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Abstract 7 

An extension of the symmetric-moving-average (SMA) scheme is presented for stochastic 8 

synthesis of a stationary process by approximating any dependence structure and marginal 9 

distribution. The extended SMA model can exactly preserve an arbitrary second-order structure 10 

as well as the high order moments of a process, thus enabling a better approximation of any type 11 

of dependence (through the second-order statistics) and marginal distribution function (through 12 

statistical moments), respectively. Interestingly, by explicitly preserving the coefficient of 13 

kurtosis, it can also simulate certain aspects of intermittency, often characterizing the 14 

geophysical processes. Several applications with alternative hypothetical marginal distributions, 15 

as well as with real world processes, such as precipitation, wind speed and grid-turbulence, 16 

highlight the scheme’s wide range of applicability in stochastic generation and Monte-Carlo 17 

analysis. Particular emphasis is given on turbulence, in an attempt to simulate in a simple way 18 

several of its characteristics regarded as puzzles. 19 

Keywords: stochastic modelling; grid-turbulence; hourly surface wind speed; daily 20 
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1. Introduction 22 

The scientific interest on stochastic dynamics has increased over the last decades as an 23 

alternative approach of deterministic or chaotic models to simulate the so-called random (i.e. 24 

unexplained or unpredictable) fluctuations recorded in non-linear physical processes. 25 

Koutsoyiannis (2010) argues that distinguishing deterministic from random is a false 26 

dichotomy. Randomness can emerge even in a fully deterministic system with non-linear 27 

dynamics. The dice throw, regarded as the emblem of randomness, is such an example 28 

(Dimitriadis et al., 2016b). The line distinguishing whether determinism (i.e. predictability) or 29 

randomness (i.e. unpredictability) dominates is related to the scale (or length) l(ε) of the time-30 

window within which the future state deviates from a deterministic prediction by an error 31 

threshold ε. For errors smaller than ε, we assume that the system is predictable within a time-32 

window l(ε) and for larger errors unpredictable. Therefore, by applying stochastic analysis we 33 

identify the observed unpredictable fluctuations of the system under investigation with the 34 

variability of a devised stochastic process. This stochastic process enables generation of an 35 

ensemble of realizations, while observation of the given natural system can only produce a 36 

single observed time series (or multiple ones in repeatable experiments). The simplest and yet 37 

powerful technique to reveal and analyze entirely the system’s variability, is the Monte-Carlo 38 

approach. However, this technique requires a generation algorithm capable of modelling any 39 
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selected marginal probability distribution and second-order dependence structure of the 40 

stochastic processes, appropriate for the investigated natural system. 41 

Although there are several methods for simulating arbitrary stochastic process, they all have 42 

limitations and advantages (Lavergnat, 2016 and references therein). For example, the non-43 

linear method for the preservation of the distribution function (i.e., a Gaussian distributed 44 

process with the desired dependence structure is produced and then transformed to the desired 45 

distribution through a non-linear transformation or the inverse distribution function) is often 46 

applied for synthesis of long-term (cyclostationary) processes (e.g., Koutsoyiannis et al., 2008), 47 

but it has a disadvantage of e.g., distorting the dependence structure (because of the 48 

transformation), while, in addition, the transformation cannot be invariant with respect to the 49 

time scale (Lombardo et al. 2012). A generalization of this implicit scheme is the so-called copula 50 

in which the joint distribution function is approximated, albeit through numerical methods. The 51 

latter implicit approaches, whose detailed overview is beyond the scope of this paper (the 52 

interested reader is referred to Hoeffding, 1940; Frechet, 1951; Sklar, 1959; as well as to more 53 

recent publications, e.g. by Nelsen, 2006 and references therein). Typically they apply non-linear 54 

transformations to the processes, often based on the autocovariance function (see Appendix D). 55 

However, it is widely known that despite the high flexibility of copulas, the fractal and Hurst-56 

Kolmogorov behaviour (i.e. strong correlation structures at zero scale and long-term persistence 57 

at infinite scale, respectively) cannot be easily handled (e.g. Lavergnat, 2016; Ibragimov and 58 

Lentzas, 2017). The reason for this, is that the process structure is invariant at these scales (as 59 

they tend to zero and infinity) and thus, the structure of the originally generated process is 60 

preserved rather than the back-transformed one (see also Appendix D for an example). 61 

Another category of existing methods concern the preservation of the dependence structure 62 

through autoregressive models such as the SAR model (Sum of many AR(1) or ARMA(1,1) 63 

models; Koutsoyiannis, 2002; Dimitriadis and Koutsoyiannis, 2015a, supplementary material 64 

sect. 3). Although these models can simulate a variety of dependence structures, they have a 65 

disadvantage if preservation of high order moments is of interest (see also sect. 3.3.1 in 66 

Dimitriadis, 2017). A rigorous and general method is the symmetric-moving-average (SMA) 67 

scheme introduced by Koutsoyiannis (2000), further advanced by Koutsoyiannis (2016) and 68 

implemented within the Castalia computer package (Efstratiadis et al., 2014). This method can 69 

fully preserve in an exact way any second-order structure of a process and, simultaneously, the 70 

complete multivariate distribution function if it is Gaussian (because of the preservation of the 71 

Gaussian attribute within linear transformations). Koutsoyiannis (2000) also studied the 72 

application of the same scheme to non-Gaussian processes by preserving the skewness of the 73 

marginal distribution. Here, we extend the SMA scheme so that it preserves exactly four (or, if 74 

necessary, more) central moments of the distribution, while simultaneously preserving in an 75 

exact way any type of second-order dependence structure, such as short-range (e.g., Markov) or 76 

long-range (e.g., Hurst-Kolmogorov, abbreviated as HK). Note that the term ‘HK behaviour’ 77 

corresponds to the behaviour of process at large scales while the process itself could not be 78 

necessarily an HK process or follow a Gaussian distribution. For example, both the fractional 79 

Gaussian noise (fGn) and the generalized-HK (GHK; see below) process are processes exhibiting 80 

an HK behaviour, but while the former’s autocorrelation function is a power-law type at the 81 

whole range of scales, the latter’s autocorrelation function is a power-law type only at large 82 

scales (at small scales behaves like a Markov process) and its distribution function is not 83 

necessarily Gaussian. 84 
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To our knowledge there is no other method that can preserve explicitly (i.e. fully analytical 85 

calculations) four (or more) marginal moments of a process for any type of dependence 86 

structure. In most problems preservation of four moments suffices for a very good 87 

approximation of the distribution function. In particular, the fourth moment has been regarded 88 

of great importance in some problems, e.g., in the characterization of intermittency in turbulence 89 

(Batchelor and Townsend, 1949). Therefore, turbulence is an ideal field for application of the 90 

proposed framework. This study has given particular emphasis on turbulence, which is included 91 

as the final and most detailed of the case studies presented, in an attempt to show that several 92 

aspects of turbulence that are regarded as puzzles can be easily reproduced by a simple model 93 

without a major effort. While all applications presented below handle moments up to fourth, the 94 

methodology proposed can handle explicitly even higher moments (see Appendix A) and thus 95 

even approximate the joint (univariate, multivariate) structures that extend beyond the second-96 

order statistics. Specifically, higher order moments for different time scales can also be 97 

adequately approximated, since this scheme can explicitly preserve the high-order moments of 98 

the lowest scale, as well as those of the largest scales (which by virtue of the Central Limit 99 

Theorem are expected to be close to the Gaussian distribution and thus, can be precisely 100 

represented by the second-order dependence structure; for an example see section 4.4). The 101 

only limitation of this methodology is that the marginal distribution is approximated to a desired 102 

degree, rather than precisely preserved (particularly in non-divisible distributions). This 103 

limitation may create difficulties in variables with upper or lower bounds, since these can be 104 

only treated in an ad-hoc manner (see Section 4.2). However, this limitation rarely concern 105 

practical applications to geophysical processes. 106 

In section 2, we present in detail the computational scheme for preserving in an exact way the 107 

dependence structure. We also explain why the preservation of solely the second-order joint 108 

statistics can be adequate for capturing the most important attributes of a physical process and 109 

suggest that often it is impractical to estimate high-order statistics from observations. In section 110 

3, we present the generation algorithm for simultaneously preserving an approximation of the 111 

marginal probability function (through cautiously selected distributions as described in 112 

Appendices A and B), a task that we deal with when the actual process distribution departs from 113 

normality, along with the dependence structure of the process. Finally, in section 4 we apply the 114 

generation scheme to various examples in order to highlight not only its robustness but also its 115 

use as a statistical tool to investigate the stochastic nature of complex geophysical processes 116 

such as surface wind speed, daily precipitation and turbulent phenomena dominated by 117 

intermittent behaviour. 118 

2. Generation scheme for preserving the dependence structure of a process 119 

In this section, we discuss the practical limitations of using popular multi-parameter stochastic 120 

models for geophysical processes. In contrast, the SMA generation scheme (Koutsoyiannis, 2000; 121 

2016) is very convenient in preserving the stochastic structure of a process based only on a 122 

parsimonious representation of the second-order statistics. Important advantages of this 123 

scheme are the parsimony of parameters and the fact that it can deal with non-Gaussian 124 

distribution, as will be detailed in the next session. 125 
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2.1. Background and notation on stochastic processes 126 

As introduced by Kolmogorov (1931, 1933), a stochastic process x(t) is a family of infinitely 127 

many random variables, commonly (but not exclusively) indexed by time t, here assumed to be 128 

continuous. A random variable x is an abstract mathematical object that can take on all of its 129 

possible values according to a (marginal) distribution function F(x). In addition to the marginal 130 

distribution, a stochastic process is also characterized by its dependence structure. Note that in 131 

the above notation we are using the Dutch convention, where an underlined symbol denotes a 132 

random variable. A random variable x should not be confused by its realizations (e.g., 133 

observations) x and a stochastic process x(t) should not be confused with its realizations 134 

