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Abstract: Low flows commonly occur in rivers during dry seasons within each year. They often concur with increased water 
demand which creates numerous water resources management problems. This paper seeks for simple yet efficient 
tools for low-flow forecasting, which are easy to implement, based on the adoption of an exponential decay model for 
the flow recession curve. A statistical attribute of flows preceding the start of the dry period is used as the starting 
flow, as for example the minimum flow of early April. On the other hand, the decay rate (recession parameter) is 
assumed as a linear function of the starting flow. The two parameters of that function are time-invariant, and they are 
optimised over a reference time series representing the low flow component of the observed hydrographs. The 
methodology is tested in the basins of Achelous, Greece, Xeros and Peristerona, Cyprus, and Salso, Italy. Raw data 
are filtered by simple signal processing techniques which remove the effect of flood events occurring in dry periods, 
thus allowing the preservation of the decaying form of the flow recession curve. Results indicate that satisfactory low 
flow forecasts are possible for Mediterranean basins of different hydrological behaviour. 
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1. INTRODUCTION  

The World Meteorological Organization (WMO) (1974) defines low flow as the river discharge 
during prolonged dry weather. Actually, low flows are periodic phenomena and integral 
components of the river regime. Particularly, in Mediterranean catchments exhibiting significant 
variability across seasons, baseflow is the major, and occasionally the sole component of river 
hydrographs during dry periods. Therefore, low-flow estimations, in terms of magnitude, frequency 
and duration, are essential premise in solving numerous water engineering and management 
problems. 

The literature reports multiple attempts for low-flow modelling, including hydrograph recession 
techniques, stochastic autoregressive functions, physically-based models, and data-driven 
approaches (Smakhtin, 2001). A typical concept is the linear reservoir model that represents the 
recession limb of a hydrograph as the outflow from a tank of infinite storage capacity, 
implementing the groundwater storage. The model is linear since outflow is expressed as a constant 
fraction of storage, thus resulting to an exponential decay function. 

This article investigates the use of the above approach as a forecasting tool for the dry-period 
recession, using daily flow data retrieved at the first half of April. Key objective is providing a 
parsimonious model of acceptable predictive capacity, which can be implemented for operational 
purposes (e.g., annual irrigation planning). The model is evaluated at four rivers with different low-
flow dynamics, namely Achelous (Greece), Salso (Italy), and Xeros and Peristerona (Cyprus). 

2. OUTLINE OF METHODOLOGY 

2.1 Model assumptions  

Generally, a hydrograph is separated into rising limbs, reflecting increases in discharge from 
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precipitation events, and recession limbs, representing delayed flow due to processes in the 
saturated and unsaturated zone. Particularly, low flows during the dry period are mostly attributed 
to groundwater responses, which can be well represented as outflows from a linear reservoir. Under 
this assumption, the low flow component of the dry-period hydrograph of a specific year j can be 
modelled by an exponential decay: 

qjt = q0j exp(– kj t) (1) 

where q0j is the low flow at the beginning of the dry period of year j, t is the day index, and kj is a 
recession parameter, associated with the macroscopic hydrological behaviour of the aquifer. Here, 
eq. (1) is applied in discrete form, using a daily time interval, flows are expressed in m3/s, and the 
time is considered in days, while kj is expressed in inverse daily units. The start and end of the dry 
period, the initial flow q0j, and the recession parameter kj is varying across hydrological years. In 
the remaining text the index j is omitted when unnecessary.   

For convenience, we consider a reference time horizon of six months, from April 15th to October 
15th, which is a reasonable assumption for the maximum duration of the dry period in 
Mediterranean rivers. Moreover, after preliminary investigations, we decided taking as initial 
discharge, q0j, the minimum flow value of the first two weeks of April. Thus, for each year j, q0j is a 
priori determined based on observed flow data, in contrast to the recession coefficient kj, which is 
inferred through calibration, i.e. by fitting eq. (1) to the observed dry-period hydrograph. 

