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Abstract: Since the prime days of stochastic hydrology back in 1960s, autoregressive (AR) and
moving average (MA) models (as well as their extensions) have been widely used to simulate
hydrometeorological processes. Initially, AR(1) or Markovian models with Gaussian noise prevailed
due to their conceptual and mathematical simplicity. However, the ubiquitous skewed behavior of
most hydrometeorological processes, particularly at fine time scales, necessitated the generation of
synthetic time series to also reproduce higher-order moments. In this respect, the former schemes
were enhanced to preserve skewness through the use of non-Gaussian white noise— a modification
attributed to Thomas and Fiering (TF). Although preserving higher-order moments to approximate
a distribution is a limited and potentially risky solution, the TF approach has become a common
choice in operational practice. In this study, almost half a century after its introduction, we reveal
an important flaw that spans over all popular linear stochastic models that employ non-Gaussian
white noise. Focusing on the Markovian case, we prove mathematically that this generating scheme
provides bounded dependence patterns, which are both unrealistic and inconsistent with the observed
data. This so-called “envelope behavior” is amplified as the skewness and correlation increases,
as demonstrated on the basis of real-world and hypothetical simulation examples.

Keywords: Thomas-Fiering approach; linear stochastic models; autoregressive process; moving
average; skewed white noise; bounded dependence patterns; synthetic data; simulation

1. Introduction: A Glimpse of History

“Remember that all models are wrong; the practical question is how wrong do they have to be to not
be useful.”

—George Box and Norman Draper [1]

The celebrated Harvard water program and the development of the so-called Thomas-Fiering
(TF) model in the early 60s [2–5] played a historically crucial role in definition and advancement of the
scientific discipline of stochastic hydrology—more specifically, of synthetic hydrology. The emergence
of this field was mainly motivated by the need to generate synthetic streamflow data, to be used in water
resources planning and management models [6–8]. The use of synthetic streamflow generators (or
more generally weather generators) allowed for representing the operation of complex hydrosystems
and deriving risk-related quantities that could not be obtained through classical statistics. Among
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the many different alternative models (see references below), the TF model prevailed for many years
and still remains a popular choice. To date, the original Thomas-Fiering paper [4] and the related
works of the Harvard water program [2–5] have been cited in the literature almost 2000 times, a fact
highlighting its vast popularity and reasonably justifying its denomination as the “Ford’s Model T” of
stochastic hydrology [9]. Additionally, more than half a century since its conception, the TF model,
its variants, and the associated approach to handle skewness (see below) are standard educational
material in most stochastic-hydrology courses and are disclosed in prominent positions in many classic
and contemporary textbooks [10–15]. The wide acceptance of the model is also acknowledged by Salas
and Pielke [16], who asserted that “the PAR(1) model (also known as the Thomas-Fiering model) is likely one
of the most widely used models in hydrology”.

The original TF model is essentially a cyclostationary version of the classic stationary linear
autoregressive model of order 1 (AR(1)), also formulated as a periodic autoregressive of order 1
(PAR(1)), in order to account for systematic changes and non-stationarities of statistical characteristics
across seasons. The fact that the marginal distributions of many hydrometeorological processes are not
Gaussian, motivated Thomas and Fiering [17] to propose the replacement of the Gaussian white noise
with Gamma (G) or Pearson type-III (PIII) distributed white noise [3] (pp. 53–57) in order to account
for the skewness coefficient (to our knowledge, this modification first appears in the book of Thomas
and Burden [18]). Note that the PIII distribution is a simple generalization of the G distribution,
which introduces an additional location parameter.

This approach was subsequently adopted by many other researchers (e.g., [3,7,19–32]) and can be
classified as an implicit one, since it aims to approximate the distribution of the target process via the
introduction of non-Gaussian white noise [33]. Hereafter, we refer to the use of non-Gaussian white
noise in linear stochastic models (e.g., AR(1)) as the TF approach.

Nevertheless, herein, we mainly focus on AR models with non-Gaussian white noise, which have
been widely adopted in hydrology, and briefly discuss three alternative schemes, two of which are
based on moving average (MA) models and one based on an autoregressive moving average model
(ARMA). Specifically, we investigate the effect on the established dependence patterns that arise from
the use of PIII white noise within stationary univariate and multivariate linear stochastic models
for generating synthetic hydrological data via stochastic simulation. Based on theoretical reasoning
and empirical evidence, it is shown that the use of the implicit TF approach results in bounded and
thus unrealistic dependence patterns, highlighting this approach’s limitations in simulating skewed
hydrometeorological processes.

Our motivation stems from an observation of Tsoukalas et al. [33], who noticed this dependence
pattern flaw while simulating 2000 years of monthly streamflow data at Aswan dam through the TF
approach (i.e., PAR(1) with skewed white noise), hereafter called “envelope behavior”. A characteristic
sample of this work is shown Figure 1, where we depict the scatter plots of historical and synthetic data
for three pairs of consecutive months (January–February, March–April, and September–October). It is
observed that the synthetically-derived scatter is bounded by a linear threshold, while the historical
data clearly extend below this limiting line. It is remarkable that the model reproduces almost perfectly
the (often regarded as essential) statistical characteristics of historical data, i.e., the mean, variance, and
skewness, as well as the month-to-month linear correlations (Pearson’s), which is the typical measure
of statistical dependence that is encountered in all linear stochastic schemes. However, it seems that
the preservation of the latter does not ensure the generation of fully consistent dependence patterns.
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Figure 1. Comparison of the (A) January–February, (B) March–April, and (C) September–October 
dependence patterns between historical and synthetic monthly runoff data (109 m3) of the Nile, at 
Aswan dam. Synthetic time series were generated by the cyclostationary Thomas-Fiering (TF) 
approach (adapted by Tsoukalas et al. [33]; the simulated negative values were not truncated to zero 
in order to avoid distortion of the dependence pattern). The red line (—) depicts the envelope 
equation of the TF model (when combined with ࣪III white noise. See also Appendix A). 

