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Abstract. A methodology is proposed for coupling stochastic models of hydrologic
processes applying to different timescales so that time series generated by the different
models be consistent. Given two multivariate time series, generated by two separate
(unrelated) stochastic models of the same hydrologic process, each applying to a different
timescale, a transformation is developed (referred to as a coupling transformation) that
appropriately modifies the time series of the lower-level (finer) timescale so that this
series becomes consistent with the time series of the higher-level (coarser) timescale
without affecting the second-order stochastic structure of the former and also establishes
appropriate correlations between the two time series. The coupling transformation is
based on a developed generalized mathematical proposition, which ensures preservation of
marginal and joint second-order statistics and of linear relationships between lower- and
higher-level processes. Several specific forms of the coupling transformation are studied,
from the simplest single variate to the full multivariate. In addition, techniques for
evaluating parameters of the coupling transformation based on second-order moments of
the lower-level process are studied. Furthermore, two methods are proposed to enable
preservation of the skewness of the processes in addition to that of second-order statistics.
The overall methodology can be applied to problems involving disaggregation of annual to
seasonal and seasonal to subseasonal timescales, as well as problems involving finer
timescales (e.g., daily to hourly), with the only requirement that a specific stochastic model
is available for each involved timescale. The performance of the methodology is
demonstrated by means of a detailed numerical example.

1. Introduction

Very often a hydrologic stochastic process must be studied in
different timescales. Therefore the problem arises of how to
generate consistent time series both in a coarser, or higher-
level, timescale and a finer, or lower-level, timescale. A trivial
solution of this problem is to model the process in the lower-
level timescale only and then aggregate to derive the process in
the higher-level timescale. However, there are reasons to avoid
this solution and model the process in both timescales sepa-
rately, each time focusing on different important statistical
properties of the process [Salas, 1993, p. 19.32]. For instance,
if the higher- and lower-level scales are annual and seasonal,
respectively, the lower-level model may focus on the periodic-
ity and short-term memory of the process, whereas the higher-
level model may focus on the long-term memory properties of
the process. In other cases the higher-level process may be the
output of a specialized model (e.g., a meteorological rainfall
prediction model) or known from measurements (e.g., daily
rainfall measurements); apparently, in such cases the aggrega-
tion approach cannot work, but rather disaggregation is
needed.

Traditionally, this kind of problem is tackled by disaggrega-
tion models [Valencia and Schaake, 1972, 1973; Mejia and
Rousselle, 1976; Tao and Delleur, 1976; Hoshi and Burges, 1979;
Lane, 1979, 1982; Salas et al., 1980; Todini, 1980; Stedinger and
Vogel, 1984; Pereira et al., 1984; Stedinger et al., 1985; Oliveira et
al., 1988; Grygier and Stedinger, 1988, 1990; Lane and Frevert,
1990; Santos and Salas, 1992; Koutsoyiannis, 1992; Salas, 1993,

p. 19.34; Tarboton et al., 1998]. These are purposely designed
models to generate a process in the lower-level timescale given
that in the higher-level. Specifically, they do not model the
process of interest in the lower-level timescale itself, but rather
they are hybrid schemes using both timescales simultaneously.
Sometimes (owing to nonlinear transformations of variables)
these models are not able to ensure consistency with the high-
er-level process. Then, adjusting procedures are necessary to
restore consistency [Grygier and Stedinger, 1988, 1990; Lane
and Frevert, 1990, p. V-22; Koutsoyiannis and Manetas, 1996].

However, there is the possibility of not designing and imple-
menting a special model for disaggregation as a hybrid scheme
incorporating both timescales. On the contrary, there may be
available a model of the lower-level timescale with no refer-
ence to the higher-level timescale. The problem is then how a
time series generated by the lower-level model can be modified
so as to be consistent with a given higher-level time series,
without affecting the stochastic structure implied by the lower-
level model. (Practically, this is equivalent to the use of adjust-
ing procedures mentioned before.) In a recent study, Koutsoy-
iannis and Manetas [1996] showed that this is possible without
using any kind of disaggregation model but only using adjust-
ing procedures on top of the separate lower-level model. Their
adjusting procedures are accurate in the sense that they do not
modify certain statistics of the lower-level process. In that
study a contemporaneous seasonal autoregressive (PAR(1))
model was used as the lower-level model.

The present study is a generalization of that by Koutsoyiannis
and Manetas [1996] in several senses. On the basis of a gener-
alized mathematical proposition a wider transformation for
modifying the lower-level time series, so as to be consistent
with the higher-level time series, is introduced. Several forms
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of this transformation (referred to as coupling transformation)
are studied. Apart from ensuring consistency with higher-level
time series and reproducing second-order statistics of the low-
er-level variables within a certain period (higher-level time
step), the transformation preserves lagged covariances of low-
er-level variables with lower- and higher-level variables of pre-
vious and next periods as well. Thus a well-known defect of
disaggregation models, i.e., their inconsistency in preserving
accurately lagged covariances among lower- and higher-level
variables [Lane, 1982; Stedinger and Vogel, 1984], is remedied.
In addition, the most general form of the proposed coupling
transformation is true multivariate; that is, it is applied simul-
taneously to all the variables of all locations involved in the
problem examined, rather than adjusting the variables of each
location separately. Furthermore, the methodology proposed
can be applied not only to the simple PAR(1) model but to any
type of stationary or seasonal stochastic model for any time-
scale, with the only requirement that a specific stochastic
model is available for each involved timescale.

The theoretical background of the methodology proposed is
presented in section 2. The specific forms of the coupling
transformation are studied in section 3, while the methods for
evaluating their parameters are given in section 4. The prob-
lem of preservation of the coefficients of skewness of the vari-
ables involved is examined separately in section 5. A numerical
example that demonstrates the performance of the methodol-
ogy is given in section 6, and conclusions are drawn in section
7. To increase readability, several mathematical derivations are
excluded from the paper.1

2. Theoretical Background
Let a hydrologic process, such as rainfall, runoff, etc., de-

fined at n locations and studied in discrete time using two
different timescales, the higher-level timescale with time step
dH and the lower-level timescale with time step dL such that k
:5 dH/dL be an integer. We denote the higher- and lower-
level discrete time processes by Zp 5 [Zp

1, z z z , Zp
n]T and Xs 5

[Xs
1, z z z , Xs

n]T, respectively, where superscript T denotes the
transpose of a vector or matrix and subscripts p and s are
integer time indices that stand for period and subperiod, re-
spectively, with common origin (i.e., at the time origin p 5 0
and s 5 0). Generally, in this paper we use upper case letters
for random variables and lower case letters for values, param-
eters, or constants. Furthermore, we use bold letters for arrays
or vectors and italic letters for their elements. Higher- and
lower-level processes are related by

O
s5~ p21!k11

pk

X s 5 Zp. (1)

We assume that two separate stochastic models have been
built, one for the higher-level process Zp and one for the
lower-level process Xs, without link or reference between
them. To increase readability, we can refer to the simple ex-
ample where Zp and Xs represent the annual and monthly
flows at n locations, modeled as an AR(1) (autoregressive
process of order 1) and a PAR(1) (periodic or seasonal

autoregressive process of order 1), respectively. These models
are expressed by

Zp 5 a*Zp21 1 b*V*p, (2)

X s 5 a sX s21 1 b sV s, (3)

where all a*, b*, as, and bs are (n 3 n) matrices of parameters
and V*p and Vs (s , p 5 z z z , 0, 1, 2, z z z ) are vectors of
innovations (independent, both in time and location, random
variables) with size n . The time indices s , p can take any
integer value but in our example the parameters as and bs are
periodic functions of s with period k , whereas a* and b* do not
vary with p .

