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Abstract  The study of rainfall extremes is important for design purposes of flood protection 

works, in the  development of flood risk management plans and in assessing the severity of 

occurring storm and flood events. Such study unavoidably relies on observational data, which, 

given the enormous variability of the precipitation process in space and in time, should be local, 

of the area of interest. While general statistical laws or patterns apply over the globe, the 

parameters of those laws vary substantially and need local data to be estimated. Because of their 

global coverage, satellite data can be insightful to show the behavior of precipitation over the 

globe. However, only ground data (observations from raingages) are reliable enough for rainfall 

extremes and also have adequate length of archive that allows reliable statistical fitting. The 

study of the record rainfalls throughout the globe provides some useful information on the 

behavior of rainfall worldwide. While most of these record events have been registered at 

tropical areas (with a tendency for grouping in time with highest occurrence frequency in the 

period 1960-1980), there are record events that have occurred in extratropical areas and 

exceed, for certain time scales, those that occurred in tropical areas. The record values for 

different time scales allow the fitting of a curve which indicates that the record rainfall depth 

increases approximately proportionally to the square root of the time scale. Clearly, however, 

these record values do not suggest an upper limit of rainfall and are destined to be exceeded, as 

past record values have already been exceeded. In addition, the very concept of the probable 

maximum precipitation, which assumes a physical upper limit to precipitation at a site, is 

demonstrated to be fallacious. The only scientific approach to quantify extreme rainfall is 

provided by the probability theory. Theoretical arguments and general empirical evidence from 

many rainfall records worldwide suggest power-law distribution tail of extreme rainfall and 

favor the Extreme Value type II (EV2) distribution of maxima. The shape parameter of the EV2 

distribution appears to vary in a narrow range worldwide. This facilitates fitting of the EV2 

distribution and allows its easy implementation in typical engineering tasks such as estimation 

and prediction of design parameters, including the construction of theoretically consistent 

ombrian (also known as IDF) curves, which constitute a very important tool for hydrological 

design and flood severity assessment.  
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1. Introduction: The importance of studying extreme rainfall and the 

related difficulties 

The design and management of flood protection works and measures requires reliable 

estimation of flood probability and risk. A solid empirical basis for this estimation can be offered 

by flow observation records with appropriate length, sufficient to include a sample of 

representative floods. In practice, however, flow measurements are never enough to support 

flood modelling. In both rural and urban catchments, the flood control points are numerous but 

the flow gage sites are scarce or non-existing. The obvious alternative is the use of hydrological 

models with rainfall input data and the substitution of rainfall for streamflow empirical 

information. Notably, even when flow records exist, yet information on rainfall extremes has still 

a major role in hydrologic practice; for instance in major hydraulic structures, the design floods 

are generally estimated from appropriately synthesized design storms (e.g. U.S. Department of 

the Interior, Bureau of Reclamation, 1977, 1987; Sutcliffe, 1978). 

 The study of rainfall and flow extremes on an event basis usually suffices for design 

purposes, while in other applications, such as monitoring of flood risk in real time and 

development of flood warning systems, continuous flow simulation is usually necessary. Even in 

these latter more demanding applications, the study of extremes is again a prerequisite as it 

provides the basis for assessing the severity of occurring storm and flood events in real time or a 

posteriori. Furthermore, the development of flood risk management plans (c.f. the European 

Flood Directive; European Commission, 2007) strongly relies on the study of precipitation 

extremes.  

 Such study cannot be based merely on principles of physics and, particularly, 

thermodynamics, even though the latter effectively describes aspects of the atmospheric and 

hydrological processes related to the occurrence of water vapor in the atmosphere (in 

particular, quantification of the upper limit of the vapor that the atmosphere can contain; 

Koutsoyiannis, 2012) and the generation of precipitation (Koutsoyiannis and Langousis, 2011). 

The difficulties of modelling precipitation based on merely physical principles is illustrated by 

the fact that, despite of tremendous efforts to simulate it through Global Circulation Models 

(GCMs), the resulting simulations have been irrelevant to reality at monthly to multi-year 

(climatic) time scales (Koutsoyiannis et al., 2008, 2011; Anagnostopoulos et al., 2010). 

Furthermore, at short time scales, models produce more frequent and less intense precipitation 

(cf. Stephens et al., 2010, who use the expression “dreary state of precipitation in global models”) 

while the extremes are underestimated even by an order of magnitude (Tsaknias et al., 2011).  

 Therefore any serious attempt to model extreme rainfall should unavoidably rely on 

observational data. In addition, because of the enormous variability of the precipitation process 

in space and in time, at all spatial and temporal scales, the data should be local, of the area of 

interest. This does not mean that no general statistical laws or patterns apply; rather it means 

that the parameters of such laws vary substantially and need local data to be estimated. Only 

ground data, i.e. observations from raingages, are reliable enough for rainfall extremes and also 

have adequate length of archive, which can allow reliable statistical fitting. However, radar and 

satellite data calibrated against raingage data can be helpful (Endreny and Imbeah, 2009; 

Overeem et al., 2010; AghaKouchak et al., 2011; Gourley et al., 2011; Berne et al., 2013; 

Stampoulis et al., 2013; Villarini et al., 2014), particularly when the spatial dimension of rainfall 

is of interest (see section 6.3). 

 Because of their global coverage, satellite data can be insightful to show the behavior of 

precipitation over the globe, i.e. the global precipitation climatology. Fig. 1 shows the spatial 
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variability of precipitation over the globe in mm/d at a climatic scale (average for the 35-year 

period 1979-2014), based mostly on satellite data (see figure caption). While the average 

precipitation rate over the globe for the specified 35-year period is 2.67 mm/d or 977 mm/year, 

we observe huge differences in different areas of the globe. In some areas, mostly in tropical seas 

and in equatorial areas of South America and Indonesia, this rate exceeds 10 mm/d or 3.65 

m/year. On the other hand, in large areas in the subtropics, where climate is dominated by semi-

permanent anticyclones, precipitation is lower than 1 mm/d or 365 mm/year. Significant 

portions of these areas in Africa, Australia, and America are deserts, where the average 

precipitation is much lower than 1 mm/d. In addition, in polar regions, where the available 

atmospheric moisture content is very low (due to the low amount of vapor that the atmosphere 

can contain, as a result of the low temperatures and the Clausius-Clapeyron law) the amounts of 

precipitation are very small or even zero. For example, it is believed that certain dry valleys in 

the interior of Antarctica have not received any precipitation during the last two million years 

(Uijlenhoet, 2008). 

 
Fig. 1 Precipitation distribution over the globe in mm/d (average for the 35-year period 1979-2014). 

Data availability and image generation due to the Global Precipitation Climatology Project 

(GPCP_RAIN.2.2) provided by NASA (http://disc.gsfc.nasa.gov/precipitation/tovas; http://gdata1. 

sci.gsfc.nasa.gov/daac-bin/G3/gui.cgi?instance_id=GPCP_Monthly); resolution 2.5°×2.5°. 

 Fig. 2 depicts the zonal precipitation profile and shows that the climatic precipitation rate 

at an annual basis is highest at a latitude of 5°N, exceeding 2000 mm/year, and has a second 

peak of about 1500 mm/year at 5°S. Around the Tropics of Cancer and Capricorn, at 23.4°N and 

S, respectively, the rainfall rate displays troughs of about 600 mm/year whereas at mid 

latitudes, between 35° and 60° both N and S, rainfall increases again and remains fairly constant, 

close to the global average of 977 mm/year. Then, toward the poles, it decreases to about 150 

mm/year. Fig. 2 also shows the monthly minimum and maximum values observed over the 35-

year period 1979-2014, whose profiles roughly follow that of the temporally average climatic 

profile, but indicate a huge temporal variability. Obviously such variability becomes much huger 
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as the time scale decreases from monthly to minute, as the spatial scale is replaced by a point in 

space, and as the period of observations increases. 

 
Fig. 2 Zonal precipitation profile: precipitation spatially averaged over all longitudes for latitude 

varying from 90°N to 90°S (–90°N). Temporal averages over the 35-year period 1979-2014, as well 

as observed monthly minima and maxima are shown (data from GPCP as in Fig. 1).  

 While the spatial variability over the globe (shown in Fig. 1 and Fig. 2) as well the seasonal 

variability (not shown in figures) are well comprehended and roughly explainable in terms of 

basic physical and astronomical knowledge (i.e. solar radiation, relationship of temperature and 

atmospheric moisture content, motion of Earth), in other words they are ‘regular’, there is also 

temporal variability from year to year, which is irregular and difficult or even impossible to 

predict. Fig. 3 focuses on the irregular interannual variability of precipitation. It depicts the 

annual variation of the globally averaged precipitation according to three different data sets, 

where the first is the GPCP data set, mostly based on satellite data as discussed above. The other 

two data sets, 'g55wld0098' (Hulme et al., 1998) and the Global Historical Climatology Network 

(GHCN), are from ground data for global land areas, gridded at 5° resolution, and cover much 

longer periods, starting from 1900. For the 'g55wld0098' data set only years with more than 600 

grid points were considered (and thus the years 1995-98 which had fewer grid points were 

excluded), while a correction for missing grid points was applied, based on the ratio of zonal 

precipitation of the existing (not missing) grid points to the global average. The values calculated 

from the GHCN data set, which is originally given in terms of “anomalies” (differences from some 

unspecified average) were converted into precipitation values by assuming that the unspecified 

average is 1015 mm, so that the temporal average over the period 1900-94 matches that of the 

'g55wld0098' data set. 
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 We can see that the annual variability is remarkable. Thus, the satellite-based annual 

precipitation in the last 35 years has varied between 956 and 997 mm; the corresponding 

figures for the precipitation over land are 847 and 942 mm. The variation from the ground data 

for a longer period (beginning in 1900) is much higher, 912 to 1085 mm. Remarkable are also 

the differences between the satellite and ground data sets for land, which raises doubts on the 

accuracy on the data (particularly the satellite ones).  