(sample functions or time series) x(t). A realization is usually known (e.g. by observation) only 135 

in discrete time, at time intervals of length D, either by taking observations (sampling, with 136 

approximately zero response time) at equidistant times iD (i = 1, 2, …) or by averaging the 137 

process at each interval D (see more details in Koutsoyiannis, 2016). In the former case, the 138 

sampling operation at equidistant times evokes to introduce the discrete-time stochastic process 139 

xi := x(iD). In the latter case, the observations are not of the process x(t) per se, but of the time-140 

averaged process: 141 

����� = �� � ��	�d	��������   (1) 

where i denotes discrete time. While in the definition of the discrete-time process i takes on 142 

infinite values (� ∈ ℕ), in an observed time series it obviously has an upper limit, the total 143 

number of observations n, determined from the observation period T ≥ D, i.e. � = ��/��. In the 144 

analysis below, to avoid confusion, we will omit the superscript (D) in the notation of the 145 

process and we will use xi regardless of the manner the discrete-time process is constructed 146 

from the continuous-time one. We also assume that x(t) is a stationary and ergodic process (and 147 

hence xi too). Note that the proposed SMA model can be used for simulation of both stationary 148 

and non-stationary processes (by extracting the deterministic model and transform the original 149 

non-stationary process to stationary) following the methodology described in Appendix C. The 150 

marginal characteristics of the process are estimated through the classical central moments and 151 

the dependence structure of the process is estimated through ����, i.e. the variance of the 152 

averaged process ����� vs. scale k, here called climacogram (also, hastily, referred to as aggregate 153 

variance), where k = κD is the continuous-time scale in time units and κ the dimensionless 154 

discrete one, assuming that D is a time unit that is used for discretization  (see Eqn. 1). The 155 

climacogram is directly linked to the autocovariance c(h) by ��ℎ� = 1/2d��ℎ���ℎ��/dℎ� (e.g. 156 

Koutsoyiannis, 2016), where h is the continuous-time lag (in time units). Also, the 157 

autocovariance is linked to the power spectrum by  �!� = 4 � ��ℎ� cos�2π!ℎ� dℎ'( , where ! is 158 

the frequency (in inverse time units). Thus, each of these three stochastic tools contains exactly 159 

the same information. However, it has been shown that the climacogram provides better 160 

estimates than the other two (Dimitriadis and Koutsoyiannis, 2015a) and therefore, all 161 

applications here are based on that. 162 
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2.2. The impracticality of stochastic modelling with many parameters 163 

Several families of autoregressive models are typically used in stochastic modelling with the 164 

most popular in literature being model families so-named AR, ARMA, ARIMA, FARIMA. These 165 

models are easy to handle and fast in stochastic generation once their parameters are known 166 

and not too many. However, whenever the process exhibits long-range dependence these 167 

models require a large number of parameters (except only in the FARIMA(0,d,0) special case) to 168 

preserve in an exact way up to a large number of autocorrelation estimates. Conversely, the 169 

typically available observation records can support the estimation of only a few parameters 170 

(Lombardo et al. 2014; Koutsoyiannis, 2016). Interestingly, most geophysical processes exhibit 171 

such long-term behaviours, as expected considering the maximization of entropy 172 

(Koutsoyiannis, 2011) and as verified in several geophysical processes (O’Connell et al., 2016) 173 

and specifically in key hydrometeorological processes such as: solar radiation and wind speed 174 

(Tsekouras and Koutsoyiannis, 2014; Koutsoyiannis, et al., 2018); precipitation (Iliopoulou et al., 175 

2016); paleoclimatic temperature reconstructions (Markonis and Koutsoyiannis, 2013); and 176 

temperature, dew point, wind, precipitation and pressure processes classified by the Köppen-177 

Geiger scheme (Dimitriadis et al., 2017). Additionally, the more complicated dependence 178 

structures and similarities identified e.g. among the microscale of turbulent, wind and 179 

precipitation processes (Dimitriadis et al., 2016a and references therein) increase the need for 180 

parsimonious stochastic approaches. 181 

An additional difficulty may arise when estimating the prediction intervals of a long-range 182 

process (Papoulis, 1990, pp. 240-242; Tyralis et al., 2013). Even if the model parameters are 183 

calculated with adequate accuracy, this does not guarantee an adequate approximation of the 184 

prediction intervals (e.g., see sect. 3.3.1 in Dimitriadis, 2017). Finally, the above model families 185 

may confront difficulties even in case of short-range processes but with a non-Gaussian marginal 186 

distribution. Only in case of the AR(1) model can non-Gaussian distributions and/or seasonality 187 

be simulated simultaneously (e.g., the PGAR model of Fernandez and Salas, 1986) while in 188 

higher order autoregressive models this is not possible. For example, consider the simplest 189 

model of the ARMA family, which is the ARMA(1,1) model: 190 

�� = )���� + +� + ,+��� (2) 

where +� is a white noise process and a, b are parameters. This model can simulate well short-191 

range dependence, e.g., a Markov process in continuous time discretized by averaging in time 192 

steps D > 0 (Dimitriadis and Koutsoyiannis, 2015a), but it cannot handle explicitly marginal 193 

moments beyond the second moment (Koutsoyiannis, 2016). If simulation of moments higher 194 

than the second order is needed, then in the parameter estimation equations mixed joint 195 

moments of the form E.����/ +���0 1 will emerge (with p, q > 0, p + q > 2), which are not possible to 196 

directly estimate from observed data (since v is artificial white noise) or handle (because ���� is 197 

not independent from +���). A good alternative could be not to use such models but rather a sum 198 

of multiple AR(1) models (SAR), to approximate the correlation structure up to the desired lag  199 

by the sum of many independent AR(1) models, with their coefficients theoretically derived 200 

rather than arbitrarily calculated. This was introduced and applied for 3 AR(1) models by 201 

Koutsoyiannis (2002) and further developed for an arbitrary large number of components by 202 
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Dimitriadis and Koutsoyiannis (2015a). However, all of these models (AR, ARMA, SAR etc.) still 203 

have several limitations, as for example, it is impossible for them to preserve some important 204 

stochastic properties as scale tends to zero in continuous time (see section 4). Interestingly, the 205 

SMA model overcomes all the aforementioned limitations as also shown in the next sections and 206 

in the applications of this paper. 207 

2.3. Derivation of the SMA coefficients  208 

In the SMA scheme, the simulated process is expressed through the sum of products of 209 

coefficients (not parameters) )2 and white noise terms vi, i.e. (Koutsoyiannis, 2000): 210 

�� = ∑ )|2|+�52627�6   (3) 

where 8 theoretically equals infinity but a finite number can be used for preserving the 211 

dependence structure up to lag l (Koutsoyiannis, 2016). Also, for simplicity and without loss of 212 

generality we assume that E.�1 = E.+1 = 0 and E.+�1 = Var.+1 = 1. This scheme can be used for 213 

stochastic generation of any type of second-order process structure represented by functions 214 

such as the climacogram, the autocovariance function, the power spectrum or the variogram. It 215 

exhibits several advantages over widely used backward moving average (BMA) schemes, the 216 

most important being that it allows closed expressions for the coefficients )2, based on any of the 217 

above functions (Koutsoyiannis, 2000). 218 

As an example, let us consider the HK process, whose climacogram in continuous time is: 219 

��=� = ����=���> (4) 

where = = �/� denotes discrete time scale, ���� is the variance at the unit time scale D, and H is 220 

the Hurst parameter (0 < H < 1). 221 

For an HK process with H > 0.5 the SMA coefficients can be estimated analytically 222 

(Koutsoyiannis, 2016): 223 

)2 = ? @|A + 1|>5BC + |A − 1|>5BC2 − |A|>5BCE (5) 

where 224 

? = F 2Γ�2H + 1�sin�πK�����Γ��H + 1/2��1 + sin�πK�� (6) 
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whereas Γ(x) is the gamma function. 225 

Another example that will be used below is the so-called Hybrid Hurst-Kolmogorov (HHK) 226 

process (Koutsoyiannis 2016), whose climacogram is: 227 

���� = L�1 + ��/M��N�BOPQ   (7) 

where λ is the variance of the continuous-time process ��R�, M is a fractal parameter (see also 228 

Gneiting 2000; Gneiting and Schlather 2004; Gneiting et al. 2012; Dimitriadis 2017 and 229 

references therein), H is the Hurst parameter and q is a characteristic time parameter. A 230 

particular case of the HHK, which will be later used and referred to as GHK, is when M = ½, i.e.: 231 

���� = L�1 + �/M����>  (8) 

An explicit expression for the coefficients )2 for the HHK or the GHK may not be easy to derive. 232 

However, they can be numerically calculated through the Fourier transform of the discrete 233 

power spectrum of the coefficients which is directly linked to the discrete power spectrum of the 234 

process (Koutsoyiannis, 2000): 235 

 ST�U� = V2 S�U� (9) 

where  ST�U� and  S�U� are the power spectra of the SMA coefficients and of the discrete time 236 

process, respectively, and ω=D/k  is the dimensionless frequency.  237 

3. Generation scheme for approximate preservation of the marginal 238 

distribution of a process 239 

In this section, we first discuss the natural and statistical intrinsic limitations of fitting multi-240 

parameter probability functions to geophysical processes, while we emphasize the need to fit 241 

and reproduce non-Gaussian distributions, which very often appear in geophysical variables. A 242 

non-Gaussian distribution can still be parsimonious in terms of parameters (e.g., two-parameter 243 

marginal distributions are often used). While fitting low-parametric marginal distributions to a 244 

certain variable is easy, stochastic generation schemes can hardly deal with non-Gaussian 245 

distributions and can hardly handle moments higher than second-order. Here, we introduce an 246 

extension of the SMA generation scheme for approximating the marginal probability function of 247 

a process by exactly preserving its first four central moments which is found to be adequate for 248 

various distributions commonly applied in geophysical processes, while in Appendix A we 249 

extend the method for even higher moments. We emphasize that these moments that are to be 250 

preserved are not necessarily estimated from data. On the contrary, in typical sizes their 251 

estimation from data is strongly discouraged as explained below. Rather, the values of these 252 

moments should be obtained theoretically, once a specific distribution function is fitted.  253 
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3.1. The impracticality of estimating high-order moments in geophysical 254 

processes 255 

Non-Gaussian distributions are very common in Nature. It has been shown (Lombardo et al., 256 