We emphasize that models (2) and (3) and the relevant
assumptions are given here just as simple model examples of a
generalized methodology that can be combined with any type
of multivariate stochastic models with any distribution func-
tions and that can perform in any timescale. In fact, as no
assumption is implied about the involved models, the method-
ology can be combined with linear and nonlinear stochastic
models also including generalized autocovariance models
[Koutsoyiannis, 2000], nonparametric models [Lall and
Sharma, 1996; Sharma et al., 1997], and hybrid models [Srinivas
and Srinivasan, 2000]. Moreover, the modeling timescales need
not be annual and monthly as in the examples used herein, but
they can be much finer such as daily and hourly, even though
distribution functions at those timescales are much more asym-
metric.

We also notice that higher- and lower-level models need not
be fully compatible. For example, models (2) and (3) are not
fully compatible, as the covariance structure implied by (3) for
the higher-level process Zp (determined by invoking (1)) is not
identical with that implied by (2) (it can be easily verified that
the sum of AR(1) or PAR(1) processes cannot be an AR(1)
process). If the models were fully compatible, the problem
examined would be trivial, as the lower-level model would
actually incorporate the higher-level model. Thus the problem
acquires its interest in the case of (partially) incompatible
models each focusing on different important statistical prop-
erties of the stochastic processes examined. For instance, the
lower-level model may focus on the periodicity and the short-
term memory of the process, whereas the higher-level model
may focus on the long-term memory properties of the process.
Apparently, (2) is not adequate for the latter case, and more
complex models such as that proposed by Koutsoyiannis [2000]
must be used instead.

Let us assume that a time series zp of the process Zp has
been generated using model (2) (or any other linear or non-
linear, parametric or nonparametric model or even that it has
been acquired from measurements) and that another time
series x̃s of the process Xs has been generated using (3) (or
another appropriate stochastic model). The latter time series
has been generated independently of the former, and therefore
x̃s do not add up to zp, as demanded by the additive property
(1), but to some other quantities, which we will denote z̃p. We
wish to modify the series x̃s thus producing a series xs consis-
tent with zp, in the sense that xs and zp obey (1), without
affecting the stochastic structure of the lower-level time series.
For convenience we will assume that x̃s is a realization of a
stochastic process X̃s, identical to Xs (e.g., following (3)) and
that the series z̃p is a realization of a process Z̃p defined as the
sum of X̃s. In the ideal case that the processes Xs and Zp are
fully compatible, Z̃p will be identical to Zp, but, as discussed

1Supporting appendices are available with entire article on microfiche.
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nue, N.W., Washington, DC 20009 or by phone at 800-966-2481; $2.50.
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above, this is not the case in general (note that Z̃p is derived as
a summation of the lower-level process, whereas Zp corre-
sponds to the higher-level model regardless of the lower-level
model). We seek for a transformation f(X̃s, Z̃p, Zp) whose
outcome is a process identical to Xs and consistent to Zp (it
satisfies (1)). We will use the symbol Xs for the outcome of this
transformation (i.e., Xs 5 f(X̃s, Z̃p, Zp)), and we will call this
transformation a coupling transformation. With the followed
notation we have two couples of processes, the auxiliary pro-
cesses (X̃s, Z̃p) and the “actual” processes (Xs, Zp); in each
couple, lower- and higher-level processes are consistent (i.e.,
they satisfy (1)), but members of different couples are incon-
sistent. A schematic representation of the four processes in-
volved, their links, and the steps followed to construct the
“actual” lower-level process Xs, consistent with Zp, is shown in
Figure 1.

We can determine an appropriate linear form of the cou-
pling transformation based on the following general proposi-
tion, specific forms of which we will extract and utilize in
sections 3–6. For the generalized presentation of the proposi-
tion given below, the reader may have in mind that the vectors
X̃ and X contain numerous items of the auxiliary and actual
lower-level processes, respectively, and the vectors Ỹ and Y
contain items of the higher-level processes and other variables
that will be specified later. The additive property (1) is repre-
sented here by a more generalized linear relationship of the
form of (6) below.

The proposition is as follows: let X̃ and Ỹ be vectors of
random variables with means E[X̃] and E[ Ỹ], variance-
covariance matrices Cov [X̃, X̃] and Cov [Ỹ, Ỹ], respectively,
and joint covariance matrix Cov [X̃, Ỹ]. Also, let Y be a vector
of stochastic variables independent of X̃ and Ỹ with means and
variance-covariance matrix identical to that of Ỹ. Define

X :5 X̃ 1 h~Y 2 Ỹ! , (4)

where h is a matrix of parameters given by

h :5 Cov @X̃ , Ỹ#$Cov @Ỹ , Ỹ#%21. (5)

Then, (1) X has mean and variance-covariance matrix identical
to those of X̃ and joint covariance matrix with Y identical to
that of X̃ and Ỹ. (2) Any linear relationships that hold among
X̃ and Ỹ, which can be written in the form

gX
TX̃ 5 gY

TỸ , (6)

where gX and gY are matrices (or vectors in case of a single
linear relationship) of coefficients, hold also among X and Y,
that is,

gX
TX 5 gY

TY . (7)

(3) The conditional variance of any element Xi of the vector X,
given Y 5 y, is

Var @XiuY 5 y# 5 Var @X̃i# 2 Cov @X̃i, Ỹ#

z $Cov @Ỹ , Ỹ#%21 Cov @Ỹ , X̃i# (8)

and is identical to the least mean square prediction error of Xi

from Y.
The proof of the proposition is given in Appendix A1 of the

microfiche supplement. We mention here an interesting inter-
mediate result regarding the proof of item 2 of the proposition:
If (6) holds, gX and gY affect the covariance matrices Cov [Ỹ, Ỹ]
and Cov [X̃, Ỹ] and consequently h, so that finally

gY
T 5 gX

Th . (9)

We also notice that given the equality of covariances between
the couples (X̃, Ỹ) and (X, Y), we can substitute any covariance
matrix of the first couple with the corresponding of the second
couple; for example, we can write (5) as h :5 Cov [X, Y]{Cov
[Y, Y]}21.

Equations (4) and (5) offer the basis to develop the coupling
transformation, as we will see in section 3. Item 3 of the
proposition, although not used directly in developing the cou-
pling transformation, ensures that (4) provides the best possi-
ble conditional estimate of X given Y in a least squares sense.

