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Abstract: A problem frequently met in engineering hydrology is the forecasting of 

hydrologic variables conditional on their historical observations and the hindcasts and 

forecasts of a deterministic model. On the contrary, it is a common practice for 

climatologists to use the output of general circulation models (GCMs) for the prediction 

of climatic variables despite their inability to quantify the uncertainty of the predictions. 

Here we apply the well-established Bayesian Processor of Forecasts (BPF) for 

forecasting hydroclimatic variables using stochastic models through coupling them with 

GCMs. We extend the BPF to cases where long-term persistence appears, using the 

Hurst-Kolmogorov process (HKp, also known as fractional Gaussian noise) and we 

investigate analytically its properties. We apply the framework to calculate the 

distributions of the mean annual temperature and precipitation stochastic processes for 

the time period 2016-2100 in the United States of America conditional on historical 

observations and the respective output of GCMs. 

Keywords: Bayesian Processor of Forecasts; fractional Gaussian noise; general 

circulation model; Hurst-Kolmogorov; hydroclimatic prediction; hydrological statistics 

1. Introduction	

1.1 Uncertainty in deterministic models in hydrological science 

Recently, various studies regarding the prediction of hydrologic variables based on 

stochastic models have been published. To mention some of them, Koutsoyiannis et al. 

(2008b) proposed a stochastic model for the prediction of the Nile flow a month ahead. 

On larger time scales, Koutsoyiannis et al. (2007) proposed a stochastic framework to 

calculate future climatic uncertainties conditional on historic observations, while Tyralis 

and Koutsoyiannis (2014) solved this problem using a Bayesian framework. Engineering 
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hydrologists frequently use stochastic models for the prediction of hydrologic variables, 

whereas the climatologists focus on deterministic models (General Circulation Models, 

GCMs) (Koutsoyiannis et al. 2008a). While it is true that deterministic models 

incorporate knowledge of the climatic mechanisms expressed through deterministic 

equations, they are not appropriate to quantify the uncertainty of predictions. 

Consequently, climatologists have recently started reconsidering their approach, 

introducing stochastic models in climate science (Macilwain 2014), while earlier 

Schneider (2002) set a debate on how and when to assign probabilities to future 

projections of the GCMs, simultaneously expressing some concerns about their absence 

in specific cases. 

Estimating uncertainties of forecasted geophysical variables using information from 

deterministic models is frequently met in the hydrological science and in particular in 

rainfall-runoff modelling (e.g. Montanari and Grossi 2008, Wang et al. 2009, Zhao et al. 

2011, Smith et al. 2012, Pokhrel et al. 2013, Zhao et al. 2015a and others). The Bayesian 

Forecasting System (BFS) and its extensions in a series of papers (Krzysztofowicz 

1999b, 2001, 2002, Krzysztofowicz and Maranzano 2004) is a primary tool for 

estimating uncertainties in rainfall-runoff modelling. Another interesting tool for 

quantifying uncertainties is the Bayesian Processor of Forecasts (BPF) introduced in 

Krzysztofowicz (1985) and compared with the BFS in Krzysztofowicz (1999a). The BPF 

“combines a prior distribution, which describes the natural uncertainty about the 

realization of a hydrologic process, with a likelihood function, which describes the 

uncertainty in categorical forecasts of that process, and outputs a posterior distribution of 

the process, conditional upon the forecasts” (Krzysztofowicz 1985). It is mostly used for 

weather forecasting and while it is a general algorithm, which can be applied to any 

distribution and dependence pattern of the process, it has been investigated solely for 

independent or Markov dependent variables (e.g. Krzysztofowicz 1999a, Krzysztofowicz 

and Evans 2008, Chen et al. 2013). The term “Bayesian” refers to the use of the Bayes 

theorem, however the BPF does not use full Bayesian statistics. Consequently, the 

parameter uncertainty (Montanari and Koutsoyiannis 2012) is not considered in the 

model. 

A frequent approach for modelling mean annual geophysical time series is the 

implementation of the Hurst-Kolmogorov stochastic process (HKp) (also known as 

Fractional Gaussian Noise, e.g. Koutsoyiannis 2002, 2003, 2006b, Koutsoyiannis and 
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Montanari 2007). The investigation of big geophysical data sets has confirmed the HK 

behaviour of geophysical variables in the annual time scale (Fatichi et al. 2012, 

Iliopoulou et al. 2016, Markonis and Koutsoyiannis 2016). The HK process is suitable for 

modelling the variability observed in geophysical time series, and not only because it 

can model the HK behaviour. Specifically, while it is stationary (for the benefits of using 

stationary models see Koutsoyiannis and Montanari 2014, Montanari and Koutsoyiannis 

2014), it can model higher variations of the observed time series unlike the Markovian 

models. Thus, it can model observed trends (Koutsoyiannis 2006a) and it does not 

underestimate uncertainties of the forecasted variable (Tyralis and Koutsoyiannis 

2014). 

1.2 General Circulation Models 

The Coupled Model Intercomparison Project Phase 5 (CMIP5) includes GCMs, which 

contain historical runs, i.e. simulations of the past forced by observed atmospheric 

composition changes and time-evolving land cover (Taylor et al. 2012). Each historical 

run is extended with a projection of the climate driven by concentration or emission 

scenarios consistent with the representative concentration scenarios (RCPs, Hibbard et 

al. 2007, Moss et al. 2010). The evaluation of GCMs for reproducing the past has been 

studied extensively with varying results, depending on the examined variable (usually 

temperature and precipitation), time scale of the variable, statistic or parameter of 

interest, region and the time-period. Most studies include comparisons with 

observations, re-analysis data, satellite data or all (Koutsoyiannis et al. 2008a, 

Anagnostopoulos et al. 2010, Santer et al. 2013, Sheffield et al. 2013a, 2013b, Xu et al. 

2013, Koutroulis et al. 2015, Nasrollahi et al. 2015, Aloysius et al. 2016, Matthes et al. 

2016), visualizations (Potter et al. 2009) and even comparisons between the models 

themselves (Johnson and Sharma 2009). However, Notz (2015) points out that the direct 

comparison of model simulations with observations allows for limited inferences about 

the deficiencies of the model. 

Of practical interest and gaining place in the literature is the quantification of the 

uncertainties of the GCMs projections (Katz 2002) whose sources are measurement 

errors, variations of the geophysical processes and model structure according to Katz 

(2002) or internal variability, scenario and model uncertainties (e.g. Hawkins and 

Sutton 2009). Therefore, it is apparent that we cannot consider raw projections as a 
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product, which we can use without further processing. Significant part of the literature 

has been devoted to the quantification of the uncertainties (Hawkins et al. 2014, 

Woldemeskel et al. 2014, Tian et al. 2015, Zhao et al. 2015b) and their partition 

(Hawkins and Sutton 2009, 2011, Yip et al. 2011, Ylhäisi et al. 2015, Hewitt et al. 2016) 

usually to internal, scenario and model uncertainties. Beyond what narrowly concerns 

the climate science there is a discussion on the uncertainty attributed to human 

behaviour, which seems not quantifiable. Consequently, the use of scenarios is proposed 

(Dessai and Hulme 2004) to consider the human behaviour with the use of RCPs. There 

is also a discussion on the potential of the reduction of uncertainties (Hawkins and 

Sutton 2009, 2011) while Knutti and Sedláček (2013) conclude that the progress in 

terms of narrowing uncertainties is too limited. An overview of methods to evaluate 

uncertainty of deterministic models, not only in the climate science, is presented in 

Uusitalo et al. (2015). 

The limitations in reducing uncertainties are primarily due to the internal climate 

variability (Knutti and Sedláček 2013); thus the development of methods, which are 

based on GCMs and simulate the local weather (e.g. Groves et al. 2008) gain place in 

practical applications of the GCMs. While future climate is still projected based on single 

GCM outputs (Maloney et al. 2014), combining multiple models for future projections is 

proposed as an alternative for skilful climate predictions (Smith et al. 2009, Chowdhury 

and Sharma 2011, Strobach and Bel 2015). However, Pirtle et al. (2010) claim that the 

quality of analyses based on multiple models cannot be evaluated, while Kundzewicz 

and Stakhiv (2010) mention that the spread of outcomes of the GCMs is incorrectly used 

as a type of uncertainty analysis. The so-called “bias corrections” refers to another group 

of methods, which are used to improve the projections of GCMs through (a posteriori) 

increasing the agreement between GCM outputs and observations. However, this 

procedure is artificial and is criticized for hiding the uncertainty rather than reducing it 

(Ehret et al. 2012). 

