
Papacharalampous et al. Geosci. Lett.  (2018) 5:12 
https://doi.org/10.1186/s40562-018-0111-1

RESEARCH LETTER

One-step ahead forecasting 
of geophysical processes within a purely 
statistical framework
Georgia Papacharalampous*, Hristos Tyralis and Demetris Koutsoyiannis

Abstract 

The simplest way to forecast geophysical processes, an engineering problem with a widely recognized challenging 
character, is the so-called “univariate time series forecasting” that can be implemented using stochastic or machine 
learning regression models within a purely statistical framework. Regression models are in general fast-implemented, 
in contrast to the computationally intensive Global Circulation Models, which constitute the most frequently used 
alternative for precipitation and temperature forecasting. For their simplicity and easy applicability, the former have 
been proposed as benchmarks for the latter by forecasting scientists. Herein, we assess the one-step ahead forecast-
ing performance of 20 univariate time series forecasting methods, when applied to a large number of geophysical 
and simulated time series of 91 values. We use two real-world annual datasets, a dataset composed by 112 time series 
of precipitation and another composed by 185 time series of temperature, as well as their respective standardized 
datasets, to conduct several real-world experiments. We further conduct large-scale experiments using 12 simulated 
datasets. These datasets contain 24,000 time series in total, which are simulated using stochastic models from the 
families of AutoRegressive Moving Average and AutoRegressive Fractionally Integrated Moving Average. We use the 
first 50, 60, 70, 80 and 90 data points for model-fitting and model-validation, and make predictions corresponding 
to the 51st, 61st, 71st, 81st and 91st respectively. The total number of forecasts produced herein is 2,177,520, among 
which 47,520 are obtained using the real-world datasets. The assessment is based on eight error metrics and accuracy 
statistics. The simulation experiments reveal the most and least accurate methods for long-term forecasting applica-
tions, also suggesting that the simple methods may be competitive in specific cases. Regarding the results of the real-
world experiments using the original (standardized) time series, the minimum and maximum medians of the absolute 
errors are found to be 68 mm (0.55) and 189 mm (1.42) respectively for precipitation, and 0.23 °C (0.33) and 1.10 °C 
(1.46) respectively for temperature. Since there is an absence of relevant information in the literature, the numerical 
results obtained using the standardized real-world datasets could be used as rough benchmarks for the one-step 
ahead predictability of annual precipitation and temperature.
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Background
Forecasting geophysical variables in various time 
scales and horizons is useful in technological applica-
tions (e.g. Giunta et al. 2015), but a difficult task as well. 

Precipitation and temperature forecasting is mostly 
based on deterministic models as the Global Circulation 
Models (GCMs), which simulate the Earth’s atmosphere 
using numerical equations; therefore, deviating from tra-
ditional time series forecasting, i.e. univariate time series 
forecasting. This particular deviation has been ques-
tioned by forecasting scientists (Green and Armstrong 
2007; Green et al. 2009; Fildes and Kourentzes 2011, see 
also the comments in Keenlyside 2011; McSharry 2011). 
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Traditional time series forecasting can be performed 
using several classes of regression models, as reviewed 
in De Gooijer and Hyndman (2006), while the two major 
classes are stochastic and machine learning. Regression 
models are in general fast-implemented in contrast to 
their computationally intensive alternative in precipita-
tion and temperature forecasting, i.e. the GCMs. For 
their simplicity and easy applicability, the former have 
been proposed as benchmarks for the latter by Green 
et al. (2009).

Recognizing the necessity of introducing traditional 
forecasting methods in temperature and precipitation 
forecasting, Armstrong and Fildes (2006) have recom-
mended a relevant issue in one of the Journals special-
ized in forecasting. Since then and despite the fact that 
considerable parts of books in hydrology are devoted to 
such methods (Sivakumar 2017, pp 63–145; Remesan 
and Mathew 2015, pp 71–110), there has not been a sys-
tematic approach to the subject. However, studies adopt-
ing statistical forecasting approaches in geoscience are 
sporadically published in a variety of Journals. Within a 
statistical framework, Tyralis and Koutsoyiannis (2014, 
2017) use Bayesian techniques for probabilistic climate 
forecasts under the established assumption of long-
range dependence of the observed time series. In the 
latter study information from GCMs is used to improve 
the performance of the time series forecasting methods. 
Moreover, Table  1 presents some examples of studies 
using univariate time series forecasting approaches that 
do not utilize exogenous predictor  variables  to forecast 
precipitation or temperature variables, and streamflow or 
river discharge variables. The former can be considered 
as climatic or meteorological variables depending on the 
time scale of interest, while the latter can be considered 
as the results of precipitation (and other) variables and 
are more frequently modelled by describing this depend-
ence using either deterministic or statistical methods. 
Such statistical approaches to modelling hydrological 
variables can be found in Chen et  al. (2015), Gholami 
et al. (2015) and Taormina and Chau (2015).

In a somehow different direction, Papacharalampous 
et  al. (2017c) conduct a multiple-case study, i.e. a syn-
thesis of 50 single-case studies, by using monthly pre-
cipitation and temperature time series of various lengths 
observed in Greece. Some important points regard-
ing the comparison of univariate time series forecast-
ing methods and additional concerns introduced when 
implementing the machine learning ones (hyperparam-
eter optimization and lagged variable selection) in one- 
and multi-step ahead forecasting are illustrated in the 
latter study. Nevertheless, only large-scale forecast-pro-
ducing studies could provide empirical solutions to sev-
eral problems appearing in the field of (geophysical) time 

series forecasting. Such studies are rare in the literature. 
Beyond geoscience, Makridakis and Hibon (2000) use a 
real-world dataset composed by 3003 time series, mainly 
originating from the business, industry, macroeconomic 
and microeconomic sectors, to assess the one- and multi-
step ahead forecasting accuracy of 24 univariate time 
series forecasting methods. In geoscience, on the other 
hand, there are only four recent studies, all companions 
of the present, to be subsequently discussed.