3. Specific Forms of Coupling Transformation
In this section we will develop several forms of the coupling

transformation, starting from the simplest case of a single
variate model and proceeding toward more complex cases. For
mathematical convenience the transformation will extend to
the lower-level variables of one period only (rather than ex-
tending to all simulated periods simultaneously) yet consider-
ing the necessary links to previous and next periods. For no-
tational convenience we will assume that the time origin
coincides with the origin of the examined period so that p 5 1.
Thus we will write (1) as

O
s51

k

X s 5 Z1. (10)

We introduce the following notational conventions of covari-
ances among lower- and/or higher-level variables:

s sr :5 Cov @X s, X r# ; s rs
T, wpr :5 Cov @Zp, Z r# ; w rp

T ,

(11)
t sp :5 Cov @X s, Zp# , t*ps :5 Cov @Zp, X s# ; t sp

T .

The evaluation of these parameters will be discussed in section
4.

3.1. Preserving the Additive Property

In the simplest case we assume a single-site model with
lower-level variables X1, z z z , Xk adding up to the higher-level
variable Z1. We apply the proposition of section 2 setting X 5
[X1, z z z , Xk]T and Y 5 [Z1]. In the single-site case exam-

Figure 1. Schematic representation of actual and auxiliary
processes, their links, and the steps followed to construct the
actual lower-level process from the actual higher-level process.
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ined, we have ssr 5 Cov [Xs, Xr] [ srs, tsp 5 Cov [Xs, Zp]
[ t9ps, and wpr 5 Cov [Zp, Zr] [ wrp. The additive property
(10) can be written in the form (6) with gX

T 5 [1, 1, z z z , 1]
and gY

T 5 [1]. The parameter matrix h is (from (5))

h 5
1

w11
@t11, . . . , tk1#

T, (12)

and thus the coupling transformation (4) can be written for
each subperiod s as

Xs :5 X̃s 1
t s1

w11
~Z1 2 Z̃1! . (13)

This is the simple adjusting procedure developed by Koutsoy-
iannis and Manetas [1996]. Note that each of the coefficients
ts1/w11 for a specific s represents the ratio of the covariance of
each lower-level variable Xs with the higher-level variable Z1

(ts1) to the variance of the higher-level variable Z1 (w11).
Thus (13) distributes the departure (Z1 2 Z̃1) of the additive
property to each lower-level variable proportionally to the
covariance of this lower-level variable with the higher-level
variable. Note also that the covariances ts1 for all s add up to
the variance w11 (see also section 4), and thus the coefficients
ts1/w11 for all s add up to 1, as they should. Thus the sum of
all Xs will equal Z1 regardless of the values of X̃s; that is, the
preservation of the additive property is ever assured. The spe-
cial case where the lower-level variables are independent (the
process Xs is white noise), although unusual, provides better
understanding of the rationale of (13). In this case, ts1 equals
the variance of the lower-level variable Xs, so that the distri-
bution of the departure (Z1 2 Z̃1) to each lower-level vari-
able becomes proportional to the variance of the variable.
Interestingly, Grygier and Stedinger [1988] and Lane and Frevert
[1990, p. V-22] had proposed a similar empirical adjusting
procedure but using the standard deviation in place of the
variance of each of the lower-level variables. We must empha-
size, however, that the exact transformation that assures pres-
ervation of the additive property, means, and second-order
moments of the process in the general case of dependent
variables is expressed as in (13) in terms of the covariances ts1

rather than variances or standard deviations of the different
lower-level variables.

3.2. Linking With Lower-Level Variables
of the Previous Period

The simple transformation in section 3.1 preserves the ad-
ditive property and correlations of lower-level variables within
the examined period. However, it does not preserve explicitly
the correlations of lower-level variables with subperiods of
previous periods. For example, it does not preserve explicitly
the correlation of the first lower-level variable X1 with the last
lower-level variable of the previous period X0. This can be
easily remedied by setting X 5 [X1, z z z , Xk]T and Y 5 [X0,
Z1]T. In this case, gX

T 5 [1, 1, z z z , 1] and gY
T 5 [0, 1] so that

gX
T X is the sum of all lower-level variables and gY

T Y is the
higher-level variable Z1. The parameter matrix h is

h 5 3
s10 t11
···

···
sk0 tk1

4 F s00 t01

t01 w11
G 21

. (14)

Thus the coupling transformation (4) can be written for each
subperiod s as

Xs :5 X̃s 1
1

s00w11 2 t01
2 @~w11s s0 2 t01t s1!~X0 2 X̃0!

1 ~s00t s1 2 t01s s0!~Z1 2 Z̃1!# . (15)

This notion can be extended to include a greater number of
previous lower-level variables, as we will see in section 3.3.
Here an explanation of the rationale of the different terms of
(15) is no longer simple as it was in (13) (this in even more the
case for the equations of sections 3.3 and 3.4). We can only say
that (15) performs two kinds of adjustment to the auxiliary
lower-level variables X̃s: First, it distributes the departure
(Z1 2 Z̃1) among the different lower-level variables so as to
restore the additive property. Second, it modifies X̃s in pro-
portion to the departure (X0 2 X̃0) so as to restore the
dependence with lower-level variables of the previous period.
It may be easily verified that the coefficients used to distribute
(Z1 2 Z̃1) add up to 1, as they should, whereas the coeffi-
cients used for (X0 2 X̃0) add up to 0, as they should, too.

3.3. Linking With Next Higher-Level Variables

Linking the lower-level variables of the current period with
those of the previous period, in the way discussed in section
3.2, may be regarded as linking with lower-level variables of the
next subperiod as well. Specifically, at the stage of generating
the lower-level variables of the next period the correlation with
the lower-level variables of the current period will be preserved
in the manner discussed in section 3.2.

However, this is not absolutely correct, because in this man-
ner the lagged correlations between lower- and higher-level
variables are not considered explicitly. As shown by Stedinger
and Vogel [1984], the departures in preserving such lagged
correlations are responsible for inconsistencies in preserving
correlations between lower-level variables of different periods;
this problem was first reported by Lane [1982], and contribu-
tions to overcome it were made by Stedinger and Vogel [1984],
Lin [1990], Koutsoyiannis [1992], and Koutsoyiannis and Man-
etas [1996].

The developed general proposition allows for an effective
tackling of this problem. In addition to correlations with the
previous lower-level variables, discussed in section 3.2, we will
also consider the preservation of correlations between the low-
er-level variables of the current period and the higher-level
variable of the next period. We note that the correlation of the
former with the higher-level variables of the previous periods
has been already considered indirectly (through correlations
with the corresponding lower-level variables), whereas the cor-
relation with the higher-level variable of the current period has
been incorporated explicitly (through the coupling transforma-
tion).

We will distinguish between two cases regarding the succes-
sion of generation steps of higher- and lower-level variables. In
the first case all higher-level variables of all periods are gen-
erated before the generation of lower-level variables. In the
second case the generation of lower-level variables of one
period follows the generation of the higher-level variable of
that period and precedes that of the next period.

