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Abstract: We investigate the predictability of monthly temperature and precipitation by 

applying automatic univariate time series forecasting methods to a sample of 985 40-year 

long monthly temperature and 1552 40-year long monthly precipitation time series. The 

methods include a naïve one based on the monthly values of the last year, as well as the 

random walk (with drift), AutoRegressive Fractionally Integrated Moving Average 

(ARFIMA), exponential smoothing state space model with Box-Cox transformation, ARMA 

errors, Trend and Seasonal components (BATS), simple exponential smoothing, Theta 

and Prophet methods. Prophet is a recently introduced model inspired by the nature of 

time series forecasted at Facebook and has not been applied to hydrometeorological time 

series before, while the use of random walk, BATS, simple exponential smoothing and 

Theta is rare in hydrology. The methods are tested in performing multi-step ahead 

forecasts for the last 48 months of the data. We further investigate how different choices 

of handling the seasonality and non-normality affect the performance of the models. The 

results indicate that (a) all the examined methods apart from the naïve and random walk 

ones are accurate enough to be used in long-term applications, (b) monthly temperature 

and precipitation can be forecasted to a level of accuracy which can barely be improved 

using other methods, (c) the externally applied classical seasonal decomposition results 

mostly in better forecasts compared to the automatic seasonal decomposition used by 

the BATS and Prophet methods and (d) Prophet is competitive, especially when it is 

combined with externally applied classical seasonal decomposition. 

Key	words: ARFIMA; multi-step ahead forecasting; precipitation forecasting; Prophet; 

temperature forecasting; time series forecasting 
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1. Introduction	

The role of univariate time series forecasting methods for hydrometeorological and 

climate forecasting has been emphasized by forecasting experts (Armstrong and Fildes 

2006; Green and Armstrong 2007; Green et al. 2009). Relevant reviews linking 

geosciences with the forecasting scientific field are available in the literature (e.g. 

Bărbulescu 2016; Sivakumar 2017), while a review of studies applying time series point 

forecasting methods in hydrology is presented in Papacharalampous et al. (2017a). 

Moreover, time series analysis is an essential tool for better forecasts; consequently, 

analysis and forecasting are usually presented simultaneously in specialized textbooks 

(e.g. Hyndman and Athanasopoulos 2017; Wei 2006). 

While time series forecasting is of interest in hydrology, the principles of forecasting 

are not always conscientiously applied by hydrological scientists, as revealed by the 

experiments of Papacharalampous et al. (2017a). Furthermore and despite the growing 

literature specialized in time series prediction and examining subtleties related to the 

development, application and assessment of methods (see, for example, the review of De 

Gooijer and Hyndman (2006)), the gained technical know-how has not been fully 

exploited by geoscientists. This is also suggested by the low number of geoscientific 

papers citing literature from relevant leading journals (e.g. the International Journal of 

Forecasting). Armstrong and Fildes (2006) have recognized the need for promoting 

forecasting in geosciences and proposed the publication of a special issue on applications 

of traditional forecasting methodologies to climate sciences. 

Admittedly, the recent trend in geosciences is focusing on the development of soft 

computing methods for time series forecasting. These methods can be equally accurate, 

yet more computationally intensive, compared to the classical forecasting approaches, as 

presented in Papacharalampous (2017a). In addition to the right above distinction, the 

various forecasting alternatives can be classified as automatic and non-automatic. The 

non-automatic or subjective approach to the problem of time series forecasting requires 

the prior conduct of an exploratory data analysis for each specific individual case to be 

predicted, as well as human intervention during the forecasting process (Chatfield 1988). 

Therefore, its implementation can be significantly limited by scale-dependent factors. 

Taylor and Letham (2017a) identify three types of scale in forecasting related to the 

number of people making forecasts (and their varying backgrounds), the diversity of the 
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characteristics of each forecasting problem and the number of forecasts needed. 

Automatic time series forecasting is essential, for example, when a large number of time 

series is required to be forecasted (Hyndman and Khandakar 2008). Consequently, 

specialized software for automatic time series forecasting has been developed (Hyndman 

and Khandakar 2008; Hyndman et al. 2017; Taylor and Letham 2017a,b). 

The ‘forecast’ R package includes mostly methods based on exponential smoothing 

(Hyndman et al. 2008) or AutoRegressive Integrated Moving Average (ARIMA) (and 

related) stochastic processes. The ARIMA processes and relevant applications introduced 

by Box and Jenkins (1968) have been consistently used in hydrology from earlier years 

(e.g. Carlson et al. 1970) until more recent times (e.g. Montanari et al. 1997, 2000), while 

exponential smoothing has been used less frequently (e.g. Papacharalampous et al. 

2017a,b). Recent methods for automatic time series forecasting that have been used 

rarely in hydrology include the Theta method (Assimakopoulos and Nikolopoulos 2000, 

Hyndman and Billah 2003) and the BATS (acronym for Box–Cox transformation, ARMA 

errors, Trend, and Seasonal components) method (De Livera et al. 2011). A more recently 

introduced forecasting model is Prophet (Taylor and Letham 2017a), inspired by the 

nature of time series forecasted at Facebook and available in the ‘prophet’ R package. 

Time series forecasting methodologies can be also classified into two groups according 

to the forecast horizon, i.e. one- and multi- step ahead forecasting. The latter is more 

difficult compared to the former. Still, it has been frequently used in hydrology (e.g. 

Papacharalampous et al. 2017a,b,c; Singh et al. 2011; Tyralis and Koutsoyiannis 2014; 

Valipour et al. 2013). Relevant reviews on multi-step ahead forecasting methodologies 

can be found in Chevillon (2007) and Taieb et al. (2012).  Multi-step ahead forecasting 

has been examined theoretically (e.g. De Gooijer and Klein 1992; De Gooijer and Kumar 

1992; Franses and Legerstee 2010; Pemberton 1987; Stoica and Nehorai 1989; Taieb and 

Atiya 2016; Wei 2006, pp. 88-107) and empirically (Papacharalampous et al. 2017a,c). 

The theoretical examination is not possible for all methods, while the performance of the 

latter can vary considerably in real case studies. An alternative framework for assessing 

the performance of forecasting methods is through their application to large datasets. 

Thus, competitions are organized, in which methods are improved and compared 

(Makridakis et al. 1987; Makridakis and Hibon 2000) and later published to advance 

science (e.g. Andrawis et al. 2011). 