2. The Envelope Behavior of Linear Stochastic Models with Non-Gaussian White Noise 

2.1. The Thomas-Fiering Approach 

The basic idea of the TF approach lies in using non-Gaussian, skewed, white noise within linear 
stochastic models in order to resemble the target marginal statistics, i.e., sample mean, variance, and 
skewness. Note that the derivation of a theoretical formula for the white noise skewness in AR() 
models of a higher order ( ≥ 2) aiming to reproduce skewness is theoretically possible but 
practically of no use, as it involves high-order joint statistics (that are difficult to estimate and are 
also subject to significant sample uncertainties [34]). Thus, application is possible only based on 
sample estimates of these joint statistics [35]. This is the major reason why the TF modification was 
originally restricted in AR(1) models, and thus similarly we also concentrate our main analysis in 
stationary univariate and multivariate AR(1) models with skewed white noise, while we briefly 
explore the cases of some other linear stochastic models (i.e., an ARMA and two variants of MA 
models). 

Apparently, the selection of the underlying model determines the stochastic characteristics of 
the resulting simulation scheme. For example, when an AR(1) model is employed, the overall 
scheme will reproduce only Markovian autocorrelation structures, while if a more flexible 
MA-based scheme is used, the simulation scheme will be able to resemble a wider range of 
correlation structures. 

However, regardless of the choice of the underlying model, such schemes exhibit a number of 
shortcomings and limitations, which are briefly summarized here [33]: (1) They provide just an 
approximation of the marginal distribution, as reproducing statistics generally is not equivalent to 
reproducing the distribution. Furthermore, the resulting distribution is not known a priori (e.g., in 
general the sum of Gamma distributed variables is not Gamma; see also, Moschopoulos [36]). We 
remark that this was acknowledged by the authors [3] (pp. 53–57) as well as later remarked by other 
researchers ([26,37,38], (p. 66)); (2) In order to reproduce the skewness of the underlying process it is 
required (due to central limit theorem) to use white noise with higher skewness [11,23,38,39], which 
can cause, in some cases, failure of the random number generator itself; (3) This simulation scheme 
generates time series that can have negative values, which is not consistent with many physical 
processes (e.g., rainfall, wind, streamflow, etc.). This is attributed to the fact that the lower bound of 
the white noise distribution may be negative in order to match the target statistics (as estimated from 
observed time series); (4) Finally, we prove and demonstrate in the next sections that this scheme 
leads to bounded and thus unrealistic dependence patterns that are not observed in natural 
processes (such as those depicted in Figure 1).  

Figure 1. Comparison of the (A) January–February, (B) March–April, and (C) September–October
dependence patterns between historical and synthetic monthly runoff data (109 m3) of the Nile,
at Aswan dam. Synthetic time series were generated by the cyclostationary Thomas-Fiering (TF)
approach (adapted by Tsoukalas et al. [33]; the simulated negative values were not truncated to zero in
order to avoid distortion of the dependence pattern). The red line (—) depicts the envelope equation of
the TF model (when combined with PIII white noise. See also Appendix A).

2. The Envelope Behavior of Linear Stochastic Models with Non-Gaussian White Noise

2.1. The Thomas-Fiering Approach

The basic idea of the TF approach lies in using non-Gaussian, skewed, white noise within linear
stochastic models in order to resemble the target marginal statistics, i.e., sample mean, variance,
and skewness. Note that the derivation of a theoretical formula for the white noise skewness in AR(p)
models of a higher order (p ≥ 2) aiming to reproduce skewness is theoretically possible but practically
of no use, as it involves high-order joint statistics (that are difficult to estimate and are also subject to
significant sample uncertainties [34]). Thus, application is possible only based on sample estimates of
these joint statistics [35]. This is the major reason why the TF modification was originally restricted in
AR(1) models, and thus similarly we also concentrate our main analysis in stationary univariate and
multivariate AR(1) models with skewed white noise, while we briefly explore the cases of some other
linear stochastic models (i.e., an ARMA and two variants of MA models).

Apparently, the selection of the underlying model determines the stochastic characteristics of the
resulting simulation scheme. For example, when an AR(1) model is employed, the overall scheme will
reproduce only Markovian autocorrelation structures, while if a more flexible MA-based scheme is
used, the simulation scheme will be able to resemble a wider range of correlation structures.

However, regardless of the choice of the underlying model, such schemes exhibit a number
of shortcomings and limitations, which are briefly summarized here [33]: (1) They provide just an
approximation of the marginal distribution, as reproducing statistics generally is not equivalent
to reproducing the distribution. Furthermore, the resulting distribution is not known a priori
(e.g., in general the sum of Gamma distributed variables is not Gamma; see also, Moschopoulos [36]).
We remark that this was acknowledged by the authors [3] (pp. 53–57) as well as later remarked by
other researchers ([26,37,38], (p. 66)); (2) In order to reproduce the skewness of the underlying process
it is required (due to central limit theorem) to use white noise with higher skewness [11,23,38,39],
which can cause, in some cases, failure of the random number generator itself; (3) This simulation
scheme generates time series that can have negative values, which is not consistent with many physical
processes (e.g., rainfall, wind, streamflow, etc.). This is attributed to the fact that the lower bound of
the white noise distribution may be negative in order to match the target statistics (as estimated from
observed time series); (4) Finally, we prove and demonstrate in the next sections that this scheme leads
to bounded and thus unrealistic dependence patterns that are not observed in natural processes (such
as those depicted in Figure 1).
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2.2. The Envelope Behavior in the Classical Univariate AR(1) Model

Let us assume we wish to simulate a continuous-state (not necessarily Gaussian), discrete-time,
stationary AR(1) process (also referred to as the Markov process) xt, t ∈ Z, where t is the time index.
The main equation of the model reads:

xt = a1xt−1 + εt (1)

where a1 = ρ1 := Corr[xt, xt−1] is a model parameter and εt denotes an i.i.d. random variable (RV)
known as white noise or the innovation term. The theoretical autocorrelation function (ACF) of the
AR(1) model is ρτ := Corr[xt, xt−τ ] = a|τ|1 , where τ stands for the time lag. The mean µxt := E[xt] and

variance σ2
xt

:= Var[xt] = E
[
(x− µx)