Papacharalampous et al. (2017a) compare 11 stochastic 
and nine machine learning univariate time series fore-
casting methods in multi-step ahead forecasting of geo-
physical processes and (empirically) prove that stochastic 
and machine learning methods can perform equally well. 
The comparisons are conducted using 24,000 simulated 
time series of 110 values, 24,000 simulated time series of 
310 values and 92 mean monthly time series of stream-
flow with varying lengths, as well as 18 metrics. These 
20 methods are also found to collectively compose a 
representative sample set, i.e. exhibiting a variety of 
forecasting performances with respect to the different 
metrics. Alongside with this study, Papacharalampous 
et  al. (2017b) investigate the error evolution in multi-
step ahead forecasting when adopting this specific set 
of methods. The tests are performed on 6000 simulated 
time series of 150 values, 6000 simulated time series of 
350 values and the streamflow dataset used in Papacha-
ralampous et  al. (2017a). Some different behaviours are 
revealed within these experiments, also suggesting the 
fact that one- and multi-step ahead forecasting are dif-
ferent problems to be examined for the same methods. 
Moreover, Tyralis and Papacharalampous (2017) focus 
on random forests, a well-known machine learning algo-
rithm, with the aim to improve its one-step ahead fore-
casting performance by conducting experiments on 
16,000 simulated and 135 annual temperature time series 
of 101 values. Finally, Papacharalampous et  al. (2018) 
investigate the multi-step ahead predictability of monthly 
precipitation and temperature by applying seven auto-
matic univariate time series forecasting methods to a 
sample of 1552 monthly precipitation and 985 monthly 
temperature time series of 480 values.

Herein, we examine the fundamental problem of one-
step ahead forecasting, also complementing the results 
of the four above-mentioned studies. In more detail, we 
expand the former of these studies by exploring the one-
step ahead forecasting properties of its methods, when 
applied to geophysical time series. Emphasis is put on the 
examination of two real-world datasets, a precipitation 
dataset and a temperature dataset, together containing 
297 annual time series of 91 values. These datasets are 
examined in both their original and standardized forms. 
We further perform experiments using 24,000 simulated 
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time series of 91 values. These experiments complement 
the real-world ones by allowing the examination of a 
large variety of process behaviours, while they are also 
controlled to some extent, facilitating generalizations 
and increasing the understanding on the examined prob-
lem. The number of forecasts produced using these real-
world and simulated datasets are 47,520 and 2,130,000, 

respectively, i.e. the largest among its companion studies. 
Our aim is twofold, to provide generalized results regard-
ing one-step ahead forecasting within a purely statisti-
cal framework [justified, for example, in Hyndman and 
Athanasopoulos (2013)] in geoscience and hopefully to 
establish the results obtained by the examination of the 
standardized real-world datasets as rough benchmarks 

Table 1 Examples of univariate time series forecasting in geoscience

s/n Study Process Number of origi-
nal time series

Forecast time scale Forecast horizon(s) 
[step(s) ahead]

Univariate time series forecasting 
method(s)

1 Hong (2008) Precipitation 9 Hourly 1 (1) Support vector machines
(2) Hybrid model, i.e. a combination 

of recurrent neural networks and 
support vector machines

2 Chau and Wu (2010) 2 Daily 1, 2, 3 (1) Neural networks
(2) Hybrid model, i.e. a combination 

of neural networks and support 
vector machines

3 Htike and Khalifa 
(2010)

1 Monthly, biannually, 
quarterly, yearly

1 Neural networks

4 Wu et al. (2010) 4 Monthly, daily 1, 2, 3 (1) Linear regression
(2) k-nearest neighbours
(3) Neural networks
(4) Hybrid model, i.e. a combination 

of neural networks

5 Narayanan et al. 
(2013)

6 Yearly 21 × 3 (months) AutoRegressive Integrated Moving 
Average (ARIMA)

6 Wang et al. (2013) 1 Monthly 12 Seasonal AutoRegressive Integrated 
Moving Average (SARIMA)

7 Babu and Reddy 
(2012)

Temperature 1 Yearly 10 (1) ARIMA
(2) Wavelet-based ARIMA

8 Chawsheen and 
Broom (2017)

1 Monthly 121 SARIMA

9 Lambrakis et al. (2000) Streamflow 
or river 
discharge

1 Daily 1 (1) Farmer’s model
(2) Neural networks

10 Ballini et al. (2001) 1 Monthly 1, 3, 6, 12 (1) AutoRegressive Moving Average 
(ARMA)

(2) Neural networks
(3) Neurofuzzy networks

11 Yu et al. (2004) 2 Daily 1 (1) Support vector machines coupled 
with an evolutionary algorithm

(2) Standard chaos technique
(3) Naïve
(4) Inverse approach
(5) ARIMA

12 Komorník et al. (2006) 7 Monthly 1, 3, 6, 12 (1) Threshold AutoRegressive (AR) 
with aggregation operators

(2) Logistic smooth transition AR
(3) Self-exciting threshold AR
(4) Naïve

13 Yu and Liong (2007) 2 Daily 1 (1) Support vector machines coupled 
with decomposition

(2) Standard chaos technique
(3) Naïve
(4) Inverse approach
(5) ARIMA

14 Koutsoyiannis et al. 
(2008)

1 × 12 (months) Yearly 1 (1) Stochastic
(2) Analogue method
(3) Neural networks

15 Wang et al. (2015) 3 Monthly 12 SARIMA
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for the one-step ahead predictability of annual precipita-
tion and temperature. The establishment of forecasting 
benchmarks is meaningful, especially for the one-step 
ahead attempts, as the latter constitute the most simple 
ones and their accuracy can be quantified using a single 
metric, i.e. the absolute error.