4 
 

The culture of evaluating the forecasting performance of methods on large datasets is 

not a usual practice in hydrology, as noted in Papacharalampous et al. (2017a). The latter 

study compares stochastic and machine learning methods in multi-step ahead forecasting 

using a large dataset of simulated and streamflow data. A similar approach has been used 

in a study of Papacharalampous, Tyralis and Koutsoyiannis (One-step ahead forecasting 

of geophysical processes within a purely statistical framework: manuscript in review, 

2018) in which annual values of mean temperature and precipitation, as well as 

simulated processes, are used for performing one-step ahead forecasting experiments. 

These studies are among the first, in which forecasting methods popular in the time series 

forecasting field (e.g. BATS, Theta and simple exponential smoothing) are used in 

hydrology. 

Here we apply automatic univariate time series forecasting methods to a large sample 

of 985 40-year long monthly temperature and 1552 40-year long monthly precipitation 

time series. This sample is the largest used in hydrology for assessing the performance of 

forecasting methods. We implement a naïve forecasting method based on the monthly 

values of the last year, as well as the random walk (with drift), AutoRegressive 

Fractionally Integrated Moving Average (ARFIMA), BATS, simple exponential smoothing, 

Theta and Prophet forecasting methods. The methods’ multi-step ahead forecasting 

performance is assessed using the last 48 months of the data. The aims of the present 

study are to: 

 Assess the performance of the BATS, simple exponential smoothing and Theta 

methods when forecasting monthly geophysical time series. 

 Compute the minimum forecasting error, which directly expresses the predictability 

of monthly temperature and precipitation. 

 Assess whether using Box-Cox transformations and/or classical seasonal 

decomposition (additive or multiplicative) results in a better performance of the 

forecasting methods. For the latter see the relevant discussion in Mills (2011, pp.375–

395). 

 Assess the performance of the Prophet method. 
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2. Methodological	framework	

2.1 Data 

We use monthly temperature and precipitation instrumental data from the stations 

presented in Fig. 1, while the primary datasets are documented in Lawrimore et al. (2011) 

and Peterson and Vose (1997) respectively. The data span from 1950 to 1989 (i.e. 480 

months). Since we need a large dataset without missing values, we do not use more recent 

data. Indeed the number of stations without missing data decreases rapidly after 1990. 

Furthermore, 480 months are sufficient for a reliable inference regarding the 

performance of the forecasting methods. The stations are located in regions with 

different climates; therefore, our testing could be affected by the dispersion of the 

stations. To mitigate this effect, we group the stations according to their locations, as 

presented in Table 1 for the temperature stations and Table 2 for the precipitation ones. 

We note that 130 temperature and 149 precipitation stations are left out of the formed 

groups, due to their remote locations compared to the rest of the stations. 



6 
 

 

Fig.	 1. Maps of the (a) temperature and (b) precipitation stations; their sources are 

Lawrimore et al. (2011) and Peterson and Vose (1997) respectively. 

Table	 1. Groups of temperature stations with the respective number of stations per 

group and regions’ geographical boundaries. 

Geographical region Number of stations Longitude (°) Latitude (°) 

North America 410 [-140, -50] [20, 65] 

North Europe 80 [-15, 40] [45, 75] 

Siberia 70 [40, 175] [50, 75] 

Asia (except Siberia) 259 [40, 150] [5, 50] 

Oceania 36 [105, 170] [-50, -10] 

Table	 2. Groups of precipitation stations with the respective number of stations per 

group and regions’ geographical boundaries. 

Geographical region Number of stations Longitude (°) Latitude (°) 

North America 388 [-135, -60] [20, 55] 

North Europe 182 [-15, 35] [50, 75] 

North Africa 100 [-20, 40] [0, 20] 

South Africa 120 [-20, 45] [-35, 0] 

East Asia 50 [95, 135] [15, 50] 

Australia 563 [110, 155] [-45, - 15] 
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The Hurst-Kolmogorov behaviour (or long-range dependence) is an inherent property 

of geophysical processes (see, for example, Tyralis and Koutsoyiannis 2011 and the 

references therein). Its magnitude is measured by the value of the Hurst parameter H ∊ 

(0, 1). The long-range dependence is strong when H is high, while H = 0.5 corresponds to 

uncorrelated random variables. In Fig. 2 we present the H parameter estimates of the 

time series along with their estimated means (denoted as μ) and standard deviations 

(denoted as σ). To estimate the parameters, we first decompose the time series using a 

classical additive model, as described in Hyndman and Athanasopoulos (2017, Chapter 

6.3), and subsequently we use the maximum likelihood estimator presented in Tyralis 

and Koutsoyiannis (2011). The magnitude of the estimated long-range dependence is 

significant in the temperature time series, while long-range dependence is also observed 

in the precipitation time series. This is important in the forecasting procedure, since we 

implement a method which can model the Hurst-Kolmogorov behaviour and take 

advantage of this prior knowledge (see Section 2.3). 



8 
 

 

Fig.	2. Mean (μ), standard deviation (σ) and Hurst parameter (H) estimates for the total 

of the deseasonalized (a) temperature and (b) precipitation time series. The vertical red 

dashed line denotes the median value of the estimates. 

2.2 Definition of the forecasting problem 

We forecast the monthly values of each time series for the period 1986-1989 using the 

time series values from the period 1950-1985. The time series forecasting is univariate, 

i.e. each time series is forecasted based on its past values. The observed values of the 

period 1986-1989 are used for testing the performance of the forecasting methods (and 
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are not used for the fitting of the models). Let also x1, x2, …, xn represent the observations 

(in the period 1986-1989) and f1, f2, …, fn represent their forecasts. 

In Fig. 3 we present the medians of the observed temperature values to be forecasted 

for all groups of Table 1. The seasonal patterns are obvious in each region, while the 

minima and maxima clearly depend on the hemisphere. We present a similar illustration 

for the precipitation time series in Fig. 4. The seasonal patterns are again apparent, while 

zero precipitation appears in Africa regions. 

  
 

Fig.	3. Medians of the observed temperature values to be forecasted per group presented 

in Table 1. 
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Fig.	4. Medians of the observed precipitation values to be forecasted per group presented 

in Table 2. 

2.3 Forecasting methods 

We use the seven forecasting methods described in Table 3 with their documentation and 

implementation in R programming language (R Core Team 2017). In particular, most of 

the used algorithms are implemented through the ‘forecast’ R package (Hyndman et al. 

