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Many hydrological applications such as flood studiesiequire the use of long rainfall
data atfine time scalesvarying from daily down to 1 minute time step. However, in the real
world there is limited availability of data at sub-hourly scales. D cope with this issue,
stochastic disaggregation techniquesare typically employed to produce possible
statistically consistent, rainfall events that aggregate up tothe field data collected at
coarser scals. A methodology for the stochastic disaggregatiorof rainfall at fine time
scaleswas recently introduced, combining the Bartlett-Lewis processto generate rainfall
events along with aljusting proceduresto modify the lower-level variables (i.e., hourly) so
as to be consistent withthe higher-level one(i.e., daily). In the present paper, we extend the
aforementioned scheme initially designed and tested for the disaggregation of daily
rainfall into hourly depths, for any sub-hourly time scale.In addition, we takeadvantage of

the recent developmentsin Poissoncluster processesincorporating in the methodology a


mailto:pkossier@central.ntua.gr

Bartlett-Lewis model variant that introduces dependence betweencell intensity and
duration in order to capture the variability of rainfall at sub-hourly time scales The
disaggregationschemeis implemented in an R packagenamed HyetosMinute, to support
disaggregation from daily down to 1-minute time scale The applicability of the
methodology was assesse@n a 5-minute rainfall records collected in Bochum,Germany;
comparing the performance of theabove mentioned model variantagainst the original
Bartlett-Lewis process (non-random with 5 parameters). The analysis shows that the
disaggregation process reproduces adequately the most important statistical
characteristics ofrainfall at wide range of time scales, whil¢he introduction of the model
with dependent intensity-duration results in a better performancein terms of skewness,

rainfall extremesand dry proportions .

Keywords : rainfall stochastic simulation; rainfalldisaggregation;Poissoncluster

models; Bartlett -Lewis modek; adjusting procedures fine time-scales



1. Introduction

Sochastic disaggregationis aimed at generating synthetic rainfall series which are
fully consistent with the given dataat a coarser scaleand, at the same time statistically
consistent with the lower-level process. This approach enables the preservation of the
stochastic structure of the process amultiple time scales which could not be ensured via
the inverse procedure, i.e., aggregation of the lowdevel variables to derive the procesat
a coarser levelKoutsoyiannis, 2003a, 2001)

Disaggregationis of high importance especially in the study of rainfall at fine time
scales (i.e., submonthly) which is the temporal resolution of interest for challenging
hydrological applications such as the simulation ofthe hydrologic response ofurban
catchmentsin flood modelling applications, the design and implementation of real time
control systems or the design and operation of combined sewer overflow®ennett et al.,
2013; Cowpertwait et al., 2006; Hingray et al., 2002; Koutsoyiannis and Foufot@eorgiou,
1993; Koutsoyiannis, 1994; Segond et al., 2007)n this context, disaggregation can be
employed to enrich the, frequently limited or even unavailable, finescale measurements
(e.g. hourly and subhourly) with possible realizations of rainfall events taking advantage
of the longer rainfall records that do existat coarse time scales (e.g. daily arabove).

During the last decade, he problem of single-site disaggregation of rainfall at fine
time scaleshas been studied systematicallyvith the use of Poissoncluster processes. The
models of this category represent the physical precipitation mechanisrithrough clustered
rectangular pulses that occur in continuous timeaccording to the Poisson point process
Qustering provides the flexibility of representing the complex phenomenon of rainfall at

different time scales through a simplified and parsimoniougpproach.RodriguezIturbe et



al. (1987) first introduced and studied two alternative types of clustering, the Bartlett
Lewis process and NeymatScott process, after observing the inability of simple Poisson
models to reproduce the statistical characteristics of rainfall at multiple time scales
(Rodriguez-Iturbe et al., 1987, 1984) In general, the two models have the same structure,
while their main difference lying in the way that pulse origins are distributed within a
cluster. Since then, various extensions and modifications of the origal models have been
proposed aiming to remedy weaknesses in reproducing the proportion of dry intervals and
the distribution of extremes (Entekhabi et al.,1989; GyasiAgyei and Willgoose, 1997; Kim
et al., 2013a; Onof and Wheater, 1994a; Rodrigu¢tirbe et al., 1988) The literature
reports numerous empirical investigations that examine the performance of the Poissen
cluster models in a wide range of raifall types and climatic conditions. The models have
been successfully fitted to dateof various fine time scalesfrom England (Cameron et al.,
2000; Cowpertwait, 1991; Entekhabi et al., 1989; Onof and Wheater, 1994a, 1994b 939,
Scotland (Glasbey et al., 1995)Belgium (Verhoest et al., 1997) Switzerland (Paschalis et
al., 2014) Germany(Kaczmarska et al., 2014) Spain(Khaliq and Cunnane, 1996) Ireland
(Khalig and Cunnane, 1996) South Africa (Smithers et al., 2002) New Zealand
(Cowpertwait et al., 2007), Australia(GyastAgyei and Willgoose, 1997; Gyaghgyei, 1999;
Wasko et al., 2015) GreecgDerzekos et al., 2005; Kossierist al., 2015, 2013) Italy (Bo et
al., 1994; Islam et al., 199Q)United States(Bo et al., 1994; Kim et al., 2016, 2013b;
Rodriguezlturbe et al., 1988, 1987; Velghe eal., 1994)and Korean Peninsula(Kim et al.,
2014). Further to the single-site case Poissoncluster models have been also developed for
the simulation of rainfall in space and time(e.g. Burton et al., 2008; Cowpertwait, 2010,

2002; Cox and Isham, 1988; Paschalis et al., 2018omprehensive reviews of the recent



developments on Poissorcluster models have been conducted by Onof et 42000) and
Wheater et al.(2005), while more details are provided in sectior.1.

