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Abstract 
Fractal-based techniques have opened new avenues in the analysis of geophysical data. 

On the other hand, there is often a lack of appreciation of both the statistical uncertainty 

in the results, and the theoretical properties of the stochastic concepts associated with 

these techniques. Several examples are presented which illustrate suspect results of 

fractal techniques. It is proposed that concepts used in fractal analyses are stochastic 

concepts and the fractal techniques can readily be incorporated into the theory of 

stochastic processes. This would be beneficial in studying biases and uncertainties of 

results in a theoretically consistent framework, and in avoiding unfounded conclusions. 

In this respect, a general methodology for theoretically justified stochastic processes, 

which evolve in continuous time and stem from maximum entropy production 

considerations, is proposed. Some important modelling issues are discussed with focus 

on model identification and fitting, often made using inappropriate methods. The 

theoretical framework is applied to several processes, including turbulent velocities 

measured every several microseconds, and wind and temperature measurements. The 

applications shows that several peculiar behaviours observed in these processes are 

easily explained and reproduced by stochastic techniques.  

 

I regard intuition and imagination as immensely important: we need them to invent a theory. But 

intuition, just because it may persuade and convince us of the truth of what we have intuited, may 

badly mislead us: it is an invaluable helper, but also a dangerous helper, for it tends to make us 

uncritical. We must always meet it with respect, with gratitude, and with an effort to be severely 

critical of it.  (Karl Popper, preface to “The Open Universe: An Argument for Indeterminism”, 1982). 

1. Introduction 

Over the past 30 years or more, considerable literature highlighted the fractal (self-

similar, self-affine, multifractal) characteristics of many of complex patterns that 

characterize geophysical processes. Fractal literature provides a framework in which a 
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simple process, involving a basic operation repeated many times, can represent natural 

patterns that can be of extraordinary complexity (Falconer, 2014; Scholz and 

Mandelbrot, 1989). In a variety of applications, geophysical systems are viewed as 

fractals that follow certain scaling rules over a broad (even unlimited) range of scales, 

implying that the degree of their irregularity and/or fragmentation is identical at all 

those scales. Mathematically, these rules are power laws with exponents being related to 

a fractal dimension. Roughly speaking, the fractal dimension is a measure of the 

prominence of complexity of a pattern when viewed at very small scales. Therefore, the 

fractal dimension is originally a local property, notwithstanding the fact that in fractal 

literature the local properties are reflected in the global ones (Mandelbrot, 1982). 

 Finding that a complex system is characterized by fractal (or multifractal) behaviour 

with particular scaling exponents represents a desideratum for many practicing 

geophysicists and engineers (von Karman, 1940), because this finding will help in 

describing the system dynamics with very simple formulae and few parameters, in order 

to obtain predictions on the future behaviour of the system. Such dynamics is usually 

denoted as fractal or multifractal, depending on whether it is characterized by one 

scaling exponent or by a multitude of scaling exponents. 

 However, if we agree that scientific theories are mental constructs rather than the 

physical reality per se, then we should also agree that there are no true fractals in 

nature. Although there are natural phenomena that have been explained in terms of 

fractal mathematics, “natural fractals” (such as coastlines, turbulence in fluids, cloud 

boundaries, etc.) can usefully be regarded as such only over an appropriate range of 

scales, with the fractal description inevitably ceasing to be valid if they are viewed out of 

this range of scales.  

 Since asymptotic properties of geophysical processes are crucial for the 

quantification of future uncertainty, as well as for planning and design purposes, many 

applications of fractal theory tend to be descriptive rather than predictive (Falconer, 

2014; Kantelhardt, 2009). In the foundational treatise on fractals, Mandelbrot (1982) 

made such a distinction clear, but it has become somewhat blurred in recent literature.  

 We maintain and show in the following that careful use of stochastics (which includes 

probability theory, statistics and stochastic processes) can deal with all problems about 

complex geophysical processes in a more rigorous manner and more effectively than 

fractals can do. 

2. Why not to prefer fractals over stochastics 

In spite of the difficulty even mathematicians have in formally defining fractals 

(Falconer, 2014; Mandelbrot, 1982), their wide popularity stems from the concept of 

symmetry—in particular, expanding symmetry. From the birth of science and 

philosophy, symmetry has been closely related to harmony and beauty, and this was to 

prove decisive for its role in theories of nature. Both ancients and moderns often 

believed indeed that there is a close association in mathematics between beauty and 

truth.  
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A common research theme in the study of complex systems is the pursuit of universal 

properties that transcend specific system details. In this way, fractal-based techniques 

have opened new avenues in the analysis of geophysical data.  According to Scholz and 

Mandelbrot (1989):  

One possible broad explanation of the role of fractals in geophysics may be found in 

probabilistic limit theorems, and in the existence of classical “universality classes” 

related to them. The reason is illustrated by the following fact. Wiener's scalar 

Brownian motion process W(t) is the limit of the linearly rescaled random processes 

that belong to its very wide domain of attraction. Therefore, it is itself the fixed point of 

the rescaling process. That is, its graph is a self-affine fractal set, a curve. The argument 

suggests that geometric shapes relative to probabilistic limit theorems can be expected 

to be fractal sets.  

On the other hand, the concept of fractals has been closely associated from the outset 

with mathematical constructions involving infinite operations on simple, 

deterministically defined, objects. Simple nonlinear dynamical systems were also 

enrolled in illustrating the emergence of fractal structures. This association with 

determinism and simplicity has been prominent and shaped the evolution of the fractal 

literature.  

Even when studying more complex systems, such as the evolution of geophysical 

processes, the intuitive zeal was to make them comply with the simplicity of the 

archetypal fractal mathematical objects. Thus, several studies attempted to demonstrate 

that irregular fluctuations observed in natural processes are au fond manifestations of 

underlying deterministic dynamics with low dimensionality, hence rendering 

probabilistic descriptions unnecessary. If we assume, for example, that the evolutions of 

all temporal and spatial patterns of geophysics result from deterministic chaos, then we 

may derive the underlying deterministic rules on the basis of their strange attractors, 

which have a fractal structure (Grassberger and Procaccia, 1983). However, such an 

approach is questionable in geophysics (Koutsoyiannis, 2006).  

The opposite reading of the same finding would be more sensible, in our view. 

Specifically, if simple underlying dynamics can produce irregular fluctuations and 

eventually, unpredictable trajectories, then, a fortiori, more complex systems are even 

more unpredictable. In this line of thought, Koutsoyiannis (2010b) used a caricature 

geophysical system, which is low dimensional deterministic by construction, and 

showed that we cannot get rid of uncertainty. Hence, probability theory and its 

extension, stochastics, become absolutely necessary even for the simplest systems. This 

argument may also be used in order to criticize the determinist point of view that 

probability considerations enter into science only if our knowledge is insufficient to 

enable us to make predictions with certainty (Popper, 1982).  

Stochastics has its own rules of calculations and estimations, which go far beyond 

classical calculus in order to deal with uncertain quantities represented as random 

variables and stochastic processes. Fractal studies often fail to appreciate this and apply 

algorithms referring to uncertain quantities with standard mathematical calculations. 
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They do so even when using stochastic concepts, such as statistical moments, 

(auto)correlations and power spectra. Thus, they produce results which not only fail to 

recognize the statistical uncertainty but may be fundamentally flawed, i.e. inconsistent 

with theory. In the subsections below, we summarize some of the problems often 

characterizing fractal studies which make us advocate the dedication to proper 

theoretical concepts, offered by the theory of stochastics. 

Ambiguity 

Even the very terms fractal and multifractal remain without an agreed mathematical 

definition. This is a severe drawback, as without proper definitions we cannot build a 

scientific theory. The importance of definitions in science has been emphasized in the 

following philosophical note by the great Russian mathematician Nikolai Luzin: 

Each definition is a piece of secret ripped from Nature by the human spirit. I insist on 

this: any complicated thing, being illumined by definitions, being laid out in them, 

being broken up into pieces, will be separated into pieces completely transparent 

even to a child, excluding foggy and dark parts that our intuition whispers to us while 

acting, separating into logical pieces, then only can we move further, towards new 

successes due to definitions (from Graham and Kantor, 2009).  

 This is not the case with fractals. Instead, fractals are usually identified intuitively; for 

example, Falconer (2014) refers to a set F as a fractal, when:  

(i) F has a fine structure, i.e. detail on arbitrary small scales;  

(ii) F is too irregular to be described in traditional geometrical language, both 

locally and globally;  

(iii) F has some form of self-similarity, perhaps approximate or statistical;  

(iv) usually, the “fractal dimension” of F (defined in some way) is greater than its 

topological dimension;  

(v) in most cases of interest, F is defined in a very simple way, perhaps recursively. 

Mandelbrot, who coined the term fractal in 1975, tried to theorize about the absence 

of a definition, arguing just opposite of Luzin:  

Let me argue that this situation ought not create concern and steal time from useful 

work. Entire fields of mathematics thrive for centuries with a clear but evolving self-

image, and nothing resembling a definition (Mandelbrot, 1999, p. 14). 

One may indeed recall cases where mathematical concepts did not have proper 

definitions for centuries; probability is a characteristic example. However, the 

expression “nothing resembling a definition” may be a gross exaggeration: In the example 

of probability there never was lack of definitions; the problem was that the definitions 

were problematic (e.g., suffering from circular logic, like in the previous sentence). Once 

Kolmogorov (1933) gave a proper definition to probability, he opened new avenues. 