In the first case, at the step of generating the lower-level
variables of the current period, the higher-level variable of the
next period (Z2) is already known, and the correlation with it
must be considered and preserved. This may be essential es-
pecially when this correlation is high (e.g., for fine timescales).
To this aim we must append Z2 to the vector Y again setting
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X 5 [X1, z z z , Xk]T. In addition, to acquire a more general-
ized solution than that of section 3.2, which was appropriate
for the specific model (3), we append to Y a number q (de-
pending on the lower-level model used) of lower-level vari-
ables prior to X0 so that finally Y 5 [X2q, z z z , X0, Z1, Z2]T.
The vectors gX and gY become gX

T 5 [1, 1, z z z , 1] and gY
T 5

[0, z z z , 0, 1, 0]. The parameter matrix h is

h 5 3
s1,2q · · · s10 t11 t12

···
· · ·

···
···

···
sk,2q · · · sk,0 tk,1 tk,2

4
z 3

s2q,2q · · · s2q,0 t2q,1 t2q,2

···
· · ·

···
···

···
s0,2q · · · s00 t01 t02

t91,2q · · · t910 w11 w12

t92,2q · · · t920 w21 w22

4
21

. (16)

The coupling transformation (4) can be written for each sub-
period s as

Xs :5 X̃s 1 h s@~X2q 2 X̃2q! , . . . ,

~X0 2 X̃0! , ~Z1 2 Z̃1! , ~Z2 2 Z̃2!]T, (17)

where hs is the sth row of h.
In the second case mentioned above (which is met rather

rarely), at the step of generation of the lower-level variables of
the current period, the higher-level variable of the next period
Z2 is not known, and thus the analysis of section 3.2 suffices.
Just before that step, the higher-level variable Z1 of the cur-
rent period is to be generated. At this time the lower-level
variables of the previous periods (X0, X21, z z z ) are already
known, and correlation with them must be preserved. How-
ever, this is not done automatically by the higher-level model
itself (e.g., by (2)). Using the general proposition, we can
remedy this problem as well if we set X 5 [Z1] and Y 5
[X2q, z z z , X0]T, i.e., the vector of q 1 1 lower-level variables
of the previous periods. In this case, q 1 1 can be chosen equal
to k , the number of lower-level variables of one period, but it
can be lower or greater than this value as well, depending on
how large the correlation of higher-level to lagged lower-level
variables is. The parameter matrix now is

hZ 5 @t91,2q . . . t910#3
s2q,2q · · · s2q,0

···
· · ·

···
s0,2q · · · s00

4
21

, (18)

and the coupling transformation is

Z1 :5 Z̃1 1 hZ@~X2q 2 X̃2q! , . . . , ~X0 2 X̃0!#
T. (19)

The generation of the lower-level variables of the current
period follows that of the higher-level variable. This is done by
(14) and (15) if only one previous lower-level variable is con-
sidered or otherwise by the more general relationship

Xs :5 X̃s 1 h s@~X2q 2 X̃2q! , . . . , ~X0 2 X̃0! , ~Z1 2 Z̃1!#
T,

(20)

where hs is the sth row of the matrix h that is now given by

h 5 3
s1,2q · · · s10 t11

···
· · ·

···
···

sk,2q · · · sk,0 tk,1
4 3

s2q,2q · · · s2q,0 t2q,1

···
· · ·

···
···

s0,2q · · · s00 t01

t91,2q · · · t910 w11

4
21

.

(21)

Here (20) and (21) have been derived from (17) and (16),
respectively, by omitting all elements referring to Z2.

3.4. Multivariate Case

The above forms of the coupling transformation can be
applied location by location in the case of a multivariate pro-
cess. However, in this manner, the cross correlations of the
lower-level variables will be altered by the single-location cou-
pling transformations of different locations. The same coupling
transformations can be formulated in a true multivariate form,
so that cross correlations are explicitly preserved. This is a very
simple task, as it suffices to write the same relationships in
multivariate form. We will give here the multivariate version of
the most general case of section 3.3; the other cases are rem-
edied in a similar manner.

The vector X is formed by appending all vectors of lower-
level variables of the current period, and the vector Y is con-
structed in a similar manner, i.e.,

X 5 3
X1

···
Xk
4 , Y 5 3

X2q

···
X0

Z1

Z2

4 . (22)

Thus X and Y have kn and (q 1 3)n elements, respectively.
The matrices gX and gY, needed to express the additive prop-
erty in the multivariate form (10), are constructed as in section
3.3 but replacing 1 with the n 3 n identity matrix I and 0 with
the n 3 n zero matrix O, i.e.,

gX
T 5 @I , I , . . . , I# gY

T 5 @O , . . . , O , I , O# . (23)

For example, in a problem with k 5 3 lower-level variables,
n 5 2 locations, and q 5 0, the relevant vectors and matrices
become

X 5 3
X1

1

X1
2

X2
1

X2
2

X3
1

X3
2

4 , Y 5 3
X0

1

X0
2

Z1
1

Z1
2

Z2
1

Z2
2

4 ,

gX
T 5 F 1 0 1 0 1 0

0 1 0 1 0 1G ,

gY
T 5 F 0 0 1 0 0 0

0 0 0 1 0 0G .

(24)

It can be directly verified from this example that the relation-
ship (7) (i.e., gX

T X 5 gY
T Y) is identical to the additive property

(10).
The parameter matrix h is constructed as in section 3.3 but
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replacing each scalar covariance s, t, t9, or w with its corre-
sponding n 3 n matrix s, t, t*, or w, respectively. Thus

h 5 Fs1,2q · · · s10 t11 t12
···

· · ·
···

···
···

sk,2q · · · sk,0 tk,1 tk,2
G

z 3
s2q,2q · · · s2q,0 t2q,1 t2q,2

···
· · ·

···
···

···
s0,2q · · · s00 t01 t02

t*1,2q · · · t*10 w11 w12

t*2,2q · · · t*20 w21 w22

4
21

. (25)

The coupling transformation (4) is

X :5 X̃ 1 h@~X2q
T 2 X̃2q

T ! , . . . , ~X0
T 2 X̃0

T! , ~Z1
T 2 Z̃1

T! ,

~Z2
T 2 Z̃2

T!]T. (26)

In the second case mentioned in section 3.3, again we have
two steps. At the first step, concerning the generation of the
higher-level variables, the corresponding multivariate variables
are X 5 Z1 and Y 5 [X2q

T , z z z , X0
T]T. The parameter matrix

hZ now is

hZ 5 @t*1,2q . . . t*10#3
s2q,2q · · · s2q,0

···
· · ·

···
s0,2q · · · s00

4
21

, (27)

and the coupling transformation is

Z1 :5 Z̃1 1 hZ@~X2q
T 2 X̃2q

T ! , . . . , ~X0
T 2 X̃0

T!#T. (28)

At the second step, concerning the generation of the lower-
level variables, the vectors of variables are X 5 [X1

T, z z z , Xk
T]T

and Y 5 [X2q
T , z z z , X0

T, Z1
T]T, the parameter matrix is

h 5 3
s1,2q · · · s10 t11

···
· · ·

···
···

sk,2q · · · sk,0 tk,1
4

z 3
s2q,2q · · · s2q,0 t2q,1

···
· · ·

···
···

s0,2q · · · s00 t01

t*1,2q · · · t*10 w11

4
21

, (29)

and the coupling transformation is

X :5 X̃ 1 h@~X2q
T 2 X̃2q

T ! , . . . , ~X0
T 2 X̃0

T! , ~Z1
T 2 Z̃1

T!#T.

(30)

4. Evaluation of Parameters of Coupling
Transformation

We have seen in section 3 that all forms of the coupling
transformation involve three categories of parameters, defined
in (11). These are (1) covariances between lower-level vari-
ables, denoted by s; (2) covariances between higher-level vari-
ables, denoted by w; and (3) covariances between lower- and
higher-level variables, denoted by t or t9.