1.3 On the proposed framework 

It seems that the arsenal of methods to improve the GCMs projections and quantify their 

forecasting uncertainty (mainly use of multiple models and “bias correction”) is 

inadequate. In the present study, we propose using the BPF, which is based on solid 

scientific foundation, i.e. the concept of conditional stochastic independence (de Finetti 
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1974, Krzysztofowicz 1985). Hence, it can be an appropriate alternative. Here we apply 

the BPF to quantify the uncertainties of the forecasts of mean annual temperature and 

precipitation. We model the variables of interest with the HKp, which we assume is the 

prior distribution that describes the natural uncertainty about the realization of the 

process. The deterministic forecasts of the process are the GCMs outputs, while the BPF 

outputs the posterior distribution of the process conditional on the GCMs outputs and 

the realization of the process. 

The posterior distribution depends initially on the fitted HKp but eventually (and in a 

determinative manner) on the agreement of the GCM output with the observations. The 

model uses six parameters. The three parameters of the HKp are estimated from the 

observations.  The degree of agreement of the GCM with the observations is determined 

by three parameters, estimated when fitting the model using a common period of 

observations and GCMs output. The two fittings are performed independently. As a 

result, the application of the BPF avoids the artificial improvement of the model (e.g. 

“bias correction” and related methods), while the natural variability of the process is 

modelled using a well-established stochastic model. Furthermore, uncertainties are 

quantified using a single output of the model, while the human influence is modelled 

through the selection of a single scenario. Finally, we avoid to narrow uncertainty. 

Instead, uncertainties are presented as they are, i.e. without reducing them artificially. 

The theoretical contribution of the present study is the application of the BPF to 

processes with more complicated dependence structure compared to the Markovian 

model. We apply the BPF to the HKp, which results in posterior multivariate normal 

distributions. We apply the framework to the mean annual temperature and total annual 

precipitation in a large area, the contiguous part of the United States of America, while 

we show whether and how a purely probabilistic forecast could be improved by using a 

deterministic forecast. 

2. Methods	

In this section, we present the BPF, the definition of the HKp and the application of the 

BPF to normal stationary stochastic processes and as a case study to the HKp. In the next 

sections we use the Dutch convention for notation, according to which random variables 

and stochastic processes are underlined (Hemelrijk 1966). 
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2.1 The Bayesian Processor of Forecasts 

Let x2(1:(n1+n2)) be a geophysical process which we wish to forecast and x1(1:(n1+n2)) be its 

forecast given by a deterministic model. The respective time periods (in discrete time, 

denoted through the integers n1 and n2) for each variable are presented in Figure 1. We 

assume that x2(1:n1) denotes the observed (historical) values of the time series, while 

x1(1:(n1+n2)) and x2(1:(n1+n2)) are the stochastic processes which represent in stochastic 

terms the deterministic model and the geophysical process respectively, defined in eqs. 

(1), (2). 

 x1(1:(n1+n2)) := (x11, …, x1n1, x1(n1+1), …, x1(n1+n2))T (1) 

 x2(1:(n1+n2)) := (x21, …, x2n1, x2(n1+1), …, x2(n1+n2))T (2) 

 
Figure 1. Time periods for the BPF data input and output. The prediction time period 

refers to the distribution of y4|y3, x1. y3 and y4 are defined in eqs. (7) and (8). 

To shorten the equations used in the subsequent sections we use the notation of eqs. 

(3)-(8), in which we remove the time indexes. 

 x1 := x1(1:(n1+n2)) (3) 

 x2 := x2(1:(n1+n2)) (4) 

 y1 := (x11, x12, …, x1n1)T: n1×1 (5) 

 y2 := (x1(n1+1), …, x1(n1+n2))T: n2×1 (6) 

 y3 := (x21, …, x2n1)T: n1×1 (7) 

 y4 := (x2(n1+1), …, x2(n1+n2))T: n2×1 (8) 

 Henceforth, y1 will be called deterministic hindcast. The BPF is based on the 

fundamental eqs. (9) and (10), which exploit the concept of conditional stochastic 

independence (for intuitive explanations of the BPF the reader is referred to de Finetti 

1974 and Krzysztofowicz 1985): 
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 fn(x11, x12, …, x1n|x21, x22, …, x2n) = ∏i = 1
n  fi(x1i|x21, x22, …, x2n) ∀ n ∊ {1, …, n1+n2} (9) 

 fi(x1i|x21, x22, …, x2n) = fi(x1i|x2i) ∀ i, n ∊ {1, …, n1+n2} (10) 

The deterministic forecasts are independent on each other conditional on the 

observations according to eq. (9) (Krzysztofowicz 1985), while each forecast depends 

only on the parallel observation according to eq. (10). Eqs. (9) and (10) combined result 

in 

 fn(x11, x12, …, x1n|x21, x22, …, x2n) = ∏i = 1
n  fi(x1i|x2i) ∀ n ∊ {1, …, n1+n2} (11) 

Given an observation of x2, the distribution of x1 is determined by eqs. (9) and (10). 

The purpose of the BPF is to find the distribution of y4 conditional on y3 and x1, which is 

given by 

 h(y4|y3, x1) = f(x1|y3, y4) g(y3, y4) / ξ(y3, x1) (12) 

where both g( ) and ξ( ) denote (joint) distributions (more precisely, probability 

densities). 

As proved in Appendix A, h can be simulated using the equation: 

 h(y4|y3, x1) ∝ f(y2|y4) g(y4|y3) (13) 

Consequently, to simulate from h we must calculate the distributions f and g. 

2.2 Α normal stationary stochastic process in the Bayesian Processor of 

Forecasts 

Let x2 denote a normal stationary stochastic process (Wei 2006, p. 10) with parameters 

μ, σ, ρi,j, given by: 

 μ := E[x2n] ∀ n ∊ {1, …, n1+n2} (14) 

 σ2 := Var[x2n] ∀ n ∊ {1, …, n1+n2} (15) 

 ρi,j := ρ|i−j| ∀ i, j ∊ {1, …, n1+n2} (16) 

The joint distribution of x2 is multivariate normal with constant mean μ and 

autocovariance matrix Σ given by eq. (17). Furthermore, the joint distributions of y3, y4 

and all subsets of x2 are also multivariate normal, with the same mean and 

autocovariance matrix given by extracting respective parts of Σ. The proofs of the results 

of Section 2.2 are given in Appendix A. 

 Σ = σ2 [ρi,j] ∀ i, j ∊ {1, …, n1+n2} (17) 
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The autocovariance matrix Σ can be partitioned in the following way: 

 Σ = σ2 






R11 R12

R21 R22
 (18) 

where the dimensions of the matrices are: R11: n1×n1, R21: n2×n1, R12: n1×n2, R22: n2×n2. 