Certainly, absence of a definition entails domination of intuition over logic, dark over 

light, or uncritical acting over critical thinking (cf. the excerpt by Luzin above and that by 

Popper in the opening motto of the paper).  
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 Nevertheless, Mandelbrot’s aversion from defining concepts, which he does not 

regard as “useful work” to do, has influenced the entire field of fractals.  Even in cases 

where clear definitions exist, Mandelbrot encourages neglecting them and preferring 

intuitive notions. The following excerpt provides an example for the well-defined 

concept of stationarity, which is central in stochastics (see Koutsoyiannis and 

Montanari, 2016):  

[Mandelbrot, 1982] observes that “Ordinary words used in scientific discourse 

combine (a) diverse intuitive meanings, dependent on the user, and (b) formal 

definitions, each of which singles out one special meaning and enshrines it 

mathematically. The terms stationary and ergodic are fortunate in that 

mathematicians agree on them. However, experience indicates that many engineers, 

physicists, and practical statisticians pay lip service to the mathematical definition, 

but hold narrower views." That is, many mathematically stationary processes are not 

intuitively stationary. By and large, those processes exemplify wild randomness, a 

circumstance that provides genuine justification for distinguishing a narrower and a 

wider view of stationarity (Mandelbrot, 1999, p.7). 

Even when Mandelbrot attempts to provide a definition for the central concept of a 

multifractal, he bases that definition on the intuitive concept of a “multibox cartoon”: 

Definition. The term multifractal denotes the most general category of multibox 

cartoons. It allows the generator to combine axial boxes and diagonal boxes with 

non-identical values of Hi from Hmin > 0 to Hmax < ∞ (Mandelbrot, 1999, p. 45; see 

section 3 below about the meaning of H). 

The ambiguity does not concern merely definitions. “Peaceful coexistence” of different 

numerical values for the same mathematical concept has also been advocated: 

We are done now with explaining the peaceful coexistence of two values of D: the 

dimension D = 1/H = 2 applies to that three-dimensional curve, as well as to the trail 

obtained by projecting on the plane (X, Y). However, the projections of the three 

dimensional curve on the planes (t, X) and (t, Y) are of dimension D = 2 – H = 1.5 

(Mandelbrot, 1999, p. 45). 

In fact, when dealing with geophysical processes, one can easily get rid of ambiguity 

through stochastics. Careful use of stochastics can deal with all problems involving 

fractals of non-deterministic type in a more rigorous manner and more effectively. 

Confusion between local and global properties of processes 

Indeed, attempts to remove ambiguity based on stochastics are not rare, as indicated by 

the following excerpt: 

There is no “official” consensus on the definition of a fractal. However, what is 

generally agreed on is that the Hausdorff measure and Hausdorff dimension play a 

key role. One possible definition of a fractal is then for example that it is a set A ⊆ Rk 

whose Hausdorff dimension dimHaus A is not an integer (Beran et al., 2013, p. 178). 
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Other researchers who seek for clarity also agree on this; for example Veneziano and 

Langousis (2010, p. 4) state that the most general and mathematically satisfactory 

definition of fractal dimension is the Hausdorff dimension. Here it is important to note 

that the Hausdorff dimension expresses a local property, an asymptotic measure as a 

radius δ for covering the set A tends to zero. This is more evident in the so-called box-

counting dimension, which is an upper bound for DHaus (Beran et al., 2013, p. 181-182) 

and is defined as dimBox 𝐴 = lim𝛿→0 log𝑁𝛿/ log 𝛿 where Nδ is the minimal number of 

sets Ui needed for a δ-cover of A. 

However, as in the fractal literature it is intuitively believed that the local properties 

repeat themselves at bigger and bigger scales, and given the general frame of ambiguity, 

the local properties have been confused with global ones, such as the long-range 

dependence. Indeed:  

In the context of time series analysis, fractal behaviour is often mentioned as 

synonym for long-range dependence. Though there are strong connections between 

the two notions, they are also in some sense completely different (Beran et al., 2013, 

p. 178). 

Even Mandelbrot (1999, p.3) referred to the difference of locality and globality, but in a 

rather obscure way: 

The importance of the contrast between mildness and wildness is in part due to its 

links with a contrast between locality and globality.  

However, this was not enough to hinder the fractal literature from confusing fractal 

behaviour with long-range dependence.  

Gneiting and Schlather (2004) were perhaps the first to clarify the issue and highlight 

the fact that fractal properties and long-range dependence are independent of each 

other. They used a process with Cauchy-type autocovariance function, which was first 

proposed by Yaglom (1987, p. 365) and also referred to by Wackernagel (1995, p. 219; 

1998, p. 246), while a similar one was used by Koutsoyiannis (2000) in discrete time. 

Using this process, they demonstrated that the fractal and Hurst properties (long-range 

dependence) are two different things, independent to each other: The fractal parameter 

determines the local properties (the roughness) of the process (as time t → 0) while the 

Hurst parameter determines the global properties of the process (as t → ∞). 

Use of the abstract mathematical objects as if they are natural objects  

In mathematical processes the local and global properties can be the same. The obvious 

example is the Hurst-Kolmogorov (HK) process (see below), also known as fractional 

Gaussian noise (Mandelbrot and Van Ness, 1968), which is described by a single scaling 

exponent applicable to all scales. Scale independence or absence of characteristic scales 

in a process or a phenomenon is mathematically and intuitively attractive. Indeed, it 

would imply that simple physical dynamics could produce complex phenomena that 

exhibit startling similarities over all scales. However, in Nature complex phenomena are 

influenced by different mechanisms and agents, each one acting at a different 
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characteristic scale, and therefore absence of characteristic scales is only a dream. 

Besides, the assumption of absence of characteristic time scales would have 

consequences that would be absurd. Some examples follow: 

 The speculation that rivers are fractals with fractal dimension > 1 (e.g. 1.2) has 

been very popular. However, if that were the case, it would mean that the number 

of sets of its δ-cover would be a power law of δ with exponent > 1 for arbitrary 

low δ. As a direct consequence, the geometrical length of the river would be 

infinite (a curve with dimension > 1 has infinite length; Falconer, 2014) and any 

particle of water would take infinite time to reach the sea. 

 If a Hurst-Kolmogorov process (whose variance is a power law of time scale; 

equation (16) below) were applicable for arbitrary short time scales, it would 

entail infinite variance of the instantaneous, continuous-time process which 

would imply infinite energy. 

 If an antipersistent Hurst-Kolmogorov process (with Hurst exponent H < 0.5; see 

below) were applicable for arbitrary short time scales, it would entail negative 

autocovariance (anti-correlation) for arbitrary small lags which is absurd. For in 

a natural process, the autocorrelation should tend to 1 as lag tends to 0. 

All these paradoxes are easily resolved if we abandon the idea of absence of 

characteristic scales and admit that below (or above) a certain characteristic scale the 

respective power laws cease to hold.  

Hasty use of stochastic concepts 

Stochastic concepts such as statistical moments (marginal or joint, e.g. covariances), and 

spectral densities have been widely used in the fractal literature, usually by making 

calculations using data and at the same time ignoring the theoretical properties of those 

concepts. A typical example is the power spectrum, 𝑠(𝑤), where w denotes frequency 

(inverse time scale), and its log-log slope 𝑠#(𝑤). The latter represents the log-log 

derivative, which for any function f(x) is defined as: 

𝑓#(𝑥) ≔
d(ln 𝑓(𝑥))

d(ln 𝑥)
=
𝑥𝑓′(𝑥)

𝑓(𝑥)
 (1) 

The HK process is used as a benchmark as it has a power spectrum with constant slope, 

i.e. 𝑠(𝑤) ∝ 𝑤𝛽 , where the constant slope 𝛽 = 𝑠#(𝑤) is related to the Hurst parameter H 

(equation (16) below) by 𝛽 = 1 − 2𝐻. The special case H = 0.5, which signifies the white 

noise, corresponds to β = 0, thus complying with the fact that the white noise spectrum 

is flat (s(w) = constant). As H → 1, which is the highest possible value, β → –1, which is 

the lowest possible value for a stationary and ergodic process. 

However, a huge number of studies exploring several data sets have reported steeper 

constant slopes, i.e. β < –1, also suggesting H > 1, which is absurd. Other studies assume 

that slopes β < –1 are theoretically consistent, also claiming that the particular value β = 

–2 corresponds to the power spectrum of the Brownian motion (the integral over time 

of white noise), which is a nonstationary process. This line of thought is extended 



8 
 

further, in the characterization of processes. Specifically, the power spectrum has been 

often regarded as a tool to identify whether a process is stationary or nonstationary: 

values β > –1 are thought to suggest a stationary process while values β < –1 are thought 

to confirm the nonstationarity of the process. The fact is, however, that the entire line of 

thought is theoretically inconsistent and such numerical results, usually reported, are 

artefacts due to insufficient data or inadequate estimation algorithms. 

Before we describe the details for recovering from the incorrect application of the 

power spectrum, it would be informative to trace how incorrect results can appear. In 

the example of Figure 1, 1024 data points have been generated from a stationary 

stochastic process and the empirical power spectrum, calculated from these data, has 

been plotted. To apply some smoothing (as per Bartlett’s (1948) method), the empirical 

power spectrum was constructed by averaging from 8 segments, in which the data were 

separated (since without smoothing the power spectrum would be exceptionally rough). 

The stochastic process has the theoretical power spectrum with the indicated varying 

slope (specifically, it is an HHK process, defined in equation (17) below, with parameters 

M = 0.5, H = 0.8, α = λ = 1; see also Koutsoyiannis, 2014). On its right tail the power 

spectrum has an asymptotic slope of –2, which is not inconsistent nor does it indicate 

nonstationarity (actually, a right-tail slope of  –2 is precisely the slope of a stationary 

Markov model; see below). In contrast, on its left tail the power spectrum has an 

asymptotic slope of –0.6, which is strictly > –1 (were it not, it would be inconsistent with 

theory, as will be detailed below).  