The gygregation and disaggregation properties of the Bartlettewis modelwere first
examined byBo et al.(1994) who showed that the model can adequatelyreproduce the
main statistics of hourly up to 12hour time scale when 24 and 48-hour statistics are used
to estimate the model parametersOn the contrary, asimilar analysis for the NeymanScott
model (Cowpertwait et al., 1996a) showed that the variability of hourly rainfall is not
sufficiently reproduced when model fitting is basedonly on daily data. To improve model
performance, the authorsexamine the use of neighbouringdata to establish an empirical
relationship between hourly and daily variance and then the estimatedvariance is usedo
fit the model.

Despite the fact that theresearchers mentioned above havetudied the problem of
simulating rainfall at fine time scalesusing only coarserresolution data, ther work cannot
be considered @lisaggregatiord in the strict sense of the term, given that they do not
establish consistency betweenhigher- and lower-level variables This problem was first
examined by Glasbey et al(1995) who employed the Bartlett-Lewis model to generate a
large record of hourly anddaily data (e.g. 1000 years). For eaaiven sequence of wet days
(the authors assumed as independent a sequence of wet days that is preceded and followed
by at least one dry day), thealgorithm searches in the recordfor a sequence of the same
length that is in close agreement with the original oneFor the chosensequerce, the
synthetic hourly depths are rescaled to add up exactly to given daily valuddowever, this
rescaling procedure causesan overestimation of the variance of hourly intensities To

remedy this weakness, theauthors examinedanother ad-hoc model that searches for best



matching sequenceon the basis of daily totals of 3 days. Despite the improvement in the
statistics achieved this method does not have the general character of the initial scheme,
since a 3day period cannotnecessarilybe considered as independentGlasbey et al., 1995;
Koutsoyiannis and Onof, 2001)

More recently, Koutsoyiannis and Onof (2001) extended the general coupling
methodology o Koutsoyiannis (2001) to disaggregate daily rainfall into hourly depths
Their scheme combines theBartlett-Lewis model for the generation of syntheticrainfall
depths along with anadjusting procedure (Koutsoyiannis and Manetas, 1996jo establish
consistency with the given daily depths. Specifically, for a cluster of wet days, the rainfall
model runs several times and the generated sequence that best matches the original one in
terms of daily totals, is chosen. Then, the synthetic sequence of hourly rainfall depths is
modified according to a proportional adjusting procedure to add up to the given daily
depths. The methodology was imm@mented in the computer program Hyetos
(Koutsoyiannis and Onof, 2000) As the authors pointed out, this method shares some
similarities to the earlier disaggregation scheme of Glasbey et §1.995), but its structure is
different. Firstly, it is applied directly to each cluster of wet days without requiring thea
priori construction of an auxiliary large series of daily data. Further to that, the model
incorporates distinct levels of repetitions for the generation of temporal characteristics of
sequences andhe intensities of pulses, reducing significantly the required computational
OEi A8 30AAAOOAEOI ADPDI EA A QigabdregaitiofE scheim@00)ihesE AT T E O
been reported from Abdellatif et al. (2013), Debele et al.(2007), Engida and Esteves
(2011), Pui et al.(2012) and Segond et al(2007, 2006). The single-site model was

generalized for the multivariate caseby Koutsoyiannis et al.(2003), while the single-site



Hyetos model has been employed into different hybrid schemes for thepatio-temporal
disaggregation of daily rainfall(GyastAgyei and Mahbub, 2007; Gyashgyei and Willgoose,
1997; Gyasiagyei, 2005; GyasAgyei, 1999; Segond et al., 2006)

To date, the applicatiors of the Poissoncluster models in a disaggregation framework
concern mainly the generation of consistent hourly rainfall depths from given daily values.
Regarding the subhourly time scales, the literature is more restricted and concerns mainly
ad hoctechniques rather generic methodologies. Cowpertwait et al1996b) developeda
process for the singlesite disaggregation of hourly rainfall depths into smaller time
intervals using the NeymanScott rectangular pulse model. Some shortcomings of this
model in reproducing the temporal structure and the extreme behaviour of the
disaggegated 5minute rainfall depths were noticed by Onof et al(2005). GyasiAgyei and
Mahbub (2007) extended the multisite regional hybrid disaggregation model of Gyasi
Agyei (2005) for sub-hourly time scales. It is also worth mentioning the hybrid scheme of
Anis and Rodeg(2015) that uses theHyetos software to generate hourly rainfall depthsand
then a micro-canonical cascade modglOnof et al., 2005; Sivakumar and Sharma, 2008)
disaggregate the hourlydepths into 10-minute data. A similar approach was followed
earlier by Laloy and Bielders (2009) who applied a symmetrical doubletriangular
hydrograph method to hourly data from Hyetosin order to generate Eminute consistent
rainfall depths.