2
]

of xt are related with those of εt via the following equations
(hereafter, due to stationarity, the index t will be omitted when possible):

µε = µx(1− a1) (2)

σ2
ε = σ2

x

(
1− a1

2
)

(3)

Apparently, if the process of interest is Gaussian (or well-approximated by it), Equations (2) and (3)
in combination with Gaussian white noise would be sufficient and “exact”, since a linear combination
of Gaussian RVs is also Gaussian. However, this is not the case for most hydrometeorological processes.
In this context, the TF approach attempts to approximate the non-Gaussian behavior of xt by employing

non-Gaussian white noise for εt, where the skewness coefficient CSx := E
[(

x−µx
σx

)3
]

of xt is related

with that of εt by [3,10–13]:

CSε = CSx

(
1− a1

3)
(1− a1

2)
3/2 (4)

Hence, in order to capture the first three marginal moments of xt, one has to generate non-Gaussian
white noise with certain statistical characteristics, which are all functions of the lag-1 autocorrelation
coefficient of the process xt, given that a1 = ρ1. In Figure 2 we provide two alternative views of
Equation (4), both depicting the variability of the required skewness CSε of the white noise against the
skewness CSx and the lag-1 autocorrelation ρ1 of the target process xt. Particularly, in Figure 2A we fix
ρ1 to specific values, ranging from 0 to 0.9, and with CSx varying from 0 to 5, while in Figure 2B we set
CSx ∈ {1, 2, 3, 4, 5} and vary ρ1 from 0 to 0.9. Considering a high ρ1 = 0.9 and aiming to reproduce
a moderate skewness, e.g., ≈ 1, results in a white noise skewness ≈ 3.5, while for a highly skewed
variable the deviation becomes much larger (related of course to ρ1). For example, for a process with
ρ1 = 0.9 and CSx = 4, the required white noise skewness is CSε ≈ 12.5, i.e., more than three times
higher than the target value.
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Figure 2. Relationship between (A) the target skewness coefficient of process xt and the required
skewness for white noise term εt for a given lag-1 autocorrelation coefficient ρ1; and (B) the lag-1
autocorrelation coefficient ρ1 and the required skewness coefficient of white noise term εt to attain the
target skewness coefficient of process xt.

Within non-Gaussian simulations, the selection of the underlying statistical model of the white
noise and the associated random number generation procedure is a pivotal step. Thomas and Fiering
proposed the use of Pearson type-III (PIII) distribution, which is also one of the most commonly used
distributions in hydrology. The probability density function (PDF) of PIII is given by:

fPIII(ξ) =
1

|b| Γ(γ)

(
ξ − c

b

)γ−1
exp

(
− ξ − c

b

)
,

{
if b > 0 c ≤ ξ < ∞

if b < 0 −∞ < ξ ≤ c
(5)

where γ > 0, b 6= 0, and c ∈ R are shape, scale, and location parameters, respectively (if c = 0, then
PIII reduces to the Gamma distribution). The mean µξ , variance σ2

ξ and skewness Csξ
of the random

variable ξ are given by:

µξ = c + γb, σ2
ξ = γb2, CSξ

=
2b
|b|√γ

(6)

Of course, as Matalas and Wallis [37] noted, choosing the white noise distribution is a matter of
convenience (see also discussion in Tsoukalas et al. [33]) and simplicity in generating random numbers,
given obviously that the selected distribution can reproduce the desired statistics of white noise, i.e.,
µε, σε, and CSε .

The non-Gaussian formulation of the AR(1) model through the TF approach results in the so-called
envelope behavior issue, which is associated with the distribution of the white noise. Let us write
Equation (1) in the equivalent form:

xt = a1xt−1 + F−1
ε (u) (7)

where F−1
ε denotes the inverse cumulative density function (ICDF) of the white noise εt and u expresses

a uniform (U ) RV in [0, 1] (probability), i.e., u ∼ U (0, 1). In the above formulation, we see that
in the Gaussian case, where εt ε (−∞, ∞), the random variable xt takes any value in (−∞, ∞).
However, when the distribution of εt has a finite left support, as in PIII or Gamma (G) cases, then
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lim
u→0

F−1
ε (u) = `ε, where `ε stands for the lower bound of εt. Hence, for given a1 (e.g., specified from

the data) and xt−1, we can estimate at any step of the generation procedure the lower bound of xt by:

xt ≥ a1xt−1 + `ε (8)

and thus calculate the theoretical lower bound of the synthetic data. Similarly, when the distribution
of εt is bounded from above (as in the PIII case adjusted for negative skewness), then lim

u→1
F−1

ε (u) = vε,

where vε is the upper bound of the distribution of εt. In this case the generation mechanism is bounded
from above, i.e.:

xt ≤ a1xt−1 + vε (9)

This limitation is especially important since hydrometeorological variables, such as river discharge,
cannot be considered unbounded from above, even when the sample statistics erroneously indicate
negative skewness. To the best of our knowledge, despite the popularity of the TF model and the
associated approach of coupling it with skewed white noise, this shortcoming has never been reported
in literature, regardless of its straightforward and intuitive theoretical derivation. This limitation also
holds for the univariate cyclostationary TF model (i.e., PAR(1) with PIII white noise), for which we
provide the corresponding relationships in Appendix A.

Apart from the latter relationships, based on the previous formulation it can be shown that a
simple recursive procedure facilitates the estimation of the theoretical minimum (or maximum) value
of the TF approach. Without the loss of generality, assuming x0 := µx, and by sequentially applying
Equation (7) for q steps with εt = F−1

ε (0) = `ε, we can obtain the model’s theoretical minimum,
which can differ from `ε (they are identical when `ε = 0). The recursive procedure can be written
as follows:

x0 := µx

x1 = a1x0 + F−1
ε (0)

x2 = a1x1 + F−1
ε (0)

...
xq = a1xq−1 + F−1

ε (0)

(10)

Alternatively, and more vigorously (depending on the support of εt), the theoretical minimum
and maximum are given, respectively, by min(xt) = `ε/(1− a1) and max(xt) = vε/(1− a1).