 

Figure 1 Illustration of inconsistent results derived by hasty use of the power spectrum. 
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 From the shape of the theoretical power spectrum it can be imagined that if the 

time step and length of the data set were such that we could “see” only at frequencies > 

0.1, then we would conclude that we have a constant slope of –2 and, if we followed the 

standard fractal line of thought, we would claim that the process is (nonstationary) 

Brownian motion. Of course, all these would be incorrect as the model is purely 

stationary and not at all related to Brownian motion. 

Even with the given data set, which allows us to “see” frequencies much lower than 

0.1 (by an order of magnitude or more), the empirical power spectrum may again 

mislead us. For, even after the aforementioned smoothing, the empirical power 

spectrum is too rough to recover the underlying model and its parameters. Furthermore, 

it involves high bias and it suggests a misleading constant slope of –1.5. Just knowing the 

theoretical properties, as well as the uncertainty and bias of the power spectrum as a 

stochastic tool, we would avoid making erroneous claims, even though it is doubtful if 

this would help us to identify the correct model (see Dimitriadis and Koutsoyiannis, 

2015). Nonetheless, identifying the model from data and recovering the theoretically 

consistent asymptotic slopes (–0.6 and –2) are possible but need other methods (CS—

see below).  

The theoretical properties of the power spectrum which we need to know to avoid 

false claims include the following: 

 Once we make the power spectrum of a process as a function of frequency, we 

have tacitly assumed a stationary process. In a nonstationary process, both the 

autocovariance and the spectral density, i.e. the Fourier transform of the 

autocovariance, are functions of two variables, one being related to “absolute” 

time (see e.g. Dechant and Lutz, 2015). Thus, there is no meaning in using a 

stationary representation (setting the power spectrum as a function of frequency 

only) and, at the same time, claiming nonstationarity. Even though this tactic has 

been very common, it is inconsistent. Furthermore, we should be aware that the 

customary Wiener-Khinchin theorem relating autocovariance and power 

spectrum pertains to stationary processes. This theoretical knowledge will 

prevent us from making claims of nonstationarity while using formulations and 

tools pertaining to stationary stochastic processes. In addition, we should be 

aware that claiming nonstationarity based solely on inductive reasoning is 

absurd (Koutsoyiannis and Montanari, 2015).   

 Once we use the power spectrum of a process for inference, as we always do, we 

should be aware that inference from data is only possible when the process is 

ergodic. As shown in the Appendix A, in an ergodic process, the asymptotic slope 

on the left tail of the power spectrum cannot be steeper than –1. Thus, there is no 

meaning in reporting slopes in empirical power spectra 𝑠# < −1 (e.g. 𝑠# = −1.5, 

as in the example of Figure 1) and at the same time making any claim about the 

process properties (e.g. of nonstationarity) based on the power spectrum. 

Actually, such a steep slope, when emerging from processing of data, does not 

suggest that a process is non-ergodic, it rather identifies inconsistent estimation. 
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 We should be aware of the close relationship of ergodicity and stationarity 

(Koutsoyiannis and Montanari, 2015). In particular, a nonstationary process is 

nonergodic and thus any estimates from data (including those of the power 

spectrum) are meaningless when we claim nonstationarity. 

 As a result of the above listed theoretical points, constant slopes β < –1 of the 

power spectrum are invalid and indicate either inadequate length of data or 

inconsistent estimation algorithm. Likewise, non-constant slopes of power 

spectrum steeper than –1 (𝑠#(𝑤) < −1) for small frequencies (w → 0) are equally 

invalid. We note that steep slopes (𝑠#(𝑤) < −1) are mathematically and 

physically possible for medium and large w—actually they are quite frequent in 

geophysical processes (see also Koutsoyiannis, 2013a,b; Koutsoyiannis et al., 

2013; Dimitriadis and Koutsoyiannis, 2015).  

Misspecification / misinterpretation of scaling laws  

The applicability of fractal analyses to complex phenomena of the real world essentially 

relies on the empirical detection of power-law relationships in observational data. 

Therefore, such analyses heavily rely on available data series and their statistical 

processing; and since they ask statistical questions, they must rely on probability theory 

(Stumpf and Porter, 2012).  

However, as the inference from data obeys statistical laws and is affected by 

statistical uncertainty and bias, we should respect these laws in making inference. Some 

examples can demonstrate that such respect is often not paid in fractal studies. The 

interested reader could perform a Google search with related terms (e.g. universal 

multifractal rainfall—see also Koutsoyiannis, 2010a) and several studies will be listed 

that identify multifractal behaviour of rainfall. This is usually done in terms of scaling 

relationships between raw moments of the averaged process x(k) at time scale k, i.e. 

E[(x(k))q] (or inverse time scale λ := 1/k), for several  orders of moments q. Such scaling 

relationships are graphically identified on log-log plots and then the relationship of the 

scaling exponent (slope) K as a function q (the function K(q)) is empirically constructed 

(even though, according to universal multifractals, there exists a theoretical model for 

K(q) that one can fit to empirical data; cf. eqn. (2.12) in Tessier et al., 1993).  

A graphical example is provided in Figure 2 to illustrate that the entire procedure is 

problematic from the outset. A time series with length N =213 = 8192 was generated 

from the HK process with Hurst parameter H = 0.8 and Gaussian distribution N(1,1). 

Some scaling laws seem to appear at a range of time scales. One could be led to assume a 

multifractal behaviour and specify a K(q) function. All these, however, are spurious. The 

truth is that there is no multifractal behaviour here. As shown theoretically by 

Lombardo et al. (2014) for q = 2, there is no constant slope K but, as λ → 0 (or k → ∞), 

the slope decreases to K(q) = 0. Also the slope empirically estimated for small k (large λ) 

is too low compared to its theoretical value. 
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Figure 2 Illustration of spurious scaling laws between raw moments and inverse time scale. 

Neglect of statistical bias and variation  

The above example illustrates a symptom of a more general tendency in the fractal 

literature to treat observations (time series) deterministically, confusing random 

variables with their realizations and ignoring statistical bias and variation. In the 

example of Figure 2, high-order moments up to q = 7 have been used, as actually 

happens is several multifractal studies (this can be verified in studies that could be 

located with the Google search mentioned above).  

However, high-order moments, which have been popular in multifractal studies, are 

well known in statistics to have minimal information content and therefore are avoided. 

This is further illustrated in Figure 3, constructed after Monte Carlo simulation of the 

fifth moment of a Pareto distribution with shape parameter 0.15 and for sample size n = 

100 (Papalexiou et al. 2010; see also Lombardo et al., 2014).  

Here the theory guarantees that there is no estimation bias, but the distribution 

function is enormously skewed. The mode is nearly two orders of magnitude less than 

the mean and the probability that a calculation, based on data, will reach the mean is 

two orders of magnitude lower than the probability of obtaining the mode. Therefore, 

there is no meaning in using such uncertain quantity, with so skewed distribution, in any 

type of inference. 

Confusion between different scaling behaviours 

Scaling relationships, expressed as power laws between involved quantities, have been 

central in fractal studies. Yet their meaning has been obscure, while quite different 

scaling laws with different meanings are confused and regarded to be of the same 

nature. This is like regarding the different physical laws that involve the product of two 

quantities (e.g. F = m a, W = F s, m = ρ V, where F, m, a, W, s, ρ and V denote force, mass, 

acceleration, work, displacement, density and volume) as a manifestation of the same 

magical law of multiplicative quantities.  
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Figure 3 Illustration of the statistical distribution of the estimate �̃�𝟓 of the fifth moment m5 of 

the Pareto distribution (pdf stands for probability density function). 

It is thus important to differentiate the unlike types of scaling met in geophysical 

processes and clarify their meaning. We can distinguish the following types of scaling 

(where the formal definitions of the various terms are given in section 3): 

 Temporal scaling indicates dependence in time and is expressed as a power law of 

some second order property (marginal or joint second central moment) of a process 

with respect to a quantity related to time. We can further subdivide temporal scaling 

into: 

o Hurst behaviour, which is expressed as a power function of autocorrelation vs. 

time lag or climacogram vs. time scale;  

o fractal (local) behaviour, which is expressed as a power function of structure 

function vs. time lag or climacogram-based structure function (see below) vs. time 

scale. 

 Spatial scaling is similar to temporal scaling but indicating dependence in space. 

 State scaling is totally irrelevant to temporal and spatial scaling; it is related to the 

marginal distribution of the process and indicates a heavy-tailed distribution (a 

power law of probability of exceedence vs. state).  

 Scaling of (high-order) moments with time scale; while in theory this cannot be 

excluded, in most empirical studies it perhaps is an artefact related to other types of 

scaling and, as explained above, it is usually spurious because high-order moments 

are not reliably estimated from data. 

As already mentioned, in real world systems scaling laws never extend to the entire 

range of scales. Usually they are asymptotic laws, with different exponents at each edge. 

