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Abstract. A generalized framework for single-variate and multivariate simulation and
forecasting problems in stochastic hydrology is proposed. It is appropriate for short-term
or long-term memory processes and preserves the Hurst coefficient even in multivariate
processes with a different Hurst coefficient in each location. Simultaneously, it explicitly
preserves the coefficients of skewness of the processes. The proposed framework
incorporates short-memory (autoregressive moving average) and long-memory (fractional
Gaussian noise) models, considering them as special instances of a parametrically defined
generalized autocovariance function, more comprehensive than those used in these classes
of models. The generalized autocovariance function is then implemented in a generalized
moving average generating scheme that yields a new time-symmetric (backward-forward)
representation, whose advantages are studied. Fast algorithms for computation of internal
parameters of the generating scheme are developed, appropriate for problems including
even thousands of such parameters. The proposed generating scheme is also adapted
through a generalized methodology to perform in forecast mode, in addition to simulation
mode. Finally, a specific form of the model for problems where the autocorrelation
function can be defined only for a certain finite number of lags is also studied. Several
illustrations are included to clarify the features and the performance of the components of
the proposed framework.

1. Introduction

Since its initial steps in the 1950s, stochastic hydrology, the
application of theory of stochastic processes in analysis and
modeling of hydrologic processes, has offered very efficient
tools in tackling a variety of water resources problems, includ-
ing hydrologic design, hydrologic systems identification and
modeling, hydrologic forecasting, and water resources manage-
ment. An overview of the history of stochastic hydrology has
been compiled by Grygier and Stedinger [1990]. We mention as
the most significant initial steps of stochastic hydrology the
works by Barnes [1954] (generation of uncorrelated annual
flows at a site from normal distribution), Maass et al. [1962]
and Thomas and Fiering [1962] (generation of flows correlated
in time), and Beard [1965] and Matalas [1967] (generation of
concurrent flows at several sites). We must mention that the
foundation of stochastic hydrology followed the significant de-
velopments in mathematics and physics in the 1940s, as well as
the development of computers. Specifically, it followed the
establishment of the Monte Carlo method, which was invented
by Stanislaw Ulam in 1946 (initially conceived as a method to
estimate probabilities of solitaire success; soon after, it grew to
solve neutron diffusion problems), developed by himself and
other great mathematicians and physicists in Los Alamos
(John von Neumann, Nicholas Metropolis, Enrico Fermi), and
first implemented on the electronic numerical integrator and
computer (ENIAC) [Metropolis, 1989; Eckhardt, 1989].

The classic book on time series analysis by Box and Jenkins
[1970] also originated from different, more fundamental sci-
entific fields. However, it has subsequently become very im-

portant in stochastic hydrology and still remains the founda-
tion of hydrologic stochastic modeling. Box and Jenkins
developed a classification scheme for a large family of time
series models. Their classification scheme distinguishes among
autoregressive models of order p (AR( p)), moving average
models of order q (MA(q)), and combinations of the two,
called autoregressive moving average (ARMA( p , q)).

However, despite making a large family, all Box-Jenkins
models are essentially of short-memory type; that is, their
autocorrelation structure decreases rapidly with the lag time.
Therefore such models are proven inadequate in stochastic
hydrology, if the long-term persistence of hydrologic (and
other geophysical) processes is to be modeled. This property,
discovered by Hurst [1951], is related to the observed tendency
of annual average streamflows to stay above or below their
mean value for long periods. Other classes of models such as
fractional Gaussian noise (FGN) models [Mandelbrot, 1965;
Mandelbrot and Wallis, 1969a, b, c], fast fractional Gaussian
noise models [Mandelbrot, 1971], and broken line models
[Ditlevsen, 1971; Mejia et al., 1972] are more appropriate to
resemble long-term persistence [see also Bras and Rodriguez-
Iturbe, 1985, pp. 210–280]. However, models of this category
have several weak points such as parameter estimation prob-
lems, narrow type of autocorrelation functions that they can
preserve, and their inability to perform in multivariate prob-
lems (apart from the broken line model, see Bras and Ro-
driguez-Iturbe [1985, p. 236]). Therefore they have not been
implemented in widespread stochastic hydrology packages
such as LAST [Lane and Frevert, 1990], SPIGOT [Grygier and
Stedinger, 1990], CSUPAC1 [Salas, 1993], and WASIM
[McLeod and Hipel, 1978].

Another peculiarity of hydrologic processes is the skewed
distribution functions observed in most cases. This is not so
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common in other scientific fields whose processes are typically
Gaussian. Therefore attempts have been made to adapt stan-
dard models to enable treatment of skewness [e.g., Matalas and
Wallis, 1976; Todini, 1980; Koutsoyiannis, 1999a, b]. (The pre-
sentation by Koutsoyiannis [1999b] is available on-line from
World Wide Web server for the National Technical University,
Athens, node at http://www.hydro.ntua.gr/faculty/dk/pub/
pskewness.pdf.) The skewness is mainly caused by the fact that
hydrologic variables are nonnegative and sometimes have an
atom at zero in their probability distributions. Therefore a
successful modeling of skewness indirectly contributes to
avoiding negative values of simulated variables; however, it
does not eliminate the problem, and some ad hoc techniques
(such as truncation of negative values) are often used in addi-
tion to modeling skewness.

The variety of available models, either short memory or long
memory, with different equations, parameter estimation tech-
niques, and implementation, creates difficulties in the model
choice and use. Besides, the AR( p) or ARMA( p , q) models,
which have been more widespread in stochastic hydrology,
become more and more complicated, and the parameters to be
estimated become more uncertain, as p or q increases (espe-
cially in multivariate problems). Thus in software packages
such as those mentioned above, only AR(0) through AR(2)
and ARMA(1, 1) models are available.

The reason for introducing several models and classifying
them into different categories seems to be not structural but
rather imposed by computational needs at the time when they
were first developed. Today, the widespread use of fast per-
sonal computers allows a different approach to stochastic mod-
els. In this paper, we try to unify all the above-described mod-
els, both short memory and long memory, simultaneously
modeling the process skewness explicitly. The unification is
done using a generalized autocovariance function (section 2),
which depends on a number of parameters, not necessarily
greater than that typically used in traditional stochastic hydrol-
ogy models. Specifically, we separate the autocovariance func-
tion from the mathematical structure of the generating scheme
(or model) that implements this autocovariance function. Thus
the autocovariance function may depend on two or three pa-
rameters, but the generating scheme may include a thousand
numerical coefficients (referred to as internal parameters), all
dependent on (and derived from) these two or three parame-
ters. The generating scheme used is of moving average type,
which is the simplest and most convenient; in addition to the
traditional backward moving average scheme, a new scheme
with several advantages, referred to as symmetric (backward-
forward) moving average model, is introduced (section 3). New
methods of estimating the internal parameters of the generat-
ing scheme, given the external parameters of the autocorrela-
tion function, are introduced (section 4); they are very fast
even for problems including thousands of internal parameters.
The proposed generating scheme can be directly applied for
stochastic simulation. In addition, the scheme can perform in
forecast mode, as well, through a proposed methodology that
makes this possible (section 5); it is a generalized methodology
that can be used with any type of stochastic model. The frame-
work, initially formulated as a single-variate model, is directly
extended for multivariate problems (section 6). A specific
model form for problems where the autocorrelation function is
defined only for a certain finite number of lags (e.g., in gener-
ation of rainfall increments within a rainfall event) is also
studied (section 7). In its present form the proposed frame-

work is formulated for stationary processes; the possibility of
incorporating seasonality in combination with seasonal models
is also mentioned briefly (section 8, also including conclu-
sions). Several sections of the paper include simple illustra-
tions that clarify the features and the performance of the
components of the proposed framework. Additional examples
on the application of the generalized autocovariance function
using synthetic and historical hydrologic data sets are given in
Appendix A1.1 To increase readability, several mathematical
derivations are given separately in Appendices A2–A4.