Then the distribution of y4|y3 is given by: 

 g(y4|y3) = Ν(Μ1, Λ1) (19) 

where N denotes the multivariate normal distribution and 

  Μ1 := μ2 + R21 R
−1
11 (y3 − μ1) (20) 

  Λ1 := σ2 (R22 − R21 R
−1
11 R12) (21) 

 μ1 := (μ, …, μ)Τ, n1×1 (22) 

 μ2 := (μ, …, μ)Τ, n2×1 (23) 

An intuitive modelling of the relationship between x1n and x2n is given by the 

distribution (24) (e.g. Krzysztofowicz 1999a). 

 f(x1n|x2n) = Ν(qn, σ
2
e) ∀ n ∊ {1, …, n1+n2} (24) 

where 

 qn := ax2n + b ∀ n ∊ {1, …, n1+n2} (25) 

Eq. (24) means that the deterministic forecast x1n can be modelled as a linear function of 

the observation x2n. Thus, the level of the deterministic forecast depends on the level of 

the observation, while its variation is modelled by a constant parameter, regardless of 

the level of x2n. Given eqs. (9), (10) and (24) we prove in Appendix A that the 

distribution of y4 conditional on y2 is: 

 f(y4|y2) = N((y2 − b2)/a, (σe/a)2 In2) = N(M2, Λ2) (26) 

where 

 M2 := (y2 − b2)/a (27) 

 Λ2 := (σe/a)2 In2 (28) 

 b2 := (b, …, b)Τ, n2×1 (29) 

Combining eqs. (19) and (26) we prove in Appendix A that the joint distribution of 

the future process of interest, given the historical observations and the deterministic 

forecast, is: 

 h(y4|y3, x1) = N(M, Λ) (30) 
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where 

  Λ−1 = (1/σ2) (R22 − R21 R
−1
11 R12)−1 + (a/σe)2 In2 (31) 

  M = Λ Λ
−1
1  M1 + (a/σ

2
e) Λ (y2 − b2) (32) 

2.3 Estimation of the parameters of the Bayesian Processor of Forecasts 

The parameters of the BPF are μ, σ, ρ|i−j| defined in eqs. (14)-(16) and a, b, σ
2
e defined in 

eqs. (24) and (25). The parameters μ, σ, ρ|i−j| can be estimated from fitting the joint 

distribution of y3 to y3. In the next sections, we will use the maximum likelihood 

estimator. The parameters a, b, σe can be estimated from the linear regression of x1n on 

x2n over the time period {1, …, n1}. Figure 1 depicts the fitting periods. 

2.4 Distinct fitting periods and other special cases 

Sometimes the periods of fitting of the normal stationary model to estimate the 

parameters μ, σ, ρ|i−j| and fitting of the linear model to estimate the parameters a, b, σe do 

not coincide. In such cases, the parameters can be estimated in distinct periods. For 

example, in Figure 2, we assume that the deterministic model has already used 

information from the historical observations to adjust the hindcast, therefore the {1, …, 

n1} period cannot be used for the linear model fitting. However, the period of 

observations {1, …, n1+n2} can be used for fitting the normal stationary model. In such 

cases the intersection of the deterministic forecast period and the historical 

observations {n1+1, …, n1+n2} can be used for fitting the linear model. We present the 

distributions of interest and the proofs in Appendix B. 

 
Figure 2. Time periods for the BPF data input and output and the related periods for 

model fitting in the case of distinct periods. 

In cases that the geophysical process is nonnegative (e.g. precipitation), the modelling 

framework should be adapted to truncated variables. The necessity for doing this 

appears when the coefficient of variation of the process is high (so that the probability of 
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getting a negative value from the normal distribution is not negligible). For such cases, 

the BPF can be extended to include truncated normal distributions (Horrace 2005). 

2.5 Hurst-Kolmogorov process 

The model of interest for x2 is the HKp, as explained in Section 1.1. The HKp is a three-

parameter normal stationary stochastic process in discrete time. Its parameters μ and σ 

are defined by eqs. (14) and (15), while its parameter H is defined by eq. (33) (Tyralis 

and Koutsoyiannis 2011): 

 ρk := Corr[xt, xt + k] = |k + 1|2H / 2 + |k − 1|2H / 2 − |k|2H, k = 0, 1,… (33) 

We use the maximum likelihood estimator to estimate μ, σ and H simultaneously, as 

proposed in Tyralis and Koutsoyiannis (2011) while the estimator is implemented in the 

R package HKprocess (Tyralis 2016). 

2.6 Investigation for various values of the parameters of the Bayesian Processor 

of Forecasts 

For specific values of the parameters of the BPF and in particular of the linear model, we 

can understand its behaviour in extreme cases. We present the proofs of the results of 

Section 2.6 in Appendix C. A similar investigation is presented in Krzysztofowicz (1985). 

If σe = 0, i.e., the deterministic model is perfect, then the BPF forecast prediction 

interval is 0, while the BPF forecast is equal to the deterministic forecast (see eqs. (C.4) 

and (C.5)). When a = 0 (see eq. 25), then the deterministic forecast does not improve the 

BPF forecast. Then the BPF forecast is equal to the forecast of the stochastic process (see 

eq. (C.8)). This problem has already been solved in Tyralis and Koutsoyiannis (2014), 

who also employed a Bayesian treatment of the parameters of the stochastic process. 

Intuitively, high values of σe will result in high uncertainties. Furthermore negative 

values of a will result in BPF forecasts with inverse trends compared to the 

deterministic forecasts. 

We can also assess the quality of the deterministic model using the sufficient 

characteristic defined in Krzysztofowicz (1987) and the informativeness score defined 

in Krzysztofowicz (1992, 2010). The sufficient characteristic (SC) and the 

informativeness score (IS), defined respectively by eqs. (34) and (35) summarize the 

information contained in the parameters a and σ: 

 SC := |a| / σe (34) 



11 

 

 IS := ((SC / (1/ σ))−2 + 1)−1/2 (35) 

Krzysztofowicz (2010) proved that: 

 r = sign(a) IS (36) 

where r is the Pearson’s r defined by 

 r := Corr[y1, y3] (37) 

For an intuitive explanation of the SC and the IS the reader is referred to 

Krzysztofowicz (2010). In brief, the sufficiency characteristic is interpretable as a 

“signal-to-noise ratio”, with |a| being the measure of signal, and σ being the measure of 

noise, while the posterior variance depends on the SC. The SC ranges in the interval 

[0, ∞] and the IS ranges in the interval [0, 1]. Higher values of both parameters imply a 

more informative deterministic model and lower posterior variance. For the perfect 

deterministic model we have SC = ∞ and IS = 1, while for a completely uninformative 

deterministic model we have SC = 0 and IS = 0. 

Normal stationary stochastic processes have finite 1st and 2nd order moments, 

therefore μ and σ defined in eqs. (14) and (15) are finite. Subsequently the results 

presented in Appendix C can be generalized using the SC and IS parameters. For 

instance, a = 0 implies SC = 0 and IS = 0, while σe = 0 implies SC = 1 and IS = ∞. 

Furthermore the SC and the IS can be estimated from different samples, e.g. as in Figure 

2. In such case |r| ≠ IS (Krzysztofowicz 2010), and both parameters provide different 

information. Further investigations using simulations for special (artificially designed) 

cases will be presented in Section 4.1. 

3. Data	

We apply the BPF to instrumental temperature and precipitation data, which we 

aggregated on the annual time scale, and to the GCM projections, which we used as 

deterministic forecasts. 

3.1 Temperature data 

We use monthly temperature data from the unadjusted version 3 of the Global Historical 

Climatology Network-Monthly (GHCN-M) temperature dataset (Lawrimore et al. 2011). 

The GHCN-M includes mean monthly temperatures observed in a large number of 

stations, which cover the earth surface. We choose the stations for latitude in the 

interval [25°, 50°] and longitude in the interval [−125°, −65°] (USA region). 
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Furthermore, we consider all monthly values in the time period 1916-2015, while we 

exclude all stations with more than 12 missing values. We impute missing values using a 

seasonal Kalman filter as implemented in the R package zoo (Zeileis and Grothendieck 

2005). A number of 362 stations, depicted in Figure 3, remained after this procedure. 

 
Figure 3. Map of locations for the 362 stations with temperature data (dots). Thiessen 

polygons for each station within the convex hull of the stations are also depicted. 

We used the Albers equal-area conic projection to map the data onto a flat plane and 

perform all subsequent calculations. However, all map visualizations in the figures of the 

manuscript are presented in an equirectangular map projection. After defining the 

convex hull of the 362 stations, we defined all Thiessen polygons corresponding to each 

station. The Thiessen (also known as Voronoi or Dirichlet) tessellation is computed by 

functions in the spatstat and deldir R packages (Baddeley et al. 2015, Turner 2016 

respectively) according to the second (iterative) algorithm of Lee and Schacter (1980). 

The mean annual temperature in the convex hull for the time period 1916-2015 is 

computed using the Thiessen polygon method. 