A first option to evaluate these parameters would be to refer
to the historical data. This, however, must be avoided for

several reasons: (1) because in this way we would introduce a
vast number of parameters dependent on, and estimated from,
the data, (2) because usually historical data records are limited
and inadequate to estimate such a large parameter set, and (3)
because such a large parameter set, if estimated from historical
data, may not be consistent with the higher- or lower-level
models, which are usually expressed in terms of a parameter
set as parsimonious as possible. The alternative is to let models
determine the parameters (more specifically, the lower-level
model, as will be explained in the following paragraphs). There
are two options to do this, one numerical and one analytical.

The numerical option is based on stochastic simulation and
is fully generalized, as it can perform with any type of lower-
level model: We can generate a synthetic data record of lower-
level variables X̃ with an appropriate length and aggregate it to
obtain the higher-level variables Z̃. As covariances between X̃
and/or Z̃ equal those of X and/or Z, we can use these synthetic
data records to directly estimate the parameters. This option
has the advantage of being simple and independent of the type
of model. However, it has the disadvantages of the approxi-
mate character of estimations and the computational effort
needed.

The analytical option is case-specific and uses the properties
of the lower-level model chosen to determine the needed pa-
rameters theoretically. Owing to its exact character and the fast
evaluation of parameters this option is the most preferable
whenever analytical equations can be established for the model
chosen. Below, we will give the equations that are necessary to
evaluate the needed parameters for a list of very common
lower-level models of the literature [e.g., Salas et al., 1980; Bras
and Rodriguez-Iturbe, 1985; Lane and Frevert, 1990; Grygier and
Stedinger, 1990; Salas, 1993]. The derivations of equations are
given in Appendix A3 of the supplement and may serve as a
basis for extending the list given here with more models.

For the simple PAR(1) example defined by (3), the covari-
ance of lower-level variables for any lag (s 2 r) is given by

s sr :5 Cov @X s, X r# 5 a sa s21 . . . a r11s rr, s . r (31)

so that all lagged covariances among lower-level variables ssr

are determined in terms of lag-zero cross covariances sss and
the model parameters as. Similar (although somehow more
complex) is the situation with other common hydrologic sto-
chastic models. Thus the PAR(2) model, expressed by

X s 5 a sX s21 1 e sX s22 1 b sV s, (32)

where all as, es, and bs are (n 3 n) matrices of parameters,
results in

s sr 5 a ss s21,r 1 e ss s22,r, s . r . (33)

By applying this relationship recursively, for s 5 r 1 1, r 1
2, z z z , we can find any lagged covariance of lower-level vari-
ables in terms of lag-zero and lag-one covariance matrices (sss

and ss21,s) and the model parameters as and es.
Similarly, the PARMA(1, 1) model, expressed by

X s 5 a sX s21 1 b sV s 1 e sV s21, (34)

where as, bs, and es are (n 3 n) matrices of parameters,
results in

s sr 5 a ss rr 1 e sb r
T, s 5 r 1 1

(35)
s sr 5 a ss s21,r, s . r 1 1.
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By applying this relationship recursively, for s 5 r 1 1, r 1
2, z z z , we can find any lagged covariance of lower-level vari-
ables in terms of the lag-zero covariance matrix sss and the
model parameters as, bs, and es.

Similar relationships are extracted for PAR or PARMA
models of higher order. If the processes are not periodic (sea-
sonal) but are stationary, the same equations apply but in a
simplified form as all parameter matrices do not depend on
subperiod.

It is very common in stochastic hydrology the case that the
lower-level model is expressed in terms of the logarithmic
transformation of the lower-level variables, for example, in
terms of

X*s :5 ln ~X s 2 c s! , (36)

where cs is a vector of parameters estimated in such a manner
that X*s is (approximately) normally distributed. In this case,
relationships (31)–(35) express the covariances of the logarith-
mic transformations of variables. It is easy then to derive the
covariances of the untransformed variables (which will be used
then in the transformation) through the relation

s sr
lj 5 ~m s

l 2 cs
l!~m r

j 2 cr
j!@exp ~s sr

lj *! 2 1# , (37)

valid for any s , r , l , and j , where ssr
lj 5 Cov [Xs

l , Xr
j ], ssr

lj * 5
Cov [Xs

l *, Xr
j *], and

m s
l 5 E@Xs

l# 5 cs
l 1 exp ~m s

l* 1 s ss
ll */ 2! , (38)

with ms
l * 5 E[Xs

l *].
In conclusion, any lagged covariance matrix of lower-level

variables (ssr) can be determined in terms of the lower-level
model parameters by either of the two methods (options) pro-
posed. The next step is to determine covariances between
lower-level and higher-level variables (tsp). This is rather easy,
because (1) implies that

t sp 5 Cov @X s, Zp# 5 O
r5~ p21!k11

pk

Cov @X s, X r# (39)

or

t sp 5 O
r5~ p21!k11

pk

s sr. (40)

What remains is the determination of lagged covariances
between higher-level variables (wsp). Again, using (1) we get

wpr 5 Cov @Zp, Z r# 5 O
s5~ p21!k11

pk

Cov @X s, Z r# (41)

or

wpr 5 O
r5~ p21!k11

pk

t sr. (42)

We emphasize that the above estimation of wpr has been
based on the lower-level model, although it could also be based
on the higher-level model. However, in the latter case, possible
incompatibilities of the two models would have negative con-
sequences in preservation of the additive property. This is
easily demonstrated through the simplest transformation (13):
If w11 is estimated from the lower-level model (equation (42)),

that is, as the sum of ts1 for all s , then the coefficients ts1/w11

add up to 1 and (13) preserves the additive property. On the
contrary, if w11 were estimated directly from the higher-level
model, possibly it would have some departure from the sum of
ts1 (because of incompatibilities of models), which would re-
sult in violation of the additive property. This situation, that is,
the estimation of higher-level covariances using the lower-level
model, may seem strange at first glance. However, a more
careful consideration of the context where these estimations of
covariances are used shows that it is absolutely justified. Spe-
cifically, these estimations are not used in the higher-level
model at all. On the contrary, this is an independent model
that is fitted in a different manner (the appropriate one for the
specific model chosen, which is beyond the scope of this pa-
per). Moreover, the higher-level model is run in an initial
modeling phase, previous to that of the lower-level model. In
turn, the lower-level model is fitted with a procedure that is
appropriate for this specific model, which again is beyond the
scope of this paper. Thus the estimations of covariances de-
scribed in the present section are used only in the coupling
transformation, which applies to the values generated by the
lower-level model. Therefore it is natural to infer these param-
eters using the lower-level model only.

5. Preservation of Skewness
The preservation of skewness is often of great importance,

as hydrologic processes, particularly in small timescales, exhibit
nonsymmetric distributions. In all analyses of the previous
sections the skewness of the processes, either higher- or lower-
level, was not considered. On the contrary, the analyses fo-
cused on second, marginal or joint moments of the processes,
the preservation of which was proved theoretically. Unfortu-
nately, the preservation of third moments is hard to be handled
in an analytical manner.

