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Why stochastic hydrology?

Widely applied for (among others):

• Time series forecasting, 

• Filling of missing records and 

• Synthesis of long hydrologic time series that resemble the observed statistical 
characteristics. 

Synthetic hydrology is of particular importance in water-related studies since it:

• Enables to account for the intrinsic uncertainty of hydrologic variables (e.g., 
precipitation and streamflow) 

• Provides the means to uncertainty-proof the decision-making process of design 
and operation of a water-systems [Matalas, 1967].

• Allows the establishment of probability- and reliability-based methods and 
analysis.
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Synthetic hydrology (contd.)
Usually credited to the pivotal research conducted by the Harvard water program [Maass et al., 1962] and 
Thomas and Fiering [1962].

Characteristics of hydrological time series

• Long-range dependency (usually observed at annual or over-annual time scales).

• Intermittency (usually observed at fine time scales, e.g., daily).

• Non-Gaussianity (usually observed at all time scales!).

• Periodicity (usually observed at monthly time scale), i.e., Periodic fluctuations of the marginal statistics of the 
underlying process as well as a periodic correlation structure.

The standard hypothesis

• Generation of synthetic time series that preserve the essential statistical characteristics (marginal and joint) of 
the corresponding historical data [Matalas and Wallis, 1976; Salas, 1993]. 

• Yet, often without paying attention to the preservation of their distribution.

However, as emphatically remarked by Klemeš and Borůvka [1974]:

“Simulation of a serially correlated series with a given marginal distribution is one of the important 
prerequisites of synthetic hydrology and of its applications to analysis of water resource system”.  
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Current popular approaches

1) Typically require the use of complicated functions with 
many parameters. Which inevitably leads to the next 
questions: 

How many parameters are enough? 

How does the sample size effects their estimation? 

Are they robust enough?

2) Implications in cyclo-stationary simulation problems. 
Which rises questions such as: 

Should we use the same transformation function for all 
seasons? If yes, is it equally suitable? 

In what extent season-season correlation coefficients 
effected?

3) Introduction of bias in the resulting marginal statistics 
and stochastic structure of the process [Salas et al., 
1980 p. 73].  

4) The resulting marginal distribution is difficult to 
identify a priori (it may not belong to a certain known 
family of distributions).
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Transformation-based approaches
1) Except the Gaussian case, they are limited into 

approximating specific distribution families (usually, 
Pearson Type-3 or Log-Normal).

2) They are typically limited in models of order 1 – thus 
accounting only for lag-1 autocorrelation.

3) They are prone to generation of negative values, which are 
not appropriate for hydrologic processes.

4) They require the generation of innovation variables with 
higher skewness coefficients (due to central limit 
theorem). It is known that high values of skewness may 
cause a series of problems [e.g., Todini, 1980; 
Koutsoyiannis, 1999].

5) The synthesized time series resemble the historical 
statistics but not the target marginal distributions.

6) They can lead in bounded & unrealistic dependency forms.

* Throughout discussion and demonstration in a subsequent 
simulation study.

Use of non-Gaussian innovations for the white noise*



Stochastic Periodic AutoRegressive To Anything (SPARTA) model

Key idea of SPARTA: 

Simulation of an auxiliary Periodic AutoRegressive (PAR) standard Gaussian process {𝑍𝑠}; 𝑍𝑠~N(0,1); where s refers to 
season; with such parameters (which define the stochastic structure) that after the mapping with the corresponding 
inverse cumulative distribution function (ICDF) results into a process {𝑋𝑠} with the desired (i.e., target) season-to-
season correlation structure and marginal distributions. i.e.,
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Where Φ(∙) refers to the standard normal cumulative distribution function (CDF) and 𝐹s
−1 ∙ denotes the ICDF of the 

target distribution of season s.

Origin: 
Nataf’s joint distribution model [NDM; Nataf, 1962], also known as NORmal To Anything procedure [NORTA; Cario and 
Nelson, 1997].
• Proposed for the generation of correlated but serially independent random vectors with given marginal 

distributions.
Rationale of NDM/NORTA:
• Employ an auxiliary multivariate Gaussian distribution with such parameters (i.e., correlation matrix) and 

subsequently map the generated data via the target ICDF. The resulting data will have the target marginal 
distributions and correlation structure.

