 

Type Power spectrum  

continuous* ����: = 4 Ê ���� cos�2π��� d��
�  

(A22) 

discrete** �)�³��Ö�: = 2w!�w� + 4w Ò �)�³��×� cos�2πÖ×��
ÞÏ.  

where Ö ⋲ ℝ is the frequency for a discrete time process (dimensionless; ω = 

wΔ) 

(A23) 

classical 

estimator �̂)�³��Ö� = 2w�)̂�³��0� + 4w Ò �)̂�³��×� cos�2πÖ×�£
ÞÏ.  

(A24) 

expectation 

of classical 

estimator** 

E
�̂)�³��Ö�� = 2Âw0!�w� − !�Âw�3/Û�0� + 

+4w Ò cos�2πÖ×�Û�×� Ü�Â − ×��)�³��×� + ×4Â !�×w� − ×!�Âw� − �Â − ×�4Â !��n − ×�Δ�Ý£
ÞÏ.  

(A25) 

*Equation (A22) can be solved in terms of c to yield (the inverse cosine Fourier transformation): ���� = � ���� cos�2π��� d��� . 740 

Also, it can be solved in terms of ! to yield:  !�"� = � ���� ßà?,�j7 ��j7 �, d���  and ���� = −2 � �2π�"�4!�"� cos�2π�"� d"��  741 

(Koutsoyiannis, 2013a).              742 
**Equations (A23) and (A25) are more easily calculated with fast Fourier transform (fft) algorithms. Also, Koutsoyiannis (2013a) 743 

shows how the discrete time power spectrum can be linked directly to the continuous time one, without the use of 744 

autocovariance function. 745 