Asymptotic scaling laws abound because, in our view, they are a mathematical necessity 
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(Koutsoyiannis, 2014). The asymptotic behaviour of stochastic properties of processes 

(such as survival function, autocovariance, structure function, climacogram, etc.) should 

necessarily tend to zero at one edge (e.g. at infinity) and the decay to zero can be 

exponential (fast decay) or of power-type (slow decay). In the latter case, the emergence 

of an asymptotic power law is obvious, whether it holds in the form of scaling in state 

(heavy-tailed distributions) or in time (long-term persistence). Both cases have been 

verified in geophysical time series (e.g. O’Connell et al., 2016; Markonis and 

Koutsoyiannis, 2016, 2013; Dimitriadis and Koutsoyiannis 2017). According to this 

view, scaling behaviours are just manifestations of enhanced uncertainty and are 

consistent with the principle of maximum entropy (Koutsoyiannis, 2011; see also 

below). The connection of scaling with maximum entropy constitutes also a connection 

of stochastic representations of natural processes with statistical physics.  

3. Fundamentals of stochastics for geophysics 

In this section, we give a very brief presentation of the most fundamental concepts of 

stochastics. Later, in section 5 we will show that these concepts suffice to model complex 

phenomena without making any use of the fractal nomenclature, even though some of 

these phenomena are thought to belong to the preferential domain of the fractal 

literature (e.g. turbulence).  

The meaning of randomness and stochastics 

A deterministic world view is founded on a concept of sharp exactness. A deterministic 

mathematical description of a system uses regular variables (e.g. x) which are 

represented as numbers. The change of the system state is represented as a trajectory 

x(t), which is the sequence of a system’s states x as time t changes. 

In an indeterministic world view there is uncertainty or randomness, where the latter 

term does not mean anything more than unpredictability or intrinsic uncertainty. A 

system’s description is done in terms of random variables. A random variable x is an 

abstract mathematical entity whose realizations x belong to a set of possible numerical 

values. A random variable x is associated with a probability density (or mass) function 

f(x). Notice the different notation of random variables (underlined, according to the 

Dutch notation; Hemelrijk, 1966) from regular ones. The evolution of a system over time 

is no longer sufficient to be represented as a trajectory but as a stochastic process x(t), 

which is a collection of (usually infinitely many) random variables x indexed by t 

(typically representing time). A realization (sample) x(t) of x(t) is a trajectory; if it is 

known at certain points ti, i = 1, 2, …, it is a time series. 

The mathematics of random variables and stochastic processes is termed stochastics, 

and is composed of probability theory, statistics and stochastic processes. Most natural 

processes evolve in continuous time but they are observed in discrete time, 

instantaneously or by averaging. Accordingly, the stochastic processes devised to 

represent the natural processes should evolve in continuous time and be converted into 

discrete time, as illustrated in Figure 4.  
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While a stochastic process denotes, by conception, change (process = change), there 

should be some properties that are unchanged in time. This implies the concept of 

stationarity (Koutsoyiannis and Montanari 2015), which is central in stochastics. For the 

remaining part of this article, the processes are assumed to be stationary, noting that 

nonstationary processes should be converted to stationary before their study (for 

example, the cumulative process X(t) in Figure 4 is nonstationary, but by differentiating 

it in time we obtain the stationary process x(t)).  The most customary properties of a 

stationary stochastic process are its second order properties: 

 Autocovariance function, c(h) := Cov[x(t), x(t + h)]. 

 Power spectrum (also known as spectral density), s(w); it is defined as the Fourier 

transform of the autocovariance function, i.e., by equation (2). 

 Structure function (also known as semivariogram or variogram), 𝑣(ℎ) ≔ 

(1/2)Var[𝑥(𝑡) − 𝑥(𝑡 + ℎ)]. 

 Climacogram, γ(k) := Var[𝑥𝑖
(𝑘)

], where 𝑥𝑖
(𝑘)

 is the averaged process over time scale k 

(see Figure 4 and substitute a varying time scale k for the constant time interval D). 

   

Figure 4 Explanatory sketch for a stochastic process in continuous time and two different 

representations in discrete time. Note that the graphs display a realization of the process (it is 

impossible to display the process as such) while the notation is for the process per se. 

t0 D 2D … (i – 1)D iD

xi := x(iD) 
(instantaneous process 
sampled at spacing D)

Xi:= 

(cumulative sampled at 
spacing D, nonstationary)

X(t) ≔

(cumulative, nonstationary)

x(t) (instantaneous, 
continuous-time process)

t

=

= (X(iD) – Χ((i– 1)D)

(averaged at time scale D)t0 D 2D … (i – 1)D iD
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For time-related quantities, in the above notation and in the next part of this article, 

we use the following symbols, where Latin letters denote dimensional quantities and 

Greek letters dimensionless ones, where the latter are convenient when using the 

discrete-time variants of a process: 

 Time unit (time step in case of sampling or time scale in case of aggregating or 

averaging), D. 

 Time, t =τ D (alternatively for strictly integer i = 1, 2, …, t = i D where t is continuous 

time and i discrete time). 

 Time lag, h = η D. 

 Time scale k = κ D.  

 Frequency, w = ω/ D, related to time scale by w = 1/k , ω = 1/κ. 

All these properties are transformations of one another, i.e.: 

𝑠(𝑤) = 4∫ 𝑐(ℎ) cos(2π𝑤ℎ) dℎ

∞

0

,𝑐(ℎ) = ∫ 𝑠(𝑤) cos(2π𝑤ℎ) d𝑤

∞

0

 
(2) 

𝑣(ℎ) = 𝑐(0) − 𝑐(ℎ),     𝑐(ℎ) = 𝑐(0) − 𝑣(ℎ) (3) 

𝛾(𝑘) = 2∫(1 − 𝜐)𝑐(𝜐𝑘)d𝜐,

1

0

𝑐(ℎ) =
1

2

d2(ℎ2𝛾(ℎ))

dℎ2
 (4) 

where equation (3) is valid when the variance of the instantaneous process is finite 

(γ0 := γ(0) ≡ c(0) ≠ ∞). 

The climacogram is not as popular as the other tools but it has several good 

properties due to its simplicity, close relationship to entropy (see below), and more 

stable behaviour, which is an advantage in model identification and fitting from data. In 

particular, when estimated from data, the climacogram behaves better than all other 

tools, which involve high bias and statistical variation (Dimitriadis and Koutsoyiannis, 

2015; Koutsoyiannis, 2016). The climacogram involves bias too, but this can be 

determined analytically and included in the estimation. Furthermore, it enables the 

definition of additional useful tools as shown in Table 1. 

Table 1 Climacogram based metrics of stochastic processes. 

Metric / Usefulness  Definition Comments 
Climacogram  
Useful for the global asymptotic 
behaviour (k→ ∞) 

γ(k) ≔ Var[xi(k)]  For an ergodic process for 
k → ∞, γ(k) → 0 necessarily  

Climacogram-based structure 
function (CSF)  
Useful for the local asymptotic 
behaviour (k → 0) 

ξ(k) ≔ γ0 – γ(k) 
 

The definition presupposes 
that the variance γ0 is finite 

Climacogram-based spectrum (CS) 
Useful for both the global and local 
asymptotic behaviour 

𝜓(𝑤) ≔
2

𝑤𝛾0
𝛾(1 𝑤⁄ )𝜉(1 𝑤⁄ )  

=
2𝛾(1 𝑤⁄ )

𝑤
(1 −

𝛾(1 𝑤⁄ )

𝛾0
)   

It combines the climaco-
gram and the CSF; valid 
even for infinite variance  
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The CSF, ξ(k),  behaves like the structure function 𝑣(ℎ) and is related to the latter by 

the same way as the climacogram γ(k) is related to the autocovariance function c(h): 

𝑐(ℎ) =
1

2

d2(ℎ2𝛾(ℎ))

dℎ2
,𝑣(ℎ) =

1

2

d2(ℎ2𝜉(ℎ))

dℎ2
 (5) 

The CS, ψ(w), behaves like the power spectrum; it has same dimensions, and in most 

cases has precisely the same asymptotic behaviour as the power spectrum, but it is 

smoother and more convenient in model identification and fitting (see section 5). 

Second order properties at discrete time 

Once the continuous-time properties are known, the discrete-time ones can be readily 

calculated. For example, and assuming a time interval D for discretization, as in Figure 4, 

the autocovariance of the averaged process is: 

𝑐𝜂
(𝐷) = Cov[𝑥𝜏

(𝐷), 𝑥𝜏+𝜂
(𝐷) ] =

1

𝐷2
(
𝛤(|𝜂 + 1|𝐷) + 𝛤((|𝜂 − 1|𝐷)

2
− 𝛤(|𝜂|𝐷)) (6) 

where Γ(D) ≔ Var[X(D)] = D2γ(D). Also, the power spectrum of the averaged process can 

be calculated from: 

𝑠d
(𝐷)(𝜔) = 2𝑐0

(𝐷) + 4∑𝑐𝜂
(𝐷)

∞

𝜂=1

cos(2π𝜂𝜔) (7) 

where 𝑠d
(𝐷)(𝜔) ≔ 𝑠(𝐷)(𝑤)/𝐷 (nondimensionalized spectral density), whereas the 

discrete-time power spectrum 𝑠(𝐷)(𝑤) is related to the continuous-time one by 

(Koutsoyiannis, 2016) 

𝑠(𝐷)(𝜔) = ∑ 𝑠 (𝑤 +
𝑗

𝐷
)

∞

𝑗=−∞

sinc2(𝜋(𝑤𝐷 + 𝑗)) (8) 

More details and additional cases can be found in Koutsoyiannis (2013b, 2016). 

Cautionary notes for model fitting 

Model identification and fitting is much more important than commonly thought. Even 

the statistical literature has paid little attention to the fact that direct estimation of any 

statistic of a process (except perhaps for the mean) is not possible merely from the data. 

We always need to assume a model to estimate statistics.  