2017), while the Prophet method is implemented through the ‘prophet’ R package 

(Taylor and Letham 2017b). Subsequently, we present these seven methods, omitting the 

mathematical parts, since they are well documented in the literature, while highlighting 

important aspects from a practical point of view. 

Table	3. Forecasting methods implemented in the present study. 
s/n Name R Function Category Reference R package 

1 naïve  simple   

2 random walk rwf simple Hyndman and 

Athanasopoulos (2017) 

Hyndman et al. (2017) 

3 ARFIMA arfima ARFIMA  Hyndman et al. (2017) 

4 BATS bats state space De Livera et al. (2011) Hyndman et al. (2017) 

5 simple exponential 

smoothing 

ses exponential smoothing Hyndman et al. (2008) Hyndman et al. (2017) 

6 Theta thetaf exponential smoothing Assimakopoulos and 

Nikolopoulos (2000) 

Hyndman et al. (2017) 

7 Prophet predict.prophet curve-fitting Taylor and Letham 

(2017a) 

Taylor and Letham 

(2017b) 
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The naïve method is the simplest available forecasting method. In our case, the 

forecasted value of the naïve method for each month of the testing period is equal to the 

observed value of the respective month of the year 1985, i.e. the last year of the fitting 

period. The random walk method, defined in Hyndman et al. (2017), fits a random walk 

model with drift to the fitting set and then uses the fitted model for forecasting. Both 

simple methods are based on modelling the data using discrete-time martingales. The 

difference is that in the latter case a drift is added to the model. 

The ARFIMA models are widely used in hydrology. The reader is referred to Wei (2006, 

pp. 6-65, 489-494) for their detailed definitions. Let d ∊ (−0.5, 0.5). The stochastic process 

{xt} is an ARFΙMA(p, d, q), if the following equation holds: 

 φp(B)(1 − B)dxt = θq(B)at (1) 

where 

 φp(B) := 1 − φ1B − … − φpBp (2) 

 θq(B) := 1 + θ1B + … + θqBq (3) 

 Bjxt = xt-j (4) 

and {at} is a white noise process. The parameter d of the model is a measure of the 

estimated long-range dependence of the time series (see also Section 2.1). The 

parameters p and q are the orders of the autoregressive and moving average components 

of the ARFIMA model. The ARFIMA forecasting method fits an ARFIMA(p, d, q) model to 

the fitting set. The fitting procedure is explained in Hyndman et al. (2017). The 

parameters p and q are estimated using the Hyndman and Khandakar (2008) algorithm 

and the parameter d is estimated using the Haslett and Raftery (1989) algorithm. The 

method combines functions from the ‘fracdiff’ (Fraley et al. 2012) and ‘forecast’ 

(Hyndman et al. 2017) R packages. The fitted model is used for forecasting future values. 

The BATS method, introduced by De Livera et al. (2011), combines an innovations 

state-space modelling framework, which incorporates Box–Cox transformations, Fourier 

representations with time varying coefficients, and ARMA error correction, while it is 

suitable for forecasting time series exhibiting complex seasonal patterns. The method is 

implemented through the ‘forecast’ R package (Hyndman et al. 2017). 
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The simple exponential smoothing method, introduced by Brown (1959) and 

described in Hyndman et al. (2008, p. 13), computes the forecast of the next period based 

on the forecast of the previous period, the latter adjusted using its error according to the 

following equation: 

 ft+1 = ft + a(xt − ft), a ∊ (0, 1) (5) 

The estimation of the parameters of the simple exponential smoothing method is 

performed using procedures of the ‘forecast’ R package (Hyndman et al. 2017). 

The Theta method, introduced by Assimakopoulos and Nikolopoulos (2000), is a 

special case of simple exponential smoothing with a drift parameter. The drift parameter 

is half the slope of the linear trend fitted to the data, as shown in Hyndman and Billah 

(2003). The Theta method performed well in the M-3 forecasting competition 

(Makridakis and Hibon 2000). 

The Prophet method, introduced by Taylor and Letham (2017a) and implemented 

through the ‘prophet’ R package (Taylor and Letham 2017b), considers time series 

forecasting as a curve-fitting exercise, while it does not explicitly consider the temporal 

dependence of the time series. It simultaneously uses a decomposable time series model. 

The Prophet method is inspired by the nature of the time series forecasted at Facebook, 

which are characterized by trend, multiple seasonality and holidays (an example of 

similar time series in the water science is the water demand). Furthermore, this method 

is designed to “forecast at scale” and to fit to the data very fast. 

2.4 Seasonality, trends and non-normality 

Due to the seasonality and the possible non-normality of the data of the present study, 

some forecasting methods cannot be directly applied. Some other methods can 

automatically transform the data, without external handling. 

When seasonality is observed, two possible transformations of the data before 

applying the forecasting methods of Table 3 are the classical additive and multiplicative 

seasonal decomposition (Hyndman and Athanasopoulos 2017, Chapter 6.3). The additive 

model is suitable when the seasonal fluctuations do not depend on the level of the time 

series. The multiplicative model is suitable for modelling seasonal fluctuations which are 

proportional to the level of the time series (Hyndman and Athanasopoulos 2017, Chapter 

6.1). In the particular case of the multiplicative seasonal decomposition of the 
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precipitation time series, we add 10 mm to each value, because the zero observed values 

result in zeros during the seasonal decomposition. Obviously, the inverse transform 

involves the subtraction of 10 mm for the forecasted values. This approach may affect the 

decomposition pattern; however, it is the most practical in this case. 

Some methods are applied under the assumption of the normality of the data. Since 

the time series data are usually non-normal, an appropriate transformation is needed. 

The most popular transformation is the Box-Cox transformation, introduced by Box and 

Cox (1964) and given by the following equation for x > 0: 

 fλ(x) = 


 (xλ - 1)/λ if λ ≠ 0

ln(x) if λ = 0
 (6) 

where x denotes the variable to be transformed and λ is a parameter which is estimated 

here using the method of Guerrero (1993), as implemented in Hyndman et al. (2017). 