 
Fig. 3 Evolution of the globally averaged annual precipitation according to several data sets of global 

precipitation, i.e., (a) GPCP for the 35-year period 1979-2014 (see caption of Fig. 1) for the entire 

globe and over land (the data over land were retrieved using the option “land points” from 

http://climexp.knmi.nl/select.cgi?id=someone@somewhere&field=gpcp_22); (b) the 'g55wld0098' 

data set (Version 1.0, March 1999) gridded at 5° resolution for global land areas for the period 1900-

98, available via the Climatic Research Unit (CRU; http://www.cru.uea.ac.uk/cru/data/precip/; see 

also Hulme et al., 1998); (c) gridded precipitation calculated from GHCN (version 2) monthly 

precipitation data set, consisting of 2 592 gridded data points at 5° resolution for the period 1900-

2014 (http://www.ncdc.noaa.gov/temp-and-precip/ghcn-gridded-products/).  

 An impressive behavior in the plots of Fig. 3 is the appearance of long term patterns, 

which could be characterized as “trends” (e.g. an increasing trend from 1900 to 1950s) or else 

tendency of high (or low) values to group in time. Such patterns, omnipresent in natural (and 

human) processes, are regarded in most part of the literature as “deterministic components”, 

while attempts to attribute them to some physical or anthropogenic mechanisms abound. 

Undoubtedly, such long-term changes are driven by some physical mechanisms, but the 

complexity of the processes responsible for the rainfall generation does not allow easy 

deterministic explanations and attributions. Besides, such patterns are better described in 

stochastic terms, as the Hurst-Kolmogorov behavior (e.g. Koutsoyiannis, 2013). Simple 

quantification of this behavior is provided by the Hurst coefficient, H, where values of H higher 

than ½ (a value indicating random noise) and approaching 1 reflect greater intensity of patterns. 

Indeed, all four series plotted in Fig. 3 yield H higher than 0.75, with three of them exceeding H = 

0.85.  
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2. A global survey of record rainfall depths 

As already mentioned, only ground data can be accurate enough to support reliable estimation 

of extreme precipitation and give quantitative information on “how extreme is extreme” (cf. 

Papalexiou et al., 2013). In this respect, Table 1 registers all record rainfall values which have 

ever been recorded at raingages for varying time scales (sometimes called durations), from 1 

min to 2 years. The entries of the table originate from the publications indicated in the footnote 

of this table, as well as from the inspection of several thousands of stations made in this study. 

Specifically for the latter, the GHCN daily database (version 3.02, 

www.ncdc.noaa.gov/oa/climate/ghcn-daily), comprising several thousands of daily rainfall 

records from all over the world, was used. However, the database includes many records that 

are too short, have a large percentage of missing values, or include data of disputable quality 

(assigned with quality flags, as detailed in the above website). Consequently, to ensure the 

quality of the data, a subset of the database was used with stations satisfying the following 

criteria: (a) record length > 50 years, (b) percentage of missing values < 20% and, (c) percentage 

of values assigned with quality flags < 1%. Moreover, to further ensure the data quality, each of 

the records was explored in detail for specific flagged values, i.e., values assigned with the flags 

‘G’ (failed gap check) and ‘X’ (failed bounds check). These values are essentially unrealistically 

large values and were excluded from the analysis.  

 The resulting subset contains 17 490 stations. These were separated in four classes, 

corresponding to northern (NH) or southern (SH) hemisphere, and to tropical or extratropical 

areas; the numbers of stations and station-years in each zone are shown in Table 2. The time 

scales for which maxima were extracted from the GHCN data set are shown in Fig. 4 (horizontal 

axis), which also depicts the huge geographical variability of these maxima in terms of box plots 

(notice the logarithmic vertical axis). 

 The investigation of the GHCN data resulted in record rainfall values which are somewhat 

lower than the values of Table 1. These have been registered in Table 3 and correspond to time 

scales from 1 to 730 days (2 years).  By comparing Table 1 and Table 3 for time scales ≥ 1 d, it is 

seen that the only entry appearing in both tables is that of Koumac for the 2-day scale. This 

means that this entry had been neglected in earlier publications related to record rainfall events, 

such as those in the footnote of Table 1. It also means that the GHCN data set does not include 

some of the stations or time periods that have given the most extreme records. Interestingly, 

while the Cherrapunji station in India is contained in the GHCN data set and has given a lot of 

record values in Table 3, those values of the same station contained in Table 1 (constituting the 

records for time scales from 1 month to 2 years), are missing from Table 3. The reason is that the 

record values of Table 1 for Cherrapunji are from the 19th century (1860-61), while the GHCN 

data for Cherrapunji start at 1902.  
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Table 1 World record point precipitation measurements. 

Time scale Amount 
(mm) 

Location Lat. (°) Lon.(°) Start date Event# Ref.§ 

1 min 38 Barot, Guadeloupe 16.25 -61.45 26 Nov 1970 N 1,2 
3 

 
44 Haughton Grove, Jamaica 18.33 -77.98 30 Sep 1925 G 3 

5 
 

63 Porto Bello, Panama 9.55 -79.65 29 Nov 1911 D 3 
8 

 
126 Fussen, Bavaria, Germany 47.87 12.17 25 May 1920 F 1 

15 
 

198 Plumb Point, Jamaica 17.93 -76.78 12 May 1916 E 1 
20 

 
206 Curtea-de-Arges, Romania 45.12 -24.42 7 Jul 1889 B 1 

30 
 

280 Sikeshugou, Hebei, China 41.78 117.93 03 Jul 1974 P 3 
42 

 
305 Holt, Missouri, USA 39.45 -94.33 22 Jun 1947 J 1,4 

60 
 

401 Shangdi, Nei Monggol, China 42.27 119.13 03 Jul 1975 Q 1 
72 

 
440 Gaoj, Gansu, China 34.85 104.67 12 Aug 1985 V 3 

2 h 489 Yujiawanzi, Nei Monggol, China 41.50 118.93 19 Jul 1975 R 3 
2.17 

 
483 Rockport, USA 42.58 -70.92 18 Jul 1889 C 1 

2.5 
 

550 Bainaobao, Hebei, China 41.58 114.3 25 Jun 1972 O 3 
2.75 

 
559 D'Hanis, Texas, USA 29.33 -99.28 31 May 1935 H 1 

3 
 

724 Smethport, Pennsylvania, USA 41.80 -78.43 18 Jul 1942 I 3 
4.5 

 
782 Smethport, Pennsylvania, USA 41.80 -78.43 18 Jul 1942 I 1 

6 
 

840 Muduocaidang,Nei Monggol, China 32.98 113.59 01 Aug 1977 T 1 
9 

 
1087 Belouve, La Réunion -21.00 55.50 28 Feb 1964 L 1 

10 
 

1400 Muduocaidang,Nei Monggol, China 32.98 113.59 01 Aug 1977 T 1 
18 

 
1589 Foc-Foc, La Réunion -21.23 55.68 07 Jan 1966 M 3 

18.5 
 

1689 Belouve, La Réunion -21.00 55.50 28 Feb 1964 L 1 
20 

 
1697 Foc-Foc, La Réunion -21.23 55.68 07 Jan 1966 M 3 

22 
 

1780 Foc-Foc, La Réunion -21.23 55.68 07 Jan 1966 M 3 
1 d 1870 Cilaos, La Réunion -21.13 55.47 15 Mar 1952 K 1 
2 

 
2774 Koumac, New Caledonia -20.57 164.28 16 Jan 1976 S * 

3 
 

3637 Commerson, La Réunion -21.20 55.65 24 Feb 2007 W 3,5 
4 

 
4869 Commerson, La Réunion -21.20 55.65 24 Feb 2007 W 3,5 

5 
 

4979 Commerson, La Réunion -21.20 55.65 24 Feb 2007 W 3 
6 

 
5075 Commerson, La Réunion -21.20 55.65 24 Feb 2007 W 3 

7 
 

5400 Commerson, La Réunion -21.20 55.65 24 Feb 2007 W 3 
8 

 
5510 Commerson, La Réunion -21.20 55.65 24 Feb 2007 W 3 

9 
 

5692 Commerson, La Réunion -21.20 55.65 19 Jan 1980 T 1 
10 

 
6028 Commerson, La Réunion -21.20 55.65 18 Jan 1980 T 1 

11 
 

6299 Commerson, La Réunion -21.20 55.65 17 Jan 1980 T 1 
12 

 
6401 Commerson, La Réunion -21.20 55.65 16 Jan 1980 T 1 

13 
 

6422 Commerson, La Réunion -21.20 55.65 15 Jan 1980 T 1 
14 

 
6432 Commerson, La Réunion -21.20 55.65 14 Jan 1980 T 1 

15 
 

6433 Commerson, La Réunion -21.20 55.65 14 Jan 1980 T 1 
1 month 9300 Cherrapunji, Meghalaya, India 25.30 91.70 1 Jul 1861 A 1 
2 

 
12767 Cherrapunji, Meghalaya, India 25.30 91.70 1 Jun 1861 A 1 

3 
 

16369 Cherrapunji, Meghalaya, India 25.30 91.70 1 May 1861 A 1 
4 

 
18738 Cherrapunji, Meghalaya, India 25.30 91.70 1 Apr 1861 A 1 

5 
 

20412 Cherrapunji, Meghalaya, India 25.30 91.70 1 Apr 1861 A 1 
6 

 
22454 Cherrapunji, Meghalaya, India 25.30 91.70 1 Apr 1861 A 1 

1 year 26461 Cherrapunji, Meghalaya, India 25.30 91.70 1 Aug 1860 A 1 
2 

 
40768 Cherrapunji, Meghalaya, India 25.30 91.70 1 Jan 1860 A 1 

#Events are labeled A to W in time order. 