Data and methods
We use the datasets briefly described in Tables  2 and 
3. The PrecDat and TempDat datasets are annual and 
originate from two larger monthly datasets, available in 
Peterson and Vose (1997) and Lawrimore et  al. (2011) 
respectively. The sample period is from 1910 to 2000, so 
the following two conditions are simultaneously met: (1) 
there are no missing values, (2) the number of stations 
around the globe is the largest possible. We note that 
for sample periods extending after 2000 the number of 
retained stations would decrease rapidly. Figure  1 pre-
sents the maps of the retained stations. The precipitation 
ones create a sufficiently dense network in the United 
States of America and in Scandinavia, while the retained 
temperature stations in the United States of America, in 
Japan and in a part of South Korea. As it is apparent from 
Table  2, the StandPrecDat and StandTempDat datasets 
simply contain the standardized time series of PrecDat 
and TempDat respectively.  

Figure  1 also presents the histograms of the Hurst 
parameter maximum likelihood estimates (Tyralis and 
Koutsoyiannis 2011) of the formed real-world time series. 
These estimates are of importance within this study for 
two reasons: (1) we implement a univariate time series 
forecasting method (see later on in this section) that 
takes advantage of this information under the established 
assumption of long-range dependence, (2) we standard-
ize the original real-world time series using the mean 
and standard deviation maximum likelihood estimates 
(estimated simultaneously with the Hurst parameter) of 
the Hurst–Kolmogorov process. The standard deviation 
estimates would be considerably different if we mod-
elled the time series using independent normal variables 
(Tyralis and Koutsoyiannis 2011). For consistency pur-
poses with respect to the real-world datasets of the pre-
sent study (but also to approximate the typical length of 
annual geophysical time series), the simulated time series 
are of 91 values as well. They originate from the families 
of AutoRegressive Moving Average (ARMA(p,q)) and 
AutoRegressive Fractionally Integrated Moving Aver-
age (ARFIMA(p,d,q)), the definitions of which can eas-
ily be found in the literature, for example in Wei (2006), 
pp 6–65, 489–494. The simulations are performed with 
mean 0 and standard deviation of 1. Hereafter, to spec-
ify a used R algorithm, we state its name accompanied 

Table 2 Datasets of this study (part 1): real-world datasets

s/n Abbreviated name Process Type Primal dataset R algorithm Number of time series

1 PrecDat Precipitation Original Peterson and Vose (1997) 112

2 TempDat Temperature Lawrimore et al. (2011) 185

3 StandPrecDat Precipitation Standardized PrecDat mleHK {HKprocess} 112

4 StandTempDat Temperature TempDat 185

Table 3 Datasets of this study (part 2): simulated datasets

s/n Abbreviated name Process Parameter(s) R algorithm Number of time series

5 SimDat_1 AR(1) φ1 = 0.7 arima.sim {stats} 2000

6 SimDat_2 AR(1) φ1 = −0.7

7 SimDat_3 AR(2) φ1 = 0.7, φ2 = 0.2

8 SimDat_4 MA(1) θ1 = 0.7

9 SimDat_5 MA(1) θ1 = −0.7

10 SimDat_6 ARMA(1,1) φ1 = 0.7, θ1 = 0.7

11 SimDat_7 ARMA(1,1) φ1 = −0.7, θ1 = −0.7

12 SimDat_8 ARFIMA(0,0.30,0) fracdiff.sim {fracdiff }

13 SimDat_9 ARFIMA(1,0.30,0) φ1 = 0.7

14 SimDat_10 ARFIMA(0,0.30,1) θ1 = −0.7

15 SimDat_11 ARFIMA(1,0.30,1) φ1 = 0.7, θ1 = −0.7

16 SimDat_12 ARFIMA(2,0.30,2) φ1 = 0.7, φ2 = 0.2, θ1 = −0.7, θ2 = −0.2
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Fig. 1 Precipitation and temperature data from Peterson and Vose (1997) and Lawrimore et al. (2011) respectively



Page 6 of 19Papacharalampous et al. Geosci. Lett.  (2018) 5:12 

by the name of the R package, denoted with {}. All algo-
rithms are used with predefined values, unless specified 
differently.