Any statistical estimator �̂� of a true parameter s is biased either strictly (meaning: 

E[�̂�] ≠ 𝑠) or loosely (meaning: mode[�̂�] ≠ 𝑠). Model fitting is necessarily based on 

discrete-time data and needs to consider the effects of (a) discretization and (b) bias. 

It is commonly thought that the standard estimator of the variance from a sample of 

size n is unbiased if we divide the sum of squared deviations from mean by n – 1 instead 

of n (equation (9)). This is correct only if the assumed model is the white noise. 

Otherwise, the estimation is biased and, if the process has long-range dependence, the 

bias can be substantial. The climacogram, which is none other than the variance, needs 
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to consider this bias. Actually, it is easy to analytically estimate the bias and the effect of 

discretization, once a model has been assumed in continuous time. 

Let us consider a process with climacogram 𝛾(𝑘), from which we have a time series 

for an observation period T (multiple of the time step D), each one giving the averaged 

process 𝑥𝑖
(𝐷)

at a time step D. We form time series for scales that are multiples of D, i.e., k 

= κD, κ = 1, 2, …,  and we wish to estimate the variance at any such scale (including that 

at scale D, for κ =1). The standard estimator 𝛾(𝑘) of the variance 𝛾(𝑘) is  

𝛾(𝑘) ≔
1

𝑛 − 1
∑(𝑥𝑖

(𝑘)
− 𝑥1

(𝛵)
)
2

𝑛

𝑖=1

=
1

𝑇 𝑘⁄ − 1
∑(𝑥𝑖

(𝑘)
− 𝑥1

(𝛵)
)
2

𝑇 𝑘⁄

𝑖=1

 (9) 

where by inspection it is seen that 𝑥1
(𝛵)

 is the sample mean, while it was assumed that T 

is a multiple of k so that the sample size is n = 𝑇 𝐷⁄  (if not, we should replace T with 

⌊𝑇/𝑘⌋𝑘, where ⌊. ⌋ denotes the floor of a real number). It can be then shown 

(Koutsoyiannis, 2011, 2016) that the bias can be calculated from 

E[𝛾(𝑘)] = 𝜒(𝑘, 𝛵)𝛾(𝑘),𝜒(𝑘, 𝛵) =
1 − 𝛾(𝑇) 𝛾(𝑘)⁄

1 − 𝑘 𝑇⁄
=
1 − (𝑘 𝛵⁄ )2𝛤(𝛵) 𝛤(𝑘)⁄

1 − 𝑘 𝑇⁄
 (10) 

Entropy and entropy production 

As already mentioned, the emergence of scaling from maximum entropy considerations 

may provide the theoretical background in modelling complex natural processes by 

scaling laws. 

The Boltzmann-Gibbs-Shannon entropy of a cumulative process X(t) with probability 

density function f(X; t) is a dimensionless quantity defined as:  

Φ[𝑋(𝑡)] ≔ Ε [– ln
𝑓(𝑋; 𝑡)

𝑚(𝑋)
] = − ∫ ln

𝑓(𝑋; 𝑡)

𝑚(𝑋)
𝑓(𝑋; 𝑡)𝑑𝑋

∞

−∞

 (11) 

where m(Χ) is the density of a background measure (typically Lebesgue). The entropy 

production in logarithmic time (EPLT) is a dimensionless quantity, the derivative of 

entropy in logarithmic time (Koutsoyiannis, 2011): 

φ(t) ≡ φ[X(t)] ≔ Φ΄[X(t)] t ≡ dΦ[X(t)] / d(lnt) (12) 
For a Gaussian process with constant density of background measure, m(Χ) ≡ m, the 

entropy depends on its variance Γ(t) only and is: 

Φ[X(t)] = (1/2) ln(2πe Γ(t)/m2),  φ(t) = Γ΄(t) t / 2Γ(t) (13) 

When the past (t < 0) and the present (t = 0) are observed, instead of the unconditional 

variance Γ(t) we should use a variance ΓC(t) conditional on the past and present:  

𝛤C(𝑡) ≈ 2𝛤(𝑡)–
𝛤(2𝑡)

2
,𝜑C(𝑡) =

𝛤C
′(𝑡)𝑡

2𝛤C(𝑡)
≈
(2𝛤′(𝑡) − 𝛤′(2𝑡))𝑡

4𝛤(𝑡) − 𝛤(2𝑡)
 (14) 
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Resulting processes from maximizing entropy production 

Koutsoyiannis (2011) assumed that the behaviour seen in natural processes is 

consistent with extremization of entropy production and provided a framework to 

derive processes maximizing entropy production. Using simple constraints in 

maximization, such as known variance at the scale k = D = 1, and lag one autocovariance 

for the same time scale, the following processes extremizing the EPLT φ(t) and φC(t) can 

be derived, which are also depicted in Figure 5 in terms of their EPLT and climacograms.  

 

Figure 5 EPLTs (upper) and climacograms (lower) of the three processes extremizing entropy 

production. At time scale k = 1 all three processes have the same variance, γ(1) = 1, and the same 

autocovariance for lag 1, 𝒄𝟏
(𝟏) = 0.5. Their parameters are (see text for their definitions): for the 

Markov process α = 0.8686, λ = 1.4176; for the HK process a = 0.0013539, λ = 15.5032, H = 

0.7925; for the HHK process a = 0.0013539, λ = 15.5093, M = 0.5, H = 0.7925 (adapted from 

Koutsoyiannis 2016). 
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 A Markov process: 

𝑐(ℎ) = 𝜆e−ℎ/𝛼, 𝛾(𝑘) =
2𝜆

𝑘 𝛼⁄
(1 −

1−e−𝑘 𝛼⁄

𝑘 𝛼⁄
) (15) 

maximizes entropy production for small times but minimizes it for large times.  

 A Hurst-Kolmogorov (HK) process:  

𝛾(𝑘) = 𝜆(𝛼/𝑘)2−2𝛨 (16) 

maximizes entropy production for large times but minimizes it for small times. 

 A Hybrid Hurst-Kolmogorov (HHK) process 

𝛾(𝑘) = 𝜆(1 + (𝑘 𝛼⁄ )2𝑀)
𝐻−1
𝑀  (17) 

maximizes entropy production both at small and large time scales. 

In these definitions α and λ are scale parameters with dimensions of [t] and [x2], 

respectively. The parameter H (in honour of Hurst) is the Hurst parameter which 

determines the global properties of the process (as 𝑘 → ∞). The parameter M (in honour 

of Mandelbrot) is the fractal parameter which determines the local properties (as 𝑘 →

0). Both H and M are dimensionless numbers in the interval (0, 1). In the HHK process, 

locality and globality are clearly independent of each other, each one characterized by 

an asymptotic power law. Hence, it allows explicit control of both asymptotic 

logarithmic slopes of the CS 𝜓#(𝑘) and the power spectrum 𝑠#(𝑤). Ιn the special case 

where H = M = 0.5, HHK is practically indistinguishable from a Markov process, even 

though not precisely identical. Furthermore, as α → 0, the process tends to a pure HK 

process with the same Hurst parameter H. Also, for any specific parameter set, HHK 

exhibits Markov behaviour for small time scales (if M = 0.5, or similar to Markov if M ≠ 

0.5) and Hurst behaviour for large time scales, as seen in Figure 5.  

The HHK process is consistent with natural behaviours and remedies known 

inconsistencies of the HK process (discussed in subsection “Use of the abstract 

mathematical objects as if they are natural objects”), while retaining the persistence or 

antipersistence properties. Specifically, the variance of the instantaneous process is 

always finite (γ0 = γ(0) = λ), while even for 0 < H < 0.5 the initial part of the 

autocovariance function for small lags is positive for all variants of the process 

(continuous time, discrete time, either sampled or averaged, for a small time interval D). 

4. Simulation of stochastic processes respecting their fractal properties 

Monte Carlo (stochastic) simulation is an important numerical method for resolving 

problems that have no analytical solution. Obviously, simulation is performed in discrete 

time, at a convenient discretization step. The following method based on the so-called 

symmetric moving average (SMA) scheme (Koutsoyiannis, 2000, 2016) can be used to 

exactly simulate any Gaussian process, with any arbitrary autocovariance function 

(provided that it is mathematically feasible). It can also approximate, with controlled 

accuracy, any non-Gaussian process with any arbitrary autocovariance function and any 

marginal distribution function. 
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The symmetric moving average scheme 

The SMA scheme can directly generate time series xi (where for simplicity we have 

omitted the time interval D in the notation) from any process xi with any type of 

dependence by: 

𝑥𝑖 = ∑ 𝑎|𝑙|𝑣𝑖+𝑙

∞

𝑙=−∞

 (18) 

where al are coefficients calculated from the autocovariance function and vi is white 

noise averaged in discrete-time.  Assuming that the power spectrum 𝑠d
(𝐷)(𝜔) of the 

averaged discrete-time process is known (from the equations listed above), it has been 

shown (Koutsoyiannis 2000) that the Fourier transform 𝑠d
𝑎(𝜔) of the al series of 

coefficients is related to the power spectrum of the discrete time process as  

𝑠d
𝑎(𝜔) = √2𝑠d

(𝐷)(𝜔) (19) 

Thus, to calculate al we first determine 𝑠d
𝑎(𝜔) from the power spectrum of the process 

and then we invert the Fourier transform to estimate all al.  