In Table 4 we present the variations of the methods described in Table 3. The 

variations depend on whether a transformation is used and on which is this specific 

transformation. In Table 5 we present the transformations accounting for seasonality, 

while in Table 6 we present the transformations accounting for non-normality. Each 

variation of the method is assigned to a particular combination of the transformations 

presented in Table 5 and Table 6 respectively. When a transformation is applied, then the 

forecasts are obtained through the inverse transform. The BATS and the Prophet methods 

can also handle the seasonal patterns automatically. Therefore, their variations include 

cases in which the time series are seasonally decomposed manually, as well as cases in 

which seasonality is considered through an automatic scheme. 
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Table	4. Variations of the methods of Table 3. 

s/n Abbreviated 

name 

Primal method 

(see Table 3) 

Handling of seasonality 

(see Table 5) 

Handling of non-

normality (see Table 6) 

1 naïve 1 1 1 

2 rw_1 2 2 1 

3 rw_2 2 2 2 

4 rw_3 2 3 1 

5 rw_4 2 3 2 

6 arfima_1 3 2 1 

7 arfima_2 3 2 2 

8 arfima_3 3 3 1 

9 arfima_4 3 3 2 

10 bats_1 4 2 1 

11 bats_2 4 2 2 

12 bats_3 4 3 1 

13 bats_4 4 3 2 

14 bats_5 4 4 1 

15 bats_6 4 4 2 

16 ses_1 5 2 1 

17 ses_2 5 2 2 

18 ses_3 5 3 1 

19 ses_4 5 3 2 

20 theta_1 6 2 3 

21 theta_2 6 3 3 

22 prophet_1 7 2 3 

23 prophet_2 7 3 3 

24 prophet_3 7 4 3 

Table	5. Choices for the handling of seasonality adopted in the present study. 

s/n Handling 

1 Time series offset 

2 Classical seasonal decomposition using the additive model of the decompose built-in R 

algorithm and subsequent addition of the seasonal component to the forecasts 

3 Classical seasonal decomposition using the multiplicative model of the decompose 

built-in R algorithm and subsequent multiplication of the forecasts by the seasonal 

component 

4 Through the forecasting algorithm 

Table	6. Choices for the handling of non-normality adopted in the present study. 

s/n Handling 

1 -  

2 Box-Cox transformation through the forecasting algorithm 

3 Default 

2.5 Metrics 

We compute the error and absolute error at each time step of the forecast horizon for 

each forecasting attempt, denoted with Ei and (AE)i respectively in the following 

equations: 

 Ei := fi – xi (7) 

 (AE)i := |fi – xi| (8) 
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We build the side-by-side boxplots of the Ei values, while for each time step i of the 

forecast horizon we compute the median of the (AE)i values and form the respective 

figures. We further compute the Root Mean Squared Error (RMSE; Hyndman and 

Athanasopoulos 2017, Chapter 3.4) and the Nash-Sutcliffe Efficiency (NSE; Nash and 

Sutcliffe 1970) of each multi-step ahead forecast. The RMSE and the NSE are defined by 

the following equations: 

 RMSE := ((∑
n
i = 1(fi – xi)2)/n)1/2 (9) 

 NSE := 1 – (∑
n
i = 1(fi – xi)2)/ (∑

n
i = 1(xi – ((∑

n
i = 1 xi)/n))2) (10) 

3. Results	

3.1 Analysis using the temperature time series 

Section 3.1 is devoted to the results of the analysis using the temperature time series. In 

Fig. 5 we present the side-by-side boxplots of the errors at each time step of the forecast 

horizon, as formed for all the temperature forecasts produced by the naïve, rw_1 and 

prophet_1 methods. The random walk variations create a similar image to each other (see 

the one of rw_1), while the same applies to the set of ARFIMA, BATS, simple exponential 

smoothing, Theta and Prophet variations (see the one of prophet_1). To illustrate this 

closeness in the forecasting performance of the methods, in Fig. 6 we present the median 

values of the absolute errors computed for the total of the temperature time series. The 

random walk variations are the least accurate at almost every step of the examined 

horizon with a minimum median of absolute errors around 1.3 K and a maximum around 

4 K, while naïve is also worse than the rest of the automatic methods with minimum and 

maximum medians around 0.8 K and 4.2 K respectively. The best median performance is 

around 0.5 K, which is about 70% smaller than the median of the estimated standard 

deviations of the deseasonalized time series (see Fig. 2). We further observe that the 

presented time series tend rather to run in parallel than to intersect each other and, 

therefore, the good/bad forecasts of the various methods are rather grouped in the 

horizontal direction. This behaviour may be explained by the fact that the magnitude of 

the error of the forecast produced by a specific method largely depends on the value to 

be forecasted, i.e. some forecasting attempts are by nature more difficult than others. As 

a result, the worst median performance of each and every of the methods is observed for 

January 1989, a month exhibiting higher temperature than the one expected from 
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seasonality (see Fig. 3), while the second worst for February 1989 for the opposite 

reason. 

 

Fig.	5. Errors at each time step of the forecast horizon for the total of temperature time 

series and the (a) naïve, (b) rw_1 and (c) prophet_1 methods. The outliers with absolute 

value larger than 15 K are omitted. 
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Fig.	6. Medians of the absolute errors at each time step of the forecast horizon for the 

total of the temperature time series. 

In Fig. 7 and 8 we present the median values of the absolute errors computed for each 

of the groups of stations of Table 1. Since most of the temperature time series are 

observed in North America, the results corresponding to this geographical region affect 

the total (presented in Fig. 6) to a significant extend. In fact, Fig. 6 is more similar to Fig. 

7(a) than to Fig. 7(b, c) or Fig. 8. However, the medians of the absolute errors are larger 

in North America than worldwide. In the remaining geographical regions the 

performance of the random walk methods are closer to the performance of the rest 

automatic methods, while for the specific cases of North Europe and Siberia the random 

walk variations are better than naïve as well. The best average performances are 

measured for Oceania with a minimum median of absolute errors around 0.25 K and a 

maximum around 2.1 K, while the respective values for Asia (except Siberia) (around 

0.30 K and 4 K) are also better than the overall. 
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Fig.	7. Medians of the absolute errors at each time step of the forecast horizon for the 

temperature time series observed in: (a) North America, (b) North Europe and (c) Siberia. 
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Fig.	8. Medians of the absolute errors at each time step of the forecast horizon for the 

temperature time series observed in: (a) Asia (except Siberia) and (b) Oceania. 