We implement the forecasting methods described in 
Tables 4, 5 and 6. The latter constitute an adapted repro-
duction from Papacharalampous et  al. (2017a). Naïve 
is the last observation benchmark, while random walk 
(RW) is a commonly used variation of Naïve (Hyndman 
and Athanasopoulos 2013). Regarding the AutoRegres-
sive Integrated Moving Average (ARIMA) methods, the 
ARIMA_f and auto_ARIMA_f forecasting models use the 
same algorithm with the ARIMA_s and auto_ARIMA_s 
simulation models respectively, although the innovations 
are set to be zero in the former ones. The latter applies 
to the auto_ARFIMA method as well, which is com-
monly used for modelling processes that are assumed to 
exhibit long-range dependence. These five methods esti-
mate the involved parameters using the maximum likeli-
hood method. BATS, ETS and SES stand for Box-Cox 
transformation, ARMA errors, Trend and Seasonal com-
ponents (De Livera et al. 2011); Error, Trend and Season-
ality (or ExponenTial Smoothing); and Simple Exponential 
Smoothing respectively. Further information about the 
latter models can be found in Hyndman and Athanaso-
poulos (2013), while Theta is introduced in Assimakopou-
los and Nikolopoulos (2000). All the stochastic methods 
use procedures like those presented in Hyndman and 
Khandakar (2008). The machine learning methods, on the 
other hand, are based on a somehow different algorith-
mic approach. This fact is easily perceivable through the 
alongside examination of Tables 4, 5 and 6.  

The assessment of the one-step ahead forecasting per-
formance is based on the error metrics and accuracy sta-
tistics of Table 7.

We conduct the experiments described in Tables 8 and 
9. We use each dataset in five experiments; every time 

examining different parts of the time series according 
to Table 9. While the application of the stochastic meth-
ods does not require a validation set (since all the model 
parameters are estimated using other procedures, such as 
the maximum likelihood estimation), the same does not 
apply to the application of the machine learning methods 
(except NN_3). For each of the latter, we fit the candidate 
models defined in Table 5 to the fitting set, i.e. the first 
33, 40, 47, 53 or 60 values, and subsequently use them to 
make predictions corresponding to the validation set, i.e. 
the next 17, 20, 23, 27 or 30 values respectively. Finally, 
we decide on the “optimal” model, i.e. the one exhibiting 
the smallest root mean square error on the validation set. 
We fit this model to the first 50, 60, 70, 80 or 90 values 
and make predictions corresponding to the 51st, 61st, 
71st, 81st or 91st value respectively. 

The only assumption of our methodological approach 
concerns the application of the auto_ARFIMA method 
within the real-world experiments and is that the annual 
precipitation and temperature variables can be suf-
ficiently modelled by the normal distribution. This 
assumption is rather reasonable (implied by the Central 
Limit Theorem; Koutsoyiannis 2008, chapter  2.5.6) and 
could hardly harm the results. In general, such funda-
mental assumptions are preferable to the introduction of 
extra parameters, e.g. to using the Box-Cox transforma-
tion to normalize the data. The rest of the methods are 
non-parametric and, thus, not affected by the possible 
non-normality. To take advantage of some well-known 
theoretical properties, in the SE_1i–SE_7i simulation 
experiments the ARIMA_f and ARIMA_s methods are 
given the same AutoRegressive (AR)  and Moving  Aver-
age (MA)  orders used in the respective simulation pro-
cess, while d is set 0. These two methods, as well as the 
simple, auto_ARIMA_f, auto_ARIMA_s and auto_
ARFIMA methods serve as reference points within our 

Table 4 Univariate time series forecasting methods of this study (part 1): stochastic methods

s/n Abbreviated name Category R algorithm(s) Implementation notes

1 Naïve Simple

2 RW rwf {forecast} drift = TRUE

3 ARIMA_f AutoRegressive Integrated Moving 
Average (ARIMA)

Arima {forecast}, forecast {forecast} Arima {forecast}: include.mean = TRUE, 
include.drift = FALSE, method = ”ML”4 ARIMA_s Arima {forecast}, simulate {stats}

5 auto_ARIMA_f auto.arima {forecast}, forecast {forecast}

6 auto_ARIMA_s auto.arima {forecast}, simulate {stats}

7 auto_ARFIMA AutoRegressive Fractionally Integrated 
Moving Average (ARFIMA)

arfima {forecast}, forecast {forecast} arfima {forecast}: estim = ”mle”

8 BATS State space bats {forecast}, forecast {forecast}

9 ETS_s ets {forecast}, simulate {stats}

10 SES Exponential smoothing ses {forecast}

11 Theta thetaf {forecast}
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approach. In particular, ARIMA_f, auto_ARIMA_f and 
auto_ARFIMA are theoretically expected to be the most 
accurate within our simulation experiments [for an expla-
nation see Papacharalampous et  al. (2017a), chapter  2], 
while BATS is also expected to perform well in these 
experiments, since it comprises an ARMA model. In 
summary, the experiments are controlled to some extent, 
while their components (datasets, methods and metrics) 

are selected to provide a multifaceted approach to the 
problem of one-step ahead forecasting in geoscience.

Results and discussion
In this section, we summarize the basic quantitative and 
qualitative information gained from the experiments 
of the present study, while the total amount is available 
in the Additional files 1, 2, 3, 4, 5, 6 and 7. We further 

Table 6 Lagged variable selection procedures adopted for the machine learning methods of Table 5

s/n Time lags R algorithm

1 The corresponding to an estimated value for the AutoCorrelation Function (ACF) acf {stats}

2 The corresponding to a statistical important estimated value for the ACF. If there is no statistical important estimated value for the 
ACF, the corresponding to the largest estimated value

acf {stats}

3 According to nnetar {forecast}, i.e. the time lags 1, …, n, where n is the number of AutoRegressive (AR) parameters that are fitted to 
the time series data

ar {stats}

Table 7 Error metrics and accuracy statistics of this study

s/n Abbreviated name Full name Category Values Optimum value

1 E Error Error metrics (−∞, +∞) 0

2 AE Absolute error [0, +∞) 0

3 PE Percentage error (−∞, +∞) 0

4 APE Absolute percentage error [0, +∞) 0

5 MdoAE Median of the absolute errors Accuracy statistics [0, +∞) 0

6 MdoAPE Median of the absolute percentage errors [0, +∞) 0

7 LRC Linear regression coefficient (−∞, +∞) 1

8 R2 Coefficient of determination [0, 1] 1

Table 8 Experiments of this study

The symbol i can take the values stated in Table 9

s/n Abbreviated name Category Dataset (see Table 3) Forecasting methods (see Tables 4 and  5) Metrics (see Table 7)