2. A Generalized Autocovariance Structure
and Its Spectral Properties

Annual quantities related to hydrologic processes such as
rainfall, runoff, evaporation, etc. or submonthly quantities of
the same processes (e.g., fine-scale rainfall depths within a
storm) can be modeled as stationary stochastic processes in
discrete time. We consider the stationary stochastic process Xi

in discrete time denoted with i , with autocovariance

g j :5 Cov @Xi, Xi1j# j 5 0, 1, 2, . . . (1)

The variables Xi are not necessarily standardized to have zero
mean or unit variance, nor are they necessarily Gaussian; on
the contrary, they can be skewed with coefficient of skewness
jX :5 E[(Xi 2 mX)3]/g0

3/ 2, where mX :5 E[Xi] is the mean
and g0 is the variance. The skewness term, which is usually
ignored in stochastic process theory, is essential for stochastic
hydrology because hydrologic variables very often have skewed
distributions. The parameters mX, g0, and jX determine in an
acceptable approximation the marginal distribution function of
the hydrologic variable of interest, whereas the autocovari-
ances g j, if known, determine, again in an acceptable approx-
imation, the stochastic structure of the process. However, as g j

is estimated from samples x1, z z z , xn with typically small
length n , only few foremost terms g j can be known with some
acceptable confidence. Usually, these are determined by the
(biased) estimator [e.g., Bloomfield, 1976, pp. 163, 182; Box and
Jenkins, 1970, p. 32; Salas, 1993, p. 19.10]

ĝ j 5
1
n O

i51

n2j

~ xi 2 x# !~ xi1j 2 x# ! , (2)

where x# is the sample mean. In addition to the fact that the
number of available terms of the sum in (2) decreases linearly
with the lag j (which results in increasing estimation uncertain-
ty), typically, g j is a decreasing function of lag j . The combi-
nation of these two facts may lead us to consider that g j is zero
beyond a certain lag m (i.e., for j $ m) which may be not true.
In other words, the process Xi may be regarded as short mem-
ory, while in reality it could be long memory. However, the
large lag autocovariance terms g j may affect seriously some
properties of the process of interest, and thus a choice of a
short-memory model would be an error as far as these prop-
erties are considered. This is the case, for example, if the
properties of interest are the duration of droughts or the range
of cumulative departures from mean values [e.g., Bras and
Rodriguez-Iturbe, 1985, pp. 210–211].

1Supporting Appendices A1–A4 are available with entire article on
microfiche. Order by mail from American Geophysical Union, 2000
Florida Avenue, N. W., Washington, DC 20009 or by phone at 800-
966-2481; $2.50. Document 2000WR900044M. Payment must accom-
pany order.
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The most typical stochastic models, belonging to the class of
ARMA( p , q) models [Box and Jenkins, 1970] can be regarded
as short-memory models (although the ARMA(1, 1) model has
been used to approximate long-term persistence for some spe-
cial values of its parameters [O’Connell, 1974]) as they essen-
tially imply an exponential decay of autocovariance. Specifi-
cally, in an ARMA process, the autocovariance for large lags j
converges either to

g j 5 ar j (3)

if all terms g j are positive or to

g j 5 ar j cos ~u0 1 u1 j! (4)

if the terms alternate in sign, where a , r , u0, and u1 are
numerical constants (with 0 # r # 1). The case implied by (3)
is more common than (4) if the process Xi represents some
hydrologic quantity like rainfall, runoff, etc.

The inability of the ARMA processes to represent important
properties of hydrologic processes, such as those already men-
tioned, have led Mandelbrot [1965] to introduce another pro-
cess known as fractional Gaussian noise (FGN) process [see
also Bras and Rodriguez-Iturbe, 1985, p. 217]. This is a long-
memory process with autocovariance

g j 5 g0$~1/ 2!@~ j 2 1!2H 1 ~ j 1 1!2H# 2 j2H% (5)

j 5 1, 2, . . . ,

where H is the so-called Hurst coefficient (0.5 # H # 1).
Apart from the first few terms, this function is very well ap-
proximated by

g j 5 g0~1 2 1/b!~1 2 1/ 2b! j21/b, (6)

where b 5 1/[2(1 2 H)] $ 1, which shows that autocovari-
ance is a power function of lag. Notably, (5) is obtained from
a continuous time process J( t) with autocovariance Cov
[J(t), J(t 1 t)] 5 at21/b (with constant a 5 g0(1 2
1/b)(1 2 1/ 2b)), by discretizing the process using time in-
tervals of unit length and taking as Xi the average of J(t) in
the interval [i , i 1 1].

The autocovariances of both ARMA and FGN processes for
large lags can be viewed as special cases of a generalized
autocovariance structure (GAS)

g j 5 g0~1 1 kbj!21/b, (7)

where k and b are constants. Indeed, for b 5 0, (7) becomes
(using de l’Hospital’s rule)

g j 5 g0 exp ~2kj! , (8)

which is identical to (3) if k 5 2ln r. For b . 1 and large j , (7)
yields a very close approximation of (6) if

k 5 1/$b@~1 2 1/b!~1 2 1/ 2b!#b% 5: k0. (9)

For other values of k or for values of b in the interval (0, 1), (7)
offers a wide range of feasible autocovariance structures in
between, or even outside of, the ARMA and the FGN struc-
tures, as demonstrated in Figure 1a, where we have plotted
several autocovariance functions using different values of b but
keeping the same g0, g1, and g2 for all cases. The meaning of
the different values of b will be discussed later, in the end of
this section. Here it may suffice to explain that GAS is more
comprehensive than the FGN scheme as the latter, with its

single parameter H , cannot model explicitly even the lag-one
autocovariance. It is also more comprehensive than ARMA
schemes as it can explicitly model long-term persistence while
yet being parameter parsimonious.

If the autocovariance is not everywhere positive but alter-
nates in sign, (7) can be altered in agreement with (4) to
become

g j 5 g0~1 1 kbj!21/b cos ~u0 1 u1 j! . (10)

In the form of (7) or (10), GAS has three or five parameters,
respectively, one of which is the process variance g0 (thus the
corresponding autocorrelation structure has two or four pa-
rameters, respectively). Although parameter parsimony is most
frequently desired in stochastic modeling [e.g., Box and Jen-
kins, 1970, p. 17], GAS can be directly extended to include a
greater number of parameters. Specifically, it can be assumed
that the initial m 1 1 terms g j ( j 5 0, z z z , m) have any
arbitrary values (e.g., estimated from available records), and
then (7) (or (10)) is used for extrapolating for large j . Essen-
tially, this introduces m additional model parameters at most.
Thus the total number of independent parameters is m 1 1 if
both k and b are estimated in terms of g0, z z z , gm, or m 1 2
if b is estimated independently; even in the latter case, k
cannot be regarded as an independent parameter because con-
tinuity at term gm demands that

k 5 5
1

bm F S g0

gm
D b

2 1G b . 0,

1
m ln S g0

gm
D b 5 0.