Recently, special focusias been given irthe extension of the Poissorcluster models
to capture rainfall characteristics at subhourly time scales. The modiftations concern
mainly either the incorporation of a third level of process of instantaneous pulses to

enhance model flexibility in reproducing different storm profiles(Cowpertwait et al., 2007;



Cowpertwait, 2004) or the introduction of a dependence between rainfall intensity and cell
duration (Kaczmarska et al., 2014) A morecomprehensivedescription of these models is
given in section2.1.

In this paper we build upon the coupling disaggregation methodology of
Koutsoyiannis and Onof(2001) and examine its extension and applicability to suourly
time scales. The new model extends the original one in two imp@ant ways:

1. The disaggregation schemeinitially designed and tested for the disaggregation of
daily rainfall into hourly depths, is now extended and verified for any sub-hourly
time scale.

2. The recently developed Bartlett-Lewis model that assumes dependence between
cell intensity and duration (Kaczmarska et al., 2014)s introduced in the scheme to
enable the adequate reproduction of the high variability that rainfall exhibits at
super-fine time scales

As a test case, we examined the performance of the methodology in the
disaggregation of daily rainfall depths into 5minute data, using a dataset from Bochum
(Germany). The new aforementionedvariant is compared against the original Bartlett
Lewis model (Rodriguez-Iturbe et al., 1987) allowing us to reach conclusions on the
performance of these models within a disaggregation frameworKkn our test case, we take
advantage of the fact that Sminute field data areactually available and hence can be used
both for model fitting and validation. Subsequently, our application of the disaggregation
model addresses the issue of enhancing daily data recordghen observeddata at finer
time scales are available at that gauge or aneighbouring gauge. The results of model

application are presented in seton 4.



Our primary motivation for this study arises from the need for a generic and
parsimonious, as well as operational, model that is easily applicable for the simulation of
rainfall at any fine time scale. The model was implemented in a computer program
developed by the authors for this purpose, namedyetosMinute (see ®ction 3), that
allows both the sequential simulation and the disaggregation of rainfallat any scale from

daily down to 1-minute scale.



2. Methodology and tools

A general framework for the generation of synthetic series that is fully consistent
with given data ofa coarsertimescaleand, at the same time statistically consistent with
the processunder study, was initially studied by Koutsoyiannis (1994) and Koutsoyiannis
and Manetas (1996) and later generalized by Koutsoyiannis (2001). Unlike most
disaggregation technigues thainvolve simultaneously both models of diffeent time scales
in one mathematical expression(Grygier and Stedinger, 1988; Stedinger and Vogel, 1984;
Stedinger et al., 1985; Valencia R. andl®&ake L., 1972; Valencia and Schaake, 1978)is
scheme is based on the coupling aidependent stochastic models, each apmd separately
to simulate the process at a specific time scaj¢hrough mathematical transformations. The
coupling transformation (also termed @djusting procedured modifies the lower-level
variablesin order to establish consistencywith the higher-level time series,ensuring at the
same time theexactpreservation of certain statistics (i.e., marginal andjoint second-order
statistics) or even the complete distribution of the former.To improve the approximation
of the statistics which are not explicitly preserved by the adjusting procedure(i.e.,
skewness coefficient) the methodology employs an iterative sampling procedure
Specifically, thelower-level model runs several times and the generateduxiliary series
that is in closest agreement with that of the higher-level is chosen for adjusting
(Koutsoyiannis and Manetas, 1996)

The abovecoupling framework, combined with the appropriate stochastic models (in
their univariate or multivariate variant) , has beensuccessfullyapplied to reproduce the
statistical behaviour and characteristic properties ofhydrologic processesat a wide range

of time scales (Efstratiadis et al., 2014; Koutsoyiannis and Manetas, 1996; Koutsoyiannis
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and Onof, 2001; Koutsoyiannis, 2001; Koutsoyiannis et al., 2003)o disaggregate annual
rainfall depths into monthly amounts, Koutsoyiannis (2001) coupled, through a linear
transformation, a symmetric moving average model with long-term memory

autocorrelation function (Koutsoyiannis, 2000), for the reproduction of Hurst-Kolmogorov
dynamics (Koutsoyiannis, 2011, 2003b)at annual scale with a periodic autoregressive

gamma model, i.e. aPAR(1) mode| for the simulation of monthly seasonality. For the
disaggregation into daily amounts,a proportional adjusting procedureis applied to daily
series which is generated by another PAR() model combined with ad hoc truncation

techniquesfor the reproduction of the intermittent nature of daily process(Efstratiadis et
al., 2014; Koutsoyiantis, 2001). The three-level stochastic disaggregationframework has

been successfully appliedn several hydrological applications(e.g., Efstratiadis et al., 2015;

Nalbantis et al., 2011; Tsekouras and Koutsoyiannis, 2014; Tsoukalas and Makropoulos,

2015; Tsoukalas et al., 2016)

As indicated above,this coupling methodology was extended for the univariate
(Koutsoyiannis and Onof, 2001)as well as multivariate (Koutsoyiannis et al., 2003)
disaggregation of aily rainfall into hourly steps. In the univariate case the Bartlett-Lewis
rectangular pulse modelis employed to generate hourly synthetic series. Then, the
proportional adjusting procedure is applied to modify the hourly depths so as tobe
consistentwith the given daily data In the multivariate case, the generation of théower-
level variablesis conducted through a multivariate gamma autoregressive AR(1) model,
combined with truncation techniques for the reproduction of dry intervals while the
generded hourly depths become consistent with the daily valuesvia the general linear

transformation.
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Here, we focus on the extension of the univariatdisaggregation methodology into
sub-hourly time scales taking advantage othe recently developedvariants of the Bartlett -
Lewis process,oriented to capture the highvariability that precipitation exhibits at super-
fine time scales Next, we provide an overviev of the Bartlett-Lewis process as the rainfall
model used in the present work (section 2.1) and then we describe in detail the

disaggregation methodology(section 2.2).