From the general relation (4), used to develop the various
forms of the coupling transformation, we may conclude that
the marginal third moments of X do not necessarily equal
those of X̃. Specifically, we may assume that the marginal third
moment of the term h (Y 2 Ỹ) is zero, because of symmetry,
and thus it is not responsible for differences between the co-
efficients of skewness of X̃ and X. However, apart from that
marginal moment, joint third moments of X̃ and h Ỹ may
create such differences. These joint third moments are difficult
to determine analytically. Generally, because X in (4) is ex-
pressed as a linear combination of X̃ and other variables, we
expect that the coefficient of skewness of X will be lower than
that of X̃ (from the central limit theorem we know that under
certain conditions, linear combinations of variables tend to
have symmetric distributions). Indeed, numerical investiga-
tions confirm this observation. Since an analytical solution is
too complicated (if not intractable), we seek for approximate
numerical methods. We will discuss two such methods.

Let zs
l :5 E[(Xs

l 2 ms
l )3] and z̃s

l :5 E[(X̃s
l 2 ms

l )3] be the
third central moments of Xs

l and X̃s
l , respectively, where ms

l 5
E[Xs

l ] 5 E[X̃s
l ]. From the properties of the lower-level model

we know zs
l . In the first method we assume that z̃s

l shall be
different from (generally, higher than) zs

l , and we seek for the
value of z̃s

l that results in the correct value of zs
l . This can be

determined by iterative stochastic (Monte Carlo) simulation.
At the ith iteration we assume a trial value ( z̃s

l ) i, starting with
an initial value ( z̃s

l )0 5 zs
l . We run the lower-level model to

obtain a synthetic time series x̃s with a sufficient length and the
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coupling transformation to derive the series xs. From the latter
we estimate the sample third moments which we denote ( ẑs

l ) i

(for location l , subperiod s , and iteration i). We then modify
z̃s

l according to the rule

~ z̃ s
l! i11 5 ~ z̃ s

l! i 1 @z s
l 2 ~ ẑ s

l! i#/c (43)

and proceed to the next iteration. The denominator c in (43) is
a number greater than 1 (e.g., c 5 2) that enhances numerical
stability in the route to the final solution. Normally, this pro-
cedure will stop when the attained sample third moments ( ẑs

l )
match the theoretical ones (zs

l ) for all l and s . However, given
the Monte Carlo character of the method, we must relax the
convergence criterion and accept the solution of iteration i if
for all l and s

u~ ẑ s
l! i 2 z s

l u # max
i

$ u~ z̃̂ s
l! i 2 ~ z̃ s

l! iu% , (44)

where z̃̂ s
l denotes the sample third moment of the synthetic

time series x̃s. Practically, this means that a deviation of the
sample skewness, after performing the coupling transforma-
tion, from its theoretical value can be acceptable if it is lower
than or equal to the corresponding deviation without applying
the coupling transformation.

The second method is based on conditional sampling in a
manner much the same as that proposed by Koutsoyiannis and
Manetas [1996]. Here we demand that the departure of Ỹ and
Y in the coupling transformation be small enough so that the
addition of the term h (Y 2 Ỹ) to X̃ does not affect the statistics
of the latter. Therefore we can assume that z̃s

l 5 zs
l . To achieve

a vector Ỹ close to the known Y, we must keep repeating the
generation process for the variables of each period (rather
than performing a single generation only) until the distance of
Ỹ from Y is lower that an accepted limit. This distance can be
defined as

D 5 ~1/m!iY* 2 Ỹ*i , (45)

where Y* and Ỹ* are Y and Ỹ standardized by standard devia-
tion (i.e., Y9s

l 5 Ys
l /{Var [Ys

l ]}1/ 2, Ỹ9s
l 5 Ỹs

l /{Var [Ys
l ]}1/ 2),

m is the common size of Y and Ỹ, and i i denotes the Eu-
clidian norm (other norms such as the maximum norm were
found to behave worse).

Because in the initial generation scheme proposed, the vari-
ables X̃ are generated independently of the higher-level vari-
ables, it was assumed in the proposition of section 2 that Y is
independent of X̃. However, repetition apparently introduces
dependence of X̃ on Y. Hence the question arises whether the
conclusions of the proposition are still valid for Y dependent
on X̃ (and Ỹ) or not. For an intuitive answer to that question
we observe that the case of independent Y and X̃ is the worst
to manage. If the covariance Cov [X̃, Y] approaches (or
matches) the true covariance Cov [X, Y], instead of being zero,
then it is easier for the coupling transformation to preserve the
statistical properties of interest. Furthermore, the applications
given by Koutsoyiannis and Manetas [1996] for the similar case
of using their adjustment procedure, which is equivalent to the
simplified transformation of section 3.1, and those given here
in section 6 verify empirically a positive answer to the above
question.

That the answer is positive, under certain conditions, can be
proved theoretically. Specifically, it is shown in Appendix A2 of
the supplement that under the assumption that Y is no more
independent from X̃ and Ỹ but correlated to both, such that

Cov @X̃ , Y# 5 h Cov @Ỹ , Y# , (46)

where h is given from (5), the proposition of section 2 remains
valid in all its items. We note that the condition (46) holds in
the case of Y independent from X̃ and Ỹ, as both its sides are
zero. Also, it holds in the other extreme case where both Cov
[X̃, Y] and Cov [Ỹ, Y] match the true covariances Cov [X, Y]
and Cov [Y, Y], respectively. This can be verified using (5).
Numerical investigation with the proposed repetition scheme
shows that the condition holds in intermediate cases as well.

Both the above methods can lead to sufficient preservation
of skewness (see section 6), although none of them is ideal.
Their common disadvantages are the approximate character
and the repetitive application, which increases computer time
(although this time is not an obstacle as it ranges from less than
a minute to some minutes for typical hydrological problems
run on a modern PC to generate some thousands of synthetic
data). Their common advantages are their simplicity and inde-
pendence of the type of models. The Monte Carlo simulation
method seems to need fewer repetitions than the conditional
sampling method, and, once its additional parameters ( z̃s

l ) are
evaluated, it does not need further repetitions in subsequent
applications of the model. However, to get adequate estimates
of these parameters a large length of simulation record (e.g.,
10,000 years or more) is needed. Another weak point of the
Monte Carlo method is the fact that it results in coefficients of
skewness higher than those of the original lower-level model,
and this may be a problem if the latter are already large.
Generally, we can consider the Monte Carlo method prefera-
ble if a model must be set up once and thereafter run several
times. Conversely, if the model is to run only once, the condi-
tional sampling method may be preferable.

Apart from the computational cost, i.e., the increase of com-
puter time due to repetition, no additional cost is implied by
either of the two approaches for preservation of skewness.
Specifically, there is no negative effect in preserving other
properties of the lower-level processes such as the second-
order moments. On the contrary, the conditional sampling
method may have positive effects in preserving second-order
moments by simplified forms of the coupling transformation,
as it is demonstrated in section 6.