2014) that the estimation of high order raw moments is highly uncertain and, thus, it is 257 

inefficient to use the schemes described in the previous section to preserve high moments for 258 

natural processes with limited sample sizes, as is the case for typical geophysical records. In the 259 

case of a continuous HK process the variance of the mean estimator is ����/����> (e.g. 260 

Koutsoyiannis, 2003), where n is the sample size. Consequently, for estimating the population 261 

mean μ of a process with a standard error ±X, we would require a time series of length at least 262 �Y/X��/���Z�, where Y = V���� is the standard deviation at scale D (Fig. 1). For example, for an 263 

HK process with K =  0.8, to estimate the mean of the process with an error X ≈ ±10%Y, we 264 

need a time series of length n = 105. Such lengths are hardly available in observations of 265 

geophysical processes, which are not only characterized by HK behaviour (a conclusion based on 266 

the maximization of entropy as derived in Koutsoyiannis, 2011) but also include sub-daily and 267 

seasonal periodicities (e.g., Dimitriadis and Koutsoyiannis, 2015b) that complicate the 268 

estimation further. 269 

 270 

Figure 1: Standard deviation of the mean estimator of an HK process standardized by σ vs. the 271 

sample size (n) for various Hurst parameters. 272 

To give another example, we perform a Monte Carlo experiment for an HK process with K = 0.8 273 

that follows a standard Gaussian distribution (i.e. _ = 0 and Y = 1) and the results are shown in 274 

Fig. 2. For each synthetic time series we estimate the mean, standard deviation as well as 275 

skewness and kurtosis coefficients for six different lengths, i.e., � = 10, 102,…, 106. This 276 

experiment shows that for � =106 the uncertainty (measured in terms of the standard deviation 277 
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of sample estimates of each property) is below 10% for all these moments. Therefore, to 278 

adequately estimate these moments from data we would need time series with at least similar 279 

lengths. 280 

281 

Figure 2: Standard deviation of the sample estimates of the mean (μ), standard deviation (σ), 282 

skewness coefficient (Cs) and kurtosis coefficient (Ck) of an HK process with H = 0.8 and N(0,1) 283 

distribution vs. the simulation length. 284 

3.2. Derivation of the SMA distribution parameters 285 

The SMA method can explicitly preserve high order marginal moments. However, as already 286 

mentioned above, high-order moments cannot be estimated reliably from data while non-287 

Gaussianity can be easily verified empirically but also derived by theoretical reasoning 288 

(Koutsoyiannis 2005; 2014). A simple way to simulate non-Gaussian distributions is to calculate 289 

theoretically (not from the data but rather from the distribution model) their moments and then 290 

explicitly preserve these moments in simulation. Koutsoyiannis (2000) estimated the first three 291 

moments of the marginal distribution of the white noise process vi, required to reproduce those 292 

of the actual process xi, using the SMA scheme. With the conventions used in this paper (see 293 

above), the mean and variance of vi are 0 and 1, respectively, while the third moment, which is 294 

equal to the coefficient of skewness, is: 295 

?`,b =  c∑ T|d|CedfOe gh/C
∑ T|d|hedfOe ?`,i  (10) 

where ?`,i is the coefficient of skewness of xi. 296 
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Although preservation of three central moments usually provides acceptable approximations to 297 

the theoretical distributions, a non-Gaussian distribution cannot be precisely preserved. Here, 298 

we expand the calculations to include the coefficient of kurtosis of the white noise (see Appendix 299 

A for proof): 300 

?j,b =  �∑ )|2|�627�6 ��
∑ )|2|k627�6 ?j,i −  6 ∑ ∑ )|2|�6�725� )|�|�6��27�6∑ )|2|k627�6  (11) 

where ?j,i is the coefficient of kurtosis of xi. Note that the constant term in the right-hand side 301 

depends only on the SMA coefficients and not on the marginal distribution of the process. Also, 302 

note that the kurtosis of the white noise is not proportional to the kurtosis of the process, as is in 303 

the case of the skewness (Eqn. 10). 304 

For the generation of the auxiliary variable v we need distributions that: (a) contain at least four 305 

parameters, creating in such way a large variety of combinations between the first four 306 

moments; (b) have closed analytical expressions for the first four central moments; and (c) can 307 

easily and quickly generate random numbers. Here, we propose the four-parameter 308 

Kumaraswamy (1980) distribution, which is mostly appropriate for generating thin-tailed 309 

distributions, and the four-parameter normal inverse Gaussian distribution (e.g., Barndorff-310 

Nielsen, 1978) for generating heavy-tailed distributions. The details of the distributions are 311 

contained in Appendix B. 312 

4. Applications 313 

In this section, we present several applications of the extended SMA scheme, first to non-314 

Gaussian white noise process with several two-parameter marginal distributions used 315 

extensively in geophysics and we show that even complicated distributions can be well 316 

approximated by their first four central moments. We then apply the scheme to a 130-year daily 317 

precipitation time series, by fitting an HK model along with a three-parameter marginal 318 

distribution. Also, we apply the scheme to multiple hourly wind speed time series recorded over 319 

a wide area, by fitting a GHK model along with a three-parameter marginal distribution. Finally, 320 

we apply the scheme into a massive database of experimental time series of turbulent velocities 321 

recorded at high frequency, by fitting an HHK process and by approximating the unknown 322 

marginal distribution with the first four empirical moments. 323 

4.1. Application to white noise processes with various two-parameter 324 

distributions 325 

In the examples below, we apply the extended generation scheme to Weibull, gamma, Pareto and 326 

lognormal distributions and we illustrate that the preservation up to the fourth moment is 327 

adequate for capturing the main body of the distribution as well as a part of the tail (see Fig. 3, 328 

which also displays the parameter sets of the specified distributions). As all these variables used 329 

in our examples are non negative, any generated negative values are set to zero. This does not 330 

cause any distortion worth discussing, as the approximation of the probability density function 331 
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by the four moments is satisfactory (see Fig. 3 and other figures below), and since this density is 332 

typically zero in negative values, the number of generated negative values is negligibly small. 333 

We expect that using the approximation based on the first four moments, the distribution which 334 

we actually simulate is the maximized entropy (ME) distribution produced by constraining these 335 

moments. The ME resulting distribution, i.e. m��; o′�: = estu5sBui5sCuiC5shuih5svuiv
 (Jaynes, 1957), 336 

can also be written as: 337 

m��; o�: = 1L( e�w xyB5`z{|�sC�c xyCgC5c xyhgh5c xyvgv}  (12) 

where λ = ~L(, L�, L�, L�, Lk� , with L(, L�, L�, L�, Lk (with Lk  ≥ 0� having same units as � and with 338 

constraints: 339 

� ��m��; o�d�'�' = E.��1, for � = 0, …, 4  (13) 

The solution to the above system of equations for λ can be achieved through optimization or 340 

other numerical algorithms (cf. Balestrino et al., 2009). Parameter L( > 0 equals 1/m�0; o� 341 

(where the denominator is the value of the ME probability density at � = 0). For the estimation 342 

of the ME distribution parameters we minimize the error X� defined in Eqn. (14), which is based 343 

on the absolute value of the difference between the main body of the empirical and modelled 344 

distribution along with their left and right tails: 345 

X� = � �1 − m�����m����� �� �|m����� − m�����|� � �1 − m�����m�������  (14) 

where m� and m� are the model and empirical distribution functions, respectively. 346 

The quantities 1/L�, 1/L�, 1/L�, 1/Lk can be also regarded as weighting factors representing the 347 

dependence of the distribution on each raw moment. Interestingly, after standardizing these 348 

four parameters based on the sum of their absolute values, 1/L� contributes to the Weibull, 349 

gamma, lognormal and Pareto distributions of Fig. 3, approximately 65%, 66%, 69% and 93%, 350 

respectively. Similarly, the contribution of 1/L� is approximately 20%, 20%, 18% and 4%, the 351 

contribution of 1/L�, 11%, 10%, 9% and 2% and the contribution of 1/Lk, 4%, 4%, 4% and 1%, 352 

respectively. Therefore, we may use the ME probability density to approximately determine the 353 

weight for each statistical moment. As a rough indicator of the goodness of fit, the correlation 354 

coefficient between the theoretical values of these four distributions and the simulated ones is 355 

estimated as 99.57%, 99.38%, 99.26%, and 99.84%, respectively. 356 
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 357 

 358 

Figure 3: Various two-parameter distributions along with the fitted ME probability density 359 

function and the empirical probability density from one single simulation with n = 105 using the 360 

proposed generation scheme. 361 

4.2. Application to daily precipitation; an HK process with a three-362 

parameter distribution 363 

In this application, we analyse one of the longest daily precipitation time series recorded for 364 

over 100 years at the site of Hohenpeißenberg in Germany (latitude 47.801°N, longitude 365 

11.011°E; data from www.gkd.bayern.de/). We apply an HK process (Eqn. 4) with a single 366 

continuous-state Pareto II marginal distribution (a special case of the Pareto-Burr-Fuller—PBF 367 

distribution, i.e. ���� = 1 − �1 + ��/) − ℎ�� ���; Koutsoyiannis et al., 2018), introduced for use 368 

in precipitation by Koutsoyiannis (2004a) and theoretically justified by Koutsoyiannis (2004b): 369 

���� = 1 − �1 + c�) − ℎg���
 (15) 

where � > )ℎ is precipitation; ) > 0 is a dimensionless scale parameter; � > 0 is a 370 

dimensionless parameter characterizing the right tail (extreme events) of the distribution and ℎ 371 

is a dimensionless parameter representing a threshold value and characterizing the left tail (dry 372 

events) of the distribution. 373 

Theoretically ℎ = 0, but values slightly different from zero not only highly improve fitting (Fig. 374 

4), but also preserve the left tail of the distribution (i.e. probability dry), by simulating the 375 
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probability dry through F(0):= P(r ≤ 0). An h different from 0 is also physically justified since 376 

precipitation measurements are usually corrupted with significant uncertainties (Krajewski et 377 

al., 1998; Villarini et al., 2008) causing losses mostly due to wind effects (Nespor and Sevruk, 378 

1998) and so, a slightly larger amount of precipitation is expected to be lost before measured. 379 