1 RWE_1i Real-world PrecDat 1, 2, 7–20 1–8

2 RWE_2i TempDat

3 RWE_3i StandPrecDat 1, 2, 7–20 1, 2, 5, 7, 8

4 RWE_4i StandTempDat

5 SE_1i Simulation SimDat_1 1–6, 8–20 1, 2, 5, 7, 8

6 SE_2i SimDat_2

7 SE_3i SimDat_3

8 SE_4i SimDat_4

9 SE_5i SimDat_5

10 SE_6i SimDat_6

11 SE_7i SimDat_7

12 SE_8i SimDat_8 1, 2, 7–20

13 SE_9i SimDat_9

14 SE_10i SimDat_10

15 SE_11i SimDat_11

16 SE_12i SimDat_12
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discuss the findings and explicate their contribution in 
light of the literature.

Experiments using the precipitation datasets
For the experiments using the PrecDat dataset, the mini-
mum AE value is 0 (practically) and the maximum around 
1,750 mm (for forecasts produced by the simple forecast-
ing methods, i.e. Naïve and RW), while the respective 
values for the APE error metric are 0 (practically) and 
1.64 (for a forecast produced by NN_1). The MdoAE 
and MdoAPE values are summarized in Tables 10 and 11 
respectively. The minimum MdoAE is 68 mm, while the 
maximum is 189 mm. These two values are in the same 
order of magnitude as the smallest and average standard 

deviation estimates of the time series respectively. The 
minimum MdoAPE value is 0.09 and the maximum 0.22, 
while the respective LRC values are 0.73 and 1.18. The 
best LRC value (1.00) is measured within RWE_1c for 
the simple forecasting methods, while the best R2 value 
(0.84) is measured within RWE_1d for BATS. The worst 
LRC and R2 values are 0.73 for RF_2 within RWE_1d and 
0.54 for NN_1 within RWE_1a respectively. 

In Fig. 2 we present a graphical summary of the experi-
ments using the PrecDat dataset. The values in the 
three upper heatmaps are scaled in the row direction 
and the darker the colour within a specific row the bet-
ter the forecasts. In fact, heatmaps are used in this study 
instead of conventional tables, since they allow the easy 
extract of qualitative information. The relative perfor-
mance of the forecasting methods differs to some degree 
across the various RWE_1i experiments, with ETS_s and 
NN_1 being the worst performing in terms of MdoAE 
and MdoAPE, followed by the simple methods. On the 
other hand, in terms of LRC Naïve and RW exhibit rather 
the best overall performance. In the downer heatmap 
of Fig.  2 we zoom into the RWE_1b experiment. By its 
examination we observe that all the implemented fore-
casting methods can perform well or bad, depending on 
the individual case. This fact is also apparent in the side-
by-side boxplots of Fig. 2. Furthermore, we observe that 
for one specific time series the AE values measured are 
very high for all the forecasts apart from those produced 
by the simple forecasting methods.

Regarding the experiments using the StandPrec-
Dat dataset, the minimum AE value is 0 and the maxi-
mum around 10. The MdoAE values are summarized in 
Table 12. The minimum MdoAE is 0.55, while the maxi-
mum is 1.42. These two values are 45% smaller and 42% 
larger than 1 (standard deviation of the standardized 
time series) respectively. Since there is an absence of rel-
evant information in the literature, these values could 
be used as rough benchmarks for the predictability of 
annual precipitation. Most preferably, a representative 
sample set of univariate time series forecasting meth-
ods could be implemented at least for benchmarking 
purposes alongside with any other forecasting attempt. 
Moreover, the minimum and maximum LRC values are 
−0.25 and 0.25 respectively, the former measured for 
ETS_s and the latter for RW. Finally, the minimum R2 
value is 0 (practically), while the maximum is 0.09, meas-
ured within SE_3a for ETS_s. In addition to this numeri-
cal information, Fig.  3 presents a brief comparison 
between the experiments using the PrecDat and Stand-
PrecDat datasets. As illustrated in this figure, the relative 
performance of the forecasting methods with respect to 
AE and MdoAE in the experiments using the latter data-
set is mostly similar to the one in the experiments using 

Table 9 Part of the time series used within each experi-
ment according to the i value

s/n i Data points of each time series 
used for the model-fitting (required 
for all models) and model-validation 
(required for the machine learning 
models)

Data points of each 
time series used 
for model-testing

1 a 1, 2, 3, …, 50 51

2 b 1, 2, 3, …, 60 61

3 c 1, 2, 3, …, 70 71

4 d 1, 2, 3, …, 80 81

5 e 1, 2, 3, …, 90 91

Table 10 Minimum, maximum and mean values of the 
MdoAE within the experiments using the PrecDat dataset

The minimum of the minimum values and the maximum of the maximum 
values are in italic

Minimum (mm) Maximum (mm) Mean (mm)

