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Return period

• First introduced by Fuller (1914) who pioneered statistical floodfrequency analysis in USA: it quantifies hydrologic events rareness(e.g. floods, draughts, etc.)
• Hypotheses commonly assumed in hydrology as necessary conditionsfor conventional frequency analysis1. Events arise from a stationary distribution2. Events are independent of one another
• Considerations

• Dependence has been recognized to be the rule rather than the exception(e.g. Hurst, 1951; Mandelbrot, 1968)
• Non-stationarity may be confused with dependence in time (e.g.
Montanari and Koutsoyiannis, 2014)



Definitions and properties

• Traditional methods define return period as the mean ofܶௐ ⇒ the mean of thewaiting time to the next eventேܶ ⇒ the mean of the interarrival time between successive events
• Independent events: both definitions lead to the same formulaܶ = 11 − 
• Dependent events (Volpi et al., 2015)1. Mean waiting time: ܶௐ is affected by the autocorrelation structure ofthe process2. Mean interarrival time: ேܶ = ܶ whatever the time-dependencestructure of the process ܼ௧ is
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1. Mean waiting time, ௐ
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ܼ௧, two state Markov-dependent model, 2MpPr(ܼ௧, ܼ௧ାଵ) = Nଶ , ; lag-1 correlation coefficient of the parent process ,ߩߩ
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1. Mean waiting time, ௐܼ௧, two state Markov-dependent model, 2MpPr(ܼ௧, ܼ௧ାଵ) = Gଶ , ; ߠఘߩ, lag-1 correlation coefficient of the parent process

ܶ

ruled by the asymptotic
dependence of the joint distribution
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1. Mean waiting time, ௐ
ௐܶܶ , ேܶܶ

ܼ௧, fractionally integrated autoregressive process, FAR(1,ܪ)Pr(ܼ௧, . . ܼ௧ାఛ) = Nఛ , ; ுߩ ߩ߬ = 0.75, lag-1 correlation coefficient of the parent process

ܶ
2MpAR(1), ܪ = 0.5

increasing 0.5ܪ ≤ ܪ ≤ 0.9

ுߩ ߬
߬

autocorrelation functionparent process



Probability of failure

ேܶ = ܶ whatever the time-dependence structure of the process ܼ௧ is
• The probability function ேܨ ݐ is affected by the autocorrelationstructure of the process
• Probability of failure ܴ(ܮ)ܴ ܮ = Pr ܰ ≤ ܮ = ேܨ ܮ

• design life of the structure/system ,ܮ
• Probability of failure in ܶ, ܴ ܴܶ ܶ ~ 0.63

• for large T (indipendent case)
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Equivalent Return Period 

• :ܴܲܧ the period that would lead to the same probability of failurepertaining to a given return period ܶ in the framework of classicalstatistics (independent case)ܨே ߬

ܴܲܧ ߬

 = 0.9  (ܶ = 10)~0.63
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Conclusions

• Return period properties are generally ruled by the joint probabilitydistribution in time and by the autocorrelation function of the parent process
• The return period based on the concept of waiting time, ௐܶ effectivelyaccounts for the correlation structure of the hydrological process
• The return period ேܶ (mean interarrival time) is not affected by the time-dependence structure of the process
• The corresponding probability of failure, ܴே(்ܴ), can be larger than thatpertaining to the independent case
• We propose the Equivalent Return Period (ܴܲܧ) for the time-dependentcontext
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