§Ref.: *Current study; 1. World Meteorological Organization, 1994; 2. Klein, 1971 ; 3. NOAA, 
2015; 4. Lott, 1954; 5. Quetelard, et al., 2009, 2015.  
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Table 2 Numbers of GHCN stations and station-years per zone. 

Zone No. of stations Station-years 

NH, Tropical  1 332 90 921 
NH, extratropical  9 282 726 852 
SH, Tropical 1 353 95 091 
SH, extratropical  5 523 481 729 
Total 17 490 1 394 593 

 

 
Fig. 4 Box plots of maximum recorded rainfall depths of GHCN stations per time scale: (upper) 

global; (lower) SH extratropical zone, where the extreme rainfall regime is different from all other 

zones (see text).  The central mark inside each box is the median, the box edges are the 25th and 75th 

percentiles and the ends of the whiskers represent the observed minimum and maximum values. 
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Table 3 Record point precipitation measurements for four different zones, extracted from the GHCN 

database. 

Time 
scale 
(d) 

Amount 
(mm) 

Corre-
spond-
ing Km 

Station ID Location Lat. (°) Lon. 
(°) 

Elev. 
(m) 

Start date 

NH, tropical        
1 909.3 17.77 IN010050600 Quilandi, India 11.45 75.70 8 28/05/1961 
2 1143.3 5.13 IN012121100 Matheran, India 18.98 73.28 756 23/07/1921 
3 1473.2 12.48 IN010050600 Quilandi, India 11.45 75.70 8 20/05/1961 
4 1857 13.99 IN010050600 Quilandi, India 11.45 75.70 8 25/05/1961 
5 2158.6 14.21 IN010050600 Quilandi, India 11.45 75.70 8 21/05/1961 
6 2595.8 14.78 IN010050600 Quilandi, India 11.45 75.70 8 20/05/1961 
7 3105.1 16.18 IN010050600 Quilandi, India 11.45 75.70 8 22/05/1961 

14 4215.7 15.92 IN010050600 Quilandi, India 11.45 75.70 8 19/05/1961 
21 6503.2 18.31 IN010050600 Quilandi, India 11.45 75.70 8 20/05/1961 
30 6851.7 14.75 IN010050600 Quilandi, India 11.45 75.70 8 19/05/1961 
60 9444.9 6.76 IN012121100 Matheran, India 18.98 73.28 756 23/07/1921 
90 10882.6 6.12 IN012121100 Matheran, India 18.98 73.28 756 03/07/1921 

120 11327.1 11.80 IN010050600 Quilandi, India 11.45 75.70 8 20/05/1961 
183 13169.3 10.31 IN010050600 Quilandi, India 11.45 75.70 8 15/05/1961 
365 13550.4 6.45 IN010050600 Quilandi, India 11.45 75.70 8 02/11/1960 
730 17906.9 2.45 IN009082100 Bhagamandala, India 12.38 75.52 876 03/04/1961 

SH, tropical        
1 1750 1.93 NC000091577 Koumac, New Caledonia -20.57 164.28 18 17/01/1976 
2 2774 2.84 NC000091577 Koumac, New Caledonia -20.57 164.28 18 16/01/1976 
3 2983 2.76 NC000091577 Koumac, New Caledonia -20.57 164.28 18 14/01/1972 
4 3094 2.72 NC000091577 Koumac, New Caledonia -20.57 164.28 18 14/01/1972 
5 3172 2.65 NC000091577 Koumac, New Caledonia -20.57 164.28 18 13/01/1972 
6 3198 2.45 NC000091577 Koumac, New Caledonia -20.57 164.28 18 13/01/1972 
7 3278 2.42 NC000091577 Koumac, New Caledonia -20.57 164.28 18 14/01/1972 

14 5406 3.72 NC000091577 Koumac, New Caledonia -20.57 164.28 18 14/01/1976 
21 5782 3.04 NC000091577 Koumac, New Caledonia -20.57 164.28 18 14/01/1976 
30 5955 2.28 NC000091577 Koumac, New Caledonia -20.57 164.28 18 06/01/1976 
60 9124 2.31 NC000091577 Koumac, New Caledonia -20.57 164.28 18 14/01/1976 
90 11039 2.16 NC000091577 Koumac, New Caledonia -20.57 164.28 18 14/12/1975 

120 12030 2.08 NC000091577 Koumac, New Caledonia -20.57 164.28 18 12/12/1975 
183 13808 1.93 NC000091577 Koumac, New Caledonia -20.57 164.28 18 22/11/1998 
365 18838 1.65 NC000091577 Koumac, New Caledonia -20.57 164.28 18 31/12/1975 
730 30243 1.34 NC000091577 Koumac, New Caledonia -20.57 164.28 18 11/02/1975 

NH, extratropical        
1 973.8 2.38 IN014020800 Cherrapunji, India 25.25 91.73 1313 05/06/1956 
2 1655.5 2.56 IN014020800 Cherrapunji, India 25.25 91.73 1313 09/06/1966 
3 2239.8 2.74 IN014020800 Cherrapunji, India 25.25 91.73 1313 08/06/1966 
4 2840.2 3.28 IN014020800 Cherrapunji, India 25.25 91.73 1313 07/06/1966 
5 3346.2 3.63 IN014020800 Cherrapunji, India 25.25 91.73 1313 08/06/1966 
6 3946.6 4.37 IN014020800 Cherrapunji, India 25.25 91.73 1313 07/06/1966 
7 4397 4.77 IN014020800 Cherrapunji, India 25.25 91.73 1313 06/06/1966 

14 4880.7 3.87 IN014020800 Cherrapunji, India 25.25 91.73 1313 01/06/1966 
21 5372.1 3.05 IN014020800 Cherrapunji, India 25.25 91.73 1313 03/06/1956 
30 6533 3.15 IN014020800 Cherrapunji, India 25.25 91.73 1313 04/06/1966 
60 8674.6 2.05 IN014020800 Cherrapunji, India 25.25 91.73 1313 15/06/1970 
90 11217.8 2.22 IN014020800 Cherrapunji, India 25.25 91.73 1313 05/05/1954 

120 13011.4 2.23 IN014020800 Cherrapunji, India 25.25 91.73 1313 27/04/1954 
183 15354.5 2.36 IN014020800 Cherrapunji, India 25.25 91.73 1313 27/04/1970 
365 17517.8 2.13 IN014020800 Cherrapunji, India 25.25 91.73 1313 26/06/1955 
730 31678.9 2.30 IN014020800 Cherrapunji, India 25.25 91.73 1313 25/06/1954 
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Time 
scale 
(d) 

Amount 
(mm) 

Corre-
spond-
ing Km 

Station ID Location Lat. (°) Lon. 
(°) 

Elev. 
(m) 

Start date 

SH, extratropical        
1 687.6 3.33 ASN00040192 Springbrook Forestry, 

Australia 
-28.23 153.28 806 24/01/1947 

2 1068.2 7.61 ASN00040197 Mt Tamborine Fern St, 
Australia 

-27.97 153.20 515 26/01/1974 

3 1357.3 7.29 ASN00040257 Yandina Post Office, Australia -26.56 152.96 10 01/02/1893 
4 1597.8 8.24 ASN00040257 Yandina Post Office, Australia -26.56 152.96 10 31/01/1893 
5 1694.3 8.36 ASN00040257 Yandina Post Office, Australia -26.56 152.96 10 30/01/1893 
6 1767.2 8.56 ASN00040257 Yandina Post Office, Australia -26.56 152.96 10 30/01/1893 
7 1808 5.54 ASN00040550 Numinbah, Australia -26.56 152.96 355 01/05/1996 

14 2007 7.17 ASN00040257 Yandina Post Office, Australia -26.56 152.96 10 30/01/1893 
21 2578.2 8.72 ASN00040257 Yandina Post Office, Australia -26.56 152.96 10 27/01/1893 
30 2653.7 7.88 ASN00040257 Yandina Post Office, Australia -26.56 152.96 10 20/01/1893 
60 3576.6 5.44 BR00G4-0010 Cananeia, Brazil -25.02 -47.93 5 10/09/1935 
90 3925.8 4.84 BR00G4-0010 Cananeia, Brazil -25.02 -47.93 5 02/09/1935 

120 4307.5 4.74 BR00G4-0010 Cananeia, Brazil -25.02 -47.93 5 16/07/1935 
183 5118.9 2.91 ASN00040192 Springbrook Forestry, 

Australia 
-28.23 153.28 806 05/12/1973 

365 7708.4 4.51 BR00G4-0010 Cananeia, Brazil -25.02 -47.93 5 25/11/1934 
730 14494 5.01 BR00G4-0010 Cananeia, Brazil -25.02 -47.93 5 25/11/1933 

 Graphical depiction of the record values of both Table 1 and Table 3 is given in Fig. 5. To 

the empirical data of Table 1 the following equations, characteristic of rainfall maxima (see 

below) are fitted:  

𝑖 =
𝑎

(1 + 𝑑/𝜃)𝜂
, ℎ =

𝑎𝑑

(1 + 𝑑/𝜃)𝜂
  (1) 

where i is the temporally averaged rainfall intensity over time scale d and h is the corresponding 

rainfall depth, whereas the parameter values are a = 1615 mm/h, θ = 0.07 h and η = 0.52. It is 

noted that the equation is not actually an envelope of record rainfall data but it is fitted by least 

squares to them. For d > 1 h, the latter equation can be simplified as h ≈ 405 d0.48 (h in mm, d in 

h), which indicates that the record rainfall depth is roughly proportional to the square root of 

time scale. For time scales > 1 d and for the GHCN data set, Fig. 6 depicts also information related 

to the geographical zone, NH or SH and tropical or extratropical.  