2.1 The Bartlett -Lewis rectangular pulse models
As discussed in sectiorl, the Bartlett-Lewis rectangular pulse modelbelongs to the
general category of Poissoncluster models that simulate rainfall events via clusters of
rectangular pulses that occur in continuoustime. The ability of this type of model to
reproduce the characteristics of rainfall at multiple time scales, even in casahere some
of these time scales are not preserved explicitly by fitting procedure (Bo et al., 1994)
makesthe model appropriate for disaggregation frameworks in which different time scales
are involved (GyastAgyei, 1999)
The basic assumptions of the Bartlett-Lewis clustering mechanism are (Fig. 1;
Rodriguezlturbe et al., 1987)
9 Storm originst; occur in a Poisson process with raté and eachstorm i is associated
with a random number of celk.
1 Within each stormi, the origin tj of each cellj occurs following a second Poisson
process with ratey, whereas theorigin of first cell coincideswith the storm origin.
The time intervals of successive storm and cell origins are independent and

identically distributed random variables that follow an exponential distribution.
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1 Within each storm, the generation of cells terminates after a time span following
the exponential distribution with rate r. This implies that the number of cells per
storm has a geometric distribution of meart c= 1+y/r.

1 Each cell has a durationvj following the exponential distribution with rate s.

1 Each cell has an intensity; with a specific distribution. In the simplest version of

the model, the exponential distribution with meant xis assumed.

t1 @11 t12 t13 t2@:(‘1:21 t22 t3 @31

|
time"

Fig. 1. Schematic representation of the BartletlLewis clustering mechanism. Filled circles

denote storm origins while open circles denotes cedrrivals.

Subsequently, thanitially proposed model, hereinafter referred to as the Rectangular
Pulse BartlettLewis (RPBL) modelhas5 parameters: §,1,r, s, x}.- The model allows both
for storm and cell overlapping while the total rainfall intensity, Y(t), at every instantt, is
obtained by summing all active pulses at timé.

Despite the successfureproduction of the basic statistics (first- and secondorder
moments of rainfall depths)from hourly up to daily scale the RPBL model showed some
difficulties in reproducing the temporal characteristics of rainfall as expressed viathe
overestimation of the proportion of dry periods (Onof and Wheater, 1994b; Rodriguez

)y OO0OAA AO Al 8lurbeeba) yiop7; ¥/é¢lghedd af.,Q 800y he discrepancies are
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attributed to the fact that parametersr, [ and s which control the temporal properties of
the process remain constant between different storms and subsequently the model is not
able to reproduce different types of rainfall as well as theariability within storm events.
Extended analysis on the temporal propertiesof dry periods and storm eventsof the
Bartlett-Lewis clustering processhas been conducted byOnof and Wheater(1994b, 1993;
1994a) and Onof et al.(1994).

To enhance the modelé @exibility in generating a greater diversity of rainfalls,
Rodriguezlturbe et al. (1988) modified the original model so thatparameter s is randomly
varied from storm to storm according to the gamma distribution witha shape parametery
and a rate parameter v. The parameterization of the Random Parameter Bartleti_ewis
(BLRPR)model entails also that the cell origin rater and the storm duration rate r are also
varied so thatthe ratiosll h 1 j—ande h [ j— are kept constant.Subsequently,in BLRPR
model, parameters and r are also random variables following gamma distribution with
common shape parameter] and rate parameters & [ and v/ 3, accordingly. The BLRPR
model has 6 parameters: {,1,v, [, 3.1 x}-

In its simplest version, the model assumes theexponential distributi on for cell
intensity. However, some discrepancies inhe distribution of extreme values at different
time scales, especially fofower time scales andhigh return periods, have been observed
(Onof and Wheater, 1994b, 1993; Rodriguelturbe et al., 1988, 1987; Velghe et al., 1994;
Verhoest et al., 1997)The performance of the model can be improved by incporating a
longer-tailed distribution for cell intensity. The gamma distribution has been examined
(Onof and Wheater, 1994ajand implemented in some caseéVerhoest et al., 1997, 201Q)

while Weibull and Pardo distributions are also potential candidatesAlternatively, the use
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of third or higher order moments of rainfall depth in fitting procedure may result in the
improvement of the extremevalues performance of the moded (Cowpernwait, 1998;
Verhoest et al., 2010; Wheater et al., 2003im et al.(2013a) showed thatthe distribution
of the maximum rainfall depths can be better reproduced by incorporating the inteannual
variability of monthly statistics in the estimation of the model parameters.