RWE_1a 111 (RF_1) 172 (NN_1) 135

RWE_1b 68 (SVM_1) 146 (ETS_s) 91

RWE_1c 91 (SVM_3) 171 (ETS_s) 119

RWE_1d 143 (BATS) 189 (RF_2) 162

RWE_1e 98 (Theta) 150 (NN_1) 122

Table 11 Minimum, maximum and mean values of the 
MdoAPE within the experiments using the PrecDat dataset

The minimum of the minimum values and the maximum of the maximum 
values are in italic

Minimum Maximum Mean

RWE_1a 0.12 (RF_1) 0.21 (RW) 0.16

RWE_1b 0.09 (SVM_1) 0.18 (ETS_s) 0.12

RWE_1c 0.12 (SVM_3) 0.21 (NN_1) 0.15

RWE_1d 0.15 (BATS) 0.22 (NN_1) 0.17

RWE_1e 0.12 (Theta) 0.18 (NN_1) 0.15
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Fig. 2 Results in brief of the experiments using the PrecDat dataset
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the former dataset. Nevertheless, the LRC (and R2) val-
ues are far worse when using the standardized datasets. 
In fact, standardization results to processes with different 
predictability with respect to the original. 

Experiments using the temperature datasets
In Fig. 4 we present a graphical summary of the experi-
ments using the TempDat dataset. For these experiments 
the minimum AE value is 0 and the maximum around 
43  °C (for a forecast produced by NN_2), while the 
respective APE values are 0 and 9.64 (for a forecast pro-
duced by ETS_s). The MdoAE and MdoAPE values are 
summarized in Tables 13 and 14 respectively. The mini-
mum MdoAE is 0.23  °C, while the maximum is 1.10  °C. 
These two values are in the same order of magnitude as 
the smallest and largest standard deviation estimates of 
the temperature time series respectively. The respective 
values for MdoAPE are 0.02 and 0.08. The minimum LRC 
value is 0.95 and the maximum is 1.02; all the LRC val-
ues are close to the optimum. Finally, the minimum R2 
value is 0.78, measured for NN_2 within RWE_2b, while 
all the rest R2 values are higher than 0.97 with maximum 
1 (practically), measured for the auto_ARFIMA method 
within RWE_2b. In summary, the relative performance 
of the forecasting methods varies across the different 
experiments conducted using the TempDat dataset. The 
auto_ARFIMA, BATS, SES, Theta and NN_3 seem to be 
well performing in terms of MdoAE and MdoAPE when 
applied to these temperature time series compared to 
the overall picture, while the simple methods are far the 
best in terms of MdoAE within the RWE_2d experiment. 
ETS_s and NN_1 are the worst performing within all the 
experiments apart from RWE_2c, in which the simple 
methods exhibit the worst performance. Finally, by com-
paring the numerical results of the experiments using the 
PrecDat and TempDat dataset, we observe the fact that 
temperature is more predictable than precipitation.  

Regarding the experiments using the StandTempDat, 
the minimum AE value is 0 and the maximum around 
18.91. The MdoAE values are summarized in Table  15. 

The minimum MdoAE value is 0.33, while the maximum 
is 1.46. These two values are 67% smaller and 46% larger 
than 1 (standard deviation of the standardized time 
series) respectively and could be used as rough bench-
marks for the predictability of annual temperature (for 
an explanation see the subsection entitled “Experiments 
using the precipitation datasets”). The minimum LRC 
value is 0.04 and the maximum is 0.76, the former meas-
ured for SVM_1 and the latter for RW. Finally, the mini-
mum R2 value is 0.03, while the maximum is 0.48. The 
latter value is measured for Naïve in RWE_4a. Figure  5 
facilitates a comparison between the experiments using 
the TempDat and StandTempDat datasets. Here as well, 
we observe that the relative performance of the fore-
casting methods with respect to AE and MdoAE in the 
experiments using the standardized precipitation time 
series mostly does not vary from the respective relative 
performance when using the original temperature time 
series. We further note that the LRC (and R2) values are 
worse when using the standardized temperature dataset, 
while they are better for the latter than for the standard-
ized precipitation dataset. 

Experiments using the simulated datasets
The subsequently reported information constitutes the 
provided empirical solution to the problem of one-step 
ahead forecasting in geoscience. Nonetheless, this solution 
is rather qualitative than quantitative (although the results 
are also stated quantitatively), since the respective experi-
ments use unscaled data that could be assumed as real-
world data in a standardized form (such as StandPrecDat 
and StandTempDat) with different predictability than the 
original (for example, see the subsections entitled “Experi-
ments using the precipitation datasets” and “Experiments 
using the temperature datasets”). In fact, the experiments 
using standardized precipitation and temperature can 
facilitate a connection between the experiments using the 
same data in their original form and the experiments using 
the simulated datasets. A graphical summary of the latter 
experiments is available in Fig. 6.

The generalized findings of the present study are the 
following:

(1) The E values are approximately symmetric around 0 
(mean value of the simulations).

(2) The results may vary significantly across the simula-
tion experiments using different simulated datasets 
and across the different time series within a specific 
experiment depending on the forecasting method.

(3) Consequently, the relative performance of the fore-
casting methods may also vary significantly across 
the simulation experiments using different simulated 
datasets.