In order to better demonstrate the envelope behavior, we apply the AR(1) model coupled with PIII
white noise (termed AR(1)-PIII) to 12 hypothetical scenarios by simulating 5000 time steps for each. For
all scenarios we fix µx = 0.5 and σ2

x = 1 combined with Csx ∈ {1, 2, 4} and ρ1 ∈ {0.2, 0.4, 0.6, 0.8}
(see Table 1 for a summary). Since the PIII is used for generating white noise and Csx > 0, in all cases
a lower bound is anticipated.

Table 1. Summary of target statistics for all scenarios (in all cases, µx = 0.5 and σ2
x = 1).

Scenario A B C D E F G H I J K L

Csx 1 2 4 1 2 4 1 2 4 1 2 4
ρ1 = a1 0.2 0.4 0.6 0.8

µε 0.4 0.3 0.2 0.1
σ2

ε 0.96 0.84 0.64 0.36
Csε 1.05 2.11 4.22 1.22 2.43 4.86 1.53 3.06 6.13 2.26 4.52 9.04

PIII distribution
γ 3.596 0.899 0.225 2.706 0.677 0.169 1.706 0.426 0.107 0.784 0.196 0.049
b 0.517 1.033 2.067 0.557 1.114 2.229 0.613 1.225 2.450 0.678 1.356 2.711
c −1.458 −0.529 −0.065 −1.208 −0.454 −0.077 −0.845 −0.322 −0.061 −0.431 −0.166 −0.033

As theoretically expected, the model reproduces the target ACF and target statistics for all
scenarios with high accuracy (see Figure A1 and Table A1 of Appendix B). However, the envelope
behavior of the dependence pattern is apparent and indicates its limitation, a fact clearly demonstrated
by the scatter plots (Figure 3) corresponding to the 12 simulation scenarios. The theoretically-derived
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Equation (8), defining the lower bound of the feasible space of the (xt−1, xt) points, is depicted by
a red line (Figure 3). Note that labels in each subplot follow the scenarios’ naming convention in
Table 1 (e.g., panel C corresponds to scenario C of Figure 3). Apparently, in every case, regardless of
the Csx and ρ1 values, the model generates bounded dependence patterns enveloped by Equation (8).
This behavior appears even for low combinations of Csx and ρ1 (e.g., scenario A).
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Figure 3. Scatter plots depicting the simulated (using the TF model, i.e., the autoregressive model of
order 1 (AR(1))-PIII) lag-1 dependence pattern among consecutive time steps (i.e., pair values (•) of
the previous and current time steps). The labels of each plot resemble the corresponding scenarios of
Table 1. The red line (—) depicts the envelope equation shown in the title of each plot.

2.3. From the Univariate to the Multivariate AR(1) Model

It is reasonable to expect that the envelope behavior will also be observed in the multivariate
case, i.e., when the multivariate autoregressive process of order 1 is used (MAR(1)) in combination
with non-Gaussian white noise. Let us assume that we wish to generate an m-dimensional vector xt =[

x1
t , . . . , xi

t, . . . xm
t
]T of m cross-correlated AR(1) processes, indexed by i. The generation mechanism of

the model is:
xt = A1xt−1 + εt (11)

where A1 is an m×m matrix and εt is an m-dimensional column vector of cross-correlated yet serially
independent RVs with covariance Σε ∈ Rm,m. The model is often called the “multivariate lag-1 model”
when a full A1 matrix is employed, while there exists a variation that assumes a diagonal A1 matrix,
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often called “multivariate Markov model” or “contemporaneous multivariate autoregressive model
of order 1” (i.e., CMAR(1)). Both formulations explicitly account for the lag-0 cross-correlations of
the variables while their major difference is that the former is able to explicitly account for the lag-1
cross-correlations [11,37,40]. On the other hand, the use of diagonal A1 ensures that each individual
process is a Markov process and significantly simplifies the parameter estimation procedure, since the
lag-1 cross-correlations are not explicitly modeled. Its use is often advocated by the literature, since
several authors suggest that lag-1 cross-correlations can be neglected [14,22,26,33,40,41]. Yet it is noted
that while this simplification could be valid for processes considered at a coarse time scale (e.g., monthly
or annual), it should be used with caution in cases of fine time scale processes (e.g., hourly) or for
modeling phenomena characterized by cause-effect relationships (e.g., rainfall-runoff). Nevertheless,
here we focus on the so-called multivariate Markov model (i.e., CMAR(1)). Regarding its parameter
estimation and assuming that A1 is a diagonal matrix of the form:

A1 =


a1[1,1] 0 0

0
. . . 0

0 0 a1[m,m]

 = [A1]i,j (12)

where a1[i,i] = Cov
[
xi

t, xi
t−1
]
/Var

[
xi

t−1
]
= Corr

[
xi

t, xi
t−1
]
= ρi

1, the following holds true:

Σε = M0 − A1 M0A1
T (13)

where M0 = Cov[xt, xt] ∈ Rm,m is the lag-0 cross-covariance matrix. For instance, its ith, jth element is

[M0]i,j = Cov
[

xi
t, xj

t

]
. The theoretical cross-covariance matrices Mτ = Cov[xt, xt−τ ] can be obtained

for any time lag τ by recursively applying the equation:

Mτ = A1Mτ−1, τ > 0 (14)

Meanwhile, the theoretical and cross-correlation matrices Rτ = Corr[xt, xt−τ ] are obtained by
Rτ = (diag(Mτ))

−1/2 Mτ(diag(Mτ))
−1/2. Furthermore, the covariance matrix Σε can be expressed as:

BBT = Σε (15)

where B is an m×m, typically lower triangular, matrix (also known as the square root of Σε) obtained by
standard decomposition techniques (e.g., the Cholesky technique) or optimization approaches [23,42].
The latter methods are usually employed when B is non-positive definite. Typically, such problems
arise when the sample estimates of the required statistics are extracted from historical time series
of different and/or limited lengths [11]. Nonetheless, given that A1 is diagonal and assuming that
εt = Bξt, where ξt is an m-dimensional column-vector of i.i.d. RVs, the decomposition of Equation (11)
can be given as follows:

xi
t = a1[i,i] xi

t−1 +
m

∑
j=1

b[i,j] ξ j
t (16)