The Bartlett-Lewis model has been furtrer extended to allow the reproduction of high
variability of rainfall profile at sub-hourly time scales.In this framework, Cowpertwait et al.
(2007) modified the RPBL model so that the constant rectangular cell intensities are
replaced by a cluster of instantaneous pulses that occur following a third Poisson process
of rate u. Subsequently, the BLIP model incorporates 3 Poisson processes that control
respectively, the arrival of storms with rate 1, the arrival of cells within storms with ratey
and the arrivals of instantaneous pulses within cells with rates. This model was further
extended by Kaczmarskaet al. (2014) in a way thatcell duration parameter s is randomly
varied between storms following the BLRPR model. ThBLIPR model implies that the
ratio,] h ,j—, of instantaneous pulse arrival rate to the cell duration parameter is kept
constant in the process, giving a total of 7 parameterst {{,v,{,3,9,1 x}-

Greater variability in temporal storm characteristics can be also achieved by
superposing multiple independent processegor different types of rainfall (Cowpertwait et
al., 2007; Cowpertwait, 2004) Cowpertwait et al. (2007) examined a superposed model
consisting of two independent BLIP processes in order to simulate rainfall from-ginute
up to daily scale at a site in Kelburn (New Zealandpespite thegood performance of the
model, the large number of independent parameters @ses extra difficulties inthe fitting

procedure. Kaczmarska et al(2014) examined further Cowpertwait et al. (2007)6 O | T AAI
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along with a superposed model consisting of two RPBL model, in arBinute rainfall time
series from a site in Bochum (Germany)showing thatfor both superposed modelsit was
not possible to obtain a realistic and stable set of parameters.

As an alternativeto the above discussed approache&aczmarska et al(2014) re-
parameterize the BLRPR modedo as tointroduce dependencebetween cell intensity and
duration. Specifically,the cell intensity parametert x varies between storms(similarly to —,
[ and r) so that the ratio@h ‘ j— remains constant. Subsequently, thenew model,
hereinafter referred to asthe BLRPR model, has 6 parameters{}, |, Vv, [, 3,i}. The analysis
showed that this model outperforms both the superposed modelsand those with a third
layer of pulsesin preserving the statistical characteristics of Bochum rainfall from 5-

minute up to daily.

2.2 The disaggregation scheme

In the disaggregation scheme, the synthetic rainfall depths that have begenerated
via one of the abovedescribed Bartlett-Lewis modek are modified so as to be consistent
with the given daily series.In more detail, the methodology is formed as follovs: Provided
that a daily series® "Q phch8 is known, a lower-level auxliary series® i ph8 hQ s
generated via one of the above describe®Bartlett-Lewis modek. Given that the auxiliary
series has been produced independentlyo the higher-level variables,&d> do not sum up
to @, but to some other quantitiesid. The error in the additive property, i.e., the departure
of & quantities from the corresponding higherlevel variables®, is allocated to the lower
level time series, through an adjusting procedre, and thus a modified serieso i

pMB hQ is obtained.Now, the latter satisfies theadditive property B & & Q phtB
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The special characteristics of rainfall seriest fine time scales, i.e., large proportion of
zero values, strongautocorrelation structure and highly-skewed distribution, establish the
proportional adjusting procedure (Eg. (2)) as more appropriate to modify the auxiliary
synthetic series(Koutsoyiannis and Onof, 2001) This procedure does nottransform zero
values to negative, as linear procedure do, and explicitly preserves the complete
distribution for independent variables that havwe the gamma distribution with common
scale parameter (Koutsoyiannis and Manetas, 1996) Further to that, it enables
preservation of the full distribution for independent gamma distributed variables and
provides a good approximation for dependent vambles with gamma distribution
(Koutsoyiannis, 1994). However, at fine time scales, suchs hourly and even moreso at
sub-hourly scales the autocorrelationis high and, hence, the assumptioof independenc
among successive variables is not valid.

To improve the approximation of the statistics which are not explicitly preserved by
the proportional adjusting procedure, an iterative process i€mployed. Specifically, the
Bartlett-Lewis model runsseveral times and the sequence that is in closeagreement with
the higher-level sequence (i.e., by means that a distance measyEs. (1)) is lower than an
accepted limitQ ) is chosen to be transformed To investigate the efficiency ofthis
repetition scheme along with the proportional adjusting procedure, Koutsoyiannis and
Onof (2001) AT T AOAGAA A OAOEAO 1T &£ O0O0I wing aAtoDdIA CCOA C/
synthetic series, generated vian intermittent gamma autoregressive processlhe analysis
showed that the adjusting procedure, irrespective of the value df2 , does notcreate any
bias in variation and skewnessas long as theprobability dry of each specified period is

explicitly preserved by the lowerlevel model (i.e., the number of zero values dahe
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generated series is kept constant and equal to that of the original sequence during
repetitions). On the contrary,when the number ofzero valuesis not known, a considerable
increase in variation and skewness is observed. Despite the fact that thimb decreases by
adopting low values forQ, it can not be truly eliminated by increasingthe number of
repetitions. As a possible solution to this, a negative bias can be introduced to variation and
skewness before model fitting (Koutsoyiannis, 2001). Regarding theapproximation of
autocorrelation, the bias is decreasing with the combing use of adjusting procedure ad
repetitions, for low limit Q .

From a technical point of view, the application ofhe repetition schemedirectly in a
long simulation period may lead to extremely high computational timesdue to the
difficulty in finding a sequencethat matches the higher-level time series by meansof a
distance measure To cope with this issue different sequences(clusters) of wet days
preceded and followed by at least one dry dagan beassumedstochasticallyindependent,
hence treatedas such This is in full compliance with the Bartlett-Lewis mechanism that
entails that the time intervals between successive storms armmdependent variables with
exponential distribution and common rate parameter On the other hand,we can not
consider and treat as independent successivesequences of wet intervalsat sub-daily time
scales.Due to this,the disaggregation into subhourly intervals is conducted always with
reference to theknown daily valuesand not tothose offiner scales.