3.2 Precipitation data 

We use daily precipitation data from the Global Historical Climatology Network (GHCN, 

Menne et al. 2012a, 2012b). The initial dataset included time series with missing or 

flagged (i.e. data of low quality for reasons explained in Menne et al., 2012a) values. We 

choose the stations with latitude in the interval [25°, 50°] and longitude in the interval 

[−125°, −65°] (USA region). We processed the dataset according to a briefly described in 

Appendix D sequence of actions. The locations of the 319 stations, which remained after 

the selection procedure, are depicted in Figure 4. 
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Figure 4. Map of locations for the 319 stations with precipitation data (dots). Thiessen 

polygons for each station within the convex hull of the stations are also depicted. 

The definition of the convex hull of the stations and the methodology for the Thiessen 

polygons and the calculation of the spatial average precipitation over the convex hull are 

same as those described in Section 3.1 for temperature. 

3.3 GCM data 

By GCM data we mean the GCM outputs for monthly temperature and precipitation from 

the CMIP5 experiment, which involves more than 50 GCMs modelled by 20 modelling 

groups (Taylor et al. 2012). Each model comes with its own spatial grid resolution. The 

models used in the present study and the variables of interest are presented in Table 1. 

Each GCM in Table 1 includes a simulation of the recent past (1850-2005) (historical 

run) and a future projection (2006-2100) forced by the representative concentration 

pathway 6.0 (RCP6). The RCP6 experiment represents a high concentration pathway in 

which stabilization of the radiative forcing at 6.0 Wm−2 occurs around 2100 and then 

forcing remains fixed (Masui et al., Meinshausen et al. 2011, Fig. 4). Most of the models 

have multiple ensemble members. Here we use the ensemble member r1i1p1 for each 

model. 
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Table 1. CMIP5 models acronyms, modelling groups and institutes, and variable of 

interest. The model outputs were downloaded from 

https://pcmdi.llnl.gov/search/cmip5/. 
Model Name Temperature Precipitation Modelling Centre (or Group) Institute ID 

GISS-E2-H � � NASA Goddard Institute for Space Studies NASA GISS 

GISS-E2-R �  NASA Goddard Institute for Space Studies NASA GISS 

HadGEM2-AO � � National Institute of Meteorological 

Research/Korea Meteorological 

Administration 

NIMR/KMA 

IPSL-CM5A-LR � � Institut Pierre-Simon Laplace IPSL 

IPSL-CM5A-MR � � Institut Pierre-Simon Laplace IPSL 

MIROC5 � � Atmosphere and Ocean Research Institute 

(The University of Tokyo), National Institute 

for Environmental Studies, and Japan Agency 

for Marine-Earth Science and Technology 

MIROC 

MIROC-ESM � � Japan Agency for Marine-Earth Science and 

Technology, Atmosphere and Ocean Research 

Institute (The University of Tokyo), and 

National Institute for Environmental Studies 

MIROC 

MIROC-ESM-CHEM � � Japan Agency for Marine-Earth Science and 

Technology, Atmosphere and Ocean Research 

Institute (The University of Tokyo), and 

National Institute for Environmental Studies 

MIROC 

MRI-CGCM3 � � Meteorological Research Institute MRI 

NOAA GFDL GFDL-CM3 � � NOAA Geophysical Fluid Dynamics 

Laboratory 

NOAA GFDL 

NOAA GFDL GFDL-ESM2G � � NOAA Geophysical Fluid Dynamics 

Laboratory 

NOAA GFDL 

NOAA GFDL GFDL-ESM2M � � NOAA Geophysical Fluid Dynamics 

Laboratory 

NOAA GFDL 

NorESM1-M � � Norwegian Climate Centre NCC 

NorESM1-ME � � Norwegian Climate Centre NCC 

We extract GCM grid data corresponding to points within the respective convex hulls 

defined in Figure 3 and Figure 4 and to the time period 1916-2100. Two examples of the 

Thiessen polygons formed from the GCMs points within the convex hull defined in 

Figure 3, are presented in Figure 5. The methodology for aggregating the temperature 

and precipitation over the convex hull is presented in Section 3.1. 

 
Figure 5. Temperature (left) and precipitation (right) Thiessen polygons for each grid 

centre point (dot) for the GISS-E2-H model within the convex hull of the stations. 

4. Application	

In Section 4, we present the results of the model presented in Section 2.2 to controlled 

simulation data (for testing) and data of Section 3 (for prediction). 
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4.1 Framework testing using simulations 

We test the performance of the BPF on simulated series with n1 = 100 and n2 = 50. The 

aim is to show the performance of the BPF even in extreme conditions. In Table 2, we 

present the types of simulated time series to which we applied the BPF. In Table 3, we 

present the estimated parameters of the BPF. Additionally we present the Pearson’s r of 

x1(1:100) and x2(1:100) and the respective values of the SC and the IS. In all examined cases 

we use the same simulated time series x2(1:100), therefore the parameter σ has a common 

value. Thus in all cases, the SC and IS provide the same amount of information. 

Table 2. Simulated time series presented in the Figures of Section 4.1. 
Case Figure Variable Simulation 

1 Figure 6 (top) x1 HKp with μ = 0, σ = 0.40, H = 0.50 with added trend = 0.01  

  x2 HKp with μ = 5, σ = 2, H = 0.70 

2 Figure 6 (bottom) x1 Equal to x2 of case 1 in the period 1-100. Linear trend = 0.50 with starting point 

equal to (x2(100) of case 1 + 0.50) in the period 101-150 
  x2 Equal to x2 of case 1 

3 Figure 7 (top) x1 Equal to x2 of case 1 in the period 1-100. Linear trend = 0.10 with starting point 

equal to (x2(100) of case 1 + 0.10) in the period 101-150. In the resulting time 

series we add an HKp with μ = 0, σ = 1, H = 0.50 

  x2 Equal to x2 of case 1 

4 Figure 7 (bottom) x1 Equal to x2 of case 1 in the period 1-100. Linear trend = 0.10 with starting point 

equal to (x2(100) of case 1 + 0.10) in the period 101-150. In the resulting time 

series we add an HKp with μ = 0, σ = 1, H = 0.50 and we shift it up 5 units 

  x2 Equal to x2 of case 1 

5 Figure 8 (top) x1 HKp with μ = 5, σ = 2, H = 0.50 in the period 1-100. Linear trend = 0.10 with 

starting point equal to (x1(100) of the present case + 0.10) in the period 101-150 

  x2 Equal to x2 of case 1 

6 Figure 8 (middle) x1 Equal to x1 of case 6 in the period 1-100. Linear trend = 0.50 with starting point 

equal to (x1(100) of case 6 + 0.50) in the period 101-150 

  x2 Equal to x2 of case 1 

7 Figure 8 (bottom) x1 HKp with μ = 5, σ = 2, H = 0.50 in the period 1-100. Linear trend = 0.50 with 

starting point equal to (x1(100) of the present case + 0.50) in the period 101-150 

  x2 Equal to x2 of case 1 

Table 3. Estimates of the BPF parameters defined in eqs. (14)-(16), (24), (25), (33) for 

the cases of Table 2. r is defined in eq. (37) and is estimated using sample Pearson’s r of 

x1(1:100) and x2(1:100). SC and IS are defined in eqs. (34) and (35) and estimated by 

substituting σ, a, σe with their estimates. Cases with higher IS have a better ranking. 

Case Figure μ σ H a b σe r SC IS ranking 
1 Figure 6 (top) 4.63 1.93 0.67 −0.05 0.81 0.54 −0.16 0.08 0.16 4 

2 Figure 6 (bottom) 4.63 1.93 0.67 1.00 0.00 0.00 1.00 ∞ 1.00 1 

3 Figure 7 (top) 4.63 1.93 0.67 0.99 0.03 1.11 0.86 0.89 0.86 3 

4 Figure 7 (bottom) 4.63 1.93 0.67 1.07 4.57 0.97 0.91 1.11 0.91 2 

5 Figure 8 (top) 4.63 1.93 0.67 −0.02 4.92 1.90 −0.02 0.01 0.02 6 

6 Figure 8 (middle) 4.63 1.93 0.67 −0.02 4.92 1.90 −0.02 0.01 0.02 7 

7 Figure 8 (bottom) 4.63 1.93 0.67 −0.06 6.41 1.95 −0.06 0.03 0.06 5 

Figure 6 (top) shows the results of the application assuming: (a) x2 follows a HKp, (b) 

a linear deterministic forecast model and (c) the deterministic forecast is of low quality 

(a is almost equal to 0 and IS is low). Pearson’s r is related to a and both are slightly 
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negative. Therefore, the influence of the deterministic forecast on the probabilistic 

forecast is negligible. 