Additionally, the moments of ξt and xt are interrelated through (index t is omitted due
to stationarity):

µξ = E
[
ξ
]
= B−1{E[x]−A1E[x]} (17)

σ2
ξ = Var

[
ξ
]
= [1, . . . , 1]T (18)

Csξ
= µ3

[
ξ
]
=
(

B(3)
)−1 {

µ3[x]− A1
(3) µ3[ x]

}
(19)
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where µ3

[
ξ
]

and µ3[x] denote column-vectors that contain the third central moments of ξ and x,
respectively; we remark that ξ coincides with the skewness coefficient, since the model assumes unit
variance for ξ. Similar to the univariate case, the white noise term is typically generated using the
PIII distribution (Equation (5)). To illustrate the envelope behavior of the latter model, we rewrite the
Equation (11) similarly to Equation (7), i.e.:

xi
t = a1[i,i] xi

t−1 +
m

∑
j=1

b[i,j]F
−1
ξ i

(
ui
)

(20)

where F−1
ξ i

(
ui) denotes the quantile function of ξ j for a given probability ui. If the distribution of ξ j

is bounded below or above by `
ξ i or v

ξ i , respectively, then lim
ui→0

F−1
ξ i

(
ui) = `

ξ i , and lim
ui→1

F−1
ξ i

(
ui) = v

ξ i .

Therefore, we obtain:

xi
t ≥ a1[i,i] xi

t−1 +
m

∑
j=1

b[i,j]`ξ i (21)

xi
t ≤ a1[i,i] xi

t−1 +
m

∑
j=1

b[i,j]vξ i (22)

for lower (left)- and above (right)-bounded cases, respectively.
However, in the multivariate case, and since xi

t depends on multiple values of ξ i, the limiting
behavior (assuming that all RVs are left-bounded) is identified by setting u =

[
u1, . . . , ui, . . . , um]→ 0 .

Of course, the envelope behavior diminishes if the white noise term ξt is normally distributed (or more
generally if ξt ε (−∞, ∞)), yet in this case skewness cannot be preserved.

Without the loss of generality, we examine the bivariate case of xt =
[
x1

t , x2
t
]T where both processes

exhibit zero autocorrelation but their lag-0 cross-correlation is equal to 0.8. For E[x] = [0.5, 0.5]T,
Var[x] = [1, 1]T, and µ3[x] = Csx = [2, 2.5]T we find:

A1 =

[
0 0
0 0

]
, B =

[
1 0

0.8 0.6

]
(23)

(where B is obtained by the Cholesky decomposition), while the generating equation
(Equation (11)) becomes:[

x1
t

x2
t

]
=

[
0 0
0 0

][
x1

t−1
x2

t−1

]
+

[
1 0

0.8 0.6

][
ξ1

t
ξ2

t

]
(24)

Given the target moments of x, the statistics of the white noise term are calculated as E
[
ξ
]
=

[0.50, 0.16]T, Var
[
ξ
]
= [1, 1]T, and µ3

[
ξ
]
= Csξ

= [2.00, 6.83]T. Using the PIII for white noise

generation we obtain the lower bound vector `ξ = [−0.500,−0.126]T. Thus, from Equation (22) the
limiting envelope equations are x1

t = 0 x1
t−1 − 0.500 and x2

t = 0 x2
t−1 − 0.475. In this case, it is

also possible to estimate the envelope relationship a priori between x1
t and x2

t as A1 is a zero matrix.
Particularly, since x1

t = ξ1
t and x2

t = 0.8ξ1
t + 0.6ξ2

t , and substituting the former into the latter, we get
x2

t = 0.8x1
t − 0.6ξ2

t , and by setting ξ2
t = `ξ2 the envelope line x2

t = 0.8x1
t − 0.076 is obtained.

In order to demonstrate the envelope behavior in the multivariate case, we employ the above
model and synthesized a time series of 5000 time steps. Figure 4A–C depicts the established
dependence patterns of each individual process for lag-1 (panels A and B), while panel C shows
the pattern among the two processes for lag-0. Also, at each panel we display the corresponding
envelope equation. We remark that the model was able to accurately reproduce the theoretical
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stochastic structure, expressed by the autocorrelation (ACF) and cross-correlation functions (CCF)
shown in Figure 4D–F, as well as, to approximate very well the target moments (Table A2).Water 2018, 10, x FOR PEER REVIEW  10 of 23 
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Figure 4. Scatter plots depicting the simulated (using the contemporaneous multivariate autoregressive
model of order 1 (CMAR(1) model) with PIII white noise) for (A) and (B) lag-1 dependence patterns of
the zero-autocorrelated processes x1

t and x2
t , respectively, for consecutive time steps (i.e., pair values (•)

of the previous and current time steps). Panel (C) depicts the contemporaneous dependence (lag-0) of
x1

t and x2
t . The red line (—) depicts the envelope equation shown in the title of each plot. Panel (D)

compares the simulated and theoretical autocorrelation function (ACF) of x1
t while panel (E) compares

that of x2
t . Finally, panel (F) compares the simulated and theoretical cross-correlation function (CCF) of

x1
t and x2

t .

