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1. Introduction 
Temperature determines the distribution of air pressure in the atmosphere. The barometer and, more precisely, 
the difference in atmospheric pressure between two locations can affect the wind speed [1] and, as a result, 
precipitation. According to researchers, the air pressure has been globally affected by the humanity during the 
last half century [2]. This change is of high importance for the climatic processes mentioned above [2]. 

In general, a change in wind’s behaviour is commonly attributed to climatic change. However, relevant studies 
have not taken into consideration the “Hurst phenomenon”, also known as “long-term persistence” for the 
analysis of hydro-climatic processes and particularly wind speed. Usually, high (low) values of wind speed are 
followed by high (low) ones, meaning that observations appear in groups [3]. In other words, the 
autocorrelation coefficient remains quite high as the scale increases due to this clustering effect. 

In this study, the wind speed is analyzed in terms of its climacogram (i.e., plot of variance or standard 
deviation of the mean-aggregated random variable versus scale) in order to determine whether it exhibits 
behaviour of long-term persistence. The justification for the use of the climacogram as a measure of statistical 
uncertainty can be seen in [4]. In this analysis, we use hourly wind speed data from over 7,000 wind stations 
from around the globe (https://www.ncdc.noaa.gov/cdo-web/) and we also estimate the Hurst coefficient (or 
equivalently, we calculate the slope of the decay of the climacogram) for various time periods. Finally, we 
estimate the prediction measure (or error) and we comment on the results: 

• If the prediction measures of the wind speed are large (close to unity) for all examined periods and for each 
station, then the model can describe adequately the climatic variability of wind and so, it is possible that the 
changes observed during the last decades can be well described by the Hurst phenomenon. 

• In contrast, in case a significant variation of the prediction measure is observed for various time periods, 
then the model used cannot effectively describe the climatic variability of wind. 

Aim: Is it possible to describe the climatic variability of wind speed using just three parameters? 



2. Methodology 
The statistical uncertainty enclosed within the wind process is quantified through a Monte Carlo approach. 
The analysis is based on the assumptions that the ratio of the annual mean wind speed divided by the annual 
standard deviation is a stationary process, normally distributed and that it follows one of the most commonly 
used stochastic models in geophysics, i.e., Markov and HK (including the White Noise process for H=0.5). 
These assumptions are not only parsimonious but also considered conservative since any non-stationary 
approach would increase the complexity of the system, the probability function is likely it has a non-Gaussian 
tail and the stochastic structure cannot be any less complex that the Markov and HK one-parameter models, 
which entail all exponential as well as a power-type behaviours. Furthermore, the analysis is applied for all 
climatic zones described in the Koppen system. Moreover, each mean annual value is considered valid when 
it is estimated from more than 1200 h, i.e. 4 measurements per day for at least 10 months. For the synthesis of 
the stochastic timeseries, we use the 3×AR(1) technique described in [3]: 

Based on the Monte Carlo results, we estimate the “prediction error” or “prediction measure” of each 30-year 
mean, standard deviation, minimum and maximum values. The prediction measure is actually a 
measurement ranging from zero to one that compares the 30-year values observed by each station with the 
ones predicted from the model. In this manner, we are able to capture any large, medium or low 30-year 
climatic variability that occurred in approximately the last 100 years. 

The stationary process is produced as a sum of 3 stationary Markov processes, xi = Ai + Bi + Ci. The processes 
A, B, C have the following characteristics: 

Autocorrelation coefficient for lag 1: Where γ0: the variance of real time series and c1 and c2: 

calculated in a way that the correlation coefficient of the 

real time series be the same as the synthetic’s for 

hysteresis 1 and 100. 

ρa = 1.52 (H – 0.5)1.32 

ρb = 0.953 – 7.69 (1 – H) 3.85 

ρc = 0.932 + 0.087 H,  for H < 0.76, 

ρc = 0.993 + 0.007 H, for H > 0.76 

Variance: 
σ2

a = (1-c1-c2) γ0 

σ2
b = c1 γ0 

σ2
c = c2 γ0 



3. Map of spatial distribution of selected stations 

Map 1: Location of wind stations that still operate. Background based [5]. 