6. Performance Demonstration
The entire modeling framework for both timescales can be

summarized in the following steps composing two groups. The
steps of the first group correspond to model choice and fitting:
(1) Choose a model for the higher-level (coarse) timescale and
fit it using the appropriate method for that model. (2) Choose
a model for the lower-level (fine) timescale and fit it using the
appropriate method for that model. (3) Decide the composi-
tion of the vector Y according to the specific needs of the
problem as discussed in section 3. In the most general multi-
variate case, use the composition defined in (22). (4) Define
the appropriate matrix h of the coupling transformation using
the corresponding equations of section 3. In the most general
multivariate case, use (25). (5) Evaluate the items of matrix h
using either of the methods of section 4.

The steps of the second group perform the generation: (6)
Use the higher-level model to produce a series of Z with the
desired length. (7) Use the lower-level model to produce a
series of X̃ with the same number of periods, without reference
to the higher-level series. (8) At each period, evaluate the
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vectors Y and Ỹ using the values of Z, X̃ of the current and (if
applicable) next period, and (if applicable) X of the previous
period. (9) Apply the coupling transformation to derive X of
the current period. (10) Repeat steps 8 and 9 for all periods.

For the preservation of skewness the algorithm becomes
slightly more complex because of repetition as described in
section 5. The different forms and methods of the proposed
framework for coupling stochastic models of different time-
scales are demonstrated through a simple numerical example
involving two locations and two lower-level variables per pe-
riod. The higher- and lower-level models used are those of (2)
and (3), respectively (we note that models (2) and (3) are not
fully compatible with one another). Several sets of model pa-
rameters were examined; here we present the results of a
representative case with the parameter set shown in Table 1.

The following forms of the coupling transformation were
examined: (1) full transformation, multivariate mode, as in
section 3.4 (F/M); (2) full coupling transformation, single vari-
ate mode, that is, transformation applied separately to each
location, as in section 3.3 (F/S); (3) transformation without link
to the higher-level variable of the next period, as in section 3.2,
but in multivariate mode (N1/M); (4) transformation without
link to the lower-level variables of the previous period, multi-
variate mode (N2/M); (5) simplified transformation, single
variate mode, as in section 3.1 (S/S); and (6) modified simpli-
fied transformation, single variate mode (S1/S). The modifica-
tion in item 6 of the above list (in comparison to item 5)
consists of using the value of the last lower-level variable of the
previous period for initialization of the PAR(1) model (3) in
each period, although this is not used by the coupling trans-
formation.

For comparison, results of the noncoupled lower-level
model (NC) are also presented. In all cases the model gener-

ated synthetic series of 10,000 periods, from which the sample
statistics were computed and compared to the theoretical val-
ues.

In Figure 2 we compare the marginal statistics (means, stan-
dard deviations, and coefficients of skewness) of all lower-level
variables, obtained by the different transformation forms, to
their theoretical values. As anticipated, all forms of coupled
models preserved perfectly the means and standard deviations,
but no form preserved the coefficients of skewness (apart, of
course, from the noncoupled model). Figure 3 shows the tem-
poral correlation coefficients of the lower-level variables with
previous lower-level variables and current and next higher-
level variables, as derived by the various forms of the coupling
transformation for the test application. We observe that only
the full transformation form, either in multivariate or single-
variate mode (F/M or F/S), has a perfect behavior in preserving
all these correlations. Transformation form N1/M fails to re-
produce some of the correlations with higher-level variables of
next period; also, it has a lower performance in preserving
correlations with previous lower-level variables. Transforma-
tion forms N2/M and S/S exhibit a poor behavior in preserving
correlations with previous lower-level variables (particularly,
those of previous period); the situation is improved with model
S1/M. Also, both simplified models (S/S and S1/S) fail to re-
produce the correlations with next higher-level variables. Fig-
ure 4 shows the lag-zero cross-correlation coefficients attained
by the various transformation forms. As anticipated, the mul-
tivariate forms (F/M, N1/M, and N2/M) performed very well,
whereas single-variate models (F/S, S/S, and S1/S) failed to
preserve cross correlations.

To improve the preservation of the coefficients of skewness,
we applied both methods discussed in section 5. In Figure 5 we
present the results of the Monte Carlo method for the full

Table 1. Model Parameters for the Test Application

Parameter Type

Parameter Values for Lower-Level Process

Subperiod s 5 1 Subperiod s 5 2

Location l 5 1,
X1

1
Location l 5 2,

X1
2

Location l 5 1,
X2

1
Location l 5 2,

X2
2

Mean ms
l 1.000 2.000 3.000 4.000

Covariance matrices
sss

l 5 1 0.250 0.210 0.810 0.432
l 5 2 0.210 0.490 0.432 2.560

ss,s21
l 5 1 0.225 0.120 0.090 0.076
l 5 2 0.113 0.672 0.432 1.008

Third central moment zs
l 0.125 0.240 0.437 6.550

Parameter Type

Parameter Values for Higher-Level Process

Location l 5 1,
Z1

1
Location l 5 2,

Z1
2

Mean 4.000 6.000
Covariance matrices

w11
l 5 1 1.240 1.150
l 5 2 1.150 5.066

w12
l 5 1 0.340 0.693
l 5 2 0.192 2.863

Third central moment 0.708 10.704
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transformation form in multivariate mode (F/M). We observe
that after the tenth iteration, the attained coefficients of skew-
ness become close to the theoretical ones. The criterion of (44)
becomes true for iteration 13; the fluctuation of the attained
coefficients of skewness of most variables that appears beyond
iteration 13 is anticipated because of the Monte Carlo charac-

ter of the method. We notice that the differences of the as-
sumed and attained (after applying the coupling transforma-
tion) coefficients of skewness, which correspond to z̃s

l and ẑs
l ,

respectively, may be very large (e.g., for variable X1
1).

We also applied the method of conditional sampling using
repetitions for the full (F/M), the simplified (S/S), and the

Figure 2. Comparison of marginal statistics of the lower-level variables (Xs
l , indicated by the block arrows

to the left) as derived by various forms of the coupling transformation for the test application. Abbreviations
are as follows: TH, theoretical values; NC, noncoupled lower-level model; F/M, full coupling transformation,
multivariate mode; F/S, full transformation, single variate mode; N1/M, transformation without link to the
next higher-level variable, multivariate mode; N2/M, transformation without link to the previous lower-level
variable, multivariate mode; S/S, simplified transformation, single variate mode; and S1/S, modified simplified
transformation (starting with the known value of the previous lower-level variable), single variate mode.

Figure 3. Comparison of temporal correlation coefficients of the lower-level variables (Xs
l , indicated by the

block arrows to the left) with previous lower-level variables and current and next higher-level variables (Xs21
l ,

Z1
l , and Z2

l , respectively, indicated by the block arrows at the top) as derived by various forms of the coupling
transformation for the test application. Abbreviations are the same as in Figure 2.