In order to extend our working examples, we simulate another vector of bivariate time series (5000
time steps) using the same marginal moments as before, but this time with a different autocorrelation
structure. Specifically, we assumed Corr

[
x1

t , x1
t−1
]
= ρ1

1 = 0.7 and Corr
[
x2

t , x2
t−1
]
= ρ2

1 = 0.5. Thus,
we get:

A1 =

[
0.7 0
0 0.5

]
, B =

[
0.714 0
0.728 0.468

]
(25)

and the generating formula:[
x1

t
x2

t

]
=

[
0.7 0
0 0.5

][
x1

t−1
x2

t−1

]
+

[
0.714 0
0.728 0.468

][
ξ1

t
ξ2

t

]
(26)

Similar to the previous analysis, Figure 5A–C depicts the established lag-1 and lag-0 dependence
patterns, while the envelope equation of each process is displayed in the title of each panel. It
is apparent that at each simulated step, the model poses significant constraints in the range of
subsequent plausible values, which is far from reality. We remark that in this case the contemporaneous
lag-0 relationship cannot be displayed in a two-dimensional (2D) plot since it involves the lag-1
values of x1

t and x2
t . Nevertheless, the model successfully reproduced the target stochastic structure
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(Figure 5D–F) and the marginal moments (see Table A3), at the cost, however, of unrealistically
bounded dependence patterns.Water 2018, 10, x FOR PEER REVIEW  11 of 23 
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t
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2.4. The Envelope Behavior beyond AR Models

To demonstrate the impact of employing non-Gaussian white noise in combination with other
linear stochastic models, we employed (1) a low-order autoregressive moving average model
ARMA(p,q); (2) a simple moving average model MA(q); and (3) its symmetric variant, termed
SMA(q). The parameters p and q determine the order of the models. As shown by O’Connell [31] and
later discussed by Lettenmaier [38], it is possible for the case of ARMA(1,1) to derive an analytical
relationship that links the skewness of the white noise with the skewness of the target process.
Furthermore, it has been shown [30] that similar relationships can be established for the two moving
average schemes regardless of the order q (i.e., MA(q) and SMA(q)).

In this demonstration we utilized the aforementioned relationships for the simulation of a
univariate stationary process with the characteristics of the hypothetical Scenario I of Table 1,
which refers to the Markovian process with ρτ = 0.6|τ| and CSx = 4. Regarding the ARMA(1,1)
process, it is noted that its autocorrelation structure is somewhat different from the Markovian one,
hence we carefully choose its parameters in order to have ρ1 = 0.6. On the other hand, both MA(q) and
SMA(q) are able to resemble the Markovian autocorrelation structure with satisfactory accuracy by
setting q = 32. Nonetheless, in all cases we used PIII distribution for the white noise, hence the models
are termed ARMA(1,1)-PIII, MA(32)-PIII, and SMA(32)-PIII. However, due to a lack of analytical
solution for the envelope function, and in order to derive a clear picture of the established dependence
patterns, we generated very long realizations, each one consisting of 500,000 time steps. Figure 6
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shows the lag-1 dependence pattern obtained by the three schemes as well as a comparison of the
simulated and theoretical ACF, which is very well reproduced by all models. Despite the accurate
reproduction of the target marginal statistics (mean, variance, and skewness) by all models, they
establish peculiarly-shaped and always bounded dependence forms. However, it should be noted
that the MA(q) and SMA(q) schemes are typically employed for the simulation of annual processes,
which are typically well approximated by the Gaussian distribution, and thus it is reasonable to expect
a minimization of this issue.
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3. Real-World Case Study

In this section we demonstrate the envelope behavior of the TF approach using a real-world
and long dataset (1 January 1970 to 31 December 2008) of daily streamflow data (m3/s) of river
Achelous at Kremasta dam in Western Greece. It is assumed that the autocorrelation structure of
the daily streamflow of each month can be described by a stationary AR(1) model. The historical
monthly and daily time series are clearly characterized by non-Gaussian distributions and skewness
coefficients ranging from 1.6 (June) up to 6.7 (October). Specifically, we generate daily synthetic time
series with a length of 1000 years, using for each month a different AR(1) model with PIII white noise
(i.e., AR(1)-PIII). The model very satisfactorily reproduced the target historical marginal statistics of
each month (Table A4), as well as the theoretical Markovian autocorrelation structure (see Figure A2
for a comparison among the empirical, synthetic, and theoretical ACFs), which however deviates from
the empirical ACF for some months, showing a more persistent behavior. Yet a comparison of the
lag-1 dependence patterns between the synthetic and the historical data, using scatter plots for each
month (Figure 7), reveals the omnipresence of the envelope behavior. Evidently the model generates
unrealistic dependence patterns that are far from the historical ones. The synthetic pairs of values are
bounded by the theoretical envelope function (red line; embedded in each plot), while the historical
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pairs clearly extend beyond that line. In an effort to provide a quantitative metric, we calculate the
empirical probability of a historical pair to lie below the envelope function. The overall mean value of
this metric estimated from all months is 27%, while it ranges from 14% (in November) to 42% (in April).Water 2018, 10, x FOR PEER REVIEW  13 of 23 
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4. Discussion

Historically, most of the questions raised regarding the TF approach have concerned the case
of the AR(1) model and the range of attainable skewness coefficients [20,38,43]. This was mainly
due to the use of Wilson-Hilferty transformation which was used for generating Gamma or Pearson
type-III RVs [44]. Nowadays, this technical issue is out of interest, since such RVs can be easily
generated with high accuracy by modern random number generators which are available in almost
every programming language (e.g., R, MATLAB, etc.). Additionally, we note that McMahon and
Miller [20] reported that Thomas and Burden [18] and Fiering [5] tested their approach for skewness
values ranging in (−0.5, 1.0).

This work focused on the effect of using Pearson type-III white noise in AR(1) models and we show
that this approach leads to unrealistic dependence patterns. Furthermore, preliminary investigations
have also shown that this issue extends over other popular linear stochastic models when coupled
with non-Gaussian white noise. Particularly, we demonstrated three such cases using PIII white
noise in combination with (1) a classical ARMA(1,1); (2) a simple MA(q); and (3) its symmetrical



Water 2018, 10, 771 14 of 23

variant SMA(q) [30]. In all cases the resulting dependence patterns exhibited a peculiar and unrealistic
bounded shape which can be bounded from both directions.