 

 
Figure 6. 95% prediction intervals produced by the BPF for the case of a time series 

(green) simulated from a HKp, when the deterministic model (blue) is of low quality 

(top) and perfect (bottom). The mean is equal to the estimated μ of the HKp model fitted 

to the observations of the period 1-100. The BPF is fitted on the period 1-100 and 

predicts for the period 101-150. The characteristics of the simulated time series are 

presented in Table 2, while the estimated parameters of the BPF are shown in Table 3. 

In the test application of Figure 6 (bottom) the assumptions are radically different. 

Here again x2 follows a HKp, but the deterministic hindcast is assumed to be perfect 

(zero error and is = 1). Furthermore, the deterministic forecast is assumed to be a huge 

linear trend.  Because of the perfect performance of the deterministic model in the past 

the BPF forecast fully complies with the deterministic model forecast (it is exactly equal 

and 95% prediction interval has zero length in each time step). One could view this case 

as model testing in nonstationary conditions, because at time 100 the deterministic 

model fully changes its behaviour, yielding the huge linear trend, which did not appear 

before. Even though the BPF framework is founded on a fully stationary setting, it 

perfectly captures the assumed nonstationary behaviour. The reason is that the 

deterministic model is found to behave very well in the past; had it behaved badly, the 

probabilistic forecast (BPF) would disregard the linear trend and would be similar to 

that in Figure 6 (top). 
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In the application depicted in Figure 7 (top), the deterministic hindcast is almost 

perfect (with a small, nonzero, error and a high IS). Here again (as in Figure 6 (bottom)), 

the BPF forecast is strongly influenced by the deterministic forecast; however, now 

some prediction intervals of nonzero size appear. In the application, depicted in Figure 7 

(bottom) the deterministic hindcast and forecast of Figure 7 (top) have been shifted up. 

However, the BPF forecast has not changed. This shows that the BPF is invariant under 

the mean change, which is a desirable property. The meaning of this that if the 

deterministic model has a systematic bias, however high, the BPF framework 

automatically removes it. 

 

 
Figure 7. 95% prediction intervals produced by the BPF for the case of a time series 

(green) simulated from a HKp with μ = 5, σ = 2 and H = 0.7, when the deterministic 

model (blue) is almost perfect and varies a bit around the observations (top), or is 

shifted up (bottom). The mean is equal to the estimated μ of the HKp model fitted to the 

observations of the period 1-100. The BPF is fitted in the period 1-100 and predicts for 

the period 101-150. The characteristics of the simulated time series are presented in 

Table 2, while the estimated parameters of the BPF are shown in Table 3. 

In the application depicted in Figure 8 (top), the deterministic hindcast is of low 

quality. Furthermore, a is slightly negative. In this case, the deterministic forecast is 

increasing while the BPF is slightly decreasing, which is reasonable because of the 

negative a. In Figure 8 (middle) the deterministic hindcast and observations are equal to 

those of Figure 8 (top). However, Figure 8 (middle) differs from Figure 8 (top) in that 

the deterministic forecast in the period {101, …, 150} increases faster resulting in a 

faster decrease of the BPF forecast. In Figure 8 (bottom), a is even more negative, 
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resulting in an even higher decrease of the BPF forecast. Finally the IS provides a 

ranking of the models (cases) in terms of their informativeness (from the highest to the 

lowest) which in the examined cases is 2, 4, 3, 1, 7, 5 and 6. 

 

 

 
Figure 8. 95% prediction intervals produced by the BPF for the case of a time series 

(green) simulated from a HKp with μ = 5, σ = 2 and H = 0.7. The deterministic model 

(blue) is a simulated HKp with equal parameters, but of low quality in hindcast and a 

slight linear trend in forecast (top) or high trend (middle) and more negative correlation 

(bottom). The mean is equal to the estimated μ of the HKp model fitted to the 

observations of the period 1-100. The BPF is fitted in the period 1-100 and predicts for 

the period 101-150. The characteristics of the simulated time series are presented in 

Table 2, while the estimated parameters of the BPF are shown in Table 3. 

Overall, all testing experiments indicate an ideal performance of the BPF framework 

in all cases, even the most extreme ones and those with huge nonstationary trends. The 

methodology presented complies with the simple truth of the scientific method that 

model predictions for the future are taken into account insofar models comply with 

evidence from data of the past. Also, the methodology complies with the blueprint by 

Montanari and Koutsoyiannis (2012) insofar it takes a deterministic model and 

incorporates it into a stochastic framework, thus converting the deterministic into 
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stochastic predictions. If the deterministic model is good, the final stochastic prediction 

highly relies on it. If the model is bad, it is almost automatically discarded. 

4.2 Case studies 

In Section 4.2, we present the application of the BPF to the data of Section 3. We present 

two variants of the BPF, which are described in Sections 2.2 (Figure 1) and 2.4 (Figure 2) 

and the respective fitting and forecasting periods in Figure 9. In the case of Figure 9 

(top), the GCM historical runs have already been adjusted using information from the 

observations, therefore using the time period 1916-2005 would use the same 

information twice. Instead, in the case of Figure 9 (bottom), the fitting of the BPF linear 

model in the time period 2006-2015 is based on a forecast with the assumptions of the 

RCP6 experiment regarding the emissions scenario which have not been checked. In 

both cases, we used the HKp to model the observations. 

 

 
Figure 9. BPF fitting and predicting time periods. The fitting period is defined as the 

period of the historical run (top) or the intersection of the historical observations and 

the RCP4.5 time periods (bottom).  The prediction period succeeds the fitting period and 

extends to the year 2100. 

We present the results in Figures 10-15. In all figures the mean of the observations, is 

equal to the maximum likelihood estimate of μ as given in Section 2.5 for the fitting time 

period. While we examined all GCMs of Table 1, we present here in detail two of them, 

i.e. the GISS-E2-H and the MRI-CGCM3 along with summary information for all results. 

Figure 10 shows the prediction of the mean annual temperature in the USA for the two 

GCMs when the fitting time-period is 1916-2005. In the case of the GISS-E2-H model the 

forecasted increase is equal to 0.8 °C while the 95% prediction interval is 1.8 °C wide. In 
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the case of the MRI-CGCM3 model, the forecasted increase is negligible while the 95% 

prediction interval is again 1.8 °C wide. In Figure 11, the prediction intervals for the 

fitting time-period 2006-2015 indicate a mean increase in the annual temperature equal 

to 1.4 °C and 0.9 °C for both models respectively, while the respective prediction 

intervals are 2.0 °C wide. 

 

 
Figure 10. 95% prediction intervals of the mean annual temperature in the USA 

produced by the BPF for the case of Figure 9 (top). The fitting time period is 1916-2005, 

while the deterministic models are ensembles from the GISS-E2-H (top) and MRI-CGCM3 

(bottom) models. The mean of the observations is equal to the maximum likelihood 

estimate of μ in Section 2.5 for the fitting time period. 



21 

 

 

 
Figure 11. 95% prediction intervals of the mean annual temperature in the USA 

produced by the BPF for the case of Figure 9 (bottom). The fitting time period is 2006-

2015, while the deterministic models are ensembles from the GISS-E2-H (top) and MRI-

CGCM3 (bottom) models. 