Handling of truncation error 

It is expected that the coefficients al will decrease with increasing l and will be negligible 

beyond some q (l > q), so that we can truncate (18) to  

𝑥𝑖 = ∑ 𝑎|𝑙|𝑣𝑖+𝑙

𝑞

𝑙=−𝑞

 (20) 

This introduces some truncation error in the resulting autocovariance function. To 

adjust for this on the variance, we calculate the al from 

𝑎𝑙 =𝑎𝑙
′ + 𝑎′′ (21) 

where the coefficients 𝑎𝑙
′ are calculated from inverting the Fourier transform of either 

𝑠d
𝑎(𝜔)or𝑠d

𝑎(𝜔)(1 − sinc(2π𝜔𝑞)) (two options; Koutsoyiannis, 2016).  

The constant 𝑎′′ is determined so that the variance is exactly preserved: 

𝛾(𝐷) = ∑ 𝑎|𝑙|
2

𝑞

𝑙=−𝑞

= ∑(𝑎|𝑙|
′ + 𝑎′′)

2

𝑞

𝑙=−𝑞

 (22) 

Solving for 𝑎′′, this yields: 

𝑎′′ = √
𝛾(𝐷) − Σ𝑎′2

2𝑞 + 1
+ (

Σ𝑎′

2𝑞 + 1
)

2

 −
Σ𝑎′

2𝑞 + 1
 (23) 

where Σ𝑎′ ≔ ∑ 𝑎|𝑙|
′𝑞

𝑙=−𝑞 andΣ𝑎′2 ≔ ∑ 𝑎′|𝑙|
2𝑞

𝑙=−𝑞 . 



21 
 

Handling of moments higher than second order 

In addition to being general for any second order properties (autocovariance function), 

the SMA method can explicitly preserve higher order marginal moments. Here is should 

be made clear that, while, as already mentioned, high-order moments cannot be 

estimated reliably from data, non-Gaussianity is very commonly verified empirically and 

also derived by theoretical reasoning (Koutsoyiannis 2005, 2014). An easy manner to 

simulate non-Gaussian (e.g., skewed) distributions is to calculate theoretically (not from 

the data) their moments and then explicitly preserve these moments in simulation. 

Preservation of three or four central moments usually provides good approximations to 

the theoretical distributions. Apparently, by preserving four moments, a non-Gaussian 

distribution is not precisely preserved. What can be assumed to be preserved is a 

Maximum Entropy (ME) approximation of the distribution constrained by the known 

moments. For four known moments of the variable x this approximation should be an 

exponentiated fourth-order polynomial of x (Jaynes, 1957; Papoulis, 1991), which can be 

written as 

𝑓(𝑥) ≔
1

𝜆0
e
−(

𝑥
𝜆1
+sign(𝜆2)(

𝑥
𝜆2
)
2

+(
𝑥
𝜆3
)
3

+(
𝑥
𝜆4
)
4

)
 (24) 

where 𝜆𝑖 are parameters, all with dimensions [x] (with 𝜆4 ≥ 0).  

The third and fourth moments are more conveniently expressed in terms of the 

coefficients of skewness and kurtosis, respectively. To produce a discrete-time process xi 

with coefficient of skewness 𝐶s,𝑥 we need to use a white-noise process vi with coefficient 

of skewness (Koutsoyiannis, 2000): 

𝐶s,𝑣 =𝐶s,𝑥
(∑ 𝑎|𝑙|

2𝑞
𝑙=−𝑞 )

3/2

∑ 𝑎|𝑙|
3𝑞

𝑙=−𝑞

 (25) 

Likewise, to produce a process xi with coefficient of kurtosis 𝐶k,𝑥 the process vi should 

have coefficient of kurtosis (Dimitriadis and Koutsoyiannis, 2017): 

𝐶k,𝑣 =
𝐶k,𝑥(∑ 𝑎|𝑙|

2𝑞
𝑙=−𝑞 )

2
− 6∑ ∑ 𝑎|𝑙|

2𝑞
𝑘=𝑙+1 𝑎|𝑘|

2𝑞−1
𝑙=−𝑞

∑ 𝑎|𝑙|
4𝑞

𝑙=−𝑞

 (26) 

Four-parameter distributions are needed to preserve skewness and kurtosis; details 

are provided by Dimitriadis and Koutsoyiannis (2017). Illustration of the very good 

performance of the method in the generation of non-Gaussian white noise is provided in 

Figure 6 for popular distribution functions such as Weibull, gamma, lognormal and 

Pareto. 

It is finally noted that the method can also be used in multivariate processes, 

represented by vectors of random variables (Koutsoyiannis, 2000). 
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Figure 6 Various two-parameter probability density functions along with their fitted ME 

approximations and the empirical probability density from a single synthetic time series with n 

= 105 (from Dimitriadis and Koutsoyiannis, 2017). 

5. Applications  

Application 1: Turbulence 

Estimation of high-order moments involves large uncertainty and cannot be reliable in 

the typically short time series of geophysical processes. However, in laboratory 

experiments at sampling intervals of μs, very large samples can be formed which can 

support the reliable estimation of high-order moments. Here we use grid-turbulence 

data made available on the Internet by the Johns Hopkins University 

(http://www.me.jhu.edu/meneveau/datasets/datamap.html). This dataset consists of 

40 time series with n = 36×106 data points of longitudinal wind velocity along the flow 

direction, all measured at a sampling time interval of 25 μs by X-wire probes placed 

downstream of the grid (Kang et al., 2003). 

By standardizing all series (see Dimitriadis et al., 2016; Dimitriadis and 

Koutsoyiannis, 2017) we formed a sample of 40 × 36 ×106 = 1.44 ×109 values to estimate 

the marginal distribution, and an ensemble of 40 series, each with 36 ×106 values to 

estimate the dependence structure through the climacogram. Based on this dataset we 

built a stochastic model of turbulence, which to verify we performed stochastic 
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simulation using the SMA framework with n =106 values and compared the synthetic 

data with the measurements using several tools.  

In terms of the marginal distribution, the time series are nearly-Gaussian but not 

exactly Gaussian. There are slight deviations from normality toward positive skewness, 

as indicated by the coefficient of skewness, which is 0.2 instead of 0, and that of kurtosis, 

which is 3.1 instead of 3, as well as from the plot of the probability function shown in 

Figure 7. This divergence of fully developed turbulent processes from normality has 

been also justified theoretically (Wilczek et al., 2011). Interestingly, these slight 

differences from normality result in highly non-normal distribution of the white noise vi 

of the SMA model (skewness Cs,v = 3.26; kurtosis Ck,v = 12.30!); this should have 

substantial effects in some aspects of turbulence.  

For the stochastic dependence of the turbulent velocity process, after some 

exploratory analysis, we assumed a model consisting of the sum of two equally weighted 

processes, an HHK and a Markovian: 

𝛾(𝑘) =
𝜆

2
(1 + (𝑘 𝛼⁄ )2𝑀)

𝐻−1
𝑀 +

𝜆

𝑘 𝛼⁄
(1 −

1 − e−𝑘 𝛼⁄

𝑘 𝛼⁄
) (27) 

 

 

Figure 7 Probability density function of the measured turbulent velocity w standardized, in each 

time series, by the mean wm and standard deviation ws, compared to that of a single simulation 

using the SMA scheme preserving the first four moments; the standard normal distribution 

N(0,1) and the skew normal (both not used in simulation) are also shown. The ME 

approximation, also shown in the figure, is the one used in simulations.  
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Figure 8 Empirical, true and expected values of the climacogram (upper left), CSF (upper right), 

CS (lower left) and power spectrum (lower right). The “observed” is the average from the 40 

time series. 

We fitted the model to the climacogram, the structure function, the CS and the power 

spectrum, calculated as the average of the 40 series. The fitting is shown in Figure 8; the 

four parameters of the model are estimated as: λ = 1, α = 14 ms, M = 1/3, H = 5/6. As 

seen in Figure 8, the model is indistinguishable from the data, measured or synthesized, 

when the climacogram or its derivatives CSF and CS are used. Note that the comparison 

of the empirical quantities is not made with the true ones but with the expected, in order 

to take account of the bias.  

The power spectrum is much rougher than the other tools, yet a good model fit can be 

clearly seen. Kolmogorov’s “5/3” law of turbulence (K41 self-similar model; 

Kolmogorov, 1941) is also evident in the power spectrum for w > 10 Hz. Steepening of 

the power spectrum slope for even larger frequencies (w > 1000 Hz), which has also 

reported in several studies, is also apparent in Figure 8. This, however seems to be a 

numerical effect (resulting from discretization and bias), as the same behaviour appears 

also in the simulated data from a model whose structure (equation (27)) does not 

include anything that would justify steepening of the slope. 

It is extremely insightful to investigate the high-order properties of the velocity 

increments, i.e., differences of velocities at adjacent times with a certain time distance 

(lag) h. In particular, the variation of high-order moments of the velocity increments 

with increasing h (i.e., the moments 𝑣𝑝 ≔ E[|𝑥(𝑡) − 𝑥(𝑡 + ℎ)|
𝑝
] for p > 2) has been 

    

 

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E-05 1.0E-03 1.0E-01 1.0E+01 1.0E+03

γ

k (s)

observed

true (model)

expected (model)

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E-05 1.0E-03 1.0E-01 1.0E+01 1.0E+03

ξ

k (s)

observed

true (model)

expected (model)

1.0E-08

1.0E-06

1.0E-04

1.0E-02

1.0E+00

1.0E+02

1.0E-03 1.0E-01 1.0E+01 1.0E+03 1.0E+05

ψ
(s

)

w (Hz)

observed

true (model)

expected (model)

- 5/3

1.0E-08

1.0E-06

1.0E-04

1.0E-02

1.0E+00

1.0E+02

1.0E-03 1.0E-01 1.0E+01 1.0E+03 1.0E+05

p
o

w
er

 s
p

ec
tr

u
m

 (s
)

w (Hz)

observed

true (model)

expected (model)

simulated



25 
 

associated with the intermittent behaviour of turbulence and has been mentioned as the 

intermittent effect (Frisch, 2006, sect. 8.3), first discovered in turbulence by Batchelor 

and Townsend (1949). Therefore it is important to preserve this variation. The model in 

equation (27) does not make any effort for such preservation.  However, as seen in 

Figure 9, these are preserved well and effortless. Therefore, it is no longer puzzling to 

have large kurtosis (even > 5) in velocity increments, even though the velocity is almost 

normal. No additional assumption, model component, or even model parameter is 

necessary. Similar good preservation appears also for the skewness of velocity 

increments (Figure 9). 