The high computational timemay remain an issue forvery long clusters of wet days.
Due to this, the disaggregation scheme allows the random subivision of very long
sequences into subsequences in case whenthe departure of the sumof generated lower

level variables from the given daily defhs remains higher than an acceptable limit after a
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number of repetitions. In some cases, this process may lead to nested, successive
subdivisions of the initially given cluster into many subclusters.

Aiming to further reduce the computational time, two dfferent levels of repetitions is
implemented, taking advantage of the fact that irnthe Bartlett-Lewis mechanism the
temporal characteristics of storm events are generated independently of thecell
intensities. Subsequently, for each cluster of wet daysthe Bartlett-Lewis model runs
several timesto establish, in the first phasethe appropriate wet/dry structure , and in a
second phasehe intensity profile of the event

For a cluster ofL wet days, the disaggregatiorof daily rainfall into any sub-hourly
depths (e.g, 5minute) comprises the following steps (adapted from Koutsoyiannis and
Onof(2001), seeFig.2):

Step 1: The Bartlett-Lewis model(i.e.,RPBL BLRPRor BLRPR) generates sequences
of storms and cells at the specific sukhourly time scale (e.g. 5minute), until a cluster of
exactly L wet days, followed by one or more dry days, isbtained.

In the case that the cluster has been formed successfully within an allowed numbefr
repetitions, € ,the process continuous tdep 2 Otherwise,the cluster of L wet days is sub
divided randomly into sub-clusters with smaller lengths. In this case, he disaggregation
processapplied to each clusterindependently, starting from the current Step 1

Step 2 For the formed sequenceof storms and cells, thecell intensities are generated
and the synthetic daily depths are calculatedThe synthetic daily depths are compared to

the original ones according to the formula
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(1)

where & and G are the originaland synthetic daily depth of dayi of the wet cluster, andc (=
0.1 mm) a small constant inserted to prevent domination by the very low depths At the
same time,the logarithm prevents the domination of very high valueslf the departure d is
smaller than an acceptablelimit Q , the algorithm moves to Sep 3 Otherwise, a new
sequence of cell intensities is generated for the same arrangement of storm and cellse
generation of new cell intensities continues for an allowed number of repetions, € . If,
however, the model cannot establish an appropriate sequence of intensities the temporal
arrangement of storms and cells is discarded and replaced by a new one, thus returning at
Sepl

This processholds until the total repetitions, i.e.repetitions for established wet/dry
sequences and cell intensities, exceeds an allowed numbef . After this number, the initial
sequence is subdivided randomly into shorter suktsequencesand the process begins from
Sep 1for each new subsequence ind@endertly. In some cases, this process may lead to
nested, successive subdivisions of the initially given cluster into many stddusters.

Step 3 For the chosen sequence, theainfall depths of the lower level ® (e.g. 5

minute) are obtained by modifying the generateddepths & according tothe proportional

adjusting procedure:

i pfBAQ (2)

where @ and @are the original and generated daily depth of dayof the wet cluster andk is

the number of lower-level variables within one higherlevel period.
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Obtain the sequence of wet days, preceded and
followed by at least one dry day, from the given series

A4

Run the BL model until ecluster of L wet days followed ;
by one or more dry day is formed

For that sequence, generate cell intensitiesnd calculate
the resulting daily depths Z;,i = 1, ..., L

Do repetitions
exceeds a

Do Z; resembleZ;

?

(dSdy): specified value?

Y

Adjust the sequence I In the case of very longequences and
Xos=1,..k | after a number of repetitions,the .
:cluster is subdivided into subclusters,!
! eachdisaggregated independently, 1
1

i } ! accordlng to this flowchart.

[ Obtain the disaggregated serie&, s = 1

Fig. 2. Flow chart of the disaggregation scheme for a cluster df wet days (after

adjustment from Koutsoyiannis and Onof{2001))
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3. Software description z (HyetosMinute 6

Within this work, a new software program, named HyetosMinutel, was created to
allow for the temporal stochasticsimulation of rainfall at fine time scales The software was
coded in the programming languageR (R Core Team, 2014)with some parts of code
implemented in C.HyetosMinute incorporates various new functionalities that extend the
stand-alone Hyetos software (Koutsoyiannis and Onof, 2000)in various ways: (1)
generation of synthetic rainfall datg either via sequential simulation or disaggregationat
sub-hourly time scales and specifically dom to 1-minute time scale (2) implementation
and incorporation of the recently developed BartlettLewis model with randomized
intensity parameter (Kaczmarska et al., 2014)n the disaggregation schemgfurther to the
original (RodriguezIturbe et al., 1987)and the random parameters (RodriguezIturbe et
al., 1988) versions of the model (3) implementation of an enhancedversion of the
Evolutionary Annealing-Smplex (EAS) optimization algorithm for the estimation of madel
parameters.