Nevertheless, it is noteworthy that Song et al. [45] and Jeong and Lee [46] also observed this
issue independently while studying AR(1) with exponential white noise [47–49] and periodic Gamma
autoregressive (PGAR) processes [50], respectively. However, to the best of our knowledge, these works,
or any other, have not revealed the envelope limitation, neither provided a theoretical proof and a
justification for this behavior, which probably arises from the lack of explicit assumption regarding
the joint dependence structure of the process. Particularly, the joint moment of order k + n of two
continuous RVs, x and y, is given by:

E
[

xk yn
]
=

∞∫
−∞

∞∫
−∞

xk yn fxy(x, y)dxdy (27)

where fxy denotes the joint probability distribution function (PDF) of x and y. The first cross product
joint moment is embedded in the definition of covariance, as well as in the Pearson’s correlation, i.e.:

ρxy =
E
[

x y
]
− E[x]E

[
y
]

√
Var[x] Var

[
y
] (28)

Hence, this points to the requirement for an assumption regarding fxy. When both x and y
are Gaussian, and simulated through a typical decomposition scheme (e.g., the Cholesky technique)
which applies linear operations on them, the joint PDF of x and y is also Gaussian (due to the affine
transformation property of Gaussian RVs). When x and y are not Gaussian, the latter convenient
property does not hold. By analogy, the joint moment of order k + n of a continuous-state, discrete-time
stochastic process xt can be expressed as:

E
[

xk
t xn

t−τ

]
=

∞∫
−∞

∞∫
−∞

xk
t xn

t−τ fxt , xt−τ
(xt, xt−τ)dxtdxt−τ (29)

If xt is Gaussian and modeled using a linear stochastic process (e.g., AR or MA-type) with
Gaussian white noise, then it is well known that the joint PDF fxt , xt−τ

is also Gaussian. This implies
linear operations on Gaussian RVs. On the other hand, this does not hold for the TF approach, which
uses non-Gaussian white noise and thus the form of fxt , xt−τ

is unclear.
We remind that summary statistics such as mean, variance, skewness, and correlation are nothing

more than some useful measures of location, dispersion, asymmetry, and dependence, and do
not involve in their estimation the actual joint distribution. A classic example is provided by the
so-called Anscombe’s Quartet [51] and recently by Matejka and Fitzmaurice [52]. Both works stress
the importance of data science’s first principle: “Visualize your data”. They demonstrate this issue by
devising several examples of datasets that have the same summary statistics but completely different
dependence patterns. Apparently, as shown in this work, the aforementioned simple principle also
applies in synthetic hydrology.

Nowadays, multivariate random variables are typically modeled by copula functions [53,54],
which despite the early-days skepticism [54] have found wide acceptance and practical use.
In hydrology, copulas have been popularized by the studies of De Michele and Salvadori [55]
and Favre et al. [56], and since then have been widely applied for the description of correlated
yet time-independent variables [55–63], while only lately they have been adapted and modified
accordingly to account for time-dependence, which led to the development of copula-based schemes
for the simulation of hydrometeorological processes [64–70].
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A conceptually related, yet until recently unknown to the hydrological community, approach
relies on the so-called Nataf joint distribution model [71], which is associated to the well-known
Gaussian copula [54,72]. Since their inception, Nataf-based models have been developed and applied
for the simulation of univariate or multivariate autoregressive processes with arbitrary marginal
distribution mainly within operations research, e.g., [73,74], while recently they have been aligned with
hydrological stochastics [33,75–78] in order to account for non-Gaussian processes, both univariate
and multivariate, exhibiting intermittency, periodicity, and any-range dependence.

Apparently, both Nataf- and copula-based approaches can provide a remedy to the limitations
of the TF approach, as well as explicitly account for non-Gaussianity, which is omnipresent within
hydrometeorological processes (e.g., [79–85]). We deem that Nataf-based models provide a convenient
and more precise alternative given that they utilize (in an auxiliary or parent role) existing and
well-known stochastic models which provide the basis for a straightforward and operational efficient
generation scheme. It is also noted that the celebrated Log-Normal model of Matalas [7], which
incidentally can be classified as a Nataf-based approach [33,76], does not exhibit the TF approach
limitation and thus can provide a rather easy and consistent option for practitioners.

5. Conclusions

To conclude, we bring back the aphorism and the question set by Box and Draper. Paraphrasing,
we could say that indeed since all models are wrong and TF is not an exception, the question is how wrong the
TF approach has to be to not be useful. A way to answer this question is through impact assessments of the
envelope behavior in real-world applications, e.g., in important engineering studies (reservoir design
and sizing, hydropower assessment, reliability-based studies, etc.), and of its effect on decision-making
related to water resources management. Another question arising here is why should one use a model
with known limitations and flaws (irrespective of whether these flaws have minor or major impacts on
real-world applications) which reproduces unrealistic rainfall or streamflow patterns? We recognize
that the TF model and the associated approach was a major contribution of paramount importance
that shaped stochastic hydrology, yet in practice linear stochastic models should be used cautiously
when combined with non-Gaussian white noise, given the limitations shown herein. This approach
preserves important summary statistics (i.e., mean, variance, and skewness) and correlations, yet for
processes showing medium to high skewness values and/or correlations it will inevitably reproduce
bounded and unrealistic dependence patterns that are next used in simulations. In this context, after
half a century of blind use of this model and approach, we deem that it is time to move to alternative
methods which are consistent in generating realistic dependence structures as well as the marginal
distribution itself.
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Appendix A

Herein we present the mathematical background of the univariate cyclostationary Thomas-Fiering
(TF) model, also known as the univariate periodic autoregressive model of order 1 (i.e., PAR(1)), with
Pearson type-III (PIII) white noise. Let xs be a cyclostationary (i.e., periodic) process with seasons
s = 1, . . . , S, where S denotes the total number of seasons (e.g., for a monthly model, S = 12).
The generating mechanism of the model is:

xs = asxs−1 + bsεs (A1)

http://www.stats.uwo.ca/faculty/mcleod/epubs/mhsets/
http://www.stats.uwo.ca/faculty/mcleod/epubs/mhsets/
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where as, bs are seasonally-varying parameters and εs denotes an i.i.d. variate. The parameter as =

Cov[xs, xs−1]/Var[xs−1] and bs =
√

Var[xs]− a2
s Var[xs−1].