After the generation we can set to zero any negative values of the synthetic time series in order 380 

to emulate the observed distribution function. This approach of mixing wet and dry events 381 

within a single distribution function is rather simple but can sometimes provide good results 382 

(Fig. 4; see also Dimitriadis , 2017, sect. 6, where a more generalized distribution performs an 383 

even better fit). For a more accurate approach, in terms of the simulation of the wet/dry 384 

probability, one could separate these events and model their joint distribution instead 385 

(Lombardo et al., 2017, and references therein). 386 

To account for the seasonal periodicity of precipitation (Langousis and Koutsoyiannis, 2006) we 387 

apply a non-linear transformation based on the known marginal distribution of the process 388 

which is also preserved. Note that here, the process exhibits weak seasonality that only causes a 389 

small increase in the dependence structure, as depicted in the intermediate area of the 390 

climacogram in Fig. 4. Therefore, for the simulation of the seasonality we may then use the 391 

inverse non-linear transformation (i.e. concept of homogenization, Dimitriadis, 2017, sect. 2.1) 392 

or apply a cyclostationary model, where each cycle is treated separately but with the same white 393 

noise process, thus, additionally preserving the cross-correlations values (Dimitriadis, 2017, 394 

sect. 3.3.3). 395 

To account for estimation bias, since we have a single time series, we apply the innovative 396 

method of estimating the parameters of the dependence structure of the process through the 397 

mode second-order measure (e.g. climacogram, autocovariance, power spectrum etc.) rather 398 

than the expected one (see also Dimitriadis et al., 2016c). For this, we apply a Monte-Carlo 399 

analysis by generating one thousand daily time series of 130 years following the fitted marginal 400 

distribution and an HK process. From the Monte-Carlo ensemble, we calculate the mode for each 401 

scale with an acceptable accuracy and construct the mode climacogram for the specified process. 402 

For the estimation of the parameters of the marginal distribution we minimize the same norm as 403 

in Eqn. (14) and for the parameters of the dependence structure we use a similar one: 404 

X� = � �1 − ���=����=� �� �|���=� − ���=�|� � �1 − ���=����=���  (16) 

where �� is the model (i.e., the mode for this application) climacogram and �� is the empirical 405 

climacogram estimated from the classical estimator: 406 

���=�� = 1��/=� − 1 � ��� − �����/��
�7�  (17) 
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where ��/=� is the integer part of �/=, �̅� = �∑ �6��67������5� �/= is the sample average of the time-407 

averaged process �� at scale = = �/� as defined in Eqn. (1) and � = ∑ �6�67� /� is the sample 408 

average at scale = = 1. 409 

The parameters of the process are estimated as ) = 42.25 mm, c = 7.7, ℎ = −0.1, ���� = �̀ �, 410 

with �̀ = 6.5 mm the standard deviation of the process, and K = 0.6. Through a single synthetic 411 

time series of equivalent length and after setting negative values to zero, the modelled marginal 412 

characteristics are estimated as: _ = 3.3 (3.1) mm, Y = 6.5 (6.5) mm, ?` = 4.5 (4.3), ?j = 36.4 413 

(30.2) and probability dry 44% (48%), where inside parentheses are the values of the 414 

observations, which are relatively well preserved. For illustration purposes, in Fig. 4 we plot a 415 

3000 days window of the observed vs. the simulated precipitation. Note that here, the explicit 416 

preservation up to the fourth moment is adequate, since preservation of additional moments 417 

slightly improve the distribution simulation (specifically, the R2 coefficient is estimated for 418 

preservation of the 1st, 2nd, 3rd, 4th, 5th, and 6th moment as 0.953, 0.985, 0.985, 0.9861, 0.9863 and 419 

0.9864, respectively).  420 

  421 

  422 

Figure 4: [upper left] Empirical (original and transformed to approximately remove seasonality), 423 

modelled and simulated marginal distributions (corresponding weights for the ME distribution: 424 

73%, 15%, 7% and 5%); [upper right] climacograms for the standardized precipitation process; 425 

[lower left] the mode and several other essential statistical measures of the standardized 426 

climacograms estimated from 103 synthetic time series (in the figure we depict only 50 427 

empirical climacograms); [lower right] a 3000 days window of the observed precipitation record 428 

along with a simulated one. 429 
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4.3. Application to hourly surface wind; a GHK process with a three-430 

parameter distribution 431 

For the hourly wind process we adopt the GHK process (Eqn. 8) for the dependence structure. 432 

For the distribution function we apply a special case of the PBF distribution which approximates 433 

the Weibull distribution for small hourly velocities and the Pareto distribution for larger ones 434 

(e.g., Aksoy et al., 2004; Lo Brano et al., 2011). The dependence structure, marginal distribution 435 

and standardization scheme of wind are based on the preliminary analysis from thousands of 436 

stations around the globe, performed by Dimitriadis and Koutsoyiannis (2016). A more 437 

thorough analysis justifying the above choices for the wind process can be seen in Koutsoyiannis 438 

et al. (2018) and references therein. The three-parameter GHK process and selected PBF 439 

marginal probability function can be written as: 440 

���� = L�1 + �/M����>  (18) 

��+� = 1 − �1 + w +�+`}����/�
 (19) 

where + > 0 is the wind process; � = =� is the continuous time scale with D = 1 h the sampling 441 

time interval and = the discrete time scale; M is the scale parameter of the process; L is the true 442 

variance of the instantaneous (continuous-time) process; K is the Hurst parameter; +` is the 443 

standard deviation of the discretized process that should equal the expected value of the square 444 

root of the climacogram for scale κ = 1, i.e. +� = V���� = �1 + �/M�>��√L; in addition, � is the 445 

scale parameter and b and � are the shape parameters of the marginal distribution, all 446 

dimensionless. Interestingly, here the survival function and the dependence structure have 447 

identical expressions (Koutsoyiannis, et al., 2018). Note that by assuming stationarity and 448 

ergodicity, we are able to standardize the wind process (Fig. 5), in order to homogenize all time 449 

series recorded at different locations, altitude and climatic conditions (this should not be 450 

confused with normalization through a non-linear transformation). 451 

We choose to apply the above stochastic model to the longest nine hourly wind time series of 452 

different lengths located in Greece (Table 1). The expression for the bias of the classical 453 

estimator of the climacogram is derived in Tyralis and Koutsoyiannis (2011) for an HK process 454 

and generalized for all processes in Koutsoyiannis (2011). Here, we use the general expression 455 

and, since the time series have different lengths n, we apply an estimator of the climacogram 456 

adjusted for n: 457 

���=�� = ���/�� ∑ ��6 − �����/���7� + ����/=�=��  (20) 

where ���=�� is an unbiased estimator of the climacogram �����, since E ����=��� = ��=��. 458 
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Table 1: General information of the meteorological stations and statistical characteristics of the 459 

hourly wind time series (downloaded from ftp.ncdc.noaa.gov). 460 

hourly 

wind 

station 

longitude 

(deg) 

latitude 

(deg) 

elevation 

above sea 

level (m) 

no. of 

years 

mean 

(m/s) 

st. 

deviation 

(m/s) 

missing 

values 

(%) 

zero 

values 

(%) 

Heraκleio 25.183 35.333 39 39 4.583 2.918 8.8 6.3 

N. Aghialos 22.8 39.217 15 17 3.258 2.331 28 19 

Karpathos 35.417 27.15 20 17 7.506 4.074 30.4 3.9 

Santorini 36.4 25.483 38 24 5.701 3.229 29.5 7.5 

Kos 36.8 27.083 125 33 4.805 2.7 15 7 

El. 

Venizelos 
37.93 23.93 96 11 3.954 2.995 0.6 1.9 

Limnos 39.917 25.233 5 38 4.458 3.546 23 17.5 

Paros 37.02 25.13 36 11 5.567 3.265 46.8 6.5 

Meganissi 38.95 20.767 4 40 3.571 2.746 36.3 19.4 

The parameters related to the dependence structure via the climacogram are estimated as: 461 L = 1.3, M = 5 h and K = 0.75, whereas for the marginal distribution as: ) = 6, , = 1.9 and 462 � = 14.8, corresponding to μ = 1.9, σ = 1.1 (≈ √L), Cs = 1.2 and Ck = 4.8 (all estimations are based 463 

on the fitting norms in Eqns. 14 and 16). Again, the explicit preservation up to the fourth 464 

moment is adequate, since preservation of additional moments slightly improve the distribution 465 

simulation (specifically, the R2 coefficient is estimated for preservation of the 1st, 2nd, 3rd, 4th, 5th, 466 

and 6th moment as 0.936, 0.949, 0.977, 0.983, 0.984, and 0.984, respectively). To emulate the 467 

observed wind time series one could set to zero any values of the synthetic time series that are 468 

below the corresponding recording threshold of a typical anemometer, which is around 0.5 m/s 469 

depending on the type of the anemometer (e.g. Conradsen et al., 1984). For illustration purposes, 470 

in Fig. 5 we plot a 1000-day window of the observed vs. the simulated wind speed at Kos Island. 471 

The empirical and modelled probability of standardized wind speed less than or equal to 1 are 472 

both around 50%. Note that σ and λ should approximate unity but they are slightly larger due to 473 

the double cyclostationary effects of the daily and seasonal periodicities of the wind process 474 

(Deligiannis et al., 2016). These effects cause the small increase of climacogram around daily and 475 

annual scales (Fig. 5) but here, for simplicity, we apply a stationary rather than a cyclostationary 476 

model through the non-linear transformation of the probability function of Deligiannis et al. 477 

(2016). Again, due to the weak periodicities of the examined process the double 478 

cyclostationarity can be generated through the inverse transformation. 479 
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  480 

  481 

Figure 5: Empirical mean (vm) vs. standard deviation of the nine time series along with the fitted 482 

model [upper left]; the empirical (original and transformed to approximately remove the double 483 

periodicity), model and simulated marginal distributions (corresponding weights for the ME 484 

distribution: 43%, 32%, 16% and 9%) [upper right] and climacograms [lower left] for the 485 

standardized wind process; a 1000-day window of the observed standardized wind process in 486 