𝑋𝑠 = 𝐹s
−1[Φ 𝑍𝑠 ]



Main challenge:

• Identification of the parameters of the auxiliary process that result in the desired stochastic structure 
after the application of the ICDF.

• This arises from the fact that Pearson correlation coefficient (which is used within the parameter 
identification procedure of linear stochastic models, such as PAR) is not invariant under monotonic 
transformations; such as those imposed by the ICDF [Embrechts et al., 1999 p. 7]. 

• Therefore, we have to identify the “equivalent” correlation coefficients that should be used within the 
parameter identification procedure of the auxiliary PAR model in order to attain the target correlation 
coefficients.
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Stochastic Periodic AutoRegressive To Anything (SPARTA) model



SPARTA in a nutshell
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𝜌𝑖,𝑗 = Corr 𝑋𝑖, 𝑋𝑗 = Corr 𝐹𝑖
−1 Φ 𝑍𝑖 , 𝐹𝑗

−1 Φ 𝑍𝑗

Let assume that we wish to describe a SPARTA process {Xs} of order 1 with each season s characterized by distribution 
function P 𝑋𝑠 ≤ 𝑥𝑠 = 𝐹𝑋𝑠

and season-to- season correlation 𝜌𝑠,𝑠−1. The generation equation of the auxiliary standard 

Gaussian PAR(1) model is given by:

Where,  𝜌(∙) stands for the “equivalent” correlation coefficient and 𝑊𝑠 is an i.i.d. random variable from N ~(0, 1). 
For notational purposes allow us to define the indices, 𝑋𝑖 ≔ 𝑋𝑠 and 𝑋𝑗 ≔ 𝑋𝑠−1.

The season-to-season correlation structure of the {Zs} process is associated with that of {Xs} since

𝜌𝑖,𝑗 = Corr 𝑋𝑖 , 𝑋𝑗 =
𝐸 𝑋𝑖 , 𝑋𝑗 − 𝐸 𝑋𝑖 𝐸[𝑋𝑗]

𝑉𝑎𝑟 𝑋𝑖 𝑉𝑎𝑟[𝑋𝑗]

𝐸 𝑋𝑖 , 𝑋𝑗 =  

−∞

∞

 

−∞

∞

𝐹𝑋𝑖

−1 Φ 𝑧𝑖 𝐹𝑋𝑗

−1 Φ 𝑧𝑗 𝜑 𝑧𝑖 , 𝑧𝑗 ,  𝜌𝑖,𝑗 d𝑧𝑖dz𝑗

𝜌𝑖,𝑗 = 𝑓(  𝜌𝑖,𝑗)

𝑍𝑠 =  𝜌𝑠,𝑠−1𝑍𝑠−1 + 1 −  𝜌𝑠,𝑠−1
2 𝑊𝑠

𝜌𝑖,𝑗 = Corr 𝑋𝑖 , 𝑋𝑗 =
 −∞

∞
 −∞

∞
𝐹𝑋𝑖

−1 Φ 𝑧𝑖 𝐹𝑋𝑗

−1 Φ 𝑧𝑗 𝜑 𝑧𝑖 , 𝑧𝑗 ,  𝜌𝑖,𝑗 d𝑧𝑖dz𝑗 − 𝐸[𝑋𝑖]𝐸[𝑋𝑗]

𝑉𝑎𝑟 𝑋𝑖 𝑉𝑎𝑟[𝑋𝑗]

𝑋𝑠 = 𝐹𝑋𝑠

−1[Φ 𝑍𝑠 ], i.e.,

By definition of Pearson’s 
correlation coefficient:

Using the first Cross-product 
moment of 𝑋𝑖 , 𝑋𝑗: 

Known from the 
corresponding 
distributions 
𝐹𝑋𝑖

and 𝐹𝑋𝑗

Where, 𝜑(𝑧𝑖 , 𝑧𝑗 ,  𝜌𝑖,𝑗) is the bivariate normal probability density 

function (PDF) with correlation  𝜌𝑖,𝑗. 



Target Vs Equivalent correlation coefficient 
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Let assume that we wish to generate two correlated random variables 𝑋1 and 𝑋2 with same (𝐹𝑋1
≡ 𝐹𝑋2

) target 

marginal distributions (i.e., Gamma distribution with scale = 10 and shape = 0.7) and correlation 𝜌x1,𝑋2
= 0.7.