In Tables 7 and 8 we present the medians of the measured RMSE and NSE values of the 

global dataset and for each of the groups of stations of Table 1, while the side-by-side 

boxplots of the RMSE values are presented in Fig. 9. These numerical results can facilitate 

a comparison on a common basis of the methods regarding their performance in the 

experiments using the temperature time series. In terms of RMSE, for the total of the 

temperature time series the use of a random walk variation (offering a median of 2.60 K 

or 2.66 K) instead of naïve (offering a median of 2.29 K) leads to about 14-16% less 

accurate forecasts, while the use of the remaining automatic methods (offering median 

values between 1.62 K and 1.86 K) to about 19-29% more accurate forecasts. For the time 

series observed in North America, North Europe, Siberia, Asia (except Siberia) and 
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Oceania these latter percentages are 18-30%, 30-32%, 19-25%, 17-31% and 10-15% 

respectively. The median values of the latter methods are close to the median of the 

estimated standard deviations of the deseasonalized time series (see Fig. 2). On the other 

hand, all the variations of the ARFIMA, BATS, simple exponential smoothing, Theta and 

Prophet methods except for the bats_5, bats_6 and prophet_3 are rather competitive to 

each other, while each of these categories of methods exhibits better or worse 

performance in comparison to the rest depending on the examined sample of time series. 

For example, prophet_1 exhibits the smallest median RMSE for the temperature forecasts 

for North Europe and Siberia, while offering 13-32% (depending on the examined set of 

time series) more accurate results than naïve. The variations belonging to each of the 

{arfima_1, arfima_2, arfima_3, arfima_4}, {bats_1, bats_2, bats_3, bats_4}, {ses_1, ses_2, 

ses_3, ses_4}, {theta_1, theta_2}, {prophet_1, prophet_2} sets differ in their performance 

at maximum about 1%, while the results do not suggest any specific combination of 

choices for the external handling of seasonality and non-normality as best for each 

algorithm. Nevertheless, the handling of the seasonality through the BATS and Prophet 

forecasting algorithms leads to less accurate forecasts than the external one, especially 

for the former algorithm. These facts are illustrated in Fig. 9 as well. Finally, all NSE values 

of Table 8 indicate a good forecasting performance for the total of the methods. 
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Table	7. Medians of the RMSE values (K) of the forecasts for each group of temperature 

stations. The best performance (when rounding to more than four digits) for each model 

is in bold. 

Method Globe North America North Europe Siberia Asia (except Siberia) Oceania 

naïve 2.29	 2.70	 3.14	 3.49	 1.61	 1.19	

rw_1 2.60	 3.59 2.84 3.22 1.99	 1.43 

rw_2 2.60 3.57	 2.84	 3.22	 1.99 1.43 

rw_3 2.66 3.65 2.84 3.26 2.02 1.42	

rw_4 2.66 3.64 2.84 3.25 2.02 1.42 

arfima_1 1.63	 1.90 2.13 2.66 1.11 1.03	

arfima_2 1.63 1.90	 2.13 2.66 1.11	 1.04 

arfima_3 1.63 1.90 2.13 2.66 1.11 1.03 

arfima_4 1.63 1.90 2.13	 2.66	 1.11 1.06 

bats_1 1.62 1.92	 2.13 2.66	 1.11	 1.01 

bats_2 1.62 1.93 2.13	 2.67 1.12 1.01 

bats_3 1.62	 1.92 2.13 2.68 1.12 1.01 

bats_4 1.64 1.94 2.13 2.67 1.12 1.01	

bats_5 1.84 2.21 2.16 2.84 1.26 1.07 

bats_6 1.86 2.20 2.18 2.84 1.33 1.04 

ses_1 1.68 1.99 2.15 2.66	 1.12 1.02 

ses_2 1.68 1.99	 2.15	 2.67 1.12	 1.02 

ses_3 1.68	 2.00 2.15 2.67 1.12 1.02	

ses_4 1.68 2.00 2.15	 2.68 1.12 1.02 

theta_1 1.68 1.99	 2.17 2.64	 1.12 1.01	

theta_2 1.68	 2.00 2.15	 2.67 1.12	 1.02 

prophet_1 1.70	 1.99	 2.12	 2.62	 1.25	 1.03	

prophet_2 1.71 1.99 2.13 2.63 1.25 1.03 

prophet_3 1.75 2.04 2.19 2.70 1.26 1.03 
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Table	 8. Medians of the NSE values of the forecasts for each group of temperature 

stations. The best performance (when rounding to more than four digits) for each model 

is in bold. 

Method Globe North America North Europe Siberia Asia (except Siberia) Oceania 

naïve 0.91	 0.90	 0.79	 0.93	 0.95	 0.90	

rw_1 0.89 0.81 0.83 0.94 0.93	 0.89 

rw_2 0.89	 0.81	 0.83	 0.94	 0.93 0.89 

rw_3 0.89 0.80 0.82 0.94 0.93 0.89 

rw_4 0.89 0.80 0.82 0.94 0.93 0.89	

arfima_1 0.95 0.95 0.91 0.96 0.98 0.93	

arfima_2 0.95 0.95	 0.91	 0.96 0.98	 0.93 

arfima_3 0.95	 0.95 0.91 0.96 0.98 0.93 

arfima_4 0.95 0.95 0.91 0.96	 0.98 0.92 

bats_1 0.95	 0.95 0.91 0.96 0.98 0.93	

bats_2 0.95 0.95 0.91	 0.96 0.98 0.93 

bats_3 0.95 0.95	 0.91 0.96	 0.98	 0.93 

bats_4 0.95 0.95 0.91 0.96 0.98 0.93 

bats_5 0.94 0.93 0.89 0.95 0.97 0.93 

bats_6 0.94 0.93 0.89 0.95 0.97 0.93 

ses_1 0.95	 0.95	 0.90	 0.96 0.98 0.93 

ses_2 0.95 0.95 0.90 0.96 0.98 0.93	

ses_3 0.95 0.95 0.90 0.96 0.98 0.93 

ses_4 0.95 0.95 0.90 0.96	 0.98	 0.93 

theta_1 0.95	 0.95	 0.90	 0.96	 0.98 0.93	

theta_2 0.95 0.95 0.90 0.96 0.98	 0.93 

prophet_1 0.95	 0.95	 0.91 0.96 0.97	 0.93 

prophet_2 0.95 0.95 0.91	 0.96	 0.97 0.93 

prophet_3 0.95 0.95 0.90 0.96 0.97 0.93	
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Fig.	9. RMSE for the temperature time series. 