Figures 12 and 13 depict similar results for the annual precipitation in the USA. In 

particular, in Figure 12, which shows the results for the fitting time-period 1916-2005, 

we observe a negligible increase of the annual precipitation while the 95% prediction 

intervals are 200 mm wide. In Figure 13, where the fitting time-period is 2006-2015, we 

observe an insignificant and a mean annual increase of 120 mm respectively, while the 

respective 95% prediction intervals are 220 and 140 mm wide. 
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Figure 12. 95% prediction intervals of the annual precipitation in the USA produced by 

the BPF for the case of Figure 9 (top). The fitting time period is 1916-2005, while the 

deterministic models are ensembles from the GISS-E2-H (top) and MRI-CGCM3 (bottom) 

models. 

 

 
Figure 13. 95% prediction intervals of the annual precipitation in the USA produced by 

the BPF for the case of Figure 9 (bottom). The fitting time period is 2006-2015, while the 

deterministic models are ensembles from the GISS-E2-H (top) and MRI-CGCM3 (bottom) 

models. 
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Figures 14 and 15 display the results for all models of Table 1. In particular, they 

show the forecasted mean annual temperatures and annual precipitations for both 

method variants defined in Figure 9. Furthermore, the graphs include the envelopes of 

all 95% prediction intervals. In Figure 14, we observe an envelope of the mean annual 

temperature 5.8 °C wide when the fitting time-period is 1916-2005 and an envelope 

8.8 °C wide when the fitting time-period is 2006-2015. In the former case, the 

temperature increase is centred around 2.5 °C for the year 2100, while in the latter case 

the mean annual change seems to be negligible, while the overall shape of the graph 

could be called a “Bayesian thistle”. Regarding the precipitation, we observe in Figure 15 

envelopes 270 and 330 mm wide for the fitting time-periods 1916-2005 and 2006-2015 

respectively. The forecasted increase in precipitation is negligible in the former case, 

while it is approximately equal to 50 mm for the year 2100 in the latter case. 

 

 
Figure 14. Prediction intervals of the mean annual temperature in the USA produced by 

the BPF. The GCM medians correspond to all GCMs of Table 1. The prediction quantiles 

are the envelopes of all 95% prediction intervals of the GCMs of Table 1 produced by the 

BPF. The fitting time period is 1916-2005 (top, corresponds to Figure 9 (top)) and 2006-

2015 (bottom, corresponds to Figure 9 (bottom)). 
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Figure 15. Prediction intervals of the annual precipitation in the USA produced by the 

BPF. The GCM medians correspond to all GCMs of Table 1. The prediction quantiles are 

the envelopes of all 95% prediction intervals of the GCMs of Table 1 produced by the 

BPF. The fitting time period is 1916-2005 (top, corresponds to Figure 9 (top)) and 2006-

2015 (bottom, corresponds to Figure 9 (bottom)). 

5. Conclusions	

The aim of this paper is to probabilistically predict the future evolution of a normal 

stationary stochastic process used to model a geophysical variable conditional on 

historical observations of the variable and hindcasts and forecasts of the variable 

produced by a deterministic model. To this end, we apply the Bayesian Processor of 

Forecasts (BPF) to the data of interest. The BPF has previously been applied to 

independent variables or Markovian processes. Here, we extend its use to include any 

normal stationary stochastic processes and we present an application to the special case 

of the Hurst-Kolmogorov process. 

We investigate the properties of the BPF and test its performance using simulated 

time series. We show that the influence of the deterministic forecast increases when 

there is a good fitting of the deterministic model to the historical observations. Indeed, 

when this fitting is perfect, the BPF forecast is equal to the deterministic forecast. In 

contrast, when this fitting is insufficient, the forecast depends on the observations and 

the stochastic model and not on the deterministic model. Furthermore, even if the 
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stochastic model is stationary, the BPF can incorporate changes, which can be attributed 

to non-stationarity. 

The BPF is applied to the mean annual temperature and annual precipitation in the 

time period 1916-2005 in the USA. The GCMs (the historical and the RCP6 scenarios) are 

used as deterministic models. Using the estimated BPF parameters, we probabilistically 

forecast the mean annual temperature and annual precipitation until the year 2100. The 

results are sensitive to the choice of the fitting period between the observations and the 

deterministic forecast and the choice of the GCM model. Regarding the temperature the 

overall results show increasing temperature when the fitting period is the intersection 

of the data time period and the historical scenario, while the temperature remains 

unchanged when the fitting period is the intersection of the data time period and the 

RCP6 scenario. In both cases, the envelopes of the 95% prediction intervals for each 

GCM model are significantly wide (5.8 °C and 8.8 °C respectively). Regarding the 

precipitation, the deterministic models had negligible effect in improving the forecast of 

the stochastic model, regardless of the fitting period. 

We emphasize that the estimation of the stochastic model parameters should better 

be performed using only data that were not used in the GCM fitting/tuning, i.e. for the 

period after 2006. This would correspond to the so-called split-sample technique 

(Klemeš 1986), which avoids possible model overfitting on the available data and thus 

artificially good performance. This corresponds to model fitting period after 2006. The 

applications with this variant of the methodology showed that the uncertainty of the 

forecasts increases considerably and practically result in total neglect of the GCM 

predictions regarding for both temperature and precipitation. Finally the inclusion of 

the uncertainty in a fully Bayesian setting, also considering the uncertainty of 

parameters, would result in even higher uncertainties of the forecasted variables. 
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Appendix	A The	Bayesian	Processor	of	Forecasts	applied	to	normal	stationary	

stochastic	processes 

Here we prove the results presented in Section 2.2. Overall, we prefer to use techniques 

typically met in the Bayesian statistics literature, such as proportionality of the 

distributions, and avoid to calculate integrals. For example, Marty et al. (2015) used 

these techniques when they examined the Bayesian processor of output, while 

Krzysztofowicz (1985) preferred the other way when he examined the BPF. 

Let x1 and x2 and their subsets y1, y2, y3, y4 be defined as follows: 

 x1(1:(n1+n2)) := (x11, …, x1n1, x1(n1+1), …, x1(n1+n2))T, deterministic forecast (A.1) 

 x2(1:(n1+n2)) := (x21, …, x2n1, x2(n1+1), …, x2(n1+n2))T, observations (A.2) 

 x1 := x1(1:(n1+n2)) (A.3) 

 x2 := x2(1:(n1+n2)) (A.4) 

 y1 := (x11, x12, …, x1n1)T: n1×1 (A.5) 

 y2 := (x1(n1+1), …, x1(n1+n2))T: n2×1 (A.6) 

 y3 := (x21, …, x2n1)T: n1×1 (A.7) 

 y4 := (x2(n1+1), …, x2(n1+n2))T: n2×1 (A.8) 

Then the conditional independence mentioned in Section 2.1 is defined by 

 fn(x11, x12,…, x1n|x21, x22,…, x2n) := ∏i = 1
n  fi(x1i|x21, x22, …, x2n) ∀ n ∊ {1, …, n1+n2} (A.9) 

 fi(x1i|x21, x22, …, x2n) := fi(x1i|x2i) ∀ i, n ∊ {1, …, n1+n2} (A.10) 

which results in 

 fn(x11, x12, …, x1n|x21, x22, …, x2n) = ∏i = 1
n  fi(x1i|x2i) ∀ n ∊ {1, …, n1+n2} (A.11) 

Hence, 

 h(y4|y3, x1) = f(x1|y3, y4) g(y3, y4) / ξ(y3, x1) ⇒ (A.12) 

 h(y4|y3, x1) ∝ f(x1|y3, y4) g(y3, y4) ⇒ (A.13) 
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 h(y4|y3, x1) ∝ f(y1, y2|y3, y4) g(y3, y4) ⇒ (A.14) 

 h(y4|y3, x1) ∝ f(y2|y4) g(y3, y4) ⇒ (A.15) 

 h(y4|y3, x1) ∝ f(y2|y4) g(y4|y3) g(y3) ⇒ (A.16) 

 h(y4|y3, x1) ∝ f(y2|y4) g(y4|y3) (A.17) 

Equation (A.17) proves eq. (13). 