 Interestingly, no substantial differences appear among these zones, except that the SH 

extratropical zone seems to give lower values than those of the other three zones. The numbers 

of stations and station-years (see Table 2) certainly have an effect on the results. In either of the 

tropical zones the number of stations is about one seventh of those in the NH extratropical zone 

and hence the extreme events per se are rather underrepresented in the former, compared to 

the latter. Likewise, the number of stations in the SH extratropical zone is smaller than in NH 

extratropical zone, which justifies somewhat lower record rainfall values. On the other hand, the 

extreme rainfall regime in the extratropical zone of the SH is clearly lower than in all other 

zones, including the two tropical areas, even though the number of station years in each of the 

two is five times smaller.  
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Fig. 5 Depiction of the record rainfall values over the globe from both Table 1 (data points from 

literature, to which equation (1) is fitted) and Table 3 (data points from daily rainfall analysis).  

 
Fig. 6 As Fig. 5 with separation of the GHCN data of Table 3 into zones.  

 The geographical and temporal distribution of the record rainfall events listed in Table 1 

and Table 3 are depicted in Fig. 7 and Fig. 8, respectively. Interestingly, while Fig. 8 shows that 

almost all records correspond to tropical areas (or very near), Fig. 7, which reflects broader 

information and also extends to short time scales, contains events in higher latitudes, up to 

47.87°N (event F; Bavaria, Germany). This indicates that, even though high rainfall rates are 

more frequent in tropical areas, extratropical ones are not safe too as some of the records in 

rainfall have been observed out of the tropics.  
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Fig. 7 Geographical and temporal distribution of the record rainfall events listed in Table 1. 

 
Fig. 8 Geographical and temporal distribution of the record rainfall events listed in Table 3. 

 Time stamps of the record rainfall events are also shown in  both Fig. 7 and Fig. 8. It is 

most interesting that the 20-year period 1960-80 contains the largest, among all 20-year 

periods, number of record rainfall events for both data sets (9 events in each one), followed by 

the period 1940-60 (3 events in each data set), while in the most recent years such extreme 
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events have become less frequent. The grouping of extreme events in specific time periods 

(mostly in 1960-80) is consistent with the Hurst-Kolmogorov stochastic dynamics, as described 

above.  

 Apparently the values contained in Table 1 or Table 3 do not represent any physical upper 

bound of precipitation rate. They just represent what was observed as record rainfall. Certainly, 

higher rates have occurred in places where no raingages exist or in longer periods of history. 

Furthermore, values registered in older publications as record values no longer represent 

record values. Obsolete record values from older publications, which now have been exceeded, 

are shown in Table 4 and graphically in Fig. 9. Logically, we can be confident that the records 

presented here will surely be broken in the future. 

Table 4 Older world record point precipitation data that are not records any more. 

Time scale Amount (mm) Location Start date Ref.* 
2 d 2467 Aurere, La Réunion  07/04/1958 1 
3 d 3130 Aurere, La Réunion  06/04/1958 1 
4 d 3721 Cherrapunji, India 12/09/1974 1 
5 d 4301 Commerson, La Réunion  23/01/1980 1 
6 d 4653 Commerson, La Réunion  22/01/1980 1 
7 d 5003 Commerson, La Réunion  21/01/1980 1 
8 d 5286 Commerson, La Réunion  20/01/1980 1 

12 h 1340 Belouve, La Réunion 28/02/1964 2 
3 d 3240 Cilaos, La Réunion 15/03/1952 2 
4 d 3504 Cilaos, La Réunion 15/03/1952 2 
5 d 3854 Cilaos, La Réunion 15/03/1952 2 
6 d 4055 Cilaos, La Réunion 15/03/1952 2 
7 d 4110 Cilaos, La Réunion 15/03/1952 2 
8 d 4130 Cilaos, La Réunion 15/03/1952 2 
2 d 2259 Hsin-Liao, Taiwan 17/10/1967 3 
3 d 2759 Cherrapunji, Meghalaya, India 12/09/1974 3 
4 d 3721 Cherrapunji, Meghalaya, India 12/09/1974 3 
8 d 3847 Bellenden Ker, Queensland 01/01/1979 3 

*Ref.: 1. World Meteorological Organization, 1994; 2. Linsley et al. (1975); 3. Smith (1993) 

 
Fig. 9 Graphical depiction of the broken rainfall records of Table 4.  
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3. Approaches in estimating extreme rainfall 

As already mentioned, only rainfall observations can provide a sound basis for quantification of 

extreme rainfall. Such quantification needs also to be founded on some theoretical 

considerations. Two different lines of thought have been quite common in hydrology and in 

engineering practice, one deterministic and one probabilistic.  

 Deterministic thinking in science is strong enough and has been dominant even in extreme 

rainfall, despite strong resistance of the rainfall process to comply with deterministic 

descriptions. Despite spectacular failures in adequate modelling of rainfall based on first 

principles (see section 1), attempts keep on. Perhaps the oldest of the attempts, yet very popular 

even today, aims to determine physical upper bounds to precipitation that could be used to 

design risk-free constructions or practices. The resulting concept of probable maximum 

precipitation (PMP), that is, an upper bound of precipitation that is physically feasible (World 

Meteorological Organization, 1986, 2009), is perhaps one of the biggest failures in hydrology but 

it is still in wide use: A Google Scholar search reveals that about 1000 recent publications that 

appeared since 2010 include the term “probable maximum precipitation”. More than 50 of them 

contain this term in their title, while some examine the PMP concept in the context of climate 

change (e.g. Kunkel et al., 2013). In addition, the method is still quite popular in engineering 

studies.  

Using elementary logic we can understand that even the terminology is self-contradictory, 

and thus not scientific. Namely, the word “probable” contradicts the existence of a deterministic 

limit. Note that the “probable maximum” concept began as “maximum possible” and was later 

renamed in an attempt to salvage the failed concept (Benson, 1973). Furthermore, as the 

method makes, in fact, inference from data rather than from physical principles, in essence it is 

not deterministic but statistical.  

 According to the probabilistic approach, any nonnegative value, including any estimated 

PMP, has a certain probability of exceedence. This approach is logically consistent, purely 

probabilistic and relies on local rainfall observations, while theoretical concepts such as the 

principle of maximum entropy (Koutsoyiannis, 2005a, 2014; Papalexiou and Koutsoyiannis, 

2012) and analysis of global rainfall behaviors (Koutsoyiannis, 2004a,b; Papalexiou and 

Koutsoyiannis, 2013) assist in formulating the probability distribution function. 

 One typical argument against the use of probabilistic approaches, in favor of PMP, has 

been stated by Horton (1931; from Klemes, 2000): “It is, however, important to recognize the 

nature of the physical processes involved and their limitations in connection with the use of 

statistical methods. … Rock Creek cannot produce a Mississippi River flood any more than a 

barnyard fowl can lay an ostrich egg”. However, this argument reveals an incorrect perception of 

probability and statistics. In a probability theoretic context no logical inconsistency arises, as 

illustrated by the following example, adapted from Koutsoyiannis and Langousis (2011). Let us 

assume that the annual peak flood of the Mississippi river and that of a certain small creek are 

both distributed according to the extreme value type II (EV2) distribution (equation (13)) with 

scale parameters λM and λC for the Mississippi and the small creek, respectively, and the same 

shape parameter κ, which can be assumed of the order of 0.1 (according to the investigation that 

follows and having in mind the theoretical reasons which equate the shape parameters of 

rainfall and flood; Koutsoyiannis, 2005a,b, 2007). For small enough probability of exceedence, 

say Φ(x) < 0.1, the probability of exceedence can be approximated as a power-law function, i.e. 

ΦΜ(x) = (λM / κx)1/κ , ΦC(x) = (λC / κx)1/κ . Hence, for large enough x, the ratio of the probabilities 

that both rivers have the same peak flood x is ΦC(x)/ ΦΜ(x) = (λC / λM)1/κ. Assuming that, as an 
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order of magnitude, the Mississippi floods are, a million times larger than those of the small 

creek, the ratio of the scale parameters will be λC / λM = 10–6 and the ratio of the probabilities 

that the floods in the two cases are equal ΦC(x)/ΦΜ(x) =10–60. That is, according to the 

probabilistic approach, the return period of the event that the small creek flood matches or 

exceeds a specified flood of the Mississippi is 1060 years. Assuming that the age of the universe is 

of the order of 1010 years, one would wait, on the average, 1050 times the age of the universe to 

see such an event happen—if one foolishly hoped that the creek, the Mississippi and the Earth 

would exist for such a long time. Evidently, such a low probability could be regarded as 

synonymous to impossibility, which shows that the probabilistic approach does not regard the 

floods of Mississippi equivalent to those of a small creek (see also an example about the age of a 

person by Feller, 1950).  