KOUTSOYIANNIS: COUPLING STOCHASTIC MODELS OF DIFFERENT TIMESCALES388



modified simplified (S1/S) forms of the coupling transforma-
tion. In Figure 6 we plotted the average number of repetitions
required to achieve a certain distance D (defined in (45)).
Figure 7 shows the attained coefficients of skewness using the
conditional sampling method, as a function of the mean num-
ber of repetitions. We observe that all three transformation
forms examined have roughly the same performance. Ade-
quate values of sample coefficients of skewness are obtained
with 50–100 repetitions. We also examined in this case the
preservation of correlation coefficients of the lower-level vari-
ables with the previous lower-level variables and the next high-
er-level variables (Figure 8) and cross-correlation coefficients
(Figure 9). We observe that both S/S and S1/S forms, which
failed to preserve all these statistics if applied without repeti-
tions (Figures 3 and 4), result in adequate preservation of cross

correlations after 50–100 repetitions. In addition, the S1/S
model performs well in preserving correlation coefficients of
the lower-level variables with the previous lower-level variables
after 50–100 repetitions. However, none of the two simplified
forms could approach the theoretical correlation coefficients
of the lower-level variables with the next higher-level variables,
even after 1000 repetitions. In conclusion, repetition, apart
from its usefulness for preserving coefficients of skewness, also
improves preservation of autocorrelation and cross-correlation
coefficients of lower-level variables of simplified model ver-
sions. Notably, this is done at no additional computational cost.

7. Summary and Conclusions
A methodology is proposed for coupling stochastic models

of hydrologic processes applying to different timescales so that
time series generated by the different models be consistent.

Figure 4. Comparison of cross-correlation coefficients of the
lower-level variables of the (left) first and (right) second sub-
period as derived by various forms of the coupling transforma-
tion for the test application. Abbreviations are the same as in
Figure 2.

Figure 5. Hypothesized (circles, corresponding to z̃s
l ) and

attained (diamonds, corresponding to ẑs
l ) coefficients of skew-

ness for each of the lower-level variables (shown in the block
arrows to the left), as a function of the iteration number, for a
test application of the full coupling transformation (F/M and
Monte Carlo method). Lines without symbols and dotted lines
represent the theoretical values (corresponding to zs

l ) and the
values obtained from the noncoupled lower-level model (NC,
corresponding to z̃̂ s

l ), respectively.

Figure 6. Average number of repetitions required to achieve
the preset allowed distance between Y and Ỹ using the condi-
tional sampling method for the full (F/M, diamonds), the sim-
plified (S/S, triangles), and the modified simplified (S1/S, cir-
cles) coupling transformations.

Figure 7. Attained coefficients of skewness of the lower-level
variables (Xs

l , indicated by the block arrows to the left) as a
function of the mean number of repetitions for the full (F/M,
diamonds), the simplified (S/S, triangles), and the modified
simplified (S1/S, circles) coupling transformations. Lines with-
out symbols and dotted lines (indistinguishable when they co-
incide with lines without symbols here and in Figures 8 and 9)
represent the theoretical values and the values obtained from
the noncoupled lower-level model (NC), respectively.
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Given two multivariate time series, generated by two separate
(unrelated) stochastic models of the same hydrologic process,
each applying to a different timescale, a transformation is
developed (referred to as a coupling transformation) that ap-
propriately modifies the time series of the lower-level time-
scale so that this series becomes consistent with the time series
of the higher-level timescale without affecting the second-
order stochastic structure of the former and also establishes
appropriate correlations between the two time series. The cou-
pling transformation is based on a developed generalized
mathematical proposition, which ensures preservation of mar-
ginal and joint second-order statistics and linear relationships
between lower- and higher-level processes. The methodology
can be applied to problems involving disaggregation of annual
to seasonal and seasonal to subseasonal timescales, as well as
problems involving finer timescales, with the only requirement
that a specific stochastic model is available for each involved
timescale. An implementation of the methodology for disag-
gregation of daily rainfall into hourly rainfall at many locations
(a problem much more demanding than disaggregation of an-

nual to seasonal quantities, because of the intermittent aspect
of the process and the very asymmetric marginal distributions)
is under way.

Several specific forms of the coupling transformation are
studied. The simplest of them, S/S and S1/S, are single variate
and do not consider any link to higher- or lower-level variables
of previous or next periods; the difference between the two is
that S1/S uses some of the already generated variables of the
previous period for its initialization, whereas S/S does not. The
most detailed form, F/M, is multivariate and incorporates ap-
propriate links to higher- and lower-level variables of previous
and next periods. In addition, techniques for evaluating param-
eters of the coupling transformation based on second-order
moments of the lower-level process are studied. Specific im-
plementations of these techniques are given for the very com-
mon cases where the lower-level process (or its logarithmic
transformation) is multivariate PAR(1), PAR(2), or
PARMA(1, 1).

Although the coupling transformation can explicitly pre-
serve means and second-order statistics of the processes in-

Figure 8. Attained correlation coefficients of the lower-level variables (Xs
l , indicated by the block arrows to

the left) with (left) the previous lower-level variables and (right) the next higher-level variables as a function
of the mean number of repetitions for the full (F/M, diamonds), the simplified (S/S, triangles), and the
modified simplified (S1/S, circles) coupling transformations. Lines without symbols and dotted lines represent
the theoretical values and the values obtained from the noncoupled lower-level model (NC), respectively.

Figure 9. Attained cross-correlation coefficients of the lower-level variables of the (left) first and (right)
second subperiod as a function of the mean number of repetitions for the full (F/M, diamonds), the simplified
(S/S, triangles), and the modified simplified (S1/S, circles) coupling transformations. Lines without symbols
and dotted lines represent the theoretical values and the values obtained from the noncoupled lower-level
model (NC), respectively.
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volved, it introduces bias to the coefficients of skewness and
any other parameters that cannot be related to means and
second-order statistics (e.g., probabilities of dry intervals in the
case of the fine-scale rainfall process). Because of its linearity
the coupling transformation encompasses the effects of the
central limit theorem. Thus the transformed series tend to be
Gaussian (their coefficients of skewness are reduced). Unlike
second-order statistics, third moments and coefficients of
skewness are too complicated to handle analytically. However,
two approximate methods that enable preservation of skew-
ness of the processes are studied. The first introduces negative
bias to the coefficients of skewness of the lower-level pro-
cesses, the magnitude of which is determined by Monte Carlo
simulation, to counterbalance the bias introduced by the ap-
plication of the coupling transformation. The second uses rep-
etition as a means of conditional sampling, and, in that way, it
prevents the lower-level variables from departing (in terms of
their sum) significantly from the known higher-level variables,
thus reducing bias to a negligible level.

A detailed numerical example of the application of the
methodology demonstrates that it behaves as it should. The full
multivariate (F/M) form preserves all temporal and spatial
correlations of lower-level variables either with other lower-
level variables or with higher-level variables, whereas simpli-
fied forms fail to preserve some of these correlations. All forms
preserve first and second marginal moments but fail to pre-
serve third moments. The latter are preserved only after ap-
plication of either of the two methods developed for that
purpose, Monte Carlo simulation or conditional sampling. The
latter, apart from its usefulness for preservation of skewness
coefficient, also improves (at no additional computational
cost) preservation of autocorrelation and cross-correlation co-
efficients of lower-level variables for simplified forms of the
coupling transformation.

Among the different forms of the coupling transformation
studied, the full multivariate one (F/M) is the most preferable
as it preserves explicitly the greater number of statistics. Be-
tween the two methods for preserving skewness, the Monte
Carlo method may be preferable if a model must be set up
once and thereafter run several times. Conversely, if the model
is to run only once, the conditional sampling method may be
preferable. Besides, if a simplified form of the coupling trans-
formation is chosen, then it must be combined with the con-
ditional sampling method to improve preservation of statistics
that are not explicitly considered in the transformation.
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