Kos island along with a standardized simulated one [lower right]. 487 

4.4. Application to turbulence; an HHK process with an unknown 488 

distribution 489 

As already mentioned, high-order moments cannot be reliably estimated from typically short 490 

time series of geophysical processes. However, in laboratory experiments with high sampling 491 

rates, very large time series of observations can be formed, which allow direct estimation of high 492 

order moments from data. Here, we use a grid-turbulence massive database provided by the 493 

Johns Hopkins University (www.me.jhu.edu/meneveau/datasets/datamap.html). This dataset 494 

includes 40 time series, each with n = 36×106 data points of longitudinal wind velocity along the 495 

flow direction, all measured by X-wire probes placed downstream of the grid and with a 496 

sampling time interval of 25 μs (Kang et al., 2003). Due to the laboratory nature of the 497 

experiment we may apply the Taylor’s hypothesis of frozen turbulence (Taylor, 1938) and shift 498 

from the spatial to the temporal domain (Castro et al., 2011). We then use a standardization 499 

scheme illustrated in Fig. 6 to homogenize all series (Dimitriadis et al., 2016a) and, by setting the 500 

empirical mean to zero, we calculate the standardized empirical variance as E~������ ≈ 1. By the 501 

standardization, we are able to form a sample of 40 × 36 ×106 = 1.44 ×109 values for the 502 

estimation of the marginal characteristics of the process and an ensemble of 40 series, each with 503 

36 ×106 values for the estimation of the dependence structure characteristics. 504 
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It can be observed that the time series are not Gaussian but rather nearly-Gaussian as shown in 505 

Fig. 7. This is also verified by the skewness and kurtosis estimates of 0.2 and 3.1, respectively. If 506 

those values were estimated from a small sample, for example n = 100, then the probability 507 

density function of the process would be regarded Gaussian and the divergence from normality 508 

would be attributed to statistical error, since for n = 100 the uncertainty measured through the 509 

standard deviation of the skewness and kurtosis, is as high as 30% and 50%, respectively (Fig. 510 

2). However, for n ≈ 1.5×109 the uncertainty of the mean will drop below 1% for H = 0.8 and 511 

therefore, based on extrapolation of curves in Fig. 2, it is seen that the uncertainty of skewness 512 

and kurtosis will be low too. Moreover, there are theoretical arguments justifying the divergence 513 

of fully developed turbulent processes from normality (Wilczek et al., 2011). 514 

In contrast to the earlier application, where the value of the fourth moment was inferred from 515 

the fitted theoretical distribution, here we directly estimate it from the data since the estimation 516 

error is very low due to the huge number of data points as well as due to the high quality of the 517 

measurements. 518 

For the stochastic structure, we apply a stochastic model (modified HHK process) and fit it by 519 

incorporating both discretization and bias effects (Fig. 8). This model combines both fractal and 520 

HK dynamics using four parameters and it attributes the grid-turbulent process to an HHK 521 

process (Eqn. 8) and the independent effect of the boundaries of the experiment, which cause a 522 

drop of variance at intermediate scales, to a Markov process: 523 

���� = L
2�1 + ��/M��N�BOP�  + L�� M⁄ + e�� 0⁄ − 1��� M⁄ ��  (21) 

 524 

Figure 6: Standardization scheme for grid-turbulence data, where μ and σ are the mean and 525 

standard deviation, r is the distance from the grid, with the first 16 time series corresponding to 526 

transverse points abstaining r = 20L from the source, the second 4 to r = 30L, the third 4 to 40L 527 

and the last 16 to 48L, with L = 0.152 m the size of the grid. 528 
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 529 

Figure 7: Empirical probability density function of the overall standardized time series 530 

(observed) along with that from a single synthetic time series produced by the SMA scheme to 531 

preserve the first four moments (simulation); for comparison the theoretical distributions 532 

N(0,1), sum of two Gaussian distributions (double Gaussian), and ME constrained on the four 533 

moments (corresponding weights for the ME distribution are estimated as 15%, 51%, 21% and 534 

13%. 535 

Again here, the explicit preservation up to the fourth moment is adequate, since preservation of 536 

additional moments slightly improve the distribution simulation (specifically, the R2 coefficient 537 

is estimated for preservation of the 1st, 2nd, 3rd, 4th, 5th, and 6th moment as 0.0372, 0.990, 0.991, 538 

0.998, 0.999, and 0.999, respectively). 539 

For the estimation of the climacogram we use the estimator of Eqn. (17) and we apply the 540 

methodology by fitting the expected model to the mean climacogram calculated from the 36 time 541 

series of identical length. However, to improve the fitting of the model, we include in the analysis 542 

the climacogram-based structure function (abbreviated CBF) and the climacogram-based 543 

spectrum (abbreviated CBS), as introduced in Koutsoyiannis (2016). The climacogram is more 544 

representative of the large and intermediate scales, the CBF of the small and intermediate scales 545 

and the CBS of small and large scales and thus, by combining all three of them we can achieve a 546 

better fitting of the model (Dimitriadis et al., 2016a). The CBF and CBS are defined through the 547 

climacogram respectively, as: 548 
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¡�!�: = 2 !��0� ��1 !⁄ �	�1 !⁄ � = 2��1/!�! �1 − ��1/!���0� � (23) 

where ��0� = L for the specified mode; and ! = 1/� is the frequency for a continuous-time 549 

process (in inverse time units). 550 

The model parameters are estimated as: L = 1, ¢ = 1/3, K = 5/6 and M = 14 ms, through the 551 

fitting norm of Eqn. 16. Here a large number of parameters could be justified due the large data 552 

size but the above model is quite parsimonious (it has two parameters less than that used by 553 

Dimitriadis et al., 2016a, for modelling the same process). Also, the applied extended HHK model 554 

is theoretically justified through the maximization of entropy (Koutsoyiannis, 2011) and 555 

therefore, each parameter has a physically-based interpretation. Moreover, we observe from Fig. 556 

8 that this model comes also in agreement with the work on the turbulent power spectrum by 557 

von Karman (1948) for the large scale range, by Kolmogorov (1941a-c; K41 model) for the 558 

intermediate range and by Kraichnan (1959) for the dissipation range (cf. Pope 2000, pp. 232-559 

233), while here we also simulate the Hurst-Kolmogorov behaviour that clearly appears in the 560 

very small frequencies (very large scales) of the power spectrum and in the other stochastic 561 

tools in Fig. 8. Additionally, certain aspects exhibited in the power spectrum such as the 562 

bottleneck effect (Kang et al., 2003) and the spike at large frequencies (which is often ignored 563 

and attributed to instrumental noise; Cerutti and Meneveau, 2000) are also well represented. 564 

Finally, the preservation of kurtosis of the velocity increments enables to even simulate the 565 

effect that the intermittent behaviour of the process has on the marginal probability 566 

distribution, first discovered in turbulence by Batchelor and Townsend (1949). 567 

It is interesting to further investigate the latter issue through the behaviour of a generalized 568 

structure function £/�ℎ�: = E~¤�� − ��5¥¤/� and in particular the power-law behaviour for the 569 

intermediate range of lags, i.e. £/�ℎ� ≈ ℎ¦§ . Such behaviours have been attributed to 570 

intermittency (Frisch, 2006, sect. 8.3) which initiated the need for exploring models different 571 

from the K41 such as the multifractal ones (Frisch, 2006, sect. 8.5 to 8.9). As shown in Fig. 9 to 572 

12, the drop of skewness (Fig. 9) and the drop of kurtosis (Fig. 10) of the velocity increments for 573 

a wide range of lag (h) or the regular velocity vs scale (high order climacogram; Fig. 11) are 574 

impressively well preserved by the proposed model. It is important to notice in Figs. 9 and 10 575 

that, if preservation up to third (rather than fourth) marginal moment was made, then the 576 

lagged skewness and kurtosis would not be preserved adequately. In addition, the increase of 577 

the exponent ζp is equally well preserved by the proposed model for a wide range of the p 578 

exponent (Fig. 12). This is achieved with no particular effort or provision (e.g., without using 579 

extra assumptions, parameters or models) but merely by simultaneously simulating the first 580 

four moments (with focus on the coefficient of kurtosis) and the stochastic structure of the 581 

process. To further highlight this finding, we illustrate in Fig. 12 that the HHK model alone 582 

cannot simulate the observed behaviour of the high order structure function but rather 583 

approaches the structure function as simulated by the K41 self-similarity model and reproduced 584 

by Frisch (2006, Fig. 8.8). Similar results are obtained in case a Markov dependence structure is 585 

adopted but by simultaneously preserving the empirical non-Gaussian marginal distribution. 586 

Interestingly, if both the proposed dependence structure and marginal distribution are 587 

combined, then the observed behaviour of the high order structure function is approximated 588 
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and, as a consequence, the intermittent behaviour of turbulence. For comparison, in Fig. 12 we 589 

plot the She-Leveque model (1994) that behaves also exceptionally well and originates from the 590 

alternative assumption of independent identically distributed log-Poisson multiplicative factors 591 

(Frisch, 2006, sect. 8.6.4, 8.6.5). 592 

  593 

  594 

Figure 8: The empirical, true and expected values of the climacogram [upper left], CBF [upper 595 

right], CBS [lower left] and power spectrum [lower right] along with some important logarithmic 596 

slopes; and with a correlation coefficient (as a rough indicator of the goodness of fit) between 597 

the modelled and simulated values estimated as 99.99%, 99.99%, 99.56%, and 94.08%, for each 598 

metric, respectively. 599 
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 600 

Figure 9: Empirical and simulated skewness coefficient of the first order structure function vs. 601 

lag. 602 

 603 

Figure 10: Empirical and simulated kurtosis coefficient of the velocity increments vs. lag. 604 
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 605 

Figure 11: High-order climacograms: coefficients of skewness (γ3) and kurtosis (γ4) vs. scale 606 

(empirical vs. simulated). 607 

 608 

Figure 12: Empirical and simulated (through the She-Leveque model, the SMA scheme, a 609 

Gaussian HHK model and a Markov model with the ME distribution) structure function for 610 

various orders of the velocity increments vs. lag. 611 
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5. Conclusions 612 