The huge data size in this application allows evaluation of even higher moments and 

construction of a plot (Figure 10) of the exponent ζp vs. moment order p of an assumed 

scaling relationship 

𝑣𝑝 ≔ E[|𝑥(𝑡) − 𝑥(𝑡 + ℎ)|
𝑝
] ≈ ℎ𝜁𝑝  (28) 

which has been very common in the literature. Again the agreement between the 

simulated and measured data is impressive, particularly if we bear in mind the fact that 

no provision has been made to this aim. Some more simulations have been used to 

investigate this further and a number of additional curves have been plotted in Figure 

10. It is thus seen that the HHK model alone fails to preserve this actual behaviour if a 

Gaussian distribution is assumed; it rather approached the K41 self-similar model 

(Kolmogorov, 1941) as reproduced by Frisch (2006, Fig. 8.8). Similar results are 

obtained if a Markov dependence structure is assumed along with the modelled 

marginal distribution based on the empirical moments (Figure 7). Interestingly, if we 

combine the modelled distribution (Figure 7) and the modelled climacogram (equation 

(27)), then we adequately preserve the intermittent effect without the need for any 

other mono-fractal (such as the β-model) nor multi-fractal models (cf., Frisch, 2006, sect. 

8.5) and not even the She-Leveque model (1994), which is also plotted in Figure 10  

(Frisch, 2006, sect. 8.6.4, 8.6.5) and behaves also well against the empirical data. 

 

Figure 9 Empirical and simulated coefficients of skewness (left) and kurtosis (right) of the 

velocity increments vs. lag. 
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Figure 10 Empirical values of the scaling exponent ζp vs. moment order p of the scaling 

relationship (28). 

In conclusion, this application shows that all important properties of turbulence, 

including its short- and long-term characteristics, as well as intermittency, can be very 

well modelled without any mystery but using a parsimonious stochastic model, 

theoretically justified on the basis of the maximization of entropy production 

(Koutsoyiannis, 2011), with both Hurst and fractal behaviours and slightly non-Gaussian 

distribution (with skewness of 0.2 and kurtosis of just 3.1). 

Application 2: Wind 

Understanding atmospheric motion in the form of wind is essential to many fields in 

geophysics. Wind is considered one of the most important processes in 

hydrometeorology since, along with temperature, it drives climate dynamics. Currently, 

the interest for modelling and forecasting of wind has increased due to the importance 

of wind power production in the frame of renewable energy resources development.  

For the investigation of the large scale of atmospheric wind speed, we use over 15000 

meteorological stations around the globe (Figure 11, upper) recorded mostly by 

anemometers and with hourly resolution (Integrated Surface Database—ISD; 

http://www.ncdc.noaa.gov/isd). In total, we analyse almost 4000 stations from different 

sites and climatic regimes by selecting time series that are still operational, with at least 

one year length of data, at least one non-zero measurement per three hours on average 

and at least 80% of non-zero values for the whole time series (Figure 11, middle). This 

data set is referred to below as “global”.  

By standardizing all series we formed a sample of ~0.5×109 values to estimate the 

marginal distribution, and an ensemble of 3886 series, each with ~105 values on 

average, to estimate the dependence structure through the climacogram. A known 

problem of field measurements of wind (particularly those originating from over 70 

years ago), is that the technology of measuring devices has been rapidly changed 

(Manwell et al., 2010, sect. 2.8.3).  
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Figure 11 (upper) Distribution of the wind speed stations over the globe; (middle) sketch about 

the selection of the stations in the analysis; (lower) evolution of the frequency of measured 

extremes in the stations (where the ‘start’ year denotes the first operational year of the station 

and the ‘first’ and ‘last’ year denote the first and last year that an extreme value was recorded, 

respectively). 

For example, in Figure 11 (lower) we illustrate a rather virtual increase of extreme 

wind events after the 1970s which is mainly due to the inability of older devices to 

properly measure wind speeds over 30 m/s (i.e., category I of Saffir–Simpson hurricane 

wind scale). Furthermore, in common anemometer instrumentation there is a lower 
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threshold of speed that could be measured, usually within the range 0.1 ⎼ 0.5 m/s (e.g., 

www.pce-instruments.com). It should be noted that, as the recorded wind speed 

decreases, so does the instrumental accuracy and it may be a good practice to always set 

the minimum threshold to 0.5 m/s to avoid measuring the errors of the instrument (e.g., 

zero or extremely low values) in place of the actual wind speed that can never reach an 

exact zero value. 

In an attempt to incorporate smaller scales, starting from the microscale of 

turbulence, we include again the dataset of the previous application of turbulence, using 

it as an indicator of the similar statistical properties of small scale wind (Castaing et al., 

1990). In addition to the 40 time series of the longitudinal turbulent velocity, here we 

also use another 40 time series of transverse velocity, measured at the same points with 

the longitudinal one; again each time series has n = 36×106 data points with a sampling 

interval of 25 μs. The coefficients of skewness and kurtosis are estimated as 0.1 and 3.1 

for the transverse velocity, respectively. Stochastic similarities between small scale 

atmospheric wind and turbulent processes abound in the literature as for example in 

terms of the marginal distribution (Monahan, 2013 and references therein), of the 

distribution of fluctuations (Böttcher et al., 2007 and references therein), of the second-

order dependence structure (Dimitriadis et al., 2016 and references therein) and of 

higher-order behaviour such as intermittency (e.g., Mahrt, 1989).  

Finally, to link the large and small scale of atmospheric wind we analyse an additional 

time series, referred to as “medium”, provided by NCAR/EOL of one-month length and 

with a 10 Hz resolution. This time series has been recorded by a sonic anemometer on a 

meteorological tower located at Beaumont KS and it includes over 25×106 longitudinal 

and transverse wind speed measurements (http://data.eol.ucar.edu/; Doran, 2011). 

The statistical characteristics based on moments up to fourth order are shown in 

Figure 12; interestingly, there appears to be a rather well defined relationship between 

mean and standard deviation. The plot of coefficient of kurtosis vs. coefficient of 

skewness indicates that Weibull distribution falls close to the lower bound of the scatter 

of empirical points. 

Numerous works have been conducted for the distribution of the surface wind speed 

(see Appendix B for a sample of recent studies). The Weibull distribution has proven 

very useful in describing the wind magnitude distribution for over three decades 

(Monahan, 2006 and references therein). However, various studies illustrate empirical 

as well as physically-based deviations from the Weibull distribution (Drobinski and 

Coulais, 2012 and references therein). Due to the discussed limitations of properly 

measuring wind speed most studies have focused on a local or small scale. In such cases 

where there is limited empirical evidence, we could search for a physical justification for 

the left and right tail of the probability function. 
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Figure 12 Standard deviation vs mean (upper) and coefficient of kurtosis vs. coefficient of 

skewness of all time series used in Application 2.  

It can easily be proven that the length (norm) of a vector of random variables with 

uncorrelated Gaussian distributions with zero mean and equal variance follows the 

Rayleigh distribution. However, there is empirical and theoretical evidence (Application 

1) that the small-scale distribution of turbulence is not Gaussian and it is expected that 

this should also be the case for the components of wind speed. Through Monte-Carlo 

experiments we illustrate that correlated non-Gaussian components result in a 

distribution close to Weibull and is in agreement with small and medium scale 

observations (an example is shown in Figure 13).  

The distribution of the “global” time series appear to deviate from Weibull, gamma 

and lognormal distributions, and is closer to a distribution with a much heavier tail: 

𝐹(𝑣) = 1 − (1 + (
𝑣

𝛼𝑣s
)
𝑏

)

−𝑐/𝑏

 (29) 

where 𝑣 > 0 is the wind speed, 𝑣s is the standard deviation of the wind speed process; 𝛼 

is a scale parameter and b and 𝑐 are the shape parameters of the marginal distribution, 

all three dimensionless. For this distribution we use the name Pareto- Burr-Feller (PBF) 
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to give credit to the engineer V. Pareto, who discovered a family of power-type 

distributions for the investigation of the size distribution of incomes in a society (Singh 

and Maddala, 1976), to Burr (1942) who identified and analysed (but without giving a 

justification) a function first proposed as an algebraic form by Bierens de Haan, and to 

Feller (1971) who linked it to the Beta function and distribution. Other names such as 

Pareto type IV or Burr type VII are also in use for the same distribution. Interestingly, 

the PBF distribution has two different asymptotic properties, i.e., the Weibull 

distribution for low wind speeds and the Pareto distribution for large ones. The 

derivation of PBF from maximum entropy has been studied in Yari and Borzadaran 

(2010). The PBF has been used in a variety of independent fields (see Brouers, 2015). 

Therefore, it seems that there is a strong physical as well as empirical justification for 

applying the PBF to the analysis of the wind process. 