3.2 Analysis using the precipitation time series 

Section 3.2 is devoted to the results of the analysis using the precipitation time series. In 

Fig. 10 we present the median values of the absolute errors computed for the total of the 

precipitation time series. Here as well, the random walk variations are the least accurate 

at almost every step of the examined horizon with a minimum median around 25 mm and 

a maximum around 48 mm. The naïve method is also worse than the rest with minimum 

and maximum medians around 20 mm and 39 mm respectively. The best average 

performance is around 15 mm, which is about 70% smaller than the median of the 

estimated standard deviations of the deseasonalized time series (see Fig. 2), the same as 
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applying to the temperature forecasts. Moreover, in Fig. 11 and 12 we present the median 

values of the absolute errors computed for each of the groups of stations of Table 2. First, 

we observe that Fig. 10 approximates more to Fig. 12(c) than to Fig. 11 or Fig. 12(a, b). 

This is a rather expected outcome, since most of the totally examined precipitation time 

series originate from Australia. Nevertheless, the medians of the absolute errors are 

larger in this geographical region than worldwide. Furthermore, in Australia and North 

Europe there is not a clear pattern of seasonality in the presented medians, while for the 

case of North America there is one, but only for the years 1988 and 1989. In North Africa 

and East Asia, on the contrary, the medians between April and October are clearly higher 

than for the rest of the months with a peak in August (or July), indicating a larger difficulty 

in their corresponding forecasting attempts. This is due to a more regular precipitation 

variability in these geographical regions. The same applies, to a smaller extend, to the 

case of South Africa, for which the precipitation variables between October and April are 

found to be the least predictable. Finally, in North Africa, South Africa and East Asia some 

medians of the absolute errors are equal or very close to zero. All the above-stated facts 

may be largely explained in Fig. 4. 

 
 

Fig.	10. Medians of the absolute errors at each time step of the forecast horizon for the 

total of the precipitation time series. 
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Fig.	11. Medians of the absolute errors at each time step of the forecast horizon for the 

precipitation time series observed in: (a) North America, (b) North Europe and (c) North 

Africa.
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Fig.	12. Medians of the absolute errors at each time step of the forecast horizon for the 

precipitation time series observed in: (a) South Africa, (b) East Asia and (c) Australia. 

In Fig. 13 and 14 we present in more detail the medians of the absolute errors for two 

special cases, i.e. those of North and South Africa respectively. In these figures we 

individually compare the {rw_1, rw_2, rw_3, rw_4}, {arfima_1, arfima_2, arfima_3, 
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arfima_4}, {bats_1, bats_2 bats_3, bats_4, bats_5, bats_6}, {ses_1, ses_2, ses_3, ses_4}, 

{theta_1, theta_2}, {prophet_1, prophet_2, prophet_3} sets of variations. As illustrated in 

Fig. 13, in North Africa the tested choices for handling the seasonality seem to result in 

different seasonality patterns in the median values of the absolute errors, a fact not 

applying to the choices for handling the non-normality. Particularly for this specific 

geographical region the use of the additive model results in larger absolute errors than 

the multiplicative model from October to April and to smaller absolute errors for the rest 

of the year. These differences are more visible for the BATS, simple exponential 

smoothing, Theta and Prophet variations, but also exist for the random walk and ARFIMA 

ones. In South Africa two discrete seasonality patterns are observed only for the random 

walk variations.
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Fig.	13. Medians of the absolute errors at each time step of the forecast horizon for the 

precipitation time series observed in North Africa: comparison among the methods using 

the same model. 
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Fig.	14. Medians of the absolute errors at each time step of the forecast horizon for the 

precipitation time series observed in South Africa: comparison among the methods using 

the same model. 

Additionally, in Tables 9 and 10 we present the medians of the measured RMSE and 

NSE values of the global dataset and for each of the groups of stations of Table 2, while 

the side-by-side boxplots of the RMSE values are presented in Fig. 15. In the latter we 

notice the similarity in the performance of the ARFIMA, BATS, simple exponential 
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smoothing, Theta and Prophet variations, which is also reported for the analysis of 

Section 3.1. Some (absolute and relative) differences in the forecasting performance of 

the methods are also evident. For example, for the case of North Africa rw_1 and rw_2 are 

more accurate than rw_3 and rw_4, while the opposite applies to the case of North Europe 

albeit to a smaller extend. By the examination of Table 9 we observe that for the total of 

the precipitation time series the use of all the automatic methods apart from the random 

walk variations (offering median values between 41.67 mm and 42.39 mm) instead of 

naïve (offering a median value of 53.74 mm) leads to about 21-22% more accurate 

forecasts in terms of RMSE. For the time series observed in North America, North Europe 

and East Asia these percentages are 26-29%, 22-24% and 32-38% respectively, while for 

those observed in North Africa, South Africa and Australia 18-25%, 15-18% and 19-22% 

respectively. 

Here as well, the Prophet model is competitive to ARFIMA, BATS, simple exponential 

smoothing and Theta models, offering from 16% up to 38% (depending on the examined 

set of time series) better results than the naïve method, while exhibiting the smallest 

RMSE amongst all the methods for the precipitation forecasts for East Asia. The median 

values of the best-performing automatic methods are close to the median of the estimated 

standard deviations of the deseasonalized time series (see Fig. 2), as also applying to the 

temperature forecasts. Furthermore, the variations belonging to each of the {arfima_1, 

arfima_2, arfima_3, arfima_4}, {bats_1, bats_2, bats_3, bats_4}, {ses_1, ses_2, ses_3, ses_4}, 

{theta_1, theta_2}, {prophet_1, prophet_2} sets cannot be ranked either using the results 

of the experiments on precipitation time series, while the use of bats_5, bats_6 and 

prophet_3 has mostly (but not in all cases) led to less accurate forecasts. Regarding the 

different seasonality patterns illustrated in Fig. 13, these do not result in some dramatic 

difference in the numerical results in contrast to those illustrated in Fig. 14 for the case 

of the random walk variations. Finally, the NSE values of Table 10 are far worse than 

those corresponding to the temperature forecasts. Still, most of them are greater than 

zero and, thus, indicate acceptable performances, while for the geographical regions of 

East Asia and North Africa the performances could be characterized as moderate. 
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Table	9. Medians of the RMSE values (mm) of the forecasts for each group of precipitation 

stations. The best performance for each model is in bold. 