(11)

Parameter estimation can be based on the empirical auto-
covariance function. In the most parameter parsimonious
model form (7), parameter g0 is estimated from the sample
variance, and parameters k and b can be estimated by fitting
GAS to the empirical autocovariance function. There are sev-
eral possibilities to fit these parameters: (1) We can choose to
have a good overall fit to a number of autocovariances without
preserving exactly any specific value. (2) Alternatively, we may
choose to preserve exactly the lag-one autocovariance g1 in
which case (11) holds for m 5 1. Still we have an extra degree
of freedom (one more independent parameter), which can be
estimated so as to get a good fit of GAS to autocovariances for
a certain number of lags higher than 1. (3) Finally, we may
choose to preserve the lag-one and lag-two autocovariances
exactly. Case 3 is the easiest to apply, as parameters k and b
are directly estimated from (7) in terms of g0, g1, and g2.
However, cases 1 and 2 are preferable because they take into
account the autocovariances of higher lags and, thus, the long-
memory properties of the process. A least squares method is a
direct and simple basis to take into account more than two
autocovariances in cases 1 and 2. Note that linearization of (7)
by taking logarithms is not applicable as some empirical auto-
covariances may be negative. Therefore the application of least
squares requires nonlinear optimization, which is a rather sim-
ple task as there are only two parameters in case 1 (k and b)
and one in case 2 (only b because of (11)). Results of appli-
cations of method 1 on synthetic and historical hydrologic data
sets are given in Appendix A1. Apparently, parameter estima-
tion is subject to high uncertainty, and this is particularly true
for b, which is related to the long-term persistence of the
process. Therefore, if the record length is small, it may be a
good idea to assume a value of b after examining other series

1521KOUTSOYIANNIS: STOCHASTIC SIMULATION AND FORECAST



of nearby gauges, rather than to estimate it directly from the
available small record.

Similar parameter estimation strategies can be applied for
the richer in parameters forms of GAS that were described
above, in which case several values g j are preserved. We must
emphasize that not any arbitrary sequence g j can be a feasible
autocovariance sequence. Specifically, g j is a feasible autoco-
variance sequence if it is positive definite [Papoulis, 1991, pp.
293–294]. This can be tested in terms of the variance-
covariance matrix h of the vector of variables [X1, z z z , Xs]

T,
which has size s 3 s and entries

hij 5 g ui2ju. (12)

If h is positive definite for any s , then g j is a feasible autoco-
variance sequence. Normally, if the model autocovariances are
estimated from data records, positive definiteness is satisfied.
However, it is not uncommon to meet a case that does not
satisfy this condition. The main reason is the fact that autoco-
variances of different lags are estimated using records of dif-

ferent lengths either due to the estimation algorithm (e.g.,
using (2)) or due to missing data. Another reason is the fact
that high-lag autocovariances are very poorly estimated, as
explained above.

An alternative way to test that g j is a feasible autocovariance
sequence is provided by the power spectrum of the process,
which should be positive everywhere. The power spectrum of
the process is the discrete Fourier transform (DFT; also
termed the inverse finite Fourier transform) of the autocovari-
ance sequence g j [e.g., Papoulis, 1991, pp. 118, 333; Bloomfield,
1976, pp. 46–49; Debnath, 1995, pp. 265–266; Spiegel, 1965, p.
175]; that is,

sg~v! :5 2g0 1 4 O
j51

`

g j cos ~2pjv! 5 2 O
j52`

`

g j cos ~2pjv! .

(13)

Because g j is an even function of j (i.e., g j 5 g2j), the DFT
in (13) is a cosine transform; as usual we have assumed in (13)

Figure 1. (a) Examples of autocovariance sequences of the proposed generalized type for several values of
the exponent b, in comparison with the fractional Gaussian noise and ARMA types; (b) corresponding power
spectra. (Read 1E-04 as 1 3 1024.)
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that the frequency v ranges in [0, 1/2], so that g j is determined
in terms of sg(v) by

g j 5 E
0

1/ 2

sg~v! cos ~2pjv! dv . (14)

If autocovariance is given by the generalized relation (7) for
all j , then it is easily shown that the power spectrum is

sg~v! 5 2g0H21 1 2S 1
bkD

1/b

Re @F~e2 i p v ,
1
b

,
1

bk

(15)

where i :5 =21, Re [ ] denotes the real part of a complex
number, and F( ) is the Lerch transcendent phi function
defined by

F~ z , b , a! :5 O
j50

` zj

~a 1 j!b . (16)

In the specific case that b 5 0, where (8) holds, (15) reduces
to

sg~v! 5 2g0

~1 2 e22k!

1 1 e22k 2 2e2k cos ~2pv!
. (17)

This gives a characteristic inverse S-shaped power spectrum
(Figure 1b) that corresponds to a short-memory process.

Numerical investigation shows that for any b . 1 and k 5 k0

(given in (9)), (15) becomes approximately a power function of
the frequency v with exponent approaching 1/b 2 1. (More
accurately, the exponent is by an amount d smaller than 1/b 2
1, where d is ;0.03 for b $ 2.5 and decreases almost linearly
to zero as b approaches 1. The exponent becomes almost equal
to 1/b 2 1 if k is set equal to [1 1 0.71(1 2 1/b)(1 2 1/2b)]k0;
however, in the latter case the departure of the power spec-
trum from the power law is greater.) This case indicates a
typical long-memory process, similar to a FGN process (see
Figure 1b) where the power function appears as a straight line
on the log-log plot). Generally, the power spectrum tends to
infinity as v tends to zero, regardless of the value of k, if b $
1. For b , 1 the power spectrum cannot be a power law of the
frequency but approaches that given by (17) (inverse S-shaped)
as b decreases, taking a finite value for v 5 0.

If we fix g0 and g1 (the variance and the lag-one autocovari-
ance) at some certain values, and vary b (and k accordingly),
we observe that there exists a combination of b 5 b* $ 1 and
k 5 k0(b*) (given by (9)) resulting in a power spectrum s*(v)
approximately following a power law. For b . b* the power
spectrum exceeds s*(v) for low frequencies (that is, it departs
from the straight line and becomes inverse J-shaped in the
log-log plot). The opposite happens if b , b* (the spectrum
tends to the inverse S-shaped). This is demonstrated in Figure
1b, where, in addition, g2 has been also fixed; the power spec-
tra of Figure 1b are those resulting from the autocovariances of
Figure 1a. Note that the power spectra of Figure 1b have been
calculated numerically from (13) rather than from (15) be-
cause the three fixed autocovariances g0, g1, and g2 do not
allow a single instance of (7) to hold for all j .

The case b 5 b* (straight line on log-log plot) that corre-
sponds to the FGN process has been met in many hydrological
and geophysical series. The case b 5 0 (inverse S-shaped line
on log-log plot) that corresponds to ARMA processes has been

widely used in stochastic hydrology. In addition to these cases
the GAS scheme allows for all intermediate values of b in the
range (0, b*), as well as for values b . b* (inverse J-shaped
line on log-log plot, or very “fat” tail of autocovariance). The
case 0 , b , b* implies a long-term persistence weaker than
the typical FGN one. The case b . b* characterizes processes
with strong long-term persistence but not very strong lag-one
correlation coefficient. Both these cases can be met in hydro-
logic series (see examples in Appendix A1).