The statistical characteristics of the white noise εs term, which is generated through PIII
distribution, are related to those of the target process xs via the following relationships:

µεs = E[εs ] = b−1
s {E[xs]− asE[xs−1]} (A2)

σ2
εs
= Var[εs] = 1 (A3)

Csεs
= µ3[εs] = b−3

s

{
µ3[xs]− as

3 µ3[ xs−1]
}

(A4)

where µ3

[
ξ
]

denotes the third central moment of an arbitrary random variable ξ, which in the case of εs

coincides with its skewness coefficient since the model assumes unit variance. Furthermore, following
the rationale of Section 2, the envelope function of the generation mechanism can be expressed as:

xs ≥ asxs−1 + bs`s (A5)

for positive skewness (i.e., PIII with b > 0), hence forming a lower boundary, and:

xs ≤ asxs−1 + bsvs (A6)

for negative skewness (i.e., PIII with b < 0), hence forming an upper boundary. In the above, `s and
vs respectively denote the lower and upper supports of the distribution of the white noise at season
s. We remark that similar derivations, yet much more complex, can be derived for other models that
employ skewed white noise.

Appendix B

Table A1. Scenario-based summary of theoretical (see Table 1 of the main manuscript; Section 2.2—
“The envelope behavior in the classical univariate AR(1) model”) and simulated (synthetically
generated; using an AR(1) with PIII white noise) statistics.

Scenario Type Mean (µ) Variance (σ2) Skewness (Cs) Autocorrelation (ρ1)

Scenario A
Theoretical 0.50 1.00 1.00 0.20
Simulated 0.46 0.93 1.05 0.20

Scenario B
Theoretical 0.50 1.00 2.00 0.20
Simulated 0.54 1.06 2.07 0.18

Scenario C
Theoretical 0.50 1.00 4.00 0.20
Simulated 0.50 0.91 3.48 0.21

Scenario D
Theoretical 0.50 1.00 1.00 0.40
Simulated 0.46 0.97 0.91 0.34

Scenario E
Theoretical 0.50 1.00 2.00 0.40
Simulated 0.49 1.11 2.09 0.45

Scenario F
Theoretical 0.50 1.00 4.00 0.40
Simulated 0.46 1.01 4.89 0.45

Scenario G
Theoretical 0.50 1.00 1.00 0.60
Simulated 0.42 0.97 0.88 0.64

Scenario H
Theoretical 0.50 1.00 2.00 0.60
Simulated 0.48 1.04 2.20 0.62

Scenario I
Theoretical 0.50 1.00 4.00 0.60
Simulated 0.48 0.93 4.22 0.57

Scenario J Theoretical 0.50 1.00 1.00 0.80
Simulated 0.50 1.09 0.75 0.82

Scenario K
Theoretical 0.50 1.00 2.00 0.80
Simulated 0.45 0.97 2.11 0.81

Scenario L
Theoretical 0.50 1.00 4.00 0.80
Simulated 0.55 1.08 4.24 0.81
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Figure A1. Scenario-based (see Table 1 of the main manuscript; Section 2.2—“The envelope behavior
in the classical univariate AR(1) model”) comparison of synthetic (using the an AR(1) with PIII
white noise) and theoretical autocorrelation function (ACF). The labels of each plot resemble the
corresponding scenarios of the aforementioned table (see also Table A1).

Table A2. Summary of theoretical and simulated statistics for the first, zero-autocorrelated, bivariate
AR(1) process with PIII white noise, employed in Section 2.3—“From the univariate to the multivariate
AR(1) model” of the main manuscript.

Process Type Mean (µ) Variance (σ2) Skewness (Cs) Autocorrelation (ρ1)

x1
t

Theoretical 0.50 1.00 2.00 0.00
Simulated 0.50 1.06 2.39 0.00

x2
t

Theoretical 0.50 1.00 2.50 0.00
Simulated 0.51 1.14 2.95 0.00

Theoretical cross-correlation (ρ0) = 0.80|Simulated cross-correlation (ρ0) = 0.79
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Table A3. Summary of theoretical and simulated statistics for the second, autocorrelated, bivariate
AR(1) process with PIII white noise, employed in Section 2.3—“From the univariate to the multivariate
AR(1) model” of the main manuscript.

Process Type Mean (µ) Variance (σ2) Skewness (Cs) Autocorrelation (ρ1)

x1
t

Theoretical 0.50 1.00 2.00 0.70
Simulated 0.52 1.08 2.00 0.70

x2
t

Theoretical 0.50 1.00 2.50 0.50
Simulated 0.52 1.11 2.51 0.51

Theoretical cross-correlation (ρ0) = 0.80|Simulated cross-correlation (ρ0) = 0.80

Table A4. Monthly-based summary of historical and simulated (synthetically generated using an AR(1)
with PIII white noise) statistics of the real-world case study employed in Section 3—“Real world case
study” of the main manuscript.

Month Type Mean (µ) Variance (σ2) Skewness (Cs) Autocorrelation (ρ1)

January Historical 167.89 33,973.86 3.89 0.69
Simulated 166.12 35,044.58 3.92 0.70

February Historical 179.50 32,317.25 3.95 0.66
Simulated 177.10 32,538.62 4.28 0.66

March
Historical 172.07 13,773.37 2.69 0.75
Simulated 173.37 13,608.23 2.68 0.75

April Historical 172.47 10,253.59 4.04 0.74
Simulated 171.62 10,502.08 4.28 0.74

May Historical 107.83 4055.14 2.29 0.77
Simulated 110.20 4368.32 2.31 0.77

June
Historical 50.86 591.95 1.59 0.64
Simulated 51.26 604.55 1.58 0.63

July Historical 31.13 177.42 2.19 0.45
Simulated 31.06 176.04 2.17 0.45

August Historical 24.00 96.04 2.41 0.47
Simulated 23.96 94.83 2.35 0.47

September Historical 24.86 492.39 5.99 0.63
Simulated 24.42 432.84 5.57 0.63

October
Historical 51.77 8883.06 6.70 0.60
Simulated 50.71 7905.46 6.26 0.60

November
Historical 114.63 24,332.88 3.49 0.61
Simulated 111.69 23,039.17 3.63 0.61

December
Historical 197.14 68,785.55 4.87 0.62
Simulated 193.85 63,948.33 4.53 0.61
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