Method Globe North America North Europe North Africa South Africa East Asia Australia 

naïve 53.74	 63.20	 47.89	 59.91	 58.84	 75.61	 46.38	

rw_1 53.65	 55.35	 48.46 47.82	 69.97 48.69	 51.70	

rw_2 54.04 55.39 48.50 47.82 70.17 48.70 53.18 

rw_3 56.00 56.68 46.89	 61.11 66.18	 54.13 55.36 

rw_4 56.53 56.53 47.47 58.88 67.33 55.22 57.46 

arfima_1 41.75 45.16	 36.65	 46.18 48.34 48.57 36.51 

arfima_2 42.07 45.29 37.26 45.27	 48.81 47.98 37.49 

arfima_3 41.67	 45.61 36.65 45.36 48.20	 47.79	 36.25	

arfima_4 42.01 45.34 37.09 46.19 49.60 49.07 37.26 

bats_1 41.88	 45.78 36.59 46.02 48.85 47.56	 36.21	

bats_2 41.90 45.62 36.59 45.75 48.85 47.56	 36.21	

bats_3 41.98 46.15 36.54	 45.15	 48.56	 48.01 36.51 

bats_4 42.06 45.28	 36.69 47.69 50.04 48.85 36.75 

bats_5 42.39 45.80 36.78 47.50 49.99 51.71 37.28 

bats_6 42.34 45.56 37.52 47.50 49.99 50.77 37.13 

ses_1 41.88 45.54 36.60 45.77 48.83 48.07 36.35 

ses_2 42.23 45.49 36.78 46.16 49.17 48.03 37.45 

ses_3 41.79	 45.90 36.30	 45.17	 48.40	 47.87	 36.16	

ses_4 42.13 45.39	 36.95 48.93 50.29 49.12 37.26 

theta_1 42.08 46.24 36.87 46.09 48.95 47.22 36.50 

theta_2 41.79	 45.90	 36.30	 45.17	 48.40	 47.87	 36.16	

prophet_1 42.16 46.22	 37.06 46.03	 48.70	 47.18 36.56 

prophet_2 41.85	 46.72 36.84	 46.26 48.89 47.08	 36.31	

prophet_3 42.34 46.54 36.90 46.19 49.26 51.21 36.56 
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Table	10. Medians of the NSE values of the forecasts for each group of precipitation 

stations. The best performance for each model is in bold. 

Method Globe North America North Europe North Africa South Africa East Asia Australia 

naïve –0.38	 –0.55	 –0.45	 0.54	 –0.04	 0.05	 –0.44	

rw_1 –0.17	 –0.28 –0.14 0.68	 –0.20 0.49	 –0.33	

rw_2 –0.17 –0.24	 –0.15 0.68 –0.20 0.49 –0.34 

rw_3 –0.20 –0.34 –0.09	 0.49 0.01	 0.42 –0.36 

rw_4 –0.20 –0.30 –0.11 0.51 –0.02 0.44 –0.37 

arfima_1 0.15	 0.10	 0.12	 0.69 0.29 0.49 0.04 

arfima_2 0.11 0.09 0.08 0.69 0.25 0.50 –0.04 

arfima_3 0.14 0.09 0.12 0.70 0.30	 0.49 0.05	

arfima_4 0.08 0.08 0.05 0.71	 0.18 0.51	 –0.04 

bats_1 0.14 0.08 0.13	 0.70 0.29	 0.49 0.04	

bats_2 0.14	 0.08 0.13	 0.70 0.29	 0.49 0.04	

bats_3 0.14 0.08 0.13 0.71	 0.29 0.50 0.04 

bats_4 0.11 0.10	 0.11 0.69 0.18 0.52	 –0.01 

bats_5 0.11 0.08 0.10 0.70 0.25 0.45 0.01 

bats_6 0.10 0.07 0.05 0.70 0.25 0.44 0.01 

ses_1 0.14	 0.09 0.12	 0.70 0.30	 0.49 0.04 

ses_2 0.10 0.09	 0.08 0.69 0.22 0.50 –0.04 

ses_3 0.14 0.08 0.12 0.71	 0.29 0.49 0.05	

ses_4 0.09 0.09 0.05 0.68 0.16 0.51	 –0.04 

theta_1 0.14 0.08 0.13	 0.69 0.29 0.49	 0.04 

theta_2 0.14	 0.08	 0.12 0.71	 0.29	 0.49 0.05	

prophet_1 0.14	 0.07	 0.13 0.69 0.28 0.50 0.04 

prophet_2 0.14 0.07 0.13	 0.70	 0.29	 0.50	 0.04	

prophet_3 0.13 0.07 0.11 0.68 0.28 0.49 0.03 



 

 
Fig.	15. RMSE for the precipitation time series. 
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4. Summary	and	discussion	

We investigate the predictability of monthly temperature and precipitation by applying seven 

automatic univariate time series forecasting methods to 985 and 1552 monthly time series of 

temperature and precipitation respectively. The methods include a naïve one based on the 

monthly values of the last year, while the rest are based on the random walk (with drift), 

ARFIMA, BATS, simple exponential smoothing, Theta and Prophet models. Prophet is a recently 

introduced model inspired by the nature of time series forecasted at Facebook and it has not 

been applied to hydrometeorological time series before. The ARFIMA model, on the other hand, 

is widely used in a non-automatic way in the hydrological literature, while the rest of the models 

have been rarely implemented in hydrology, e.g. in Papacharalampous et al. (2017a,c), although 

they are very common in the forecasting literature. In the latter studies, no investigation is 

provided on how different choices of handling the seasonality and non-normality affect the 

performance of the models. This investigation constitutes one of the main aims of the present 

study (therefore, proper variations of the methods are examined), together with the 

quantification of the performance of the selected models on monthly hydrometeorological time 

series and the comparison of the Prophet model to the rest. The used time series are 480 

months long with no missing values, observed between January 1950 and December 1989 in 

stations covering a significant part of the Earth’s surface and, therefore, including various real-

world process behaviours. The models are fitted in the first 36 years of data (432 months) and 

subsequently tested in performing multi-step ahead forecasts for the last four years of data (48 

months). The results are summarized in global scores, while their examination by group of 

stations leads to five individual scores for temperature and six for precipitation. The groups are 

formed according to the geographical vicinity of the stations. 