2.2 Derivation of adjusted low flow data  

For a given record of daily discharge data between April 15th and October 15th, and a given q0j, 
the estimation of kj is far beyond a typical calibration problem, since the duration of the dry period 
is not constant, while the dry-period hydrograph contains both rising and recession limbs, as well as 
individual peaks. Therefore, for each year, it is essential to extract the low flow component from the 
total hydrograph; these data are next referred to as adjusted low flows. In order to construct the 
adjusted data from observed flows, while also determining the effective length of the dry period, 
conventionally starting at April 15th, we employ a multi-step processing procedure, as illustrated in 
Fig. 1 and outlined next. 

Step (a): The dry-period hydrograph exhibits both large- and small-scale fluctuations; the former 
are due to flood events whereas the latter are generally induced by random errors of the monitoring 
instruments (e.g., stage recorders), also resulting to local minima that do not have physical meaning. 
In order to remove such effects and obtain a smoothed hydrograph, we employ the numerical filter 
introduced by Savitzky and Golay (1964), which allows increasing the signal-to-noise ratio without 
greatly distorting the signal. This is achieved by replacing raw values by new ones, which are 
computed from a moving polynomial fitted to 2n + 1 neighbouring points, with n being at least 
equal to the order of the polynomial. This is handled similarly to a weighted moving average, since 
the coefficients of the smoothing procedure remain constant. 

Step (b): We define the beginning and end of the dry period, and its last flow value, qjn. First, 
using as cut-off threshold the initial flow, q0j, we seek for the last flow value being greater than q0j; 
the date with that value denotes the actual beginning of the dry period, whereas observed flows for 
previous dates are ignored within model fitting. Next, we calculate the average flows over 15-day 
intervals and their first differences until October 15th. Moving backwards in time, we examine 
whether the flow trend changes from negative to positive, which marks the end of the dry period.  

Step (c): We remove all flow values above the line joining q0j with qjn, i.e. 

qjt = q0j – (q0j – qnj) t / nj (2) 

since the negatively exponential low flow model (1) is by construction below this line. In eq. (2), nj 
is the number of days between April 15th and the end of the dry period of year j. 
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Step (d): We reduce the flow peaks remaining below the theoretical upper threshold (2), 
considering small-scale flood events of typical duration up to two days. In this context, we apply 
twice a cut-off procedure comprising the identification of all local flow maxima over the dry period, 
which are next set equal to the value of the previous day. The remaining flows between q0j with qnj 
comprise the adjusted low flow sample, used in fitting eq. (1). This is generally non-continuous and 
contains much less values than the length nj, since all important local flood events are removed. 

 

Figure 1. Example of extracting adjusted flow data from daily hydrographs; SG stands for Savitzky- Golay 

2.3 Model calibration  

For each year j, a one-dimensional calibration problem is solved, to identify the value of kj that 
ensures the optimal fitting of eq. (1) to the adjusted data. Our objective function is a modified 
expression of efficiency (MEF), using as benchmark the expected flows over the reference period. 
This is of key importance, since the well-known Nash-Sutcliffe efficiency would compare the 
simulated values against the average flow, thus providing unrealistically high model performance. 
Apparently, the average is far from being representative of the river regime during the dry period, 
which exhibits a non-stationary behaviour due to the systematic flow decrease. This shortcoming 
has been widely discussed in the literature (e.g., Pushpalatha et al., 2012). 

Initially, we considered as benchmark not the overall mean flow over the reference time horizon 
but the mean flow value of each individual day, as well as the median, which is generally a better 
estimator than the mean, since the dry-period flows are highly skewed. However, due to noise 
effects, the two benchmarks (particularly the mean) exhibit random fluctuations, which are not 
desirable (Fig. 2). To remove such effects, we introduced three stepwise exponential functions that 
were fitted to the daily means and medians, as well as the lower envelope of medians. The latter is 
the most representative of the river regime during the dry period, and thus it was finally used as 
benchmark within calibrations. 
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2.4 Model formulation in forecast mode  