 For completeness, in the following sessions both approaches are outlined, even though the 

deterministic approach is not scientific and ought to be abandoned.  

4. The concept of probable maximum precipitation 

4.1 Theoretical analysis of the concept 

Several methods to determine PMP exist in literature and are described by World Meteorological 

Organization (1986, 2009). However, all suffer logically, as they are based on the fallacious 

concept of an upper limit. Thorough examination of each of the specific methods separately will 

reveal that each one is affected by additional logical inconsistencies. While they all assume the 

existence of a deterministic upper limit, they determine this limit statistically. This is obvious in 

the so-called “statistical approach” by Hershfield (1961, 1965), who used about 95 000 station-

years of annual maximum daily rainfall belonging to 2645 stations (see below), standardized 

each record and found the maximum over the 95 000 standardized values. Naturally, one of the 

95 000 standardized values would be the greatest of all others, but this is not a deterministic 

limit to call PMP (Koutsoyiannis, 1999). If we examine additional measurements we will find 

even higher values (see below). Thus the logical problem here is the incorrect interpretation 

that an observed maximum in precipitation is a physical upper limit. 

 The situation is perhaps even worse with the so-called moisture maximization approach of 

PMP estimation (World Meteorological Organization, 1986, 2009), which seemingly is more 

physically (hydrometeorologically) based than the statistical approach of Hershfield. In fact, 

however, it suffers twice by the incorrect interpretation that an observed maximum is a physical 

upper limit, as will be detailed below.  

 Rational thinking and fundamental philosophical and scientific principles can help identify 

and dispel such fallacies. In particular, the Aristotelian notions of potentia (potentiality; Greek 

‘δύναμις’) and of potential infinity (Greek ‘άπειρον’; Aristotle, Physics, 3.7, 206b16) that “exists 

in no other way, but ... potentially or by reduction” (and is different from mathematical complete 

infinity) would help us to avoid the PMP concept. In fact, this does not need a great deal of 

philosophical penetration. The same thing is more practically expressed as “conceptually, we can 

always imagine that a few more molecules of water could fall beyond any specified limit” 

(Dingman, 1994). Yet the linkage to the Aristotelian notions of potentia and potential infinity 

may make us more sensitive in seeing the logical inconsistencies (see also Koutsoyiannis, 2007).  

 According to Popper (1982) the extension of the Aristotelian idea of potentia in modern 

terms is the notion of probability. Indeed, probability provides a different way to perceive the 

intense rainfall and flood, and to assign to each value a certain probability of exceedence (see 

next session) avoiding the delusion of an upper bound of precipitation and the fooling of 
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decision makers that they can build risk-free constructions. In this respect, the criticism of the 

PMP and the probable maximum flood (PMF) involves logical, technical, philosophical and 

ethical issues (Benson, 1973). 

4.2 Estimation based on mere rainfall data 

Τhe so-called “statistical approach” to PMP is based on the work of Hershfield (1961, 1965) and 

its application requires only the mean and standard deviation of a rainfall record. No other 

meteorological data are needed. Mathematically, it is expressed by the simple equation 

ℎm = ℎ
∗

+ 𝐾m𝑠∗ (2) 

where hm is the rainfall depth that corresponds to PMP, ℎ
∗
 and 𝑠∗ are the mean and standard 

deviation estimated from a rainfall record of a specified time scale d as detailed below, and Km is 

a “frequency factor”.  

 To evaluate this factor, Hershfield (1961) initially analyzed a total of 95 000 station-years 

of annual maximum rainfall belonging to 2645 stations, of which about 90% were in the USA, 

and found that the maximum observed value of Km was 15. Then, he concluded that an estimate 

of the PMP amount can be determined by setting Km = 15 in (2) and substituting hm for the PMP 

value. Subsequently, Hershfield (1965), proposed that Km varies with the time scale d and the 

mean ℎ
∗
. More specifically, he found that the value of Km = 15 is too high for areas with heavy 

rainfall and too low for arid areas, whereas it is too high for rain durations shorter than 24 

hours. Therefore, he constructed an empirical nomograph indicating that Km varies between 5 

and 20 depending on the time scale d and the mean ℎ
∗
.  

 This nomograph along with equation (2) constitute the basis of the statistical method for 

estimating PMP, which was standardized by World Meteorological Organization (1986, 2009). 

Koutsoyiannis and Xanthopoulos (1999, p. 161) gave the following analytical approximation of 

the nomograph: 

𝐾𝑚 = 20 − 8.6 ln (1 +
ℎ

∗

130 mm
) (

24 h

𝑑
)

0.4

 (3) 

 Hershfield (1961) proposed also some adjustments of the mean and standard deviation, to 

make the estimation of Km more unbiased by reducing the effect of the sample size and 

maximum observed event. These were adopted by the World Meteorological Organization 

(1986, pp. 97–107) as a standard procedure for applying the method and have been expressed 

again in the form of nomographs. Koutsoyiannis (2000) has converted the nomographs into 

equations. Specifically, if n is the sample size, ℎ and s are the sample mean and standard 

deviation, and ℎ′ and 𝑠′ are the mean and standard deviation of the sample after removing the 

largest value contained in it, then the adjusted quantities are: 

ℎ
∗

= ℎ𝜑1(𝑛) 𝜓1(ℎ, ℎ′, 𝑛) (4) 

𝑠∗ = 𝑠𝜑2(𝑛) 𝜓2(𝑠, 𝑠′, 𝑛) (5) 

where 

𝜑1(𝑛) ∶=
1

1 –  0.96 exp(– 𝑛0.47)
 (6) 
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𝜑2(𝑛) ∶=
1

1 –  4.2 exp(– 𝑛0.47)
 (7) 

𝜓1(ℎ, ℎ′, 𝑛) ≔ 1 +  1.04 (
ℎ′

ℎ
− 1) +

0.42

𝑛0.75
 (8) 

𝜓2(𝑠, 𝑠′, 𝑛) ≔ 1 +
1.37

𝑛0.06
 (

𝑠′

𝑠
− 1) +

0.65

𝑛0.5
 (9) 

 

 
Fig. 10 Box plots of maximum standardized rainfall depths Km of GHCN stations per time scale: 

(upper) global; (lower) SH extratropical. The central mark inside each box is the median, the box 

edges are the 25th and 75th percentiles and the ends of the whiskers represent the observed 

minimum and maximum values. 

 Koutsoyiannis (1999) has shown that the huge (for its time) amount of rainfall data used 

by Hershfield does not suggest the existence of a deterministic upper limit of precipitation. 
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Rather the maximum value of Km given by Hersfhield (15 or 20) is just the maximum value of a 

sample of standardized maxima and would be greater if a bigger sample were available. 

Subsequently, Koutsoyiannis reformulated Hershfield’s results in a purely probabilistic basis 

(see below), without considering an upper limit for precipitation. 

 Here we have repeated Hershfield’s exercise for the GHCN database, which is by an order 

of magnitude bigger than Hershfield’s (namely ~7 times bigger in terms of stations and ~15 

times bigger in terms of station years). The variation of Km’s of different GHCN stations globally 

and for the SH is shown in the form of box plots per time scale in Fig. 10. The maximum Km for 

each zone and time scale is shown in Fig. 11. As expected, Km can be much higher than the values 

15 or 20 reported by Hershfield. For the NH, they exceed 35 for the daily scale and 55 for time 

scale close to monthly.  Hence, there is no scientific meaning in using Hershfield’s method any 

more. 

 
Fig. 11 Calculated values of maximum Km per zone and per time scale for all GHCN stations 

investigated here using original Hershfield’s method.  

4.3 Estimation based on additional hydrometeorological data 

As already mentioned, the other PMP estimation methods suggested by World Meteorological 

Organization (1986, 2009) are more problematic than Hershfield’s statistical approach, even 

though they seem more physically (hydrometeorologically) based. As the most representative, 

we discuss here the so-called moisture maximization approach, which is also the most popular. 

The method is based on the simple formula 

ℎm =
𝑊m

𝑊
ℎ (10) 

where hm is the maximized rainfall depth, h is the observed precipitation, W is the precipitable 

water in the atmosphere during the day of rain, estimated by the corresponding dew point Td, 

and Wm is the maximized precipitable water. The latter is estimated from the maximum dew 

point for the corresponding month, which is either the maximum recorded value from a sample 

of at least 50 years length, or the value corresponding to a 100-year return period, for samples 

smaller than 50 years (World Meteorological Organization, 1986).  

 As shown by Papalexiou and Koutsoyiannis (2006), the method suffers twice by the 

incorrect interpretation that an observed maximum is a physical upper limit. It uses a record of 

observed dew point temperatures to determine an upper limit, which is the maximum observed 
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value. Then it uses this “limit” for the so called “maximization” of an observed sample of storms, 

and asserts the largest value among them as PMP. Clearly, this is a questionable statistical 

approach, because (a) it does not assign any probability to the value determined and (b) it is 

based only on one observed value (known in statistics as the largest order statistic), rather than 

on the whole sample, and thus it is enormously sensitive to one particular observation of the 

entire sample (Papalexiou and Koutsoyiannis, 2006; Koutsoyiannis, 2007).  