Table 12 Minimum, maximum and mean values of the 
MdoAE within the experiments using the StandPrecDat 
dataset

The minimum of the minimum values and the maximum of the maximum 
values are in italic

Minimum Maximum Mean

RWE_3a 0.70 (RF_1) 1.22 (NN_1) 0.92

RWE_3b 0.55 (SVM_2) 0.95 (ETS_s) 0.69

RWE_3c 0.72 (BATS) 1.42 (NN_1) 0.86

RWE_3d 0.99 (Theta) 1.42 (ETS_s) 1.14

RWE_3e 0.69 (Theta) 1.07 (ETS_s) 0.89
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Fig. 3 Comparison in brief between the experiments using the PrecDat and StandPrecDat datasets
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Fig. 4 Results in brief of the experiments using the TempDat dataset
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(4) On the contrary, the relative performance of the fore-
casting methods is slightly affected by the length of 
the time series for the experiments of the present 
study. The same has been found to mostly apply to 
the multi-step ahead forecasting performance of the 
same methods in Papacharalampous et al. (2017a) for 
two other time series lengths.

(5) Some forecasting methods are more accurate than 
others. The best-performing methods are ARIMA_f, 
auto_ARIMA_f, auto_ARFIMA, BATS, SES and 
Theta. This good performance of the former four 
methods when applied to ARMA and ARFIMA 
processes is expected from theory, while the Theta 

forecasting method has also performed well in the 
M3-Competition (Makridakis and Hibon 2000) and 
is expected to have a similar performance with SES 
(Hyndman and Billah 2003). The five above-men-
tioned forecasting methods are all stochastic.

(6) All the machine learning methods except for NN_1 
(mostly NN_3 and SVM_3) are comparable to the 
best-performing methods, as it has also been found 
to apply in the experiments of Papacharalampous 
et  al. (2017a, b). Likewise, in Tyralis and Papacha-
ralampous (2017), random forests are competitive 
with the ARFIMA and Theta benchmarks.

(7) The simple methods are competitive in specific simu-
lation experiments, as suggested for specific cases in 
Cheng et  al. (2017), Makridakis and Hibon (2000) 
and Papacharalampous et al. (2017a) as well. Never-
theless, they also stand out because of their bad per-
formance in other simulation experiments.

(8) Most of the far outliers are produced by neural net-
works.

The minimum AE value for the forecasts is 0 (prac-
tically) and the maximum around 155 (produced by 
NN_2). The MdoAE values are summarized in Tables 16 
and 17. Especially, the latter is useful in supporting 
Observations (5–7). The minimum MdoAE is 0.65, while 
the maximum is 2.91. These two values are 35% smaller 
and 191% larger than 1 (standard deviation of the simula-
tions) respectively. Furthermore, in spite of Observation 
(4), the MdoAE values may decrease on the level of the 
second or even the first decimal, when moving from the 
simulation experiments using time series of 51 values to 
those of 91 values, with the NN_1 forecasting method 
exhibiting the largest improvement. The minimum LRC 
value is −0.88 and the maximum is 0.94, both measured 
for RW, while the minimum and maximum values pro-
duced by Naïve differ in the second and third decimal 
respectively. This range holds a complete interpretation 
of the observed within the real-world experiments varia-
tions in the performance of the simple methods in terms 
of LRC from extremely good to extremely bad (with 
respect to the overall picture). Finally, the minimum R2 
value is 0 (practically), measured for ETS_s within several 
experiments, while the maximum is 0.84 within SE_9b 
for Naïve. 

Conclusions
The simulation experiments reveal the most and least 
accurate methods for long-term one-step ahead fore-
casting applications, also suggesting that the simple 
methods may be competitive in specific cases. Further-
more, the relative performance of the forecasting meth-
ods is slightly affected by the time series length for the 

Table 13 Minimum, maximum and mean values of the 
MdoAE within the experiments using the TempDat dataset

The minimum of the minimum values and the maximum of the maximum 
values are in italic

Minimum (°C) Maximum (°C) Mean (°C)

RWE_2a 0.42 (NN_3) 0.72 (NN_1) 0.51

RWE_2b 0.23 (Theta) 0.54 (NN_1) 0.32

RWE_2c 0.38 (BATS) 0.66 (RW) 0.47

RWE_2d 0.78 (RW) 1.10 (NN_3) 1.01

RWE_2e 0.38 (Theta) 0.62 (ETS_s) 0.46

Table 14 Minimum, maximum and mean values of the 
MdoAPE within the experiments using the TempDat data-
set

The minimum of the minimum values and the maximum of the maximum 
values are in italic

Minimum Maximum Mean

RWE_2a 0.04 (Theta) 0.06 (NN_1) 0.04

RWE_2b 0.02 (auto_ARFIMA) 0.05 (ETS_s) 0.03

RWE_2c 0.03 (SVM_1) 0.06 (RW) 0.04

RWE_2d 0.07 (Naïve) 0.08 (NN_1) 0.08

RWE_2e 0.03 (RF_1) 0.05 (NN_1) 0.04

Table 15 Minimum, maximum and mean values of the 
MdoAE within the experiments using the StandTempDat 
dataset

The minimum of the minimum values and the maximum of the maximum 
values are in italic

Minimum Maximum Mean

RWE_4a 0.61 (BATS) 0.93 (ETS_s) 0.71

RWE_4b 0.33 (Theta) 0.73 (NN_1) 0.47

RWE_4c 0.56 (SES) 0.96 (ETS_s) 0.69

RWE_4d 1.20 (NN_1) 1.46 (Theta) 1.36

RWE_4e 0.48 (Theta) 0.82 (ETS_s) 0.61
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simulation experiments of this study (using time series 
of 51, 61, 71, 81, 91 values), while it strongly depends on 
the process. Also importantly, the experiments using the 
original real-world time series result to minimum and 

maximum medians of the absolute errors of 68 and 189 
mm for precipitation, and 0.23 and 1.10 °C for tempera-
ture respectively. Additionally, the experiments using 
the standardized real-world time series suggest that the 

Fig. 5 Comparison in brief between the experiments using the TempDat and StandTempDat datasets
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Fig. 6 Results in brief of the experiments using the simulated datasets



Page 17 of 19Papacharalampous et al. Geosci. Lett.  (2018) 5:12 

minimum and maximum medians of the absolute errors 
are 0.55 and 1.42 for precipitation, and 0.33 and 1.46 
for temperature respectively. These latter numerical 
results could be used as a rough upper boundary for the 

one-step ahead predictability of annual precipitation and 
temperature.