In section 4.1 we will see how we can utilize the power
spectrum of the process to determine the parameters of a
generalized generating scheme, which will be introduced in the
following section 3.

3. Description of the Generating Scheme
It is well known [Box and Jenkins, 1970, p. 46] that for any

autocovariance sequence g j, Xi can be written as the weighted
sum of an infinite number of independent and identically dis-
tributed (i.i.d.) innovations Vi (also termed auxiliary or noise
variables), that is, in the following form, known as (backward)
moving average (BMA) form (where we have slightly modified
the original notation of Box and Jenkins [1970]):

Xi 5 O
j52`

0

a2jVi1j 5 · · · 1 a2Vi22 1 a1Vi21 1 a0Vi, (18)

where aj are numerical coefficients that can be determined
from the sequence of g j. Specifically, coefficients aj are related
to g j through the equation [Box and Jenkins, 1970, pp. 48, 81]

O
j50

`

ajai1j 5 g i i 5 0, 1, 2, . . . (19)

Although in theory Xi is expressed in terms of an infinite
number of innovations, in practice it suffices to use a finite
number of them for two reasons: (1) because the number of
variables to be generated in any simulation problem is always
a finite number and (2) because terms a2j decrease as j 3
2` , so that beyond a certain number j 5 2s all terms can be
neglected without significant loss of accuracy. We must clarify
that in our perspective the number of nonnegative terms s 1
1 is larger, by orders of magnitude, than p or q typically used
in ARMA( p , q) models. Also, the number s is totally unre-
lated to the number of essential parameters m 1 2 of the
autocovariance function, discussed in section 2, as coefficients
aj are internal parameters of the computational scheme. By
contrast, the number s could be regarded as a large number of
the order of magnitude 100 or 1000, depending on the decay of
autocovariance, the desired accuracy, and the simulation
length. In this respect, (18) and (19) can be approximated by

Xi 5 O
j52s

0

a2jVi1j 5 asVi2s 1 · · · 1 a2Vi22 1 a1Vi21 1 a0Vi,

(20)

O
j50

s2i

a jai1j 5 g i i 5 0, 1, 2, . . . , (21)

respectively, for a sufficiently large s .
Extending this notion, we can write Xi as the weighted sum
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of both previous and next (theoretically infinite) innovation
variables Vi, i.e., in the following backward-forward moving
average (BFMA) form:

Xi 5 O
j52`

`

ajVi1j 5 · · · 1 a21Vi21 1 a0Vi 1 a1Vi11 1 · · · ,

(22)

where now the coefficients aj are related to g j through the
almost obvious equation

O
j52`

`

ajai1j 5 g i i 5 0, 1, 2, . . . , n . (23)

In section 5 we will see that the introduction of forward inno-
vation terms (i.e., Vi11, Vi12, etc.) does not create any incon-
venience even if the model is going to be used as a forecast
model.

The backward-forward moving average model (22) is more
flexible than the typical backward moving average model (18).
Indeed, the number of parameters aj in model (22) is double
that of model (18) in order to represent the same number of
autocovariances g j. Therefore in model (22) there exists an
infinite number of sequences aj satisfying (23).

One of the infinite solutions of (23) is that with aj 5 0 for
every j , 0, in which case the model (22) is identical to the
model (18). Another interesting special case of (22) is that with

aj 5 a2j j 5 1, 2, . . . (24)

For reasons that will be explained below, the latter case will be
adopted as the preferable model throughout this paper and
will be referred to as the symmetric moving average (SMA)
model (although the BMA model will be considered as well).
In this case, (22) can be written as

Xi 5 O
j52s

s

a ujuVi1j 5 asVi2s 1 · · · 1 a1Vi21 1 a0Vi 1 a1Vi11

1 · · · 1 asVi1s, (25)

where we have also restricted the number of innovation vari-
ables to a finite number, for the practical reasons already
explained above. That is, we have assumed aj 5 0 for uj u . s .
The equations relating the coefficients aj to g j become now

O
j52s

s2i

a ujua ui1ju 5 g i i 5 0, 1, 2, . . . (26)

Given that the internal model parameters aj are s 1 1 in
total, the model can preserve the first s 1 1 terms of the
autocovariance g j of the process Xi, if aj are calculated so that
(26) is satisfied for i 5 0, z z z , s . (In section 4 we will discuss
how this calculation can be done.) As we have already dis-
cussed, the number s can be chosen so that the desired accu-
racy can be achieved. The model implies nonzero autocovari-
ance for a number of subsequent time lags. Thus for the
subsequent s terms ( j 5 s 1 1, z z z , 2s) the autocovariance
terms are given by

g i 5 O
j5i2s

s

ajai2j i 5 s 1 1, . . . , 2s (27)

(a consequence of (26) for i . s), whereas for even larger lags
the autocovariance vanishes off.

Apart from the parameters aj that are related to the auto-
covariance of the process Xi, two more parameters are needed
for the generating scheme, which are related to the mean and
skewness of the process. These are the mean mV :5 E[Vi] and
the coefficient of skewness jV :5 E[(Vi 2 mV)3] of the
innovations Vi (note that by definition, Var [Vi] 5 1). They
are related to the corresponding parameters of Xi by

S O
j50

s

ajDmV 5 mX, S O
j50

s

aj
3D jV 5 jXg0

3/ 2 (28)

for the BMA model and

S a0 1 2 O
j51

s

ajDmV 5 mX, S a0
3 1 2 O

j50

s

aj
3D jV 5 jXg0

3/ 2

(29)

for the SMA model, which are direct consequences of (20) and
(25), respectively.

To provide a more practical view of the behavior of the SMA
model, also in comparison with the typical BMA model, we
demonstrate in Figure 2 two examples in graphical form. In the
first example, we have assumed that the process Xi is Mark-
ovian with autocovariance (3) and g0 5 1 and r 5 0.9. In case
of the BMA model with infinite aj terms, a theoretical solution
of (19) is

aj 5 Îg0~1 2 r2!r j, (30)

as can be easily verified by substituting (30) into (19). If we
choose to preserve the first 101 autocovariance terms g j as-
suming that aj 5 0 for j . s 5 100, we can numerically
estimate from (21) the first 101 nonzero terms aj (in a manner
that will be described in section 4). The numerically estimated
aj are depicted in Figure 2a; practically, they equal those given
by (30), apart from the last three values, which depart from
theoretical values because of the effect of setting the high
terms aj 5 0 (the departure is clear in Figure 2a). The same
autocovariance g j can be also preserved by the SMA model.
The theoretical solution for infinite aj terms, and the approx-
imate solution, again using 101 nonzero aj terms, are calcu-
lated from (23) and (26), respectively (using techniques that
will be described in section 4), and are also shown in Figure 2a.
We observe that all aj values of the SMA model (apart from
a0) are smaller than the corresponding aj values of the BMA
model; for large j near 100, aj of the SMA model become 1
order of magnitude smaller than those of the BMA model.
Apparently, this constitutes a strong advantage of the SMA
model over the BMA one: The smaller the coefficients aj for
large j , the smaller is the introduced error due to setting aj 5
0 for j . s .