The results indicate that all the examined methods apart from the naïve and random walk 

ones are accurate enough to be used in long-term forecasting applications. Even the simple 

exponential smoothing and Theta models, which exhibit a rather moderate performance in 

terms of RMSE and NSE in the experiments of Papacharalampous et al. (2017a), here are found 

to be equally competitive with the ARFIMA and BATS models, which are the most accurate in 

terms of RMSE and NSE in the above-mentioned study. This may be explained by the fact that 

the experiments of Papacharalampous et al. (2017a) use non-seasonal simulated processes, 

with different predictability than the monthly temperature and precipitation processes. 

Seasonality can be assumed to be the deterministic term of a process and its proper handling 

leads to a significant improvement of the forecasts. Seasonality is also the reason why patterns 

of error evolution, investigated in Papacharalampous et al. (2017c), are not revealed within the 
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experiments of the present study, although the forecasting horizon is long enough here as well. 

The above-stated qualitative outcome is consistent with the 92 single-case studies of 

Papacharalampous et al. (2017a) and the 50 single-case studies of Papacharalampous et al. 

(2017b), which use monthly streamflow data and monthly temperature and precipitation data 

respectively. In these studies, the seasonality term is estimated using the multiplicative model. 

Regarding the investigation of the present study on how different choices of handling 

seasonality and non-normality affect the performance of the models, the results do not suggest 

any specific combination of choices for the external handling of seasonality and non-normality 

as best. Nevertheless, the handling of seasonality through the BATS and Prophet models (the 

only models that offer this possibility amongst the used ones) mostly leads to less accurate 

forecasts than the external handling, especially for the former model. 

Admittedly, the quantitative information provided by the present study is also important, 

since it directly expresses the predictability of monthly temperature and precipitation. The 

minimum and maximum medians of the absolute errors of the temperature forecasts are found 

to be around 0.25 K and 8.2 K respectively. Furthermore, a zero median of the absolute errors 

is computed for the precipitation forecasts produced for the dry months in geographical regions 

with relatively regular variability in precipitation, while the maximum median computed is 

around 100 mm. These values could be viewed in comparison with the minimum and maximum 

medians of absolute errors for annual temperature and precipitation, as derived in a study of 

Papacharalampous, Tyralis and Koutsoyiannis (manuscript in review, 2018) using two real-

world datasets of 297 time series in total, which are about 0.23 K and 1.10 K, and 68 mm and 

189 mm respectively. Moreover, the computed RMSE values range between 1.01 K and 3.65 K 

for temperature, and 36.16 mm and 70.17 mm for precipitation, while the respective NSE 

values are 0.79 and 0.98 for temperature, and -0.55 and 0.71 for precipitation. 

Excluding the naïve method and the variations using the random walk model, the respective 

RMSE values range between 1.01 K and 2.84 K for temperature, and 36.16 mm and 51.71 mm 

for precipitation. In more detail, for the total of the temperature time series the use of an 

ARFIMA, BATS, simple exponential smoothing, Theta or Prophet model, instead of the naïve 

method, leads to about 19-29% more accurate forecasts in terms of RMSE, or even in about 30-

32% more accurate forecasts specifically for the temperature time series observed in North 

Europe. For the total of the precipitation time series the use of all these automatic methods 

leads to about 21-22% better forecasts than the use of the naïve method, while for the 

geographical regions of North America, North Europe and East Asia these percentages are 26-

29%, 22-24% and 32-38% respectively. This higher degree of accuracy is non-ignorable and 
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particularly important in a long run perspective. Importantly, the Prophet model is found to 

offer from 13% up to 32% and from 16% up to 38% better results than the naïve method for 

the temperature and precipitation time series respectively. Moreover, the minimum and 

maximum NSE medians for the ARFIMA, BATS, simple exponential smoothing, Theta and 

Prophet models are 0.89 and 0.98 for temperature, and -0.04 and 0.71 for precipitation. The 

former NSE values indicate good forecasting performances and the latter acceptable to 

moderate. The higher predictability of the monthly temperature compared to the monthly 

precipitation is expected already from the comparison of their corresponding standard 

deviation values of the seasonally decomposed time series, which have a median around 1.7 K 

and 42 mm respectively. We think that the level of the forecasting accuracy can barely be 

improved using other methods as the experiments of Papacharalampous et al. (2017a) suggest. 

5. Conclusions	

We investigate the predictability of monthly temperature and precipitation, and 

simultaneously assess the multi-step ahead performance of seven automatic univariate time 

series forecasting methods by applying the latter to the largest sample of hydrometeorological 

time series ever used for such purposes. The implemented methods are a naïve one based on 

the monthly values of the last year, as well as random walk (with drift), ARFIMA (acronym for 

AutoRegressive Fractionally Integrated Moving Average), BATS (acronym for Box–Cox 

transform, ARMA errors, Trend, and Seasonal components), simple exponential smoothing, 

Theta and Prophet. The latter is a recently introduced model, inspired by the nature of time 

series forecasted at Facebook and never applied to geophysical processes in the past, while 

most of the remaining methods are rarely used in hydrology. Proper variations of the methods 

are examined to further investigate how different choices of handling the seasonality and non-

normality affect the performance of the models. The results indicate that (a) the last five models 

perform well, better than the naïve and random walk methods, (b) monthly temperature and 

precipitation can be forecasted to a level of accuracy which can barely be improved using other 

methods, (c) the externally applied classical seasonal decomposition results mostly in better 

forecasts compared to the automatic seasonal decomposition and (d) the Prophet forecasting 

method is competitive, especially when it is combined with externally applied classical seasonal 

decomposition. 

Appendix	A Statistical	software	

The analyses and visualizations have been performed in R Programming Language (R Core 

Team 2017). We have used the following contributed R packages: ‘devtools’ (Wickham and 
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Chang 2017), ‘forecast’ (Hyndman et al. 2017), ‘fracdiff’ (Fraley et al. 2012), ‘gdata’ (Warnes et 

al. 2017), ‘ggplot2’ (Wickham 2016), ‘HKprocess’ (Tyralis 2016), ‘knitr’ (Xie, 2014; 2015; 2017), 

‘maps’ (Brownrigg et al. 2017), ‘prophet’ (Taylor and Letham 2017b) and ‘readr’ (Wickham et 

al., 2017). 
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