 Thus, not only does the determination of PMP use a statistical approach (rather than 

deterministic physics), but it uses bad statistics. The arbitrary assumptions of the approach 

extend beyond the confusion of maximum observed quantities with physical limits. For example, 

the logic of moisture maximization at a particular location is unsupported given that a large 

storm at this location depends on the convergence of atmospheric moisture from much greater 

areas. In other words, the PMP concept should be abandoned in its entirety. 

5. Probabilistic approach to extreme rainfall 

5.1 Basic concepts of extreme value distributions 

Having got rid of the concept of an upper limit to precipitation, the obvious alternative is to 

adopt a probabilistic approach. The real scientific problems are then the determination of the 

marginal distribution function of extreme rainfall (e.g. maximum for a specified period such as a 

year) and the dependence of maxima in time. With respect to the latter problem, a popular as-

sumption is that extreme rainfall events can be assumed independent in time. It is noted, though, 

that, from a global perspective, several indications disfavor this assumption, including the above 

observation (section 2) about the grouping of record rainfall events in time. Also the lately 

growing body of publications examining “nonstationarity” in rainfall extremes may au fond 

reflect time dependence of extremes, as time dependence is quite often misinterpreted as 

nonstationarity (Koutsoyiannis and Montanari, 2015). However, in what follows we deal only 

with the first problem, the marginal distribution, for which a lot of evidence has been gathered 

in the last decade and which is more important from a practical engineering point of view.  

 The major question in this regard is how the rainfall intensity grows as the probability of 

exceedence decreases. This question is again related to the notion of infinity. Clearly, as the 

probability of exceedence tends to zero, the intensity tends to infinity. There exists a 

mathematically proven lower limit to the rate of this growth, which is represented by an 

exponential decay of the probability of exceedence with intensity. The alternative is a power-law 

decay. The two options may lead to substantial differences in design quantities for high return 

periods.  

 Accordingly, the distribution tails are important to know in engineering design. However, 

the study of the tails is difficult and uncertain because the tails refer to infrequent events that 

require very long records to appear. Traditionally, rainfall records are analyzed in two ways. The 

most frequent is to choose the highest of all recorded precipitation intensities (for a given 

averaging time scale) at each year and form a statistical sample (commonly referred to as “block 

maxima”) with size equal to the number of years of the record. The other is to form a sample 

(sometimes referred to as “peaks-over-threshold”—POT) with all recorded intensities over a 

certain threshold irrespectively of the year they occurred. Usually the threshold is chosen high 

enough, so that the sample size is again equal to the number of years of the record. This however 

is not necessary: it can well be set equal to zero, so that all recorded intensities are included in 

the sample. However, the threshold simplifies the study and helps focus the attention on the 

distribution tail.  
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 If x1, x2, …, xn are random variables (hence denoted with underlined symbols, following the 

so-called Dutch convention) representing the recorded average intensities within a year at 

nonoverlapping time periods equal to a chosen time scale d, then the maximum among them y := 

max(x1, x2, …, xn) has a distribution function Hn(y) fully dependent on the joint distribution 

function of xi. If we assume that xi are independent and identically distributed (IID) with 

common distribution function F(x), then Hn(x) =(F(x))n. If n is not constant but rather can be 

regarded as a realization of a random variable (corresponding to the fact that the number of 

rainfall events is not the same in each year) with Poisson distribution with mean ν, then the 

distribution function becomes (e.g. Todorovic and Zelenhasic, 1970; Rossi et al., 1984), 

𝐻(𝑥) = exp (−𝜈(1 − 𝐹(𝑥))) (11)  

where H(y) (without a subscript n) denotes the distribution function of y for randomly varying, 

Poisson distributed n. In particular, if the threshold has been chosen with the above rule (to 

make the sample size equal to the number of years of the record) then obviously ν = 1. Equation 

(11) expresses in a satisfactory approximation the relationship between the above two 

methodologies and the respective distributions F and H. The two options discussed above are 

then represented as follows: 

1. Exponential tail  

𝐹(𝑥) = 1 − exp(−𝑥/𝜆 + 𝜓) , 𝐻(𝑥) = exp(− exp(−𝑥/𝜆 + 𝜓)) , 𝑥 ≥ 𝜆𝜓 (12) 

where λ > 0 and ψ > 0 are parameters, so that λψ represents the specified threshold. Here F is 

the exponential distribution and H is the Gumbel distribution, also known as extreme value type 

I (EV1) distribution. 

2. Power tail  

𝐹(𝑥) = 1 − (1 + 𝜅 (
𝑥

𝜆
− 𝜓))

−1/𝜅

, 𝐻(𝑥) = exp (− (1 + 𝜅 (
𝑥

𝜆
− 𝜓))

−1/𝜅

) ,

𝑥 ≥ 𝜆 (𝜓 −
1

𝜅
) 

(13) 

where λ > 0, ψ > 0 and κ > 0 are parameters, with the shape parameter κ being the most 

characteristic as it determines the heaviness of the distribution tail. Here F is the generalized 

Pareto distribution and H, for the case κ > 0 considered here, is the extreme value type II (EV2) 

distribution (or Fréchet distribution).  

 The case κ < 0 in equation (13) is mathematically possible and is called the extreme value 

type III (EV3) distribution (or reversed Weibull law). However, this is inappropriate for rainfall 

as it puts an upper bound (λψ – λ/κ) for x, which is inconsistent. The case κ = 0, corresponds 

precisely to the exponential tail (exponential and Gumbel distributions, equation (12)). All three 

cases of H(x) are collectively referred to as the generalized extreme value (GEV) distribution.  

 It is further noted that, while here the correspondence between F(x) and H(x) has been 

founded on equation (11), assuming a randomly varying number of events n with mean ν = 1, the 

same correspondence is also found if we assume a constant n and examine the asymptotic 

behavior of Hn(x) = (F(x))n as n → ∞. Indeed, for a specified value of Hn(x) and large n, F(x) should 

be large (or F(x) → 1 as n → ∞); since ln(F(x))n = n ln (1 – (1 – F(x))) = n (–(1 – F(x)) – (1 – F(x))2 

– …) ≈ –n(1 – F(x)), it turns out that for large F(x), 𝐻𝑛(𝑥) ≈ exp (−𝑛(1 − 𝐹(𝑥))), which is similar 

to H(x) in (11) (see additional information in Koutsoyiannis, 2004a). 
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Further important topics of extreme value theory on rainfall can be found in Salvadori and 

De Michele, 2001; Koutsoyiannis, 2004a; Papalexiou and Koutsoyiannis, 2013; Marani and 

Ignaccolo, 2015; and many other studies. While most of the above mathematical arguments have 

assumed independent random variables, the results can be approximately valid even in case of 

variables dependent in time. Specifically, Leadbetter (1983) demonstrated that maxima of 

dependent series follow the same distributional limit laws as those of independent series, 

provided the series has limited long‐term persistence at extreme levels.  

5.2 Distribution type: Gumbel, Fréchet or Weibull? 

For years, the exponential tail and the Gumbel distribution have been the prevailing models for 

rainfall extremes, despite the fact that they yield unsafe (too small) design rainfall values for 

large return periods. Recently, however, their appropriateness for rainfall has been questioned. 

Koutsoyiannis (2004a, 2005a, 2007) discussed several theoretical reasons that favor the power-

law/EV2/Fréchet distribution over the exponential/EV1/Gumbel case. By now, several studies 

have provided empirical evidence supporting the power-law case. Some of them, based on 

empirical evidence from daily rainfall records worldwide, are explicitly mentioned below: 

1. The data set compiled by Hershfield (1961) with 95 000 station-years, which he used to 

formulated his PMP method, in the already mentioned study by Koutsoyiannis (1999), was 

found consistent with the EV2 distribution with shape parameter κ = 0.13, which 

corresponds to Hershfield’s assumption of a fixed Km = 15. Accordingly, if a varying Km is 

assumed, then Hershfield’s equation (3), for a time scale of 24 h, is consistent with a shape 

parameter varying with ℎ
∗
 (in mm) as 

𝜅 = 0.183 − 0.00049 ℎ
∗
 (14) 

2. Koutsoyiannis (2004b, 2005a) compiled an ensemble of annual maximum daily rainfall 

series from 169 stations in the Northern Hemisphere (28 from Europe and 141 from the 

USA) roughly belonging to six major climatic zones, all having lengths from 100 to 154 

years, and comprising a total of 18 065 station-years. The analysis provided sufficient 

support for the general applicability of the EV2 (Fréchet) distribution model worldwide. 

Furthermore, the ensemble of all samples was analyzed and supported the estimation of a 

unique shape parameter κ for all stations. The estimated value of κ varied for different 

methods of estimation and was found κ = 0.09 for the maximum likelihood method, κ = 

0.10 for the L-moments method, κ = 0.13 for the method of moments and κ = 0.15 for a 

weighted least squares method. The latter method, by assuming weights equal to the 

empirical quantiles, gave higher importance to the high values and, as the resulting value 

leads to more conservative design (gives higher maximum rainfall depths), the value κ = 

0.15 was suggested as the preferred one. 

3. Papalexiou and Koutsoyiannis (2013) analyzed the annual maximum daily rainfall of 

15 137 records from the GHCN daily database, with lengths varying from 40 to 163 years. 