We present an extension of the SMA framework to include representation of high-order 613 

moments and in particular the simulation of the kurtosis coefficient of the process. In this way, 614 

the probability density function of any process is approximated by its first four central moments, 615 

thus, according to the maximum entropy approach, yielding a probability density function that is 616 

an exponentiated fourth order polynomial. In the generation phase, the approximation is 617 

performed using convenient four-parameter distributions (a standardized Kumaraswamy 618 

distribution for thin-tailed distributions, or a standardized Normal-Inverse-Gaussian 619 

distribution for heavy-tailed ones). Application to non-Gaussian white noise with various 620 

customary distributions shows that the approximation achieved is very satisfactory. 621 

The presented scheme is very useful for stochastic generation as well as Monte-Carlo 622 

experiments (for sensitivity analyses, for the derivation of confidence intervals etc.), especially 623 

when numerous measurements exist (e.g. in laboratory experiments), while a theoretical 624 

distribution cannot be easily identified but several statistical moments can be estimated. The 625 

limitation of this methodology is that the marginal distribution is approximated to a desired 626 

degree, rather than precisely preserved (particularly in non-divisible distributions). This 627 

limitation may create difficulties in variables with upper or lower bounds, since these can be 628 

only treated in an ad-hoc manner. However, this limitation rarely concern practical applications 629 

to geophysical processes. 630 

In this work, we apply the methodology to a long daily precipitation record, to various record 631 

lengths of hourly surface wind time series, and to a grid-turbulence massive database. In all 632 

applications the extended SMA scheme performs exceptionally well, additionally preserving 633 

other important statistical characteristics of the processes such as the intermittent behaviour. 634 

Particular emphasis has been given on turbulence, in an attempt to show that several aspects of 635 

turbulence regarded as puzzles can be easily reproduced by a simple unpuzzling model without 636 

a particular effort. 637 

Additional contributions of this paper are the estimators of the dependence structure of a 638 

process, accounting for the statistical bias, in the case of the analysis of a single time series (as in 639 

the application of precipitation) and of several time series of the same process with different 640 

lengths (as in the application of wind) and identical lengths (as in the application of grid-641 

turbulence). Also, we note the very good fit of special cases of the PBF distribution to the 642 

marginal distribution of the precipitation and wind processes. 643 
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Code availability  650 

The SMA model used in this paper as well as a fast code for estimation of the climacogram for 651 

long time series, both implemented in Matlab can be downloaded from www.itia.ntua.gr/1656/. 652 

In this link, we also provide scripts for various stochastic models, such as the HK, GHK and HHK 653 

as well as the applied models in section 4 for the precipitation, wind speed and grid-turbulence 654 

processes. 655 
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Appendix A 853 

Here, we describe how the SMA scheme can preserve an approximation of the marginal 854 

distribution of a process through the preservation of high-order moments. Although this scheme 855 

can preserve any number of moments, here we specify the analytical solution for the 856 

preservation up to the fourth moment corresponding to kurtosis and to the fifth raw moment 857 

(for illustration). Assuming E.��1 = E.+1 = 0, raw moments are identical to the corresponding 858 

central moments; the ¨th moment can be expressed through the SMA scheme as: 859 

E.��/1 = E ��∑ )|2|+�52627�6 �/�  (A-1) 

Therefore, assuming also that E.+�1 = 1, the second and third raw moments can be expressed as 860 

(Koutsoyiannis, 2000): 861 

E.��1 = �)(� + 2 ∑ )2�627� �  (A-2) 

E.��1 = �)(� + 2 ∑ )2�627� �E.+�1  (A-3) 

For a raw moment of order p we use the multinomial theorem: 862 

E.��/1 = E ©@ � )|2|+�52
6

27�6 E/ª = � c ¨��6 , ���6, … , �6g E © ¬ �)|2|+�52��d
�626 ª�Oe5�BOe5⋯5�e7/  (A-4) 

where c ¨��6 , ���6 , … , �6g = /!�Oe!�BOe!…�e!, is a multinomial coefficient. 863 

We notice that all combinations with �2 = 1 are zero and thus, after algebraic manipulations we 864 

obtain for ¨ = 4: 865 

E.�k1 = E.+k1 � )|2|k6
27�6 + 6 � � )|2|� )|�|�6

�725�
6��

27�6  (A-5) 

After typical manipulations we derive the expressions for the coefficients of skewness and 866 

kurtosis shown in Eqns. (10) and (11), respectively. Also, Eqn. 11 can be further simplified for 867 

faster calculations to: 868 
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?j,b =  ?j,i�)(� + 2 ∑ )2�627� �� − 6 ∑ )2k627� − 12)(� ∑ )2�627� − 24 ∑ �)2� ∑ )��6�725� �6��27��)(k + 2 ∑ )2k627� �  (A-6) 

with l > 1, while for l = 1 the last term of the double sum is zero. 869 

For illustration, we also present the 5th raw moment as estimated from Eqn. A-1 and A-4 (above 870 

that moment the computation requirements highly increase due to multiplication of more than 871 

two coefficients): 872 

E.�°1 = E.+°1 � )|2|°6
27�6 + 10 � � )|2|�6

�7�6;�±2 )|�|�6
27�6  (A-7) 

However, the extension to higher than the fourth moment is not required for the applications of 873 

this paper, since as illustrated in sect. 4 through the estimation of the ME distribution, the 874 

contribution of the fourth moment is small and even more so will be that of even higher 875 

moments. 876 

Appendix B 877 

Here, we describe how we can use selected distributions as a means to preserve the desirable 878 

statistical central moments through the SMA model. For random number generation from thin-879 

tailed distributions we adopt an extended standardized version of the Kumaraswamy (1980) 880 

distribution (abbreviated as ESK) with probability distribution function: 881 

���; ²�: = 1 − c1 − ci��³ gTg�
  (B-1) 

where � ∈ ~�, � + ´�, ² = ~), ,, �, ´�, the parameters of the distribution (see also Table B-1 and B-882 

2), with �, ´ ∈ ℝ (location and scale parameters, respectively, with units same as in x) and ), , > 883 

0 (dimensionless shape parameters). 884 

Below, we estimate several statistical characteristics of the ESK distribution such as the mean, 885 

variance, and coefficients of skewness and kurtosis, as well as the minimum and maximum 886 

kurtosis as a function of skewness. A detailed analysis on the general expansion of the 887 

Kumaraswamy distribution can be found in Cordeiro and Castro (2011), and Khan et al. (2016). 888 

The ESK distribution has simple, analytical and closed expressions for its statistical central 889 

moments. Notably, we find through numerical investigation that ESK has a low kurtosis 890 

boundary based on its skewness and approximately expressed by ?j ≥ ?`� + 1, which is also the 891 

mathematical boundary for the sample skewness and kurtosis (Pearson, 1930). 892 

The central moments of the ESK distribution can be expressed as: 893 
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E��� − _�/� = ´/ ∑ c�−1�/5��¶ c /¶��g ·�/5��¶·¶��g/5�¶7�   (B-2) 

for ¨ > 1 and where _ = � + ´·�, c /¶��g the binomial coefficient and ·¶ = ,B�1 + 	/), ,�, with B 894 

the beta function. 895 

Thus, the variation, skewness and kurtosis coefficients can be expressed as: 896 

?¹ = ºC�ºBC�ºB5�/³�C , ?` = �ºBh��ºBºC5ºh�ºC�ºBC�h/C , ?j = ��ºBv5»ºBCºC�kºBºh5ºv�ºC�ºBC�C  (B-3) 

respectively. After the numerical estimation of ) and ,, the parameters � and ´ can be 897 

analytically calculated as: 898 

´ = Y/ ¼,B c1 + �T , ,g − ,�B� c1 + �T , ,g,  � = _ − ,´B c1 + �T , ,g (B-4) 

Therefore, we can use the ESK distribution to approximate a variety of thin-tailed distributions 899 

based on the estimation of ), ,, � and ´ parameters from data. Note that if we wish to extend 900 

the SMA model to preserve additional moments, we could similarly expand the ESK distribution 901 

to simulate two (or more) additional moments, i.e., ���; ²�: = 1 − �1 − ���; ²�T½��½., with a’ and 902 

b’ two extra parameters. 903 

For heavy-tailed distributions we use the standardized version of the Normal-Inverse-Gaussian 904 

(abbreviated as NIG) distribution with probability density function (cf., Barndorff-Nielsen, 905 

1978): 906 

m��; ²� ≔ √TC5�C�¿ÀÁ�xOÂ�Ã
Ä³¼�5c�xOÂ�Ã gC Å� �√)� + ,�¼1 + ��� − ��/´���  (B-5) 

where � ∈ ℝ, ² = ~), ,, �, ´�, the parameters of the distribution with � ∈ ℝ, ) ≠ 0 and ,, ´ > 0 907 

(see also Table B-1 and B-2); again �, ´ are location and scale parameters, respectively, with 908 

units same as in x, and ), , > 0 are dimensionless shape parameters. 909 

The NIG distribution has similar advantages to the ESK, such as closed expressions for the first 910 

four central moments. Also, it enables a large variety of skewness-kurtosis combinations and its 911 

random numbers can be generated almost as fast as the ESK ones through the normal variance-912 

mean mixture: 913 

� = � + T³ Ç + √ÇÈ  (B-6) 
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where 914 

È~Ê�0,1�, Ç~m�Ë; , , ´� = ´/V2πË�e�¿C�Ì/ÃOÃ/¿�CCÌ  (B-7) 

The latter distribution is the inverse Gaussian distribution which can be easily and fast 915 

generated (e.g. Chhikara and Folks, 1989, section 4.5). 916 

Below, we estimate the statistical characteristics of the NIG and we justify the use of the NIG 917 

distribution as a heavy-tailed distribution. Note that the central moments of the NIG function 918 

cannot be expressed as closed and analytical forms and thus, we can estimate them through the 919 

NIG characteristic function (cf. Barndorff-Nielsen, 1978): 920 

ÍÎ�R� = E.e�ÏÎ1 = e��Ï5��√�C���T³Ï5³CÏC
  (B-8) 

where the ¨th raw moment corresponds to: 921 

E~Ð/� = �−��/ limÏ→( cS§ÓÔ�Ï�SÏ§ g. (B-9) 