A B C

0.70

0.75

For further details regarding the resolution of the double infinite integral see for example, Tsoukalas et al., [2017].

Corr(𝑧1, 𝑧2) = 0.752 Corr(𝑥1, 𝑥2) = 0.701
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SPARTA generation mechanism

The methodology can be summarized in five steps: 

Step 1: Define (i.e., fit) a suitable marginal distribution to each season.

Step 2: Select an appropriate auxiliary periodic Gaussian model (e.g., PAR(1)).

Step 3: Approximate the equivalent correlation of pairs of interest (e.g., those related with the model
parameters).

Step 4: Estimate the parameters of the auxiliary process {Zs} using the equivalent correlations coefficients.

Step 5: Simulate a realization of the auxiliary process {Zs} and map the generated data to the real domain in
order to attain the process {Xs}, using the ICDFs identified in step 1. i.e., 𝑋𝑠 = 𝐹s

−1 Φ 𝑍𝑠 .



Application 1: Nile streamflow
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Data1

Location: Nile River at Aswan dam.
Time step: Monthly.
Historical record extend: 1870 – 1945.
Characteristics: Skewed distributions, strong seasonality and high autocorrelations across all 
subsequent months.

Simulation study
Comparison with the typical PAR(1) model with Pearson type-III distribution for white noise (referred 
as PAR-PIII model. In order to conduct a fair and meaningful evaluation with SPARTA we also set this 
distribution as target one for all months (referred as SPARTA-PIII model).
Distribution: Pearson type-III fitted with the method of moments.
Synthetic time series length: 2 000 years.

1http://www.stats.uwo.ca/faculty/mcleod/epubs/mhsets/

http://www.stats.uwo.ca/faculty/mcleod/epubs/mhsets/


Results: Nile streamflow
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Comparison between 
historical (red line) 
and simulated 
statistics with PAR-
PIII (black line) and 
SPARTA-PIII (blue 
line) models.



Results: Nile streamflow
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Comparison of theoretical 
(black line), historical (red
line) and simulated with 
PAR-PIII (Grey line) and 
SPARTA-PIII (blue line) 
models cumulative 
density function (CDF) of 
A) March and B) April.
(Weibull plotting position).



Results: Nile streamflow
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Comparison in terms of scatter plot between the historical (red squares) and simulated dependency patterns
established with PAR-PIII (black crosses) and SPARTA-PIII (blue dots) models.



Application 2: Hypothetical simulation study assuming different
distribution for each season
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Season 1 2 3 4 5 6 7 8 9 10 11 12

Distribution/ 

Parameters

PIII Exp Gam Norm LoNo Wei Beta LoNo Exp PIII Wei Gam

Theoretical Values

a 1 1 1 2 0 1 1 0 0.55 1 2.5 2

b 2 - 2 1 0.5 2 5 0.7 - 1 5 1

c 2 - - - - - - - - 5 - -

Simulated Values

a 1.01 0.97 1.02 1.97 0.001 1.04 1.98 0.002 0.52 1.01 2.48 2.02

b 1.97 - 2.01 0.99 0.50 2.02 4.92 0.71 - 0.97 5.01 1.02

c 2.05 - - - - - - - - 5.03 - -
*Distribution abbreviations: PIII: Pearson III (a = shape, b = rate, c = location), Exp: Exponential (a = rate), Gam: Gamma (a = 

shape, b = rate), Norm: Normal (a = mean, b = st. dev.), LoNo: Log-Normal (a = log mean, b= log st. dev.), Wei: Weibull (a = 

shape, b = scale); Beta: Beta (a = shape, b = shape).

Theoretical distributions and parameters of each season of the artificial time series as well
as MLE estimation of simulated data.

Furthermore, we assumed that the target season-to-season correlation is equal to:

𝝆 = 𝜌12,1, 𝜌1,2, … , 𝜌𝑡,𝑡−1 … , 𝜌11,12 = 0.7, 0.6, 0.3, 0.5, 0.6, 0.7, 0.5, 0.6, 0.7, 0.8, 0.7, 0.6 .



Results: Hypothetical simulation study
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Comparison between theoretical
(black line) and simulated (red
line) lag-1 season-to-season
correlation (ρ1). The blue line
illustrated the estimated
equivalent correlation
coefficients.