Depending on data availability, the package operates eithdi) in testing mode in
cases where historical rainfall depths are imported to enable comparisons(by means of
various statistics), or (ii) i n full operational mode if only daily data are available. For all
modes, the generated rainfall series are delivered to the user eithémn R consoleor are
exported in external files for further processing. The packagealso has several graphical
capabilities that allow the direct representation and comparison of statistical

characteristics of original and synthetic data(e.g. marginal statistics, conditional statistics,

1 HyetosMinute is free and available online atattp://www.itia.ntua.gr/en/softinfo/3/
2 EAS and SEEAS (i.e.,, the surrogaenhanced extension) are free and available online at:
http://www.itia.ntua.gr/en/softinfo/29/
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temporal properties of rainfall, autocorrelation structure etc). Further to that, the
hyetographs of storm events aralso plotted and exportedfor further analysis

The packagealso enables the estimation of theBartlett-Lewis model parametersvia
an enhancedversion of the EASoptimization method (Kossieris et al., 2015) originally
developed by Efstratiadis and Koutsoyiannig2002; Tsoukalas et al., 2016)The method
combines the strength of simulated annealing in locating regions of attraction in rough
search spaces along witlthe efficiency ofthe downhill simplex method (Nelder and Mead,
1965) in smoother spacesThe search procedure is based on the evaluation of a population
either via quasi-stochastic geometric transformations, inpired by the downhill simplex
method, or fully-probabilistic transitions (mutations). The degree of randomness is
determined by an adapive annealing cooling schedulehat reduces system temperature so
as all transitions become more deterministic as searchroceeds.The major difference to
the original EAS(Efstratiadis and Koutsoyiannis, 2002)involves the reflection step through
weighted centroid (proxy of the gradient of search space) instead of the geometric one.
This modification accelerates the search, enabling the faster convergence region of
optimum. The platform allows the user to fully configure the multiple arguments of the
fitting problem, i.e. statistics to be included in theobjective function, form of the objective
function, parameter bounds, population size, et his is a major advancement with respect

to earlier versions of the methodology, which did not implement parameter estimation.
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4. Case study

The disaggregationmethodology was tested on &69-year time series of 5min rainfall
data, collected froma single site in Bochum(Germany). This extensive dataset has been
usedin the pastby Kaczmarskaet al.(2014) to assess the applicability of different Bartlett
Lewis models inthe modeling of rainfall from 5-minute up to the daily scale In the present
work, taking advantage ofthe good fitting achieved for a series of model variantsywe
applied the disaggregation m#éodology to generate5-minute synthetic data that sum up
exactlyto the historical daily values. The analysiswas conducted ona monthly basis, due to
the seasonalitythat rainfall characteristics exhibit, andfor multiple time scales, i.e.from 5-
minute up to daily.

In the present case study, twovariants of the Bartlett-Lewis model, with
exponentially distributed cell intensities, were used, i.e.,the original, 5-parameter, RPBL
model (Rodriguez-lturbe et al., 1987)as well asthe 6-parameter, BLRPR, random model
with randomized intensity parameter (Kaczmarska et al., 2014)The selection d these two
models was based ona comparative analysis | T " T A E O,iwbich shawe® that the
BLRPR model outperforms the two instantaneous pulse models, i.e., BLIP and BLIPR
models, intended for the reproduction of variability of sub-hourly rainfall (Kaczmarska et
al., 2014) In addition, the sameanalysis revealed thatthe 6-parameter randomized BLRPR
model achieves an equally good fitting with the RPBL model and hence the most
parsimonious modelis selectedfor further analysis. The performance of the two models
was assessedn terms of preserving the main statistical characteristics of observed data

both in the sequential simulation and disaggregatiorframework.
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The parameter ses used in the present study were based on the findings of
Kaczmarskaet al. (2014) who achieveda good fit of the RPBLand BLRPR model onn the
Bochumdataset, for a wide rage of time scalesand properties. Following the Wheater et
al. (2005) approach, the afore-mentioned authors employed a two-step approach that
handles model fitting asoptimization problem where the objective is the minimization of
the departure between thetheoretical expressions of the moments and theorresponding
observed values Initially, a number of optimizations are performed via the downhill
simplex algorithm (Nelder and Mead, 1965) using different starting values for the
parameters. Then, a gradientbased methodruns several timesin order to refine further
the optimum solution obtained from the first step (Chandler et al., 2010)

The optimization problem was formulated according to the generalized method of
moments, with the number of properties inserted in the objective function exceethg the
number of model parameters(Jesus and Chandler, 2011)n this framework, the properties
included in the fitting procedure were the mean of hourly rainfall as well as the coefficient
of variation, lag-1 auto-correlation, and skewness at time scales of-finutes, 1 hour, 6
hours and 24 hours. Despite the fact thathe proportion dry could also be included in the
fitting as an important property of the process,it is kept as validation criterion for
assessinghel T AAT 66 DAOAI Oi AT AA8

All simulations were performed using HyetosMinute package Regarding the
parameters ofthe disaggregation schemea preliminary analysis showed thatthe optimum
value for the maximum allowed distanceQ is 0.1 and for the maximum number oftotal
repetitions € is 5000. Despite the fact that smaller values fof2 lead to better results for

some statistics (e.g. skewnessand for some months, the computational time becomes
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extremely high without any noticeable improvement in the overall performance i.e.
different time scales and months At the same time, higher values af parameter (e.g.
10000) do not result in bias reduction.