The initial formulation of the low-flow simulation model (1), considering an annually varying 
recession coefficient, has limited practical usefulness, as we seek the development of a forecasting 
tool with parameters that are known in advance, before issuing a forecast. For employing eq. (1) in 
forecast mode, we need a formula for estimating the annual value of parameter kj, based on easily 
retrievable information that is available before the start of the dry period (similar to q0j, which is 
estimated on the basis of early April flows). In this respect, also accounting for the outcomes of 
preliminary calibrations, we tested the application of a linear relationship between kj and q0j, i.e. 
kj = a q0j + b, where a (s m-3 d-1) and b (d-1) are regional parameters, i.e. constant for each basin and 
independent of the year index j. Hence, the model in forecast mode is now written: 

qjt = q0j exp[– (a q0j + b) t] (3) 

In order to obtain parameters a and b, we examine two procedures. First, we use a set of already 
calibrated values of kj and fit a linear regression equation against the independent variable q0j. By 
accepting the assumptions of the least squares approach, the slope and intercept of the regression 
model are optimal estimators of a and b. Alternatively, parameters a and b are considered as control 
variables of a global optimization problem, asking for fitting eq. (3) to the entire set of reference 
flow data (in contrast to eq. (1), where different values of kj are obtained by calibrating against the 
low flows of each dry period). 

For both procedures, the model performance was assessed in terms of modified efficiency 
through the calibration period, while its predictive capacity was assessed by calculating MEF across 
an independent data period (validation). 

2.5 Uncertainty analysis  

A renowned shortcoming of the classical calibration-validation paradigm, known as split-sample 
test, is the dependency of the model performance on the length and time window of the data sample. 
This may introduce significant uncertainty, not only to the model performance but also to the 
optimized parameter values. 

In order to account for such uncertainties within the estimation of parameters a and b, we 
employed a Monte Carlo calibration-validation scheme. For both procedures, we calibrated a and b 
against 1000 randomly selected subsets (not necessarily continuous) over the whole period of 
adjusted low flows, and validated against the remaining subsets (a constant validation period of 10 
years was systematically considered). For all results (parameter values and performance criteria) we 
estimated their average and standard deviation. 

3. STUDY AREAS 

The methodology was tested at four rivers of different scale (one large and three small) and 
hydrological regime (Risva, 2016). Their key characteristics as well as the corresponding daily 
average and median flows across the reference time horizon, are depicted in Fig. 2. Low flow 
regimes of the selected rivers are different. Specifically, Achelous, which produces the highest 
annual runoff in Greece (950 mm), retains significant discharge, while the departure of the mean 
daily flow from the median is practically negligible from May to August. In contrast, in Salso River 
there are large deviations between means and medians, since the dry period flows exhibit 
substantial asymmetry due to occasional yet quite severe flood events. Finally, in the two Cyprian 
rivers there are also systematic differences between means and medians, until the mid-summer; in 
particular, from early July, Xeros River retains a practically constant baseflow, while in Peristerona 
the flow is interrupted. 



European Water 57 (2017)    341 

 

Figure 2. Synoptic information for case studies, plots of daily average and median flows from April 15th to October 15th 
and benchmark models fitted to the lower envelope of medians. 

4. RESULTS AND DISCUSSION 

Key results for all rivers are summarized in Table 1. The two parameter estimation approaches 
(regression-based and global optimization-based) are employed within a Monte Carlo context. 

For the first approach, we demonstrate the optimized MEF considering eq. (1), with optimally 
fitted parameters kj per calibration sample, and eq. (3), with a and b estimated through a posteriori 
regression between the optimized values of kj and q0j; in the last case, MEF refers to calibration and 
validation samples, and the full data sample (in forecast mode). Moreover, we show the optimized 
values of a and b, as well as the coefficient of determination (r2) of the linear regression. Finally, 
using as typical starting flow the mean q0j (average of minimum early April flows over the entire 
data period) we provide the corresponding recession rate, k. It is interesting to note that even a low 
correlation between k and q0 may yield a satisfactory predictive capacity, as shown for Salso and, 
particularly, for Peristerona. 

Regarding the second approach, we show MEF values for the calibration and validation samples, 
and the full data sample (forecast mode), the optimized parameters a and b, and the average 
recession rate, k. 

By comparing MEF in forecast mode, it seems that both procedures ensure similar predictive 
capacity, which is reasonable, since the average recession rates are almost identical (except for 
Salso). However, in Achelous and Salso, the two approaches are not equivalently robust, as 
indicated from the variability of MEF. In such cases, we suggest selecting the parameterization 
ensuring the lowest uncertainty. 