In a second example we have assumed that Xi is a FGN
process with autocovariance (5), and g0 5 1 and H 5 0.6,
which corresponds to b 5 1.25. This autocovariance is shown
graphically in Figure 2b along with the resulting sequences of
aj, assuming again that the first 101 terms are nonzero. Once
more we observe that the aj sequence of the SMA model lies
below that of the BMA model. In addition to the approximate
solution for 101 nonzero aj terms a theoretical solution for
infinite aj terms, also shown in Figure 2b, is possible for the

KOUTSOYIANNIS: STOCHASTIC SIMULATION AND FORECAST1524



SMA model, as will be described in section 4.1. We will also see
in section 4.1 and Appendix A2 that a closed analytical solution
is possible for the SMA model for any autocovariance g j but
not for the BMA model. This certainly constitutes a second
advantage of the SMA model over the BMA one.

As we have already mentioned above, the SMA model im-
plies a nonzero autocovariance even for lags above the as-
sumed numerical limit s , i.e., for j 5 s 1 1 up to j 5 2s , given
by (27). On the contrary, the BMA model implies that all
autocovariance terms above s are zero. In Figure 3 we have
plotted the resulting autocovariance of the above-described
Markovian example for lags j up to 200. We observe that this
structure may be an accepted approximation of the Markovian
structure for lags 101–200 (at least it is better than the zero

autocovariance implied by the BMA model). As this is
achieved by no cost at all (no additional parameters are intro-
duced), it can be regarded as an additional advantage of the
SMA model over the BMA model.

A fourth advantage of the SMA model is related to the
preservation of skewness, in cases of skewed variables, which
are very common in stochastic hydrology. It is well known
[Todini, 1980; Koutsoyiannis, 1999a] that if the coefficient of
skewness of the innovation variables becomes too high, it is
impossible to preserve the skewness of the variables Xi. There-
fore the model resulting in lower coefficient of skewness of the
innovation variables is preferable. In all cases examined, this
was the SMA model. For instance, in the above-described
Markovian example the SMA model resulted in jV 5 2.52 jX

Figure 2. Two examples of theoretical autocovariance sequences and resulting sequences of internal pa-
rameters aj for BMA and SMA schemes: (a) a Markovian autocovariance sequence and (b) a fractional
Gaussian noise autocovariance sequence. The obtained autocovariance sequences by either of the BMA or
SMA schemes are indistinguishable from the theoretical ones.
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whereas, in the BMA model, jV 5 3.27 jX (by applying (29)
and (28), respectively).

4. Computation of Internal Parameters
of the Generating Scheme

We will present two methods for computing the sequence of
terms aj given the autocovariance g j. The first method results
in closed analytical solution of (23) for the case that (24) holds;
this is applicable to the SMA model for an infinite number of
aj terms. The second method is a numerical solution of (21) or
(26) that determines a finite number of aj terms and is appli-
cable to both the BMA and the SMA models.

4.1. Closed Solution

Denoting sa(v) the DFT of the aj series and utilizing the
convolution equation (23) and the fact that in the SMA model,
aj is an even function of j (equation (24)), we can show (see
Appendix A2) that sa(v) is related to the power spectrum of
the process sg(v) by

sa~v! 5 Î2sg~v! . (31)

This enables the direct calculation of the DFT of the aj series
if the power spectrum of the process sg(v) (or equivalently,
the autocovariance g j) is known. Then aj can be calculated by
the inverse transform, i.e.,

aj 5 E
0

1/ 2

sa~v! cos ~2pjv! dv . (32)

Apart from a few special cases, the calculations needed to
evaluate aj from g j can be performed only numerically. How-
ever, they are simple and noniterative. In addition, all calcu-
lations can be performed using the fast Fourier transform
(FFT, e.g., Bloomfield [1976, pp. 61–76]), thus enabling the
building of a fast algorithm.

For the BMA model the fact that aj is not an even (or an
odd) function of j results in a complex DFT of aj. Therefore
the corresponding relation between sa(v) and sg(v) becomes
(see Appendix A2)

usa~v! u 5 Î2sg~v! , (33)

where usa(v) u is the absolute value of sa(v). Given that sa(v)
is complex, (33) does not suffice to calculate sa(v) (it gives
only its amplitude, not its phase). Therefore the method can-
not work for the BMA model. In addition, it is shown in
Appendix A2 that there does not exist any other real valued
transformation, different from DFT, that could result in an
equation similar to (31) to enable a direct calculation of aj for
the BMA model. However, the iterative method presented in
section 4.2 can be applied to both the SMA and the BMA
models.

4.2. Iterative Solution

The equations relating the model internal parameters aj to
the autocovariance terms g j, i.e., (21) and (26) for the BMA
and SMA models, respectively, may be written simultaneously
for j 5 0, z z z , s in matrix notation as

pz 5 u , (34)

where z 5 [a0, z z z , as]
T, u 5 [g0, z z z , gs]

T (with the
exponent T denoting the transpose of a matrix or vector), and
p is a matrix with size (s 1 1) 3 (s 1 1) and elements

pij 5 ~1/ 2!@aj2iU~ j 2 i! 1 ai1j22U~s 2 i 2 j 1 1!#
(35)

for the BMA model and

pij 5 a uj2iu 1 ai1j22U~ j 2 2!U~s 2 i 2 j 1 1! (36)

for the SMA model. Here U( x) is the Heaviside’s unit step
function, with U( x) 5 1 for x $ 0 and U( x) 5 0 for x , 0.
It can be easily verified that (35) and (36) (along with (34)) are
equivalent to (21) and (26), respectively. Other expressions
equivalent to (35) and (36) and simpler than them can be also
derived, but (35) and (36) are the most convenient in subse-
quent steps.

Clearly, each single equation of the system (34) includes
second-order products of unknown terms aj. Therefore (34)
may have one or more solutions in case of a positive definite
autocovariance or no solution otherwise. Generally, we need to

Figure 3. Obtained autocovariance structure from the SMA scheme using 100 aj terms, for lags 0–200; the
theoretical autocovariance structure is that of Figure 2a.
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determine one single solution if it exists; otherwise, we may
need to find the best approximation to (34). To accomplish
these in a common manner, we reformulate the parameter
estimation problem as a minimization problem, demanding to

min f~z! 5 f~a0, . . . , as! :5 ipz 2 ui2 1 l~p1z 2 g0!
2,

(37)

where p1 is the first row of p, l is a weighting factor, and i.i
denotes the Euclidean norm of a vector. The meaning of the
first term of the right-hand side of (37) becomes obvious from
(34). The second term denotes the square error in preserving
the model variance g0, multiplied by the weighting factor l.
Although, apparently, the second term is also contained in the
first term, its separate appearance in the objective function
enables its separate treatment. In case of a feasible autocovari-
ance sequence, the minimum of f(z) will be zero, whatever the
value of l. However, in case of an inconsistent autocovariance
sequence the minimum of f(z) will be a positive number. In
such a case the preservation of the variance g0 is more impor-
tant than that of autocovariance terms. Assigning a large value
to l (e.g., l 5 103), we force (p1z 2 g0)2 to take a value close
to zero. Alternatively, l could be considered as a Lagrange
multiplier (an extra variable of the objective function (37)), but
this would complicate the solution procedure.