We define the parameters of the normal stationary stochastic process used to model 

the observations with eqs. (A.18)-(A.28). Matrices Σ, R and their submatrices are 

symmetric Toeplitz positive definite matrices (Golub and Van Loan 1996, p.193). This 

facilitates their handling using the Levinson or related algorithms (e.g. Tyralis and 

Koutsoyiannis 2011). Consequently, 

 μ := E[x2n] ∀ n ∊ {1, …, n1+n2} (A.18) 

 σ2 := Var[x2n] ∀ n ∊ {1, …, n1+n2} (A.19) 

 μ1 := (μ, …, μ)Τ, n1×1 (A.20) 

 μ2 := (μ, …, μ)Τ, n2×1 (A.21) 

 Σ := σ2 [ρi,j] ∀ i, j ∊ {1, …, n1+n2} (A.22) 

 ρi,j = ρ|i−j| ∀ i, j ∊ {1, …, n1+n2} (A.23) 

 Σ = 






Σ11 Σ12

Σ21 Σ22
 (A.24) 

 Σ11: n1×n1, Σ21: n2×n1, Σ12: n1×n2, Σ22: n2×n2 (A.25) 

 Σ = σ2 






R11 R12

R21 R22
 (A.26) 

 R11: n1×n1, R21: n2×n1, R12: n1×n2, R22: n2×n2 (A.27) 

 Σ11 = σ2 R11, Σ21 = σ2 R21, Σ12 = σ2 R12, Σ22 = σ2 R22 (A.28) 

Since we model x2 with a multivariate normal distribution, the distribution of y4 

conditional on y3 is given by (Eaton 2007, p.116), 

 g(y4|y3) = N(μ2 + Σ21 Σ
−1
11 (y3 − μ1), Σ22 − Σ21 Σ

−1
11 Σ12) (A.29) 

which can be written as 

 g(y4|y3) = Ν(Μ1, Λ1) (A.30) 

where 

  Μ1 := μ2 + R21 R
−1
11 (y3 − μ1) (A.31) 
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  Λ1 := σ2 (R22 − R21 R
−1
11 R12) (A.32) 

whereas eq. (A.32) denotes the Schur complement (Horn and Zhang 2005). 

If the distribution of x1n conditional on x2n is given by 

 f(x1n|x2n) := Ν(qn, σ
2
e) ∀ n ∊ {1, …, n1+n2} (A.33) 

then, using eq. (A.11) and the properties of the product of normal distributions 

(Bromiley 2014) we find: 

 qn := ax2n + b ∀ n ∊ {1, …, n1+n2} (A.34) 

 f(y2|y4) = ∏n = n1+1
n1+n2  Ν(qn, σ

2
e) ⇒ (A.35) 

 f(y2|y4) = N(Q, V) (A.36) 

where 

 Q := (qn1+1, …, qn1+n2)T, n2×1 (A.37) 

 V := σ
2
e In2, n2×n2 (A.38) 

However, in the Bayesian setting, y2 is known while the distribution of interest is that 

of y4|y2. Therefore, eq. (A.36) is transformed to eq. (A.45) in which y4 is the random 

variable and y2 is a value, after some algebraic manipulations: 

 b2 := (b, …, b)Τ, n2×1 (A.39) 

 f(y4|y2) ∝ exp(−(1/2) (y2 − ay4 − b2)T V−1 (y2 − ay4 − b2)) ⇒ (A.40) 

 f(y4|y2) ∝ exp(−(a2/2 σ
2
e) (y4 – (y2 − b2)/a)T I

−1
n2 (y4 – (y2 − b2)/a)) ⇒ (A.41) 

 f(y4|y2) ∝ exp(−(1/2) (y4 – (y2 − b2)/a)T (a/σe)2 I
−1
n2 (y4 – (y2 − b2)/a)) ⇒ (A.42) 

 f(y4|y2) ∝ exp(−(1/2) (y4 – (y2 − b2)/a)T ((σe /a)2 In2)–1 (y4 – (y2 − b2)/a)) ⇒ (A.43) 

 f(y4|y2) = N((y2 − b2)/a, (σe/a)2 In2) ⇒ (A.44) 

 f(y4|y2) = N(M2, Λ2) (A.45) 

where, 

 M2 := (y2 − b2)/a (A.46) 

 Λ2 := (σe/a)2 In2 (A.47) 

The distribution of y4|y3, x1 in eq. (A.17) is normal, i.e., 

 h(y4|y3, x1) = N(M, Λ) (A.48) 
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because it is proportional to the product of the two normal distributions (A.30) and 

(A.45) (Bromiley 2014). Its parameters are given by eqs. (A.50) and (A.54) after the 

following manipulations: 

  Λ−1 := Λ
−1
1  + Λ

−1
2  ⇒ (A.49) 

  Λ−1 = (1/σ2) (R22 − R21 R
−1
11 R12)−1 + (a/σe)2 In2 (A.50) 

  Λ−1 M = Λ
−1
1  M1 + Λ

−1
2  M2 ⇒ (A.51) 

  M = Λ (Λ
−1
1  M1 + Λ

−1
2  M2) ⇒ (A.52) 

  M = Λ Λ
−1
1  M1 + Λ (a/σe)2 ((y2 − b2)/a) ⇒ (A.53) 

  M = Λ Λ
−1
1  M1 + (a/σ

2
e) Λ (y2 − b2) (A.54) 

Appendix	B The	Bayesian	Processor	of	Forecasts	applied	to	distinct	fitting	

periods	

Here we repeat the procedure of Appendix A but for distinct fitting periods. The time 

period {1, …, n1+n2+ n3} is divided in three subperiods {1, …, n1}, {n1+1, …, n1+n2}, 

{n1+n2+1, …, n1+n2+ n3}. The processes of interest are x1 and x2 and their subsets y1, y2, 

y3, y4 , y5, y6 defined as: 

 x1((n1+1):(n1+n2+n3)) := (x1(n1+1), …, x1(n1+n2), x1(n1+n2+1), …, x1(n1+n2+n3))T (B.1) 

 x2(1:(n1+n2+n3)) := (x21, …, x2n1, x2(n1+1), …, x2(n1+n2), x2(n1+n2+1), …, x2(n1+n2+n3))T (B.2) 

 x1 := x1((n1+1):(n1+n2+n3)) (B.3) 

 x2 := x2(1:(n1+n2+n3)) (B.4) 

 y1 := (x1(n1+1), …, x1(n1+n2))T: n2×1 (B.5) 

 y2 := (x1(n1+n2+1), …, x1(n1+n2+n3))T: n3×1 (B.6) 

 y3 := (x21, …, x2n1)T: n1×1 (B.7) 

 y4 := (x2(n1+1), …, x2(n1+n2))T: n2×1 (B.8) 

 y5 := (x2(n1+n2+1), …, x2(n1+n2+n3))T: n3×1 (B.9) 

 y6 := (x21, …, x2(n1+n2))T: (n1+n2)×1 (B.10) 

Then the conditional independence mentioned in Section 2.1 is defined by 

 fn(x11, x12,…,x1n|x21,x22,…,x2n) := ∏i = 1
n  fi(x1i|x21, x22, …, x2n) ∀ n ∊ {1,…,n1+n2} (B.11) 
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 fi(x1i|x21, x22, …, x2n) := fi(x1i|x2i) ∀ i, n ∊ {1, …, n1+n2} (B.12) 

which result in 

 fn(x11, x12, …, x1n|x21, x22, …, x2n) = ∏i = 1
n  fi(x1i|x2i) ∀ n ∊ {1, …, n1+n2} (B.13) 

Hence, 

 h(y5|y3, y4, x1) = f(x1|y3, y4, y5) g(y3, y4, y5) / ξ(y3, y4, x1) ⇒ (B.14) 

 h(y5|y3, y4, x1) ∝ f(x1| y3, y4, y5) g(y3, y4, y5) ⇒ (B.15) 

 h(y5|y3, y4, x1) ∝ f(y1, y2| y3, y4, y5) g(y3, y4, y5) ⇒ (B.16) 

 h(y5|y3, y4, x1) ∝ f(y2|y5) g(y3, y4, y5) ⇒ (B.17) 

 h(y5|y3, y4, x1) ∝ f(y2|y5) g(y5|y3, y4) g(y3, y4) ⇒ (B.18) 

 h(y5|y3, y4, x1) ∝ f(y2|y5) g(y5|y3, y4) (B.19) 