Particularly, the first moment and the sequent three central moments are given by: 922 

_ = � + )´/,  (B-10) 

E ��� − _��� = �)� + ,��´�/,�  (B-11) 

E ��� − _��� = �Tc�TC5�C�³C/�hgh/C
V��TC5�C�   (B-12) 

E ��� − _�k� = �c�TC5�C�³C/�hgC
� c1 + k�5��/T�Cg + 3��)� + ,��´�/,���

  (B-13) 

After algebraic manipulations the coefficients of variation, skewness and kurtosis can be 923 

expressed as: 924 

?¹ = TC5�C��T5��/³�C, ?` = �TV��TC5�C� , ?j = �� c1 + k�5��/T�Cg + 3 (B-14) 

respectively. The NIG parameters can then be calculated from these equations as: 925 
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´ = �Õ¼�Ö×�°ÖØC�Ù�Ö×�kÖØC�Ù , , = ³Õ ¼ �Ö×�ÚhÖØC��, ) = �CÖØÕ�³ , � = _ − )´/, (B-15) 

Also, we can derive theoretically the minimum kurtosis of NIG for a given skewness: 926 

?j ≥ °� ?`� + 3  (B-16) 

with the equality holding only for the limit where the NIG tends to the normal distribution. 927 

For the classification of tails we use the test based on the functions proposed by Klugman (1998, 928 

sect. 3.4.3; see also Halliwell, 2013) and here defined as: 929 

ÛÜ ≔ − limi→' c S��i;²���i;²�Sig, ÛÝ ≔  limi→�' c S��i;²���i;²�Sig (B-17) 

After calculations we get: 930 

ÛÜ = √)� + ,�/´ − )/´ ≥ 0, ÛÝ = √)� + ,�/´ + )/´ ≥ 0 (B-18) 

and hence, the NIG is expected to represent a large variety of heavy-tailed distributions. 931 

Note that again, if we wish to extend the SMA model to preserve additional moments through 932 

the NIG distribution, we could similarly expand the normal variance-mean mixture to simulate 933 

two additional moments, i.e.: 934 

� = � + )́ Ç′ + )′VÇ′È (B-19) 

with a’ an extra parameter and z’ the so-called generalized inverse Gaussian distribution. 935 

In Fig. B-1 and B-2, we observe that the smaller possible kurtosis of the ESK distribution for a 936 

given skewness coincides with the theoretical limit defined by Pearson (1930). Also, the larger 937 

kurtosis of the ESK includes a variety of sub-Gaussian and thin-tailed distributions. On the 938 

contrary, the smaller kurtosis of the NIG distribution is very close to the larger one of the ESK 939 

and thus, it can include (as shown above) a variety of heavy-tailed distributions. Note that these 940 

two distributions are chosen to simulate unbounded processes (NIG) and bounded between two 941 

real values (ESK). We could easily find similar distributions for upper (or lower) bounded 942 

processes as, for example, the generalized Kumaraswamy or hypergeometric ones. 943 
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 944 

Figure B-1: Combinations of skewness and kurtosis coefficients for various two-parameter 945 

(Weibull, GEV, lognormal, generalized normal I, skew-exponential-power —SEP— and gamma), 946 

three-parameter (generalized normal II and skew normal) and the four-parameter Pareto-Burr-947 

Fuller (PBF, further described in section 4) distribution functions along with the thin-heavy 948 

tailed separation based on the ESK and NIG functions, respectively. 949 

 950 

Figure B-2: Isopleths for estimated coefficients of skewness and kurtosis for the specified values 951 

of parameters ) and , of the ESK and NIG distributions. 952 
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 953 

Table B-1: Mean, variance, and coefficients of skewness and kurtosis for the ESK and NIG 954 

distributions. Note that ·� = ,B�1 + �/), ,�, where B��, Ë� is the beta function and i an integer. 955 

 ESK NIG _ � + ´·� � + )´/, 

Y� ´��·� − ·��� 
�)� + ,��´�,�  

?` 
2·�� − 3·�·� + ·��·� − ·����/�  

3)V,�)� + ,�� 

?j 
−3·�k + 6·��·� − 4·�·� + ·k�·� − ·����  

3, w1 + 41 + �,/)��}
+ 3 

min ?j ≈ ?`� + 1 = 53 ?`� + 3 

max ?j ≈ °� ?`� + 3 * +∞ 

* This is a fair approximation only for ?` ≤ –2. A more exact but empirical approximation for 956 −10 ≤ ?` ≤ 10, can be given by: 0.039?`� + 1.724?`� + 0.032?`� + 2.7. Note that the maximum 957 

kurtosis for the ESK for a given skewness approximately coincides with the kurtosis of the 958 

Weibull distribution (Fig. B-1). 959 

 960 

Table B-2: Parameters of the ESK and NIG distributions in terms of the mean, standard deviation, 961 

and coefficients of skewness and kurtosis (see also Fig. B-2). 962 

distribution ESK NIG 

) 
non-

analytical * 
,�?`Y3´  

, 
non-

analytical * 

´√3
Y¼?j − °� ?`� − 3 

� _ − ´·� _ − )´/, 

´ 

Y
¼�·� − ·��� 3Y¼3?j − 5?`� − 93?j − 4?`� − 9  

*The two parameters of the ESK distribution ) and , can be estimated by solving numerically the 963 

two following equations: ?` = �2·�� − 3·�·� + ·��/�·� − ·����/�
and ?j = �−3·�k +964 6·��·� − 4·�·� + ·k�/�·� − ·����

. 965 

In case additional moments need to be preserved, a more generalized methodology includes the 966 

use of the ME distribution, which can be applied for any type of distribution (see Eqn. 12-13): 967 
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m��; o�: = 1L( e�w xyB5`z{|�sC�c xyCgC5c xyhgh5`z{|�sv�c xyvgv5c xyhgÚ5`z{|�sß�c xyßgß5⋯5c xyàgà}  (B-20) 

where λ= ~L(, L�, L�, L�, Lk, L°, L», … , Lá�, (where m even) with L(,L�, L�, L�, Lk, L°, L», … , Lá 968 

having same units as � and with m + 1 constraints, where m is the number of moments we wish 969 

to preserve: 970 

� ��m��; o�d�'�' = E.��1, for � = 0, …, â  (B-21) 

For the generation scheme of the above distribution, we may use the random number generator 971 

described in the next steps. After we estimate the λ parameters of the MED we can rewrite the 972 

above equation as: 973 

m′��; o′�: = L′(e���s½Bi5s½C�C5�s½hi5s½v�v5�s½Úi5s½ß�ß5⋯ �  (B-22) 

with exactly the same number of unknown parameters (note that an exact solution for λ΄ always 974 

exists). 975 

After we estimate the new parameters λ’ we can approximate the above distributions with an 976 

auxiliary distribution function for an even m: 977 

È��; ã, ä, å, æ� =
çèé
èê ��e��TBi5�B�C , ´� < � < ´���e��TCi5�C�v , ´� < � ≤ ´�, ´� ≤ � < ´k��e��Thi5�h�ß , ´° < � ≤ ´�, ´k ≤ � < ´»…

ì  (B-23) 

where a= ~)�, )�, )�, … �, b= ~,�, ,�, ,�, … �, c= ~��, ��, ��, … � and d= ~´�, ´�, ´�, … � with the last 978 

two d parameters to be -∞ and +∞, respectively. The above distribution is subjected to the 979 

constraint � È��; ã, ä, å, æ�d� = 1'�' , and continuity in all its branches. 980 

After the estimation of all the parameters through optimization techniques (so as g to be as close 981 

as possible to f΄) we can use the rejection method (Papoulis, 1990, pp. 261-263) to generate 982 

random number for the MED. Note that for the generation of each branch function of the g 983 

distribution, we can use the random number generator of the powered-exponential distribution 984 

function through the generation of the gamma distribution function (the latter can be also 985 

generated using the rejection method as described in Koutsoyiannis and Manetas, 1996). 986 

Appendix C 987 

Here we describe how the SMA model can be used to cope with non-stationary processes. The 988 

general idea is to convert non-stationary processes to stationary ones, so that eventually the 989 
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simulation is made for a stationary process (Dimitriadis, 2017). This conversion is achieved by 990 

appropriate transformations or by separating them into segments, as for example in the case of 991 

cyclostationary processes. While in the recent literature there is no shortage of publications 992 

seeking or assuming non-stationarity, this may just reflect incomplete understanding of what 993 

stationarity is (Koutsoyiannis and Montanari, 2015). A common confusion is that non-994 

stationarity is regarded as a property of the natural process, while in fact it is a property of a 995 

mathematical (stochastic) process. In non-stationary processes some of the statistical properties 996 

change in time in a deterministic manner. The deterministic function describing the change in 997 

the statistical properties is rarely known in advance and, in studies claiming non-stationarity, is 998 

typically inferred from the data. However, it is impractical or even impossible to properly fit a 999 

non-stationary mathematical process to time series, as in nature only one time series of 1000 

observations of a certain process is possible, while the definition of stationarity or non-1001 

stationarity relies on the notion of an ensemble of time series. 1002 

A simple example of how we can deal with a non-stationary process through a stationary one 1003 

follows. We consider an HK process (denoted as x) with H = 0.8 μ = 0 and σ = 1 and by 1004 

aggregation we also take the cumulative process (denoted as y, i.e. yi = yi – 1 + xi). Figure C-1 1005 

shows a time series generated from x and the corresponding time series from y. Clearly, x is 1006 

stationary and y is non-stationary (the so-called fractional Brownian noise). If we have the 1007 

information about the theoretical basis of the two processes, then it is trivial to correctly model 1008 

them (Koutsoyiannis, 2016). In particular, we will know that the mean of the process y is 1009 

constant (zero, not a function of time) while its variance is an increasing function of time (a 1010 

power-law function of i). Otherwise, if the only available information is the time series of y, then 1011 

we may be tempted to assume a linear trend for the mean of y and express the mean of the 1012 

process as a linear function of time, μi = a i + b (with a and b the parameters of the slope and 1013 

intercept of a regression line on the time series). This, however, would be plain wrong as in fact 1014 