4. Table of selected stations for each Koppen 

Table 1: Selected stations with high credibility for each Koppen (hourly observations). 

Station ID
Number 

of years

Mean 

(m/s)

Standard 

Deviation (m/s)

Skewness 

(m/s)
Hurst Height (m) Koppen Location

2681 70 5,5 8,0 0,8 0,87 9 ET Winter Trail, Alaska, N. America 

5577 42 5,8 20,7 1,9 0,86 13 EF Antarctica

2255 42 1,8 3,7 1,8 0,91 433 Dwc Daxinganling Heilongjiang, China 

1988 70 2,7 4,0 1,0 0,66 20 Dwa Incheon, South Korea, Asia 

2687 42 5,7 10,9 0,8 0,93 18 Dsc Anchorage, Alaska, N. America   

2745 70 2,5 6,9 1,4 0,95 481 Dfc  Chitina, Alaska, N. America

4618 70 3,9 6,1 0,8 0,91 373 Dfb Pittsburgh, Pensylvania, USA

4649 42 3,9 5,5 0,6 0,98 199 Dfa Springfield, Illinois, USA

5240 42 3,7 12,0 1,3 0,83 528 Cwb Chiapas, Mexico, North America  

2014 42 4,1 7,6 0,9 0,88 68 Cwa Jeonnam, South Korea, Asia 

1075 68 4,6 10,1 0,8 0,87 55 Csb Azores, Portugal, Atlantic Ocean 

1051 42 3,2 7,7 1,4 0,67 62 Csa Valencia, Spain, Europe 

2779 70 4,8 11,2 1,0 0,88 34 Cfc Kodiak Island ,Alaska, N. America

2802 74 4,1 8,8 1,1 0,89 34 Cfb British Columbia, Canada, N. America  

4118 68 5,0 7,8 0,4 0,92 6 Cfa Brownsville, Texas, USA

4160 67 4,6 6,6 0,5 0,80 582 BSh San Angelo, Texas, USA

4218 70 2,7 4,2 0,8 0,92 15 BSk San Diego, California, USA

4189 42 2,9 3,6 1,1 0,87 337 BWh Phoenix, Arizona, USA 

4377 37 4,0 7,6 0,8 0,76 1006 BWk Las Vegas, Nevada,  USA

5257 70 3,6 4,9 1,2 0,94 16 Aw  Guantanamo, Gulf of Mexico, N. America

5609 76 4,9 6,2 0,2 0,74 3 As Pearl Harbor, Hawaii, Pacific Ocean

2221 42 1,6 4,0 1,3 0,92 35 Am Kedah, Malaysia, Asia  

5616 42 4,4 5,5 0,7 0,68 76 Af Guam, Mariana Islands, Western Pacific Ocean 



5. Quantile-Quantile plots 
The observed distribution function is 
compared to the Gaussian one. For each 
observed standardized value (-6 to +6), we 
estimate the value of N(0,1) corresponding to 
the same probability of occurrence. 
The results are illustrated in the Figure 1. We 
notice that the average as well as the Q25, 
Q50, Q75 quartiles almost collide with each 
other. Particularly, they are close to N(0,1) for 
values ranging from -2 to 2. This means that, 
for values ranging from μ-2σ to μ+2σ, the 
probability density is very close to normality. 
 For X<μ-2σ, the results are quite different, 

probably for technical reasons; the 
anemometers do not work effectively for 
low values of wind speed. 

 For X>μ+2σ, the correspondence is also 
poor, probably for statistical reasons; the 
tail of the distribution (corresponding 
extremely high values of wind) deviates 
from normality. 

Figure 1: quantile-quantile plot of annual mean wind speed 



6. Climacograms 

For each koppen, a climacogram is estimated, as 
described in Figure 2. By using the equation H=1+d/2, 
where H is the Hurst coefficient and d is the loglog slope 
of the climacogram, we estimate the Hurst coefficient for 
each climatic type. Actually, the five climatic types can be 
described in groups, with types A and B exhibiting 
H=0.83, while C and D a slightly higher value of H=0.86 
and, finally, a lower value H=0.78 for E (Figure 3). 