We subsequently state the limitations of this study and 
some future directions. The provided empirical solution 
to the problem of one-step ahead forecasting in geosci-
ence is rather qualitative than quantitative, while the 
experiments using standardized precipitation and tem-
perature data have offered rough benchmarks only. In 
the future more real-world data could be used to develop 
improved benchmarks for assessing the respective pre-
dictabilities. It would be of interest to further investigate 
how these predictabilities depend on the location from 
which the data originate. In this case, more stations span-
ning around the globe would be required. Moreover, a 
direct and large-scale comparison, set on a common base 
(if this is feasible), between deterministic and statistical 
approaches to forecasting geophysical processes would be 
useful and interesting. Another limitation of this study is 
related to the adopted modelling approach, i.e. the data-
driven one, according to which the selection of the model 
does not depend on the properties of the examined pro-
cess and, therefore, the latter are mostly not investigated. 
Furthermore, the improvement of the performance of the 
machine learning models requires extensive comparisons 
between different procedures of hyperparameter opti-
mization and lagged variable selection. Finally, future 
research could focus on the examination of the respective 
predictabilities, when using exogenous  predictor vari-
ables as well, while a definitely worth-stated future direc-
tion is related to the adoption of probabilistic forecasting 
methods, instead of the point forecasting ones.
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Table 16 Minimum, maximum and mean values of the 
MdoAE within the simulation experiments

The minimum of the minimum values and the maximum of the maximum 
values are in italic

Minimum Maximum Mean

SE_1i 0.68 (ARIMA_f | SE_1a) 1.05 (NN_1 | SE_1a) 0.80

SE_2i 0.67 (ARIMA_f | SE_2c) 1.82 (RW | SE_2e) 0.95

SE_3i 0.65 (ARIMA_f | SE_3c) 1.04 (NN_1 | SE_3a) 0.81

SE_4i 0.67 (ARIMA_f | SE_4c) 1.21 (ETS_s | SE_4a) 0.84

SE_5i 0.66 (ARIMA_f | SE_5e) 1.48 (RW | SE_5c) 0.90

SE_6i 0.68 (ARIMA_f | SE_6b) 1.20 (ETS_s | SE_6d) 0.89

SE_7i 0.66 (auto_ARIMA_f | SE_7d) 2.91 (RW | SE_7e) 1.22

SE_8i 0.67 (auto_ARFIMA | SE_8c) 1.02 (NN_1 | SE_8a) 0.77

SE_9i 0.67 (auto_ARFIMA | SE_9d) 1.05 (NN_1 | SE_9b) 0.80

SE_10i 0.67 (auto_ARFIMA | SE_10e) 1.22 (RW | SE_10e) 0.83

SE_11i 0.68 (Theta | SE_11e) 1.10 (NN_1 | SE_11a) 0.77

SE_12i 0.69 (auto_ARFIMA | SE_12b) 1.06 (NN_1 | SE_12a) 0.78

Table 17 Minimum, maximum and mean values of the 
MdoAE for each method within the simulation experi-
ments

The minimum of the minimum values and the maximum of the maximum 
values are in italic

Minimum Maximum Mean

Naïve 0.68 (SE_3c) 2.88 (SE_7a) 1.12

RW 0.69 (SE_9c) 2.91 (SE_7e) 1.13

ARIMA_f 0.65 (SE_3c) 0.72 (SE_7a) 0.69

ARIMA_s 0.91 (SE_2a) 1.04 (SE_3a) 0.96

auto_ARIMA_f 0.66 (SE_7d) 0.75 (SE_6c) 0.70

auto_ARIMA_s 0.91 (SE_4c) 1.02 (SE_3d) 0.97

auto_ARFIMA 0.67 (SE_10e) 0.73 (SE_10d) 0.69

BATS 0.67 (SE_3c) 0.76 (SE_6c) 0.71

ETS_s 0.93 (SE_3d) 2.11 (SE_7e) 1.14

SES 0.66 (SE_3c) 1.52 (SE_7e) 0.83

Theta 0.66 (SE_3c) 1.57 (SE_7a) 0.84

NN_1 0.90 (SE_7e) 1.16 (SE_7a) 1.01

NN_2 0.72 (SE_8c) 0.89 (SE_5b) 0.79

NN_3 0.69 (SE_8c) 0.84 (SE_6c) 0.74

RF_1 0.71 (SE_8c) 1.08 (SE_6a) 0.82

RF_2 0.72 (SE_8c) 1.04 (SE_6c) 0.83

RF_3 0.72 (SE_3c) 0.98 (SE_6c) 0.80

SVM_1 0.71 (SE_8e) 1.23 (SE_7a) 0.86

SVM_2 0.68 (SE_8c) 1.01 (SE_7a) 0.81

SVM_3 0.68 (SE_8c) 0.92 (SE_6c) 0.76
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