As it has already mentioned above, thevaluation of the disaggregation scheme as
well as of the BartlettLewis model suiteswas conductedon the basis of certain statistical
properties of rainfall at 5-minute, 1-, 6- and 24-hour time scales Graphical representations
of the results are givenin Fig.3 through Fig.11. Each graph displays a specific property for
all months, deriving from: historical data, simulated data without disaggregationvia the
RPBLand BLRPR model, and finally disaggregated data using the two modeld$daving the
5-minute rainfall depths generatedby the model the data atcoarsertemporal scaleswere
obtained via aggregation Given that the disaggregatiorscheme establislesfull consistency
between 5min and daily scalejn the plots of the 24-hour statistics, the disaggregated data
match the observedexactly.

The statistical properties that are explicitly preservedby the Bartlett-Lewis models
i.e., mean, variance, laf correlation and skewness coefficientare displayed inFig.3 to Fig.
6. Regarding the mearand varianceof rainfall depth, a very good agreement between the
historical and disaggregated seriesvas achievedfor all months and time scalesThe small
overestimation that is noticed in the varianceof summer monthsis mainly attributed to the
large proportion of zero values and the higlskewnesscoefficients that data exhibit in these
months (see section2.2 for more details on possible sources of bigs In terms of the
coefficient of skewness {ig. 5), the disaggregation model follows in general the
performance of the rainfall modes. It is clear that both RPBL and BLRPRmodels tend to

underestimate the skewness, especiallyn summer months andat the 5-min time scalg
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while a better approximation is achiewed with the BLRPR model. As in the case of variance,
the disaggregation process ritroduces a slight positive bias at the 5-min and 1-hour
theoretical skewnessof RPBL modelwhich in this caseleads to a better approximation of
historical values. As we can see this bias isignificantly smaller than the departure between
the historical and the theoretical values, and, hence a better fit of the rainfall models
regarding skewness coefficientcan lead to thebetter performance of the disaggregation
model. Regarding thelag-1 autocorrelation coefficient (Fig.6), the rainfall models achieve a
very good fitting to the historical values, while an understimation is noticed at 24hour
time scale. As it is olvious, the disaggregation model with both raifall models also
preserves exactly the coefficients at Bnin and 1-hour scales, introducing a small negative
bias inthe valuesof the 6-hour scale

Fig. 7 displays the proportion of dry intervals in the entire period. As previously
discussed, thisproperty has not been introduced in the fitting procedure of the rainfall
models, and hence it is a validation criterion both for Bartlett-Lewis models and
disaggregation schemeWe observe that for all time scales and months, the BLRRfnodel
achievesa better approximation of the historical valuescompared to the RPBL model
while some higher discrepanciesare noticed in summer months. In the disaggregation
framework, the two rainfall models exhibit different behaviours.The repetitions schemes
and adjusting procedures do nointroduce any bias in the case of RPBL model, while in the
case ofBLRPR model, the disaggregatd series have highervalues of proportion dry
compared to the theoretical property of the model.However, in the disaggregation, the

model BLRPR remains superior to the original RPBLmodel. To further improve model
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performance, the proportion dry can beinserted in the fitting procedure, enabling the

better preservation of this property.
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® Obs == BLRP = = BLRP-Disag == BLRPRX = = BLRPRX-Disag

Fig.3. Comparison of mearof the historical and synthetic data, by month.

® Obs == BLRP = = BLRP-Disag == BLRPRX = = BLRPRX-Disag

Fig.4. Comparison of variance atfhe historical and synthetic data, by month.
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Skewness coefficient

5 min 1 hour

6 hour 24 hour

® Obs == BLRP = = BLRP-Disag == BLRPRX * = BLRPRX-Disag

Fig.5. Comparison of coefficient of skewness difie historical and synthetic data, by month.
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Fig. 6. Comparison of Lagl autocorrelation coefficient of the historical andsynthetic data, by
month.
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Fig.7. Comparison ofroportion of dry intervals of the historical andsynthetic data, by month.
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Additionally, a series ofrainfall depth conditional statistics are examinedo assess the
performance of the rainfall models as well ashe disaggregation schemeSpecifically, the
mean, variance and skewness coefficient of nexero rainfall depths of simulated,
disaggregated anchistorical data were obtainedand depicted inFig. 8 to Fig.10. It should
be mentioned that none of these properties were included in the fitting procedure and
subsequently,their explicit preservation is not ensured by the modelsAs we observeboth
models tend to overestimatethe mean of nonzero depths of summer months at all time
scales of interest while it is clear that the BLRPR model performs better. The
disaggregated series are in close agreement with thénsulated without disaggregation, and
hence we can say that no bias is introduceith that property. In terms of variance of non
zero values, simulated seriesrom both models agree well with the historical series, while
the BLRPR model outperforms the original model As in the varianceof full series, the
disaggregationcreatesa slight positive bias, especially in the 5min time scaleof summer
months for which the varianceis considerable high Finally, Fig. 10 displays the skewness
coefficient of nonzero values. As it is shown, both rainfall models considerably
underestimate the conditional skewnessat fine time scales(i.e., 5minute and 1-hour),
while significant improvement is achieved after applying the disaggregation modél O

adjustment procedureto the data generated by thaBLRPR model.
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Fig.8. Comparison oimeanof non-zero depthsof the historical andsynthetic data, by month.
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Fig.9. Comparison of variance of norzero depths of the historical and synthetic databy month.
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