In addition, the sub-climatic types of C are further 
analyzed, since half of the world’s selected wind 
stations (661) are characterized by C. The results 
show that the Hurst coefficient is generally 
constant around 0.85, except for the sub-categories 
Cfc, Cwb, which however represent only a few 
stations (22 in total) and have H=0.8 (as in [6]). 

Figure 2: climacogram for each climate type. 

Figure 3: Hurst coefficient for each climate type. 

Figure 4: Hurst coefficient for C climate subdivisions 



7. Average wind speed and variability coefficient 

Map 3: Distribution of variability coefficient all around the world 

Map 2: Distribution of average wind speed all around the world. 
Source of background: http://www.climate-charts.com/World-
Climate-Maps.html#wind-speed 

Both maps and data depicted indicate that near the Poles 
the wind speed is quite high and lower at the middle 
zones. These observations are expected by comparing 
them to the background map. 

The variability coefficient is quite high (>1) in 
Central and South America, Africa, Asia and 
Indonesia. In contrast, it is much less than 1 in 
North America and Europe. 



8. Estimation of the prediction measure for a station of high credibility (1) 

Figure 5: Time series of wind speed for the examined station. 

The following analysis is based on observations measured at a station located in Winter Trail, Alaska. This 
station is characterized by Koppen E climate type, and particularly sub-category ET. It is close to the sea level 
(height at 9 m) and near the Arctic ocean. It has measurements for 70 continuous years and it constitutes one 
of the most reliable stations of this climatic type and one of the most reliable of all the stations analyzed. 
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Figure 6: Climacograms for the model and observed time series of the 
examined station. 



9. Estimation of the prediction measure for a station of high credibility (2) 

Figure 7: Estimation of prediction measures (mean, standard deviation, minimum and maximum wind speed) for the examined station. 
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10. Prediction measures, mean & standard deviation 

The prediction measures for the annual 
standard deviation are generally lower than 
the ones for the mean values. 
 12% of the standard deviation prediction 

measures is higher than 0.75. 

Map 5: prediction measure of wind velocity annual 
standard deviation. 

Map 4: prediction measure of wind velocity annual mean. 

The prediction measures for the 
annual mean values are exceptional, 
varying from 0.65 to 1. 
 99% of the prediction measures of 

the mean values is higher than 0.75. 



11. Prediction measures, minimum and maximum values 

Map 6: prediction measure of wind velocity annual 
minimum values. 

Map 7: prediction measure of wind velocity annual 
maximum values. 

The prediction measures for the annual 
minimum values are really good. 
 65% of the prediction measures of the 

minimum values is higher than 0.75. 

Stations’ maximum values’ prediction 
measures are also very good. 
 60% of the stations’ prediction measure is 

more than 0.75. 



12. Conclusions 
The results of this study are quite interesting. The three parameters mean, standard deviation and Hurst 
coefficient permit us to describe adequately the climatic variability of wind speed. The Monte Carlo simulation 
is used to quantify the stochastic uncertainties of the model. A different Hurst coefficient is used for each 
Koppen climatic type, since a slightly different behaviour is observed from data. Generally, the annual mean 
wind speed distribution for all stations is very close to normality, especially between μ-2σ and μ+2σ values. As 
a result, the selection of annual mean and standard deviation, in combination with the Hurst coefficient (which 
indicates a strong long-term persistence around the globe), constitutes an challenging way to identify the wind 
variability along with the over safety assumption of gaussianity. 

Indeed, the mean, standard deviation, minimum and maximum values of 30-year periods appear to have quite 
high prediction measures for the large majority of wind stations. Particularly: 

Mean prediction measure: 90% for 71% of stations and  75% for 99% of stations. 

Stdev prediction measure: 70% for 30% of stations and  50% for 80% of stations. 

Min prediction measure: 80% for 53% of stations and  60% for 85% of stations. 

Max prediction measure: 80% for 50% of stations and  60% for 80% of stations. 
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