The task of minimization of f(z) is facilitated by determining
its derivatives with respect to z. After algebraic manipulations
it can be shown that d(pz)/dz 5 2p (for both BMA and SMA
schemes), so that

df~z!

dz
5 4~pz 2 u!Tp 1 4l~p1z 2 g0!p1. (38)

Clearly, the problem we have to solve is an unconstrained
nonlinear optimization problem with analytically determined
derivatives. This can be easily tackled by typical methods of the
literature such as the steepest descent and Fletcher-Reeves
conjugate gradient methods [e.g., Mays and Tung, 1996, p. 6.12;
Press et al., 1992, p. 422]. These are iterative methods, starting
with an initial vector, which, in our case, can be taken as z[0] 5

[=g0, 0, 0, z z z , 0]T, and iteratively improving it until the
solution converges.

The algorithm has been proven very quick and efficient in all
cases examined, involving problems even with more than 1000
ai parameters. Examples of applying the algorithm for consis-
tent autocovariances, Markovian and fractional Gaussian, have
been already discussed (section 2 and Figure 2). An example of
applying the algorithm to an inconsistent autocovariance is
shown in Figure 4. The autocovariance of this example is iden-
tical to that of the Markovian example of Figure 2a, apart from
the values g2 and g3 that were both set equal to g1; this creates
a covariance matrix h that is not positive definite. As shown in
Figure 4, the algorithm resulted in a very good approximation
of the assumed autocovariance.

In comparison with an earlier numerical procedure by Wil-
son [1969; see also Box and Jenkins, 1970, p. 203] for deter-
mining the parameters of the BMA process, the above-
described algorithm is more general (it also covers the SMA
case), faster (it does not involve matrix inversion, whereas
Wilson’s algorithm does), and more flexible and efficient (it
can provide approximate solutions for inconsistent autocovari-
ances, whereas Wilson’s algorithm cannot).

5. Generation Scheme in Forecast Mode
Equations (20) and (25) are directly applicable for simula-

tion (unconditional generation) of the process Xi. However, it
is quite frequently the case where some of the variables Xi

(past and present) are known and we wish either to generate
other (future) variables, or to obtain best predictions of these
(future) variables. As we will see, both problems can be tackled
in a common simple manner, applicable for both the BMA and
SMA models.

We will assume that the vector consisting of the present and
k past variables Z :5 [X0, X21, z z z , X2k]T is known and its
value is z 5 [ x0, x21, z z z , x2k]T. We wish either to generate
any future variable Xj for j . 0, or to predict its value, under
the condition Z 5 z. These can be done utilizing the following
proposition, whose proof is given in Appendix A3:

Figure 4. An example of an inconsistent g j sequence approximated with a consistent sequence achieved by
the SMA scheme using 100 aj terms; the latter are also plotted, in comparison with the corresponding terms
of the BMA scheme.
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Proposition. Let X̃i(i 5 2k , z z z , 0, 1, 2, z z z ) be any
discrete time stochastic process with autocovariance g j( j 5 0,
1, z z z ) and let Z̃ :5 [X̃0, X̃21, z z z , X̃2k]T. Let also Z :5
[X0, X21, z z z , X2k]T be a vector of stochastic variables in-
dependent of X̃i with mean and autocovariance identical to
that of X̃i. Then, the stochastic process

Xi 5 X̃i 1 h i
Th21~Z 2 Z̃! i 5 1, 2, . . . , (39)

where hi
T :5 Cov [X̃i, Z̃] and h :5 Cov [Z̃, Z̃], has identical

mean and autocovariance with those of X̃i. In addition, the
conditional variance of Xi, given Z 5 z, is

Var @XiuZ 5 z# 5 g0 2 h i
Th21h i (40)

and is identical to the least mean squares prediction error of Xi

from Z.
Note that h is a symmetric matrix with size (k 1 1) 3 (k 1

1) and elements given by (12) whereas hi is a vector with size
k 1 1 and elements

~h i! j 5 g ui1j21u. (41)

Also, note that the proposition is quite general and it can be
applied to any type of linear stochastic model (not only to
those examined in this paper).

This proposition enables the following procedure for the
forecast mode of the model: (1) Determine the matrix h using
(12) for the given number (k 1 1) of known (present and past)
variables and then calculate h21. (2) Generate a sequence of
variables X̃i(i 5 2k , z z z , 0, 1, z z z ), using the adopted
model (20) or (25) without any reference to the known vari-
ables Z. Form the vectors Z and Z̃ and calculate the vector
h21(Z 2 Z̃). (3) For each i . 0, determine the vector hi from
(41) and calculate the final value of the variable Xi, conditional
on Z, from (39).

Equation (40) shows that the conditional variance of Xi is
smaller than the unconditional one (g0), as expected. The fact
that this conditional variance is identical to the least mean
squares prediction error of Xi from Z ensures us that no
further reduction is possible by any type of linear prediction
model. Thus the combination of model (20) or (25) with the
transformation (39) allows preservation of the stochastic struc-
ture of the process, whatever this structure is, and simulta-
neously reduces the conditional variance to its smallest possi-
ble value, in the sense that no other linear stochastic model
could reduce it further. Notably, the same generating model
(20) or (25) is used in both modes, simulation and forecast.

Theoretically, the procedure can be applied to negative val-
ues of i , as well. In this case, if 2k # i # 0, it is easy to show
that (39) reduces to the trivial case Xi 5 Xi, as it should (see
Appendix A3).

The above steps are appropriate if the forecast is done in
terms of conditional simulation. If it must be done in terms of
expected values rather than conditionally simulated values,
then in step 2 of the above procedure, X̃i are set equal to their
(unconditional) expected values rather than generated. In this
case, if confidence limits are needed, they can be calculated in
terms of the conditional variance given by (40).

6. Multivariate Case
The model studied in sections 2–5 is a single-variate model

but can be easily extended to the multivariate case. In this case
the model, apart from the temporal covariance structure,

should consider and preserve the contemporaneous covariance
structure of several variables corresponding to different loca-
tions.

Let Xi 5 [Xi
1, Xi

2, z z z , Xi
n]T be the vector of n stochastic

variables each corresponding to some location specified by the
index l 5 1, z z z , n , at a specific time period i . Let also g be
the variance-covariance matrix of those variables with ele-
ments

g lk :5 Cov @Xi
l, Xi

k# l , k 5 1, 2, . . . , n . (42)

We assume that each of the variables Xi
l can be expressed in

terms of some auxiliary variables Vi
l (again with unit variance)

by using either

Xi
l 5 O

r52s

0

a2r
l Vi1r

l (43)

for the BMA model or

Xi
l 5 O

r52s

s

a uru
l Vi1r

l (44)

for the SMA model. These equations are similar to (20) and
(25), respectively.