Using the L-moments method, they fitted to all stations the GEV distribution, which 

comprises the three types of H described above as special cases. The results clearly 

suggested that the EV3 distribution (a GEV distribution bounded from above, with 

negative shape parameter) is completely inappropriate for rainfall, while the EV2/Fréchet 

law (the GEV law with positive shape parameter), prevails over the EV1/Gumbel law. The 

mean value of the shape parameter κ for all stations was found to be 0.114. However, this 

value was not found to be representative for all parts of the world. 
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4. Cavanaugh et al. (2015) analyzed again a subset of the GHCN daily database, selecting over 

22 000 high quality stations across the globe, which pass certain quality control and 

temporal completeness criteria. They utilized an advanced test for differentiating between 

exponential- and heavy-tailed distributions of precipitation, and their results indicated 

that the majority of precipitation exceedance probabilities are of Pareto type and, 

therefore, most precipitation records have power-law distributed tails, not exponential. 

 Additionally, Veneziano et al. (2009) used multifractal analysis to show that the annual 

rainfall maximum for time scale d can be approximated by a GEV distribution and that typical 

values of κ lie in the range 0.09 to 0.15 with the larger values being associated with more arid 

climates. Similar results were provided by Chaouche (2001) and Chaouche et al. (2002). 

Chaouche (2001) exploited a data base of 200 rainfall series of various time steps (month, day, 

hour, minute) from the five continents, each including more than 100 years of data. Using 

multifractal analyses it was found that (a) an EV2/Pareto type law describes the rainfall 

amounts for large return periods; (b) the exponent of this law is scale invariant over scales 

greater than an hour (in fact, this is dictated by theoretical reasons; see below); and (c) this 

exponent is almost space invariant. Other studies have also expressed skepticism for the 

appropriateness of the Gumbel distribution for the case of rainfall extremes. Coles et al. (2003) 

and Coles and Pericchi (2003) concluded that inference based on a Gumbel distribution model 

fitted to the annual maxima may result in unrealistically high return periods for certain 

observed events and suggested a number of modifications to standard methods, among which is 

the replacement of the Gumbel model with the GEV model. Mora et al. (2005) and Bacro and 

Chaouche (2006) confirmed that rainfall in Marseille (a raingage included in the study by 

Koutsoyiannis, 2004b) and other raingages in southern France are not in the Gumbel law 

domain. Sisson et al. (2006) highlighted the fact that standard Gumbel analyses routinely assign 

near-zero probability to subsequently observed disasters, and that for San Juan, Puerto Rico, 

standard 100-year predicted rainfall estimates may be routinely underestimated by a factor of 

two. Schaefer et al. (2006) using the methodology by Hosking and Wallis (1997) for regional 

precipitation-frequency analysis and spatial mapping for 24-hour and 2-hour durations for the 

Washington State, USA, found that the distribution of rainfall maxima in this State generally 

follows the EV2 distribution type. 

5.3 Global survey of the distribution shape of maximum rainfall 

Once the EV2/Fréchet/Pareto law has been found to be representative for extreme rainfall 

worldwide, a relevant question is, can the shape parameter κ of this law be assumed constant for 

the entire globe? This question is very important as the estimation of three parameters of a 

distribution function is generally problematic if the statistical sample is not very large 

(Lombardo et al. 2014) and this is particularly the case for the shape parameter of the 

distribution of extreme rainfall (Papalexiou and Koutsoyiannis, 2013). If the shape parameter 

can be assumed unique for the entire globe, then the estimation of the remaining two 

parameters of the three-parameter EV2 law can be supported by the sample.  

 Samples of daily rainfall offer the most precious basis to study this question, because of 

the abundance and higher reliability (in comparison to sub-daily rain recorder data) of the daily 

records. It is noted that if a reliable estimation of the shape parameter is made for a certain time 

scale (in this case daily), then the same value holds for all other time scales. A simple way to 

demonstrate this is to recall that a certain κ of the Pareto law F(x) in equation (13) implies that 

all statistical moments for order > 1/κ diverge to infinity. Consequently, this divergence is 

conveyed to all time scales of aggregation. 
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 The above question was implicitly or explicitly considered in three of the already 

discussed above studies which investigated the global distribution of extreme rainfall. 

Specifically:  

1. Koutsoyiannis (1999), who used Hershfield’s (1961) data set, did not study the question 

explicitly but, in accordance with the original study by Hershfield, assumed that either (a) 

the distribution function shape is the same for all stations, which allowed merging the 

entire data set (after standardizing) and estimating a common shape parameter κ = 0.13, 

or (b) the distribution function shape depends of the mean of the annual maximum rainfall 

ℎ
∗
, which allowed the extraction of equation (14).  

2. Koutsoyiannis (2004b) examined that question and concluded that the variability of the κ 

estimates for each of the 169 stations can be attributed to statistical sampling effects; this 

again enabled merging the entire data set (after standardizing) and estimating a common 

shape parameter, with value varying for different estimation methods from κ = 0.09 to κ = 

0.15, with the latter value suggested as the preferred one. 

3. In Papalexiou and Koutsoyiannis (2013) the vast amount of stations and data allowed a 

more thorough study of the question. It was found that, when the effect of the record 

length is corrected, the shape parameter varies in a narrow range yet a single value cannot 

be representative for the entire globe. As expected, the statistical sampling effect explains 

a big part of the observed variability of the shape parameter around its mean value κ = 

0.114; however, as seen in Fig. 12, it does not explain the total variability. The authors 

concluded that the geographical location on the globe may affect the value of the shape 

parameter. Furthermore, they constructed a map of the geographical distribution of the 

GEV shape parameter, reproduced here in Fig. 13, which shows that large areas of the 

world share approximately the same GEV shape parameter, yet different areas of the 

world exhibit different behavior in extremes (for example, the eastern Brazil and the 

western USA seem to have lower κ than other parts of the world). As a final remark, the 

authors suggested not to follow blindly the statistical estimate of κ based on whatever 

statistical method. In particular, they proposed that in the case where data suggest a GEV 

distribution with negative shape parameter (distribution bounded from above), this 

should not be used. Instead it is more reasonable to use in this case a Gumbel or, for 

additional safety, a GEV distribution with a shape parameter value equal to 0.114. 

 
Fig. 12 L-kurtosis vs. L-skewness plots for the observed samples of the 15 137 records from the 

GHCN database as well as an equal number of Monte Carlo simulated samples assuming GEV 

distribution with fixed shape parameter κ = 0.114 (from Papalexiou and Koutsoyiannis, 2013).  



24 
 

 
Fig. 13 Geographical distribution of the mean value of the GEV shape parameters in regions of 

latitude difference Δφ = 2.5° and longitude difference Δλ = 5° (from Papalexiou and Koutsoyiannis, 

2013).  

6. Ombrian (intensity-duration-frequency) curves 

6.1 Theoretical basis and mathematical formalism 

One of the major tools in hydrologic design is the ombrian relationship, more widely known by 

the misnomer rainfall intensity-duration-frequency (IDF) curve. An ombrian relationship (from 

the Greek ‘όμβρος’, rainfall) is a mathematical relationship estimating the average rainfall 

intensity i over a given time scale d (sometimes incorrectly referred to as duration) for a given 

return period T (also commonly referred to as frequency, although frequency is generally 

understood as reciprocal to period). Several forms of ombrian relationships are found in the 

literature, most of which have been empirically derived and validated by the long use in 

hydrologic practice. Attempts to give them a theoretical basis have often used inappropriate 

assumptions and resulted in oversimplified relationships that are not good for engineering 

studies.  

 In fact, as shown in Koutsoyiannis et al. (1998) an ombrian relationship is none other than 

a family of distribution functions of rainfall intensity for multiple time scales. This is because, the 

return period is tied to the distribution function, i.e., T = Δ/(1 – F(x)), where Δ is the mean 

interarrival time of an event that is represented by the variable x, typically Δ = 1 year. Thus, a 

distribution function such as one of those described in the previous section, is at the same time 

an ombrian relationship, once generalized for a multitude of time scales. Koutsoyiannis et al. 

(1998) showed that the empirical considerations usually involved in the construction of 

ombrian curves are not at all necessary, and create difficulties and confusion.  

 However, the direct use in engineering design of a fully consistent multiscale distribution 

function may be too complicated. Simplifications are possible to provide satisfactory 
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approximations, given that only the distribution tail is of interest and that the range of scales of 

interest in engineering studies is relatively narrow. Such simplifications, which were tested 

recently and were found to be reasonable (Papalexiou and Koutsoyiannis, 2009), are:  

1. the separability assumption, according to which the influences of return period and time 

scale are separable (Koutsoyiannis et al., 1998), i.e.,  

𝑖(𝑑, 𝑇) =
𝑎(𝑇)

𝑏(𝑑)
 (15) 

 where a(T) and b(d) are mathematical expressions to be determined; 

2. the adoption of the Pareto distribution for the rainfall intensity over some threshold at any 

time scale, as discussed in the previous section; this readily provides a simple expression 

for a(T) of the form 𝑙((𝛵/𝛥)𝜅 − 𝑐), where l and c are constants related to the scale and 

location parameters of the Pareto distribution, while κ is the shape parameter of that 

distribution (Koutsoyiannis et al., 1998); and 

3. the expression of b(d) by the simple form 

𝑏(𝑑)  =  (1 +
𝑑

𝜃
)

𝜂

 (16) 

where θ > 0 and η > 0 are parameters. A justification of this relationship, which is a 

satisfactory approximation for time scales up to several days, can be found in 

Koutsoyiannis (2006). 