Characteristic examples of model fitting in forecast mode are given in Fig. 3. The model is 
absolutely consistent with the anticipated hydrological behavior of each river, which is well-
represented by the average recession rate. As shown in Table 1, the lowest rate refers to Achelous, 
i.e. a large river with permanent flow, while the highest rate refers to Peristerona, which allows 
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reproducing the intermittent regime of this river. 

 

Figure 3. Examples of forecasted low flows through the two parameter estimation procedures (1: regression, 2: global 
optimization) against the observed hydrographs over the reference period (15/4 to 15/10). 

Table 1. Summary of model results (means out of 1000 simulations and standard deviations, in parentheses) 

River name Achelous Salso (Imera) Xeros Peristerona 
Parameter estimation through regression between k and q0 

MEF, local calibration 0.643 (0.035) 0.790 (0.026) 0.889 (0.017) 0.831 (0.016) 
Coefficient of determination, r2 0.771 (0.028) 0.073 (0.029) 0.437 (0.031) 0.083 (0.019) 
Parameter a (mm-1 d-1) 0.0034 (0.0001) 0.0052 (0.0011) 0.0204 (0.0012) -0.0179 (0.0023) 
Parameter b (d-1) 0.0037 (0.0002) 0.0244 (0.0014) 0.0098 (0.0003) 0.0400 (0.0009) 
Recession rate k (d-1) for mean q0 (mm)  0.0126 (0.0003) 0.0297 (0.0018) 0.0157 (0.0005) 0.0350 (0.0011) 
MEF, calibration 0.523 (0.044) 0.441 (0.070) 0.787 (0.032) 0.721 (0.021) 
MEF, validation 0.496 (0.124) 0.414 (0.195) 0.752 (0.146) 0.713 (0.078) 
MEF, forecast mode 0.523 (0.029) 0.437 (0.008) 0.788 (0.006) 0.721 (0.006) 

Parameter estimation through global optimization 
Parameter a (mm-1 d-1) 0.0030 (0.0003) 0.0074 (0.0033) 0.0159 (0.0035) -0.0170 (0.0070) 
Parameter b (d-1) 0.0049 (0.0009) 0.0170 (0.0040) 0.0109 (0.0012) 0.0390 (0.0028) 
Recession rate k (d-1) for mean q0 (mm) 0.0129 (0.0011) 0.0245 (0.0052) 0.0155 (0.0016) 0.0342 (0.0034) 
MEF, calibration 0.529 (0.036) 0.483 (0.076) 0.800 (0.035) 0.725 (0.020) 
MEF, validation 0.484 (0.143) 0.320 (0.196) 0.729 (0.173) 0.692 (0.113) 
MEF, forecast mode 0.525 (0.006) 0.438 (0.084) 0.794 (0.006) 0.718 (0.004) 

5. CONCLUSIONS 

Low flow dynamics in Mediterranean rivers can be well approximated using the linear reservoir 
concept, which implies the determination of two parameters, i.e. the starting flow and the recession 
rate (respectively denoted as q0j and kj in eqs (1)-(4)). Our analyses indicated that the former can be 
easily defined as the lowest daily flow during early April, while the latter can be expressed as a 
linear function of q0. In this respect, we can build a simple yet effective low flow forecasting model, 
by determining the slope and intercept of the above function, based on historical flow data. 

Key innovations of the proposed framework are the extraction of the adjusted flow data from the 
total hydrograph, requiring a series of sequential transformations of the original data (smoothing, 
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peak removal, etc.), the selection of the lower envelope of daily medians as benchmark flows to be 
used within calibrations, and the stochastic implementation of calibrations, which allows 
quantifying the uncertainty of parameters and performance measures. 

The case studies indicated that the proposed methodology is suitable for both large and small 
basins, producing both permanent and intermittent runoff. The strong advantage of the model is its 
parsimony, not only in terms of parameters but also in data requirements, since, after calibration, 
the sole input is the starting flow q0. This makes the model easy to apply in an operational context, 
so as to provide reliable estimations of surface runoff during dry seasons. 
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