(by construction) the mean of y is zero for any time i. In addition, the introduction of the two 1015 

extra parameters (i.e., a and b) has negative implications in terms of the overall uncertainty of 1016 

the model, which would cease to be parsimonious. But again, even with this wrong assumption, 1017 

the next step would be to construct a stationary model, i.e., zi = yi – a i – b and use that model in 1018 

simulations. The correct approach for this case would be to construct the time series of x by 1019 

differentiation of y (i.e., xi = yi – yi-1), which is stationary, and use the stationary process x for 1020 

stochastic simulation; then a synthetic time series of the non-stationary process y will be 1021 

constructed from a time series of x. Thus, in all cases, whether with correct or incorrect 1022 

assumptions, the stochastic simulation is always done for a stationary process.  1023 



40 

 1024 

Figure C-1: Time series with length 1000 from the example processes x and y. 1025 

Appendix D 1026 

The first applied generic schemes for a stochastic synthesis are the implicit ones, i.e. those 1027 

approximating the distribution and dependence structure of a process through non-linear 1028 

transformations. These non-linear transformations (or else known as copula, Hoeffding, 1940; 1029 

Frechet, 1951; Sklar, 1959; Nelsen, 2006, and references therein) are often based on the 1030 

autocovariance function for any distribution function, where the uniform is usually preferred for 1031 

reasons of simplicity, whereas for reasons of flexibility the Gaussian distribution (the so-called 1032 

Gaussian-copula; Lebrun and Dutfoy, 2009) can be also used (for the bivariate Gaussian copula 1033 

see Nataf, 1962; Serinaldi and Lombardo, 2017a, Tsoukalas et al., 2018; Papadopoulos and 1034 

Giovanis, 2018; and references therein). This scheme is also known as Nataf transformation, but 1035 

here we propose to use the name Hoeffding-Frechet-Sklar-Nataf (HFSN) transformation, since 1036 

Nataf wrote a half-page conference paper (presented by Frechet) just mentioning (without 1037 

further analyzing it) a specific case of the general methodology earlier discussed by Hoeffding, 1038 

Frechet and Sklar. The general HFSN transformation can be written as: 1039 

íiîidY� + _� = E.���21 = E �� cË�g � cË2g�
= ï ï ��Ë����Ë2�m cË� , Ë2; íðîðdg dË�5'

�' dË25'
�'  

(D-1) 

where íiîid and íðîðd  are the cross-correlations between �� and �A as well as Ë� and ËA, 1040 

respectively; μ and σ are the process mean and standard deviation; m�Ë� , Ë2; íðîðd� is the joint 1041 

distribution between Ë� and ËA; ��Ë�� and ��Ë2� are the transformations of the original known 1042 

distribution of �� and �A to the selected distribution of Ë� and ËA, respectively (see below for an 1043 
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example of such transformations). In case that Ë is for example N(0,1) distributed, the bivariate 1044 

N(0,1) is used, i.e. m�Ë� , Ë2; íðîðd� = e��/��Ë�25ËA2��ðîðdñÌîÌd�/���ñÌîÌdC �/�2π�1 − íðîðd� ��/��. 1045 

Similar implicit schemes are developed based on the power spectrum (Cugar, 1968; Lavergnat, 1046 

2016 and references therein). This implicit scheme can be also introduced through the 1047 

climacogram, i.e.: 1048 

�i��� + _� = E ��������� = E òw� cËg���}�ó
= 1�� ï �ï ��Ë�R��dR�

( �� m��� cË; �ð���g dË5'
�'  

(D-2) 

where ���� ≔ �� � ��R�dR�(  is the averaged process of the continuous-time process ��R�, μ is the 1049 

process mean, and ��Ë� is a transformation function of the original process Ë (with the selected 1050 

uniform, Gaussian etc. distribution function and with an unknown �ð dependence structure) to 1051 

the desired one � (with known density distribution f(x) and dependence structure �i adjusted 1052 

for bias). For example, a y ~ N(0,1) can be easily transformed to a x ~ F(x) = 1– (a/x)b by 1053 ��R� = ��Ë�R�� = )/�1 − �1/2�1 + erf �Ë�R�/√2����/��. 1054 

The climacogram-implicit scheme has been applied to several (stationary and single/double 1055 

cyclostationary) processes, such as solar radiation (Koudouris et al., 2017), wave height and 1056 

wind process for renewable energy production (Moschos et al., 2017), as well as for the wind 1057 

speed using a special case of the PBF distribution (Deligiannis et al., 2016) but also a generalized 1058 

non-linear transformation (equivalent to a distribution function) based on the maximization of 1059 

entropy when the distribution function is unknown (Dimitriadis and Koutsoyiannis, 2015b). 1060 

Note that in all the above applications the same dependence structure is used for the original 1061 

and the transformed process, since a small deviation between then is noticed and therefore, 1062 

additional trials are considered not necessary. 1063 

A difficulty with the implicit schemes is that they involve non-linear transformations and double 1064 

integration (both of which may highly increase the numerical burden, even though fast 1065 

algorithms have been discussed by Serinaldi and Lombardo, 2017b). Several exact solutions of 1066 

the implicit scheme may exist even though an exact solution may not be possible for some 1067 

processes (especially in very strong correlation structure as is the case in the small scales 1068 

related to the fractal behaviour). Furthermore, there is no guarantee that the resulting 1069 

autocorrelation structure of the transformed process will be symmetric positive definite 1070 

(Lebrun and Dutfoy, 2009). In addition to the above, the transformation cannot be invariant with 1071 

respect to the time lag or time scale, while the fractal and HK behaviour cannot be easily handled 1072 

since the transformation is invariant with respect to the zero and infinite time scale. Some of 1073 

these limitations can be dealt with through a cautiously constructed binary scheme, a 1074 

multivariate Gaussian (or with other distribution such as the uniform one) copula scheme, a 1075 

Monte-Carlo approach to identify the unknown dependence structure, or a properly handled 1076 

disaggregation scheme for generating events of the process or more generally, by adjusting any 1077 

desired stochastic properties (dependence structure and distribution function) to each scale 1078 

(Lombardo et al., 2017). 1079 

User
Sticky Note
(not identified through the above expression but rather through the expectation of the estimator to adjust for bias)

User
Sticky Note
(of the type of the dependence structure, e.g. HK, GHK etc.)

User
Sticky Note
(see references in Dimitriadis, 2017, sect. 3.3.3, p. 46)

User
Sticky Note
(with the exception of the latter where the same structure with different parameters maps through the transformation the desired one)
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Sticky Note
(the expectation of the estimators)
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However, three of these problems concerning the implicit schemes can be easily dealt by the 1080 

proposed explicit scheme. Namely, these are (a) the inability of simulating the effect of the 1081 

fractal behaviour of a process at small scales, in which the correlation structure is very strong, 1082 

(b) the difficulties in preserving long-term persistence, and in particular its variability (see 1083 

below) and (c) the effect of the statistical bias (Dimitriadis, 2017, sect. 2.4.5). In the first two 1084 

problems the implicit schemes simulate the fractal and HK behaviour and bias of the non-linear 1085 

transformation process T(y), i.e. m c��Ë��, ��Ë2�; íõ�ðî�õ�ðd�g, which due to discretization and 1086 

finite length are not equal to the ones of the infinite length size continuous-time process, i.e. 1087 m cË� , Ë2; íðîðdg. Because of the theoretical origins of these two limitations the implicit schemes 1088 

are only theoretically valid for processes with short-term persistence and no fractal behaviour 1089 

(i.e., H = M = 0.5), and can be used for long-term processes with fractal behaviour only as a rough 1090 

approximation. 1091 

For illustration, we present a simple example to highlight the above problems related to the 1092 

implicit schemes such as the simplest case of the HFSN transformation. Particularly, we generate 1093 

(through the SMA scheme) data from a N(0,1) distribution with an HHK dependence structure (q 1094 

= 10, M = 1/3, H = 5/6) and we transform them to a Pareto II distribution (a = b = 10) through its 1095 

inverse distribution function. Subsequently, we estimate (through Monte-Carlo techniques) the 1096 

expected climacogram of the transformed process and we perform separately a sensitivity 1097 

analysis (as in Dimitriadis et al., 2016a) for the original (Gaussian-HHK) and transformed 1098 

Pareto-HHK (q = 6.538, M = 0.431, H = 0.832) processes (Figure D-1). Furthermore, we simulate 1099 

the same transformed process but now using the explicit scheme proposed in this paper with 1100 

just four moments (Figure D-1). Finally, we compare the differences between the two methods 1101 

in the simulation of the fractal and HK behaviour as well as of the distribution function. We 1102 

observe that the variances of the sample variance of the two schemes are very different 1103 

(although their mean values coincide) and that the implicit scheme overestimates it (by a factor 1104 

of 10). Note that the true variance of the sample variance corresponds to that of the explicit 1105 

scheme, since it explicitly preserves both the climacogram and the coefficient of kurtosis and 1106 

thus, can approximate all the arising moments through the SMA scheme, such as regular 1107 

moments (i.e. E[X],E[X2] and E[X4]) but also joint moments (i.e. E[XiXj
2] and E[Xi

2Xj
2]), which are 1108 

all function of a combination of the SMA weight coefficients and the marginal moments of the 1109 

white noise process (that are both exactly preserved through the explicit scheme). We believe 1110 

that the reason why this is not identified in some of the recent literature is probably because all 1111 

applications of the second-order implicit schemes are based solely on the preservation of the 1112 

expected (mean) value of the dependence structure and not additionally on its variance (or its 1113 

distribution in general) for each scale. This can be dealt by higher-order (more than two) copula 1114 

schemes (or by selecting other distributions, such as the uniform one, for the transformation) 1115 

but some difficulties may still remain (see above for three major ones). 1116 
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  1117 

Figure D-1: Mean, 5%, 95% [left] and variance [righr] of the sample climacogram for the implicit 1118 

and explicit (preserving four moments) scheme of a Pareto II (a = b = 10) and HHK (q = 6.538, M 1119 

= 0.431, H = 0.832) process. 1120 
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