 Based on assumptions 1-3, we deduce that the final form of the ombrian relationship is 

𝑖(𝑑, 𝑇) = 𝜆′
(𝛵/𝛥)𝜅 − 𝜓′

(1 + 𝑑/𝜃)𝜂
 (17) 

where ψ΄ > 0, λ΄ > 0 and κ > 0 are parameters. In particular, as discussed earlier, κ is the shape 

parameter of the EV2/Pareto laws. Equation (17) is dimensionally consistent, provided that θ 

has units of time (as well as Δ), λ΄ has units of intensity, and κ and ψ are dimensionless. The 

numerator of equation (17) differs from a pure power law that has been commonly used in 

engineering practice, as well as in some multifractal analyses.  

 Apparently, the parameters ψ΄, λ΄ and κ do not depend on the time scale d or the return 

period, T. These parameters are related to those of the Pareto/EV2 laws of equation (13) by the 

following relationships: 

𝜆′ =
𝜆

𝜅
(1 +

𝑑

𝜃
)

𝜂

 (18) 

𝜓′ = 1 − 𝜅𝜓 (19) 

This implies that, in order for equation (17) to hold for every time scale d, in addition to the 

constancy of parameter κ which is guaranteed by theoretical reasons, as explained above, the 

parameter ψ should also be constant for all time scales. However, the parameter λ in equation 

(13) should vary with time scale d in a manner that λ΄ in equation (18) be constant (i.e., 

𝜆(𝑑) = 𝜅𝜆′(1 + 𝑑/𝜃)−𝜂). 
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6.2 Parameter estimation methods 

Consistent parameter estimation techniques for ombrian relationships have been discussed in 

Koutsoyiannis et al. (1998). Parameter estimation does not differ from a typical parameter 

estimation problem except that samples from several time scales d should be handled 

simultaneously, in a manner that parameters κ and ψ be constant for all time scales, while λ vary 

with time scale in such a manner that λ΄ in equation (18) be constant. Some relevant notes, in 

terms of data sets that should be used, follow: 

1. The parameter θ, which is typically smaller than 1 h, needs sub-hourly data to be 

estimated. These can be provided by observations from autographic rain recorders with 

high temporal resolution, or from digital sensors with sub-hourly time step. Without such 

data the estimated θ tends to approach zero.  

2. For the estimation of the parameter η, data for hourly or multi-hour time step can also be 

quite useful. 

3. The parameters of the numerator of equation (17) are better deduced from daily raingage 

data rather than from autographic rain recorder data, because the latter are more 

susceptible to measurement errors. 

4.  In particular the parameter κ of the numerator (which is the shape parameter of the 

Pareto/EV2 distributions) should be based on multi-station data of the area, or be 

assumed independently of data, according to the previous subsection. 

5. Finally, for the parameters ψ΄ and λ΄, daily raingage data of an adequate length (of several 

decades) usually suffice for a reliable estimation. 

 If one source of data is used and is deemed reliable for all time scales, then the one-step 

least squares method of Koutsoyiannis et al. (1998) can be readily applied to estimate all 

parameters of the ombrian relationship simultaneously. Otherwise, if different sources of data 

are used for different time scales, then a two-step procedure, also described in Koutsoyiannis et 

al. (1998) is advisable. First the parameters of the denominator of (17) are estimated so that, the 

quantities 𝑖(𝑑, 𝑇)(1 + 𝑑/𝜃)𝜂 have the same distribution for all time scales d; to this aim an 

optimization technique in terms of a Kruskal-Wallis statistic involving data of all time scales has 

been proposed. 

6.3 Areal reduction of point ombrian curves 

The statistical analysis of rainfall extremes and the construction of ombrian curves refer to a 

point (i.e., the rainfall station). On the other hand, the transformation of rainfall to runoff occurs 

at the catchment scale and thus the rainfall intensity should refer to the catchment area. This 

should require making statistical analysis for the areally averaged rainfall intensity. This 

however is usually too difficult or impossible, because of the sparse network of raingages as well 

as synchronization problems among the recordings of different devices. Therefore, a common 

method for a transformation of point estimates, to account for the spatiotemporal variability of 

rainfall across the river basin, suggests applying a reduction coefficient, called the areal 

reduction factor (ARF).  

 The ARF is defined to be the ratio of the areally averaged precipitation depth over a 

certain area A for a specified return period T and time scale d to the precipitation depth over any 

point of the area (assumed to be climatically homogeneous) for the same return period and time 

scale. Accordingly, to find the ARF we need to determine the distribution functions of both areal 

and point rainfall and divide the two for several return periods and time scales. A prerequisite 
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for this is to form statistical samples of areal rainfall with sufficient length and for various time 

scales. Another prerequisite for the definition to apply is the climatic homogeneity of the entire 

area, so that the same ombrian relationship applies to any point at the given area.  

Some studies miss the above definition and determine the ARF empirically, e.g. by 

averaging precipitation per event and considering the ratio of maximum point precipitation 

(also known as the center point precipitation) to the areal precipitation; this does not make 

much sense. In fact, empirical procedures like the latter imply different empirical definitions of 

ARF. A comprehensive review of empirical procedures and alternative definitions can be found 

in Svensson and Jones (2010). Despite theoretical inconsistencies, results from empirical studies 

of ARF have certainly some usefulness. Recent studies which adopt the consistent definition 

have been made by Lombardo et al. (2006) and Overeem et al. (2010). Both of these studies use 

radar data to estimate ARF, which certainly provide a great potential for studying the spatial 

variability of extreme precipitation due to the improved spatial coverage, resulting in good 

indications of the spatial patterns of rainfall. Major improvements in ARF estimation are 

anticipated in the near future, as radar data of rainfall will become more reliable and will 

accumulate in time providing samples with lengths adequate enough to enable reliable 

investigation of the probability distribution of areal rainfall. It is noted though that the poorer 

quality of radar data, compared to raingage data, is also expected to affect ARF estimation. 

Indeed, Allen and DeGaetano (2005) found that radar-based ARF decays at a faster rate (with 

increasing area) than gage-based ARF.  

 Current literature typically gives ARF as a function of A and d. Comprehensive 

investigations were carried out by Natural Environment Research Council (1975) which 

provided tabulated values of ARF for a wide range of areas (1 to 30 000 km2) and time scales (1 

min to 25 days). Koutsoyiannis and Xanthopoulos (1999, p. 154) fitted the following empirical 

expression to those data: 

𝜑 = max (0.25, 1 −
0.048𝐴0.36−0.01 ln 𝐴

𝑑0.35 ) (20) 

where A is given in km2 and d in h. The same relationship was compared with a nomograph 

constructed for the western USA by the U.S. Weather Bureau (1960; see also World 

Meteorological Organization, 1986, p. 103), where the differences are visible but not very 

substantial; this supports applicability of equation (20) in other parts of the world.  

7. Summary and conclusions 

While satellite rainfall data provide means to study the rainfall climatology, only ground rainfall 

data from raingages allow reliable quantification of rainfall extremes. The study of the global 

extremes, i.e., the record rainfalls throughout the globe, provides some useful information on the 

behavior of rainfall worldwide. While most of these record events have been registered at 

tropical areas, there are record events that have occurred in extratropical areas and exceed, for 

certain time scales, those that occurred in tropical areas. Interestingly, those records indicate a 

tendency for grouping in time, with highest occurrence frequency in the period 1960-80. The 

record values for different time scales allow the fitting of a curve which indicates that the record 

rainfall depth increases approximately proportionally to the square root of the time scale. 

According to this curve, the world record value for the hourly time scale is about 400 mm and 

that for the daily scale is about 1800 mm.  
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 Clearly, however, these record values do not suggest an upper limit of rainfall and, sooner 

or later, are destined to be exceeded, as past record values have already been exceeded. In 

addition, the very concept of the probable maximum precipitation, which assumes a physical 

upper limit to precipitation at a site, is demonstrated to be fallacious. The only scientific 

approach to quantify extreme rainfall is provided by the probability theory. Theoretical 

arguments and general empirical evidence from many rainfall records worldwide suggest 

power-law distribution tail of extreme rainfall and favor the EV2 distribution of maxima. The 

shape parameter of the EV2 distribution appears to vary in a narrow range worldwide. This 

facilitates fitting of the EV2 distribution and allows its easy implementation in typical 

engineering tasks such as estimation and prediction of design parameters, including the 

construction of theoretically consistent ombrian (IDF) curves, which constitute a very important 

tool for hydrological design and flood severity assessment.  

Among the outstanding problems related to extreme rainfall from a global perspective, the 

most important are related to the mapping of the variability of the probability distribution of 

extreme rainfall over the globe. The construction of maps with parameters of ombrian curves 

over the globe, or large parts thereof, using a theoretically consistent methodology, is also of 

major practical importance and usefulness. The combination of gage, radar and satellite data to 

produce more complete and reliable ARF relationships is an additional future step. The long-

term fluctuations of precipitation and particularly rainfall extremes, in connection with the 

investigation of dependence in time, is another open problem, whose study can be based on the 

longest available precipitation records and related proxies. Nonetheless, more important than all 

above potential future studies and research directions is the consistent logical foundation of all 

concepts related to extreme rainfall. Indeed, the field suffers from several fallacies, as 

substantiated above. Without removing these fallacies, scientific progress on the field is 

questionable. 
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