We define the parameters of the normal stationary stochastic process used to model 

the observations through the following equations: 

 μ := E[x2n] ∀ n ∊ {1, …, n1+n2+n3} (B.20) 

 σ2 := Var[x2n] ∀ n ∊ {1, …, n1+n2+n3} (B.21) 

 μ1 := (μ, …, μ)Τ, (n1+n2)×1 (B.22) 

 μ2 := (μ, …, μ)Τ, n3×1 (B.23) 

 Σ := σ2 [ρi,j] ∀ i, j ∊ {1, …, n1+n2+n3} (B.24) 

 ρi,j = ρ|i−j| ∀ i, j ∊ {1, …, n1+n2+n3} (B.25) 

 Σ = 






Σ11 Σ12

Σ21 Σ22
 (B.26) 

 Σ11: (n1+n2)×(n1+n2), Σ21: n3×(n1+n2), Σ12: (n1+n2)×n3, Σ22: n3×n3 (B.27) 

 Σ = σ2 






R11 R12

R21 R22
 (B.28) 

 R11: (n1+n2)×(n1+n2), R21: n3×(n1+n2), R12: (n1+n2)×n3, R22: n3×n3 (B.29) 

 Σ11 = σ2 R11, Σ21 = σ2 R21, Σ12 = σ2 R12, Σ22 = σ2 R22 (B.30) 

Since we model x2 with a multivariate normal distribution, the distribution of y5 

conditional on y3 and y4 is given by (Eaton 2007, p.116) 

 g(y5|y3, y4) = N(μ2 + Σ21 Σ
−1
11 (y6 − μ1), Σ22 − Σ21 Σ

−1
11 Σ12) ⇒ (B.31) 

which can be written as 
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 g(y5|y3, y4) = Ν(Μ1, Λ1) (B.32) 

where 

  Μ1 := μ2 + R21 R
−1
11 (y6 − μ1) (B.33) 

  Λ1 := σ2 (R22 − R21 R
−1
11 R12) (B.34) 

If the distribution of x1n conditional on x2n is given by 

 f(x1n|x2n) = Ν(qn, σ
2
e) ∀ n ∊ {1, …, n1+n2} (B.35) 

then, using eq. (B.13) and the properties of the product of normal distributions 

(Bromiley 2014), we find 

 qn := ax2n + b ∀ n ∊ {1, …, n1+n2} (B.36) 

 f(y2|y5) = ∏n = n1+n2+1
n1+n2+n3  Ν(qn, σ

2
e) ⇒ (B.37) 

 f(y2|y5) = N(Q, V)  (B.38) 

where 

 Q = (qn1+n2+1, …, qn1+n2+n3)T, n3×1 (B.39) 

 V = σ
2
e In3, n3×n3 (B.40) 

However, in the Bayesian setting y2 is given while the distribution of interest is that of 

y5|y2. Therefore, eq. (B.38) is transformed to eq. (B.47) in which y5 is the random 

variable and y2 is a value, after some algebraic manipulations. 

 b2 := (b, …, b)Τ, n3×1 (B.41) 

 f(y5|y2) ∝ exp(−(1/2) (y2 − ay5 − b2)T V−1 (y2 − ay5 − b2)) ⇒ (B.42) 

 f(y5|y2) ∝ exp(−(a2/2 σ
2
e) (y5 – (y2 − b2)/a)T I

−1
n3 (y5 – (y2 − b2)/a)) ⇒ (B.43) 

 f(y5|y2) ∝ exp(−(1/2) (y5 – (y2 − b2)/a)T (a/σe)2 I
−1
n3 (y5 – (y2 − b2)/a)) ⇒ (B.44) 

 f(y5|y2) ∝ exp(−(1/2) (y5 – (y2 − b2)/a)T ((σe /a)2 In3)–1 (y5 – (y2 − b2)/a)) ⇒ (B.45) 

 f(y5|y2) = N((y2 − b2)/a, (σe/a)2 In3) ⇒ (B.46) 

 f(y5|y2) = N(M2, Λ2) (B.47) 

 M2 := (y2 − b2)/a (B.48) 

 Λ2 := (σe/a)2 In3 (B.49) 

The distribution of y5|y3, y4, x1 in eq. (B.19) is normal, i.e. 
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 h(y5|y3, y4, x1) = N(M, Λ) (B.50) 

 because it is proportional to the product of the two normal distributions (B.32) and 

(B.47) (Bromiley 2014). Its parameters are given by eqs. (B.52) and (B.56) according to 

the following manipulations: 

  Λ−1 := Λ
−1
1  + Λ

−1
2  (B.51) 

  Λ−1 = (1/σ2) (R22 − R21 R
−1
11 R12)−1 + (a/σe)2 In3 (B.52) 

  Λ−1 M = Λ
−1
1  M1 + Λ

−1
2  M2 ⇒ (B.53) 

  M = Λ (Λ
−1
1  M1 + Λ

−1
2  M2) ⇒ (B.54) 

  M = Λ Λ
−1
1  M1 + Λ (a/σe)2 ((y2 − b2)/a) ⇒ (B.55) 

  M = Λ Λ
−1
1  M1 + (a/σ

2
e) Λ (y2 − b2) (B.56) 

Appendix	C Investigation	of	the	BPF	for	various	values	of	its	parameters	

From eq. (A.49) we obtain 

  Λ = Λ2 (In2 + Λ
−1
1  Λ2)−1 (C.1) 

while from eqs. (A.52) and (C.1) we obtain 

  M = Λ2 (In2 + Λ
−1
1  Λ2)−1 Λ

−1
1  M1 + Λ2 (In2 + Λ

−1
1  Λ2)−1 Λ

−1
2  M2 (C.2) 

In the case where 

  σe = 0 (C.3) 

using eqs. (C.1) and (C.2), we obtain: 

  M = M2 (C.4) 

  Λ = 0n2 (C.5) 

In the case where 

  a = 0 (C.6) 

we find that 

 f(y4|y2) = constant (C.7) 

Hence, from eqs. (A.17) and (A.30) we obtain 

 h(y4|y3, x1) = N(M1, Λ1) (C.8) 
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Appendix	D Precipitation	data	

Here we present the sequence of steps to aggregate the precipitation from the daily to 

the annual scale. This sequence is reproduced from Tyralis et al. (2017) who use the 

same dataset and procedures. 

 A. Flagged values were considered as missing values. 

 B. Months with a percentage of recorded values higher than 0.83 (i.e. with more 

than 25/30 or 26/31 daily observations) are considered good, while months with a 

percentage of recorded values less than 0.34 (i.e. equal or less than 10/30 and 10/31 

daily observations) are considered of poor quality. The reason for the differentiation is 

that we first aggregate to the monthly time scale and then to the annual time scale. Thus 

even if all values in a month are missing we can fill the monthly value after the first 

aggregation as described in step C. 

 B1. Missing values within months with observed values more than 83% are filled 

using linear interpolation. 

 B2. All values within months with observed values less than 34% were considered 

as missing. 

 B3. For the rest of the months the missing values were filled in using linear 

interpolation and then these months were considered as missing. The reason is 

explained in step D. 

 C. Missing months corresponding to steps B2 and B3 (the latter after the 

substitution with missing values) were filled in using a seasonal Kalman filter, 

implemented in the R package zoo (Zeileis and Grothendieck 2005). 

 D. Mean monthly values for months in which both steps B3 and C (i.e. months with 

missing values more than 34% and less than 83%) were applied, were calculated with 

the mean of monthly values of steps B3 and C. 

 E. From the mean monthly values we obtained the mean annual values. 

 F. Finally we discarded annual time series if one of the following constraints was 

satisfied: 

 F1. Two or more missing years. 
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 F2. Hurst parameter estimate H
˄

 ≥ 0.95, mean annual rainfall μ
˄

 ≥ 3000 mm, standard 

deviation of annual rainfall σ
˄

 ≥ 750 mm, coefficient of variation of annual rainfall c
˄

v ≥ 

0.8. These constraints on the estimated parameters were justified from a preliminary 

analysis, which showed that higher values were outliers. 

 F3. Four or more years with less than 60% of observed daily values. 
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