Results: Hypothetical simulation study

Tsoukalas et al., 2017. Stochastic simulation of periodic processes with arbitrary marginal distributions - 16

Comparison of theoretical and simulated values of seasonal A) mean (μ) and B) standard deviation (σ).



Results: Hypothetical simulation study
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Comparison of theoretical and simulated values of seasonal C) skewness (Cs) and D) kurtosis (Ck) coefficients.



Results: Hypothetical simulation study
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Comparison of theoretical and simulated cumulative density
function (CDF) of A) season 2 and B) season 5 (Weibull plotting
position).



Conclusions
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Ongoing and future work [Submitted in Water Resources Research, Tsoukalas et al., 2017]:
 Extend SPARTA for multivariate time series simulation.
 Incorporate SPARTA within a disaggregation framework in order to account for long-range dependency 

and Hurst-Kolmogorov behavior as well as multi-scale consistency.
 Time series forecasting (e.g., streamflow, precipitation).

Advantages: 
 Simulation of processes exhibiting:

• Periodicity (i.e., cyclo-statrionary).
• Any marginal distribution.

 Parsimonious structure and straightforward application.
 Tackle a series of problems relevant with the current approaches, such as,

• Avoid the generation of negative values.
• Generation of realistic dependency patterns.
• Straightforward preservation of skewness coefficient.

 Incorporation of recent advances in statistical science into stochastic modelling. 
• e.g., robust distribution fitting methods (e.g., L-moments or maximum likelihood). 



References
 Cario, M.C., and Nelson, B.L.  (1997). Modeling and generating random vectors with arbitrary marginal distributions and correlation matrix. Ind. Eng. 

1–19.

 Embrechts, P., McNeil, A. J., & Straumann, D., (1999). Correlation and Dependence in Risk Management: Properties and Pitfalls, in Risk Management, 
edited by M. A. H. Dempster, pp. 176–223, Cambridge University Press, Cambridge.

 Fiering, B., and Jackson, B., (1971). Synthetic Streamflows, Water Resources Monograph, American Geophysical Union, Washington, D. C.

 Klemeš, V., and Borůvka, L., (1974). Simulation of Gamma-Distributed First-Order Markov Chain, Water Resour. Res., 10(1), 87–91, 
doi:10.1029/WR010i001p00087.

 Koutsoyiannis, D. (1999). Optimal decomposition of covariance matrices for multivariate stochastic models in hydrology, Water Resources Research, 
35(4), 1219–1229.

 Maass, A., Hufschmidt, M. M., Dorfman, R., Thomas, H. A., Marglin, S. A., Fair, G. M., Bower, B. T., Reedy, W. W., Manzer, D. F., & Barnett, M. P., (1962). 
Design of water-resource systems, Cambridge: Harvard University Press.

 Matalas, N. C. (1967). Mathematical assessment of synthetic hydrology, Water Resources Research, 3(4), 937–945, doi:10.1029/WR003i004p00937.

 Matalas, N. C., and Wallis, J. R., (1976). Generation of synthetic flow sequences, Systems Approach to Water Management, edited by A. K. Biswas, McGraw-
Hill, New York, New York.

 Nataf, A. (1962). Statistique mathematique-determination des distributions de probabilites dont les marges sont donnees, C. R. Acad. Sci. Paris, 255(1), 
42–43.

 Salas, J. D. (1993). Analysis and modeling of hydrologic time series, in Handbook of hydrology, edited by D. R. Maidment, p. Ch. 19.1-19.72, Mc-Graw-
Hill, Inc.

 Salas, J. D., Delleur, J. W. , Yevjevich, V. , & Lane, W. L. (1980). Applied modeling of hydrologic time series, 2nd Print., Water Resources Publication, 
Littleton, Colorado.

 Todini, E. (1980). The preservation of skewness in linear disaggregation schemes, Journal of Hydrology, 47(3–4), 199–214, doi:10.1016/0022-
1694(80)90093-1.

 Tsoukalas, I., Efstratiadis, A., & Makropoulos, C. (2017). Stochastic periodic autoregressive to anything (SPARTA): Modeling and simulation of 
cyclostationary processes with arbitrary marginal distributions. Water Resources Research, 53. https://doi.org/10.1002/2017WR021394

Tsoukalas et al., 2017. Stochastic simulation of periodic processes with arbitrary marginal distributions - 20

https://doi.org/10.1002/2017WR021394