The auxiliary variables Vi
l can be assumed uncorrelated in

time i (i.e., Cov [Vi
l, Vm

k ] 5 0 if i Þ m) but correlated in
different locations l for the same time i . If c is the variance-
covariance matrix of variables Vi

l, then each of its elements

clk :5 Cov @Vi
l, Vi

k# l , k 5 1, 2, . . . , n (45)

can be expressed in terms of g lk and the series of ai
l and ai

k by

clk 5 g lkY O
r50

s

ar
l ar

k (46)

for the BMA model and

clk 5 g lkY O
r52s

s

a uru
l a uru

k (47)

for the SMA model. These equations are direct consequences
of (43) and (44), respectively. The theoretically anticipated
lagged cross-covariance for any lag j 5 0, 1, z z z , is then

Cov @Xi
l, Xi1j

k # 5 g lk O
r50

s2j

ar
l aj1r

k Y O
r50

s

ar
l ar

k (48)

for the BMA model and

Cov @Xi
l, Xi1j

k # 5 g lk O
r52s

s2j

a uj1ru
l a uru

k Y O
r52s

s

a uru
l a uru

k (49)

for the SMA model.
Given the variance-covariance matrix c, the vector of vari-

ables Vi 5 [Vi
1, Vi

2, z z z , Vi
n]T can be generated using the

simple multivariate model

V i 5 bW i, (50)

where Wi 5 [Wi
1, Wi

2, z z z , Wi
n]T is a vector with innovation

variables with unit variance independent both in time i and in
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location l 5 1, z z z , n and b is a matrix with size n 3 n such
that

bbT 5 c . (51)

The methodology for solving (51) for b given c (also known as
taking the square root of c) will be discussed in section 7 below.
The other parameters needed to completely define model (50)
are the vector of mean values mW and coefficients of skewness
jW of Wi

l. These can be calculated in terms of the correspond-
ing vectors mV and jV of Vi

l, already known from (28) or (29),
by

mW 5 b21mV, jW 5 ~b ~3!!21jV, (52)

which are direct consequences of (50). In (52), b(3) is the
matrix whose elements are the cubes of b, and the exponent 21
denotes the inverse of a matrix.

To illustrate the method, we have applied it to a problem
with two locations with statistics given in Table 1. To investi-
gate the method’s ability to preserve long-term memory prop-
erties such as the Hurst coefficient in multiple dimensions, we
have assumed the FGN structure with exponents b equal to
1.25 and 1.667 for locations 1 and 2, respectively, correspond-
ing to Hurst coefficients 0.6 and 0.7 for locations 1 and 2,
respectively. We generated a synthetic record with 10,000 data
values using the SMA scheme with 2000 nonzero aj terms,
which were evaluated by the closed solution described in sec-
tion 4.1. The last (2000th) term of the series of aj was 6 3
1025 a0 for location 1 and 3 3 1024 a0 for location 2; these
small values indicate that the error due to neglecting the higher
aj terms (beyond term 2000) is small. The required computer
time on a modest (300 MHz) Pentium PC was ;10 s for the
computation of internal parameters (when the fast Fourier
transform was implemented in the algorithm; otherwise it in-
creased to ;2 min) and another 10 s for the generation of the
synthetic records. As shown in Table 1, the preservation of all
statistics was perfect. In addition, Figure 5 shows that the
autocorrelation and cross-correlation function, the power
spectrum, and the rescaled range as a function of record length
were very well preserved, as well.

7. Finite Length of Autocorrelation Sequence
In sections 1–6 it was assumed that the autocovariance g j is

defined for any arbitrarily high lag j . However, there are cases
where only a finite number of autocovariance terms can be
defined. For example, in a stochastic model describing rainfall
increments at time intervals d within a rainfall event with

certain duration d 5 qd (where q is an integer), the autoco-
variance has no meaning for lags greater than q 2 1 (see the
application in the end of this section). Such cases can be
tackled in a different, rather simpler, way.

An appropriate model for this case is

X 5 bV , (53)

where X 5 [X1, z z z , Xq]T is the vector of variables to be
modeled with variance-covariance matrix h given by (12), V 5
[V1, z z z , Vq]T is a vector of innovations with unit variance,
and b is a square matrix of coefficients with size q 3 q . The
main difference from the models of sections 3–5 is that the
number of innovations V equals the number q of the modeled
variables X (the length of the synthetic record). In this case the
distributions of innovations V cannot be identical. Each one
has different mean and coefficient of skewness, given by

mV 5 b21mX, jV 5 ~b ~3!!21jX, (54)

which are direct consequences of (53). The matrix of coeffi-
cients b is given by

bbT 5 h , (55)

which again is a direct consequence of (53).
It is reminded that (55) has an infinite number of solutions

b if h is positive definite. Traditionally, two well-known algo-
rithms are used which result in two different solutions b [see,
e.g., Bras and Rodriguez-Iturbe, 1985, p. 96; Koutsoyiannis,
1999a]. The first and simpler algorithm, known as triangular or
Cholesky decomposition, results in a lower triangular b. The
second, known as singular value decomposition, results in a full
b using the eigenvalues and eigenvectors of h. A third algo-
rithm has been proposed by Koutsoyiannis [1999a] which is
based on an optimization framework and can determine any
number of solutions, depending on the objective set (for ex-
ample, the minimization of skewness, or the best approxima-
tion of the covariance matrix, in case that it is not positive
definite).

We can observe that the lower triangular b is directly asso-
ciated with the BMA model discussed in section 3, but with
different number of innovations Vi for each Xi. Thus, if b is
lower triangular, then, apparently, X1 5 b11V1, X2 5
b21V1 1 b22V2, etc. Likewise, a symmetric b is associated with
the SMA model. An iterative method for deriving a symmetric
b can be formulated as a special case of the methodology
proposed by Koutsoyiannis [1999a]. This can be based on the
minimization of

f~b) :5 ibbT 2 hi2, (56)

where we have used the notation ibbT 2 hi for the norm
(more specifically, we adopt the Euclidean or standard norm
here; see, e.g., Marlow [1993, p. 59]), as if bbT 2 h were a
vector in q2 space rather than a matrix. The derivatives of f(b)
with respect to b are easy to determine (see Appendix A4).
Using the notation da/db 5 [­a/­bij] for the matrix of partial
derivatives of any scalar a with respect to all bij (this is an
extension of the notation used for vectors, e.g., Marlow [1993,
p. 208]) and considering that b is symmetric, we find that

df~b!

db
5 8e 2 4e*, (57)

where e :5 (bbT 2 h)b and e* 5 diag (e11, e22, z z z , eqq), i.e.,
a diagonal matrix containing the diagonal elements of e.

Table 1. Theoretical and Empirical Statistics of the
Application of Section 6

Theoretical Empirical

Location 1 Location 2 Location 1 Location 2

Mean 1.00 2.00 1.00 1.97
Standard deviation 0.50 1.20 0.51 1.21
Coefficient of

skewness
1.00 1.20 1.03 1.14

Hurst coefficient 0.60 0.70 0.61 0.71

Cross-
correlation
coefficient

0.70 0.70
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As in the similar case of section 4.2, the problem here is an
unconstrained nonlinear optimization problem with analyti-
cally determined derivatives, which can be easily tackled by
typical methods such as the steepest descent and the Fletcher-

Reeves conjugate gradient methods. As initial solution for the
iterative procedure we should use a symmetric one; a good
choice is b[0] 5 =g0I, where I is the identity matrix.