The distribution fitted to all data sets is shown in Figure 14 and the fitted parameters 

are α = 3.5, b = 1.9, c = 8.5. The mean estimated climacograms from the data (Figure 15) 

indicate that the model of equation (27) is also applicable for the wind speed at all scales 

with parameters estimated as λ ≈ 1, M = 1/3, H = 5/6 and α = 6 h. 

 
Figure 13 Probability density function of the medium scale time series along with theoretical 

and Monte Carlo generated distributions.  

 

Figure 14 Probability density function of the velocity of grid-turbulent data (small) and of the 

wind speed of the medium and global scale time series along with fitted theoretical 

distributions.  
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Figure 15 Climacogram of the wind speed process estimated from the medium and global series.  

Application 3: Temperature 

In this last application we analyse the dependence structure of the air temperature 

process close to surface. For the microscale structure, we use a 10 Hz resolution time 

series recorded for a two-month period via a sonic anemometer at Beaumont, USA 

(https://data.eol.ucar.edu/dataset/45.910). For the macro-scale structure, we use a 

global database of hourly air temperature (https://www.ncdc.noaa.gov/data-

access/land-based-station-data). In total, we analyse over 5000 stations from different 

sites and climatic regimes by selecting time series with at least 1 year length and at least 

one measurement per three hours (Figure 16). 

 

Figure 16 Locations of the selected hourly time series of air temperature. 
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Figure 17 Coefficient of skewness vs. coefficient of kurtosis for ~90% of the macro-scale 

temperature time series. 

 

 

Figure 18 Climacogram of the normalized temperature for the micro-scale time series (small) 

and the set of hourly air temperature time series (global; upper: average climacogram; lower: 

climacograms of 100 different time series), compared to the fitted model of equation (27) (true 

and expected).  

2.0

2.5

3.0

3.5

4.0

-1 -0.5 0 0.5 1

C
k

Cs

1.E-02

1.E-01

1.E+00

1.E-01 1.E+02 1.E+05 1.E+08

γ

k (s)

small

global

true 

1.E-02

1.E-01

1.E+00

1.E-01 1.E+02 1.E+05 1.E+08

γ

k (s)

global

small

true 

expected



33 
 

 

Figure 19 CS of the normalized temperature for the micro-scale time series (small) and the set 

of hourly air temperature time series (global; average from all time series), compared to the 

fitted model of equation (27) (true). 

It can be assumed that the air temperature process follows a Gaussian distribution 

(Koutsoyiannis 2005). Indeed, Figure 17 shows that the 90% of the time series have 

skewness around 0±1 and kurtosis around 3±1. We normalize all time series and we 

estimate the dependence structure through the climacogram, autocovariance and power 

spectrum.  

The mean estimated climacograms from the data (Figure 18) and the CS (Figure 19) 

indicate that, interestingly, the model of equation (27) is also applicable here with 

parameters estimated as λ ≈ 1, M = 1/3, H = 5/6 and α = 3.3 d. 

6. Concluding remarks 

Stochastics offers a strong basis for modelling and interpretation of natural behaviours 

and can directly incorporate, in a rigorous manner, useful concepts from the fractal 

literature, removing the ambiguity characterizing many fractal studies.  Stochastics 

offers all tools for data analysis, inductive inference and prediction with quantified 

uncertainty, but above all it offers the basis for a logical world view. 

We owe the well-founded and rigorous mathematical theory of stochastics to 

Kolmogorov (1931, 1933, 1938), including the foundation of scaling processes 

(Kolmogorov, 1940). This theory has often been distorted but there exist textbooks 

consistent with it (e.g. Papoulis, 1991).  

Calculating values of sample statistics without considering their statistical properties 

(bias and statistical variation) can yield misleading results. Without proper attention to 

the underlying stochastics, we can even “identify” phenomena that do not exist and take 

statistical sampling effects as natural behaviours.  

A general methodology for data analysis and construction of synthetic time series is 

possible provided that we have a good understanding of stochastics. In particular, the 

applications presented here suggest a promising characterization of different 
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geophysical processes in a unified manner and with a simple and parsimonious 

stochastic model, appropriate for a range of scales spanning several orders of 

magnitude.  

Appendix A: Proof of infeasibility of too steep slopes in power spectrum at 

low frequencies  

This proof is summarized here from Koutsoyiannis (2013b) and Koutsoyiannis et al. 

(2013).  

Let us assume the contrary, i.e., that for frequency range 0 ≤ w ≤ ε (with ε however 

small) the log-log derivative is 𝑠#(𝑤) = 𝛽, or else s(w) = α wβ where α and β are 

constants, with 𝛽 < −1. As a result of (2) and (4) the climacogram is related to power 

spectrum by: 

𝛾(𝑘) = ∫ 𝑠(𝑤)sinc2(π𝑤𝑘) d𝑤

∞

0

 (30) 

The sinc2 function within the integral takes significant values only for w < 1/k (cf. 

Papoulis, 1991, p. 433). Assuming a scale k ≫ 1/ε,  

𝛾(𝑘) = ∫ 𝑠(𝑤) sinc2(π𝑤𝑘) d𝑤

∞

0

≈ ∫𝛼𝑤𝛽 sinc2(π𝑤𝑘) d𝑤

𝜀

0

 (31) 

On the other hand, it can be easily seen that, for 0 < w < 1/k, the following inequality 

holds: 

sinc(π𝑤𝑘) ≥ 1 − 𝑤𝑘 ≥ 0 (32) 

Since ε ≫ 1/k, while the function in the integral (31) is nonnegative, 

𝛾(𝑘) ≈ ∫ 𝛼𝑤𝛽 sinc2(π𝑤𝑘) d𝑤
𝜀

0
≥ ∫ 𝛼𝑤𝛽 sinc2(π𝑤𝑘) d𝑤

1/𝑘

0
≥

∫ 𝛼𝑤𝛽(1 − 𝑤𝑘)2d𝑤
1/𝑘

0
  

(33) 

By substituting ω = wk into equation (33), we find: 

𝛾(𝑘) ≥ 𝑎𝑘−𝛽−1∫𝜔𝛽(1 − 𝜔)2d𝜔

1

0

 (34) 

To evaluate the integral in (34) we take the limit for q → ∞ of the integral: 

𝐵(𝑞) ≔ ∫𝜔𝛽(1 − 𝜔)2d𝜐

1

1/𝑞

=
1 − 𝑞−1−𝛽

1 + 𝛽
− 2

1 − 𝑞−2−𝛽

2 + 𝛽
+
1 − 𝑞−3−𝛽

3 + 𝛽
 (35) 

Clearly, the limit of B(q) as q → ∞ depends on that of the term with the highest exponent, 

i.e. 𝑞−1−𝛽. For β < –1 this term diverges and thus, B(0) = +∞. Then, by virtue of the 

inequality (34), γ(k)= ∞. For a (mean) ergodic processes γ(k) should necessary tend to 0 

for k → ∞ (Papoulis, 1991, p. 429). Therefore, the process is non-ergodic.  
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It is interesting to note here that, when |β| < 1, the integral in (31) can be evaluated to 

give: 

𝛾(𝑘) ≈ 𝛼∫ 𝑤𝛽 sinc2(π𝑤𝛥) d𝑤

∞

0

=
𝛼Γ(1 + 𝛽) sinc(π𝛽 2⁄ )

2(1 − 𝛽)(2π)𝛽𝑘1+𝛽
 (36) 

Clearly, for k → ∞, the last expression gives γ(k) → 0 and thus for |β| < 1 the process is 

mean ergodic.  

This analysis for β < –1 generalizes a result by Papoulis (1991, p. 434) who shows 

that an impulse at w = 0 corresponds to a non-ergodic process.   

Appendix B: Literature review on the distribution function of wind speed 

A large variety of distributions in the literature (with the most common to be Gaussian, 

gamma, Weibull, lognormal, Pareto and generalizations thereof as well as mixtures with 

each other) show equally good agreement with atmospheric wind measurements 

recorded at different sites around the globe with different climatic conditions.  

Table B1 Recent publications on the distribution function of wind speed. 

Reference General characteristics  Proposed 

distribution 

Comments 

Aksoy et al. 

(2004) 

1 station; 4 years Weibull Markov chain 

Monahan (2006) Global; sea-surface; wind 

speed 

Weibull Non Rayleigh 

Bottcher et al. 

(2007) 

Laboratory; 4 atmospheric 

stations; wind components 

Castaing (1990) Standard deviation with a lognormal 

model for intermittency 

Kiss and Janosi 

(2008) 

Reanalysis data over Europe Generalized 

gamma 

Non Rayleigh; non Weibull 

Morgan et al. 

(2011) 

178 offshore time series; 10-

min wind speed 

Kappa 14 distribution tested; non Weibull; 

non Rayleigh 

Lo Brano et al. 

(2011) 

Wind speed over Palermo Burr Tested: Weibull, Rayleigh, 

lognormal, gamma, inverse-

Gaussian, Pearson V 

Drobinski and 

Coulais (2012)  

3 stations; high altitude; 

wind components 

Rayleigh-Rice Non Weibull, Elliptical distribution 

to model skewness 

Wu et al. (2013) Inner Mongolia region Lognormal Weibull; logistic 

Ouarda et al. 

(2015) 

9 stations in United Arab 

Emirates 

Kappa,  general-

ized gamma 

18 distributions tested with mixture 

properties 

A sample of recent publications are listed in Table B1 along with the proposed 

distributions. However, some distributions seem to exhibit good agreement with data at 

the left or right tail mostly due to different lengths of the examined time series, while 

arguably most distributions do not exhibit good agreement for the whole range.  
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