To illustrate the method and the differences among the

Figure 5. Preservation of statistical properties by the simulated records of the application of section 6: (a)
autocovariance, (b) power spectra, (c) rescaled range and Hurst coefficients, and (d) cross-covariance.
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three different solutions discussed, we have considered a sto-
chastic model of a rainfall event with duration d 5 20 hours
using a half-hour time resolution d, so that the number of
variables is q 5 20/0.5 5 40. We denote Xi(i 5 1, z z z , 40)
the half-hour rainfall increments and assume that the covari-
ance structure of Xi is as in the scaling model of storm hyeto-
graph [Koutsoyiannis and Foufoula-Georgiou, 1993]; that is,

g ui2ju 5 Cov @Xi, Xj# 5 @~c2 1 c1
2!w~ uj 2 i u , b!q1/b 2 c1

2#

z ~d2~k11!/q2! , (58)

where c1, c2, k and b are parameters and

w~m , b! :5 ~1/ 2!@~m 2 1!221/b 1 ~m 1 1!221/b#

2 m221/b m . 0, (59)

whereas w(0, b) 5 1. This is apparently a long-memory auto-
correlation structure similar to the FGN structure. It always
results in consistent (positive definite) autocovariance if it is
evaluated within the duration d of the event; however, for
certain combinations of parameters it can result in inconsistent
autocovariance values if it is attempted to evaluate it outside of
the event (i.e., for lags greater than q 2 1).

For the example presented here we have assumed that the
model parameters are c1 5 8.74, c2 5 85.68, k 5 20.45,
and b 5 10 (units of millimeters and hours). The statistics of
Xi, determined from equations given by Koutsoyiannis and
Foufoula-Georgiou [1993], are mX 5 1.14 mm, g0 5 2.68 mm2,
and jX 5 2.88 (the latter is determined assuming two-
parameter gamma distribution for Xi). The matrix b is 40 3 40
(1600 elements). We have calculated all three solutions of the
matrix b described above (triangular, singular value, and sym-
metric), which are shown schematically in Figure 6. We ob-
serve a regular pattern with a strong diagonal and a strong first
column for the triangular solution, a strong first column and an
irregular pattern for other columns for the singular value so-
lution, and a regular pattern with a strong diagonal for the
symmetric solution.

An appropriate means to compare the three solutions is
provided by the resulting coefficients of skewness of innova-
tions Vi, given by (54). These are shown in Figure 7. The
singular value solution resulted in coefficients of skewness
ranging from 240 to 162, which apparently are computation-
ally intractable at generation. More reasonable are the values
of the triangular solution, with a maximum coefficient of skew-
ness equal to ;10. The symmetric solution resulted in the
smallest, among the three cases, maximum coefficient of skew-
ness, slightly exceeding 6. Notably, this value is the smallest
possible value among all possible (infinite) b solutions of (55)
[Koutsoyiannis, 1999b]. This enhances further the already dis-
cussed feature of the SMA model, that symmetric solutions
result in smaller coefficients of skewness of innovations, a
feature quite expedient in stochastic hydrology.

The finite length scheme described in this section can be a
preferable alternative even in cases where the autocovariance
is defined for any j but the length q of the synthetic record is
very small. Specifically, the scheme of the present section 7
uses q2 internal parameters. In the case that the process ex-
hibits long memory the required number of parameters s of the
schemes of section 3 may be greater than q2, and thus the
scheme of section 7 could be preferable.

8. Summary, Conclusions, and Discussion
The main topics of the proposed framework can be summa-

rized in the following points: (1) A generalized autocovariance
function is introduced which unifies in a simple mathematical
expression both short-memory (ARMA) and long-memory
(FGN) models, considering them as special instances in a para-
metrically defined continuum, more comprehensive than these
classes of models. (2) A moving average stochastic generation
scheme is proposed that can implement the generalized auto-
covariance function (or any other autocovariance function). In
addition to the traditional backward moving average scheme, a
new time-symmetric (backward-forward) moving average
scheme is proposed. It is computationally more convenient and
also results in better treatment of processes with skewed dis-
tributions. (3) Two methods of determining the internal pa-
rameters of the generating scheme are proposed. The first is a

Figure 6. Comparison of three different solutions of param-
eter matrices b (3-D plots of their elements) of the application
of section 7: (a) triangular solution, (b) singular value solution,
and (c) symmetric solution.
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closed method based on the power spectrum of the process and
applicable to the symmetric moving average scheme. The sec-
ond is an iterative method based on convolution equations and
applicable to both instances of the generating scheme. (4) The
proposed stochastic generation scheme is directly adaptable so
as to perform in forecast mode. To this aim, a generalized
adaptation methodology is studied, applicable to any type of
stochastic model. (5) The model can perform in single-variate
as well as multivariate problems. (6) A specific form of the
model for problems where the autocorrelation function can be
defined only for a certain finite number of lags (e.g., in gener-
ation of rainfall increments within a rainfall event) is also
studied. An incidental contribution of this study is a method
for determining a symmetric square root of a symmetric ma-
trix; this symmetric square root is the direct analogue of the
symmetric moving average generating scheme, and, as demon-
strated by an example, it outperformed nonsymmetrical solu-
tions.

Thus the proposed framework is a generalized tool for any
kind of single-variate and multivariate simulation and forecast-
ing problems in stochastic hydrology involving stationary sto-
chastic processes. We emphasize its appropriateness for mod-
eling long-memory processes and its ability for preserving the
Hurst coefficients in multivariate processes, even if each loca-
tion has a different Hurst coefficient. Simultaneously, it en-
ables explicit preservation of the skewness of the processes (at
no computational or other cost, apart from generating skewed
rather than Gaussian random numbers), a feature that is of
major concern in stochastic hydrology. Owing to the proposed
fast algorithms for computation of internal parameters the
required computing time is small, even for problems including
thousands of such parameters.

In traditional stochastic models, three different issues, i.e.,
the type of the generation scheme, the number of model pa-
rameters, and the type of autocovariance, are merged in one.

For example, if we choose the AR(1) model as a generation
scheme, we simultaneously choose to use two second-order
parameters (variance and lag-one autocovariance) and assume
that the autocovariance is an exponential function of the lag. In
our approach, we have separated these three issues. The au-
tocovariance function has a single mathematical expression of
power type. The number of parameters can be decided sepa-
rately, depending on the desired parsimony or nonparsimony
of parameters and the length of the available record. The
minimum number of parameters is three, one being the vari-
ance and another one the exponent of the power-type autoco-
variance function. This exponent equals zero for the model
with the shortest possible memory, and becomes .1 for a
long-memory model. Coming then to the generation scheme,
this has a mathematical expression independent of the auto-
correlation function. What we have to decide here is the num-
ber of innovation terms, which depends on the length of the
synthetic record to be generated, the desired accuracy, and the
adopted decay of autocorrelation.

In its present form the proposed framework is formulated
for stationary processes. Therefore it can be directly used, for
modeling of annual flows or short-timescale problems (e.g.,
rainfall generation within a rainfall event) that are not affected
by seasonality. Thus it is not appropriate for problems involv-
ing periodic processes (e.g., seasonal flows). However, it can be
directly linked to seasonal short-memory models such as the
periodic autoregressive (PAR(1)) single-variate or multivari-
ate model to simulate seasonal processes, as well. Such a link-
age of annual to seasonal models has been studied elsewhere
[Koutsoyiannis and Manetas, 1996]. The combination of an
annual long-memory model and a seasonal model will preserve
both the long-term memory properties, which will be indirectly
transferred from the annual timescale into the seasonal time-
scale, and the seasonal properties. In addition, any other an-
nual-to-seasonal disaggregation model [Salas et al., 1980; Ste-

Figure 7. Comparison of the resulting coefficients of skewness of the 40 innovations of the application of
section 7 for the three different solutions of parameter matrices b.
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dinger and Vogel, 1984; Grygier and Stedinger, 1988, 1990; Lane
and Frevert, 1990] could also be combined with the annual
model in this respect.
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