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Abstract 

Multi-step ahead streamflow forecasting is of practical interest. We examine the error 
evolution in multi-step ahead forecasting by conducting six simulation experiments. 
Within each of these experiments we compare the error evolution patterns created by 16 
forecasting methods, when the latter are applied to 2 000 time series. Our findings suggest 
that the error evolution can differ significantly from the one forecasting method to the 
other and that some forecasting methods are more useful than others. However, the errors 
computed at each time step of a forecast horizon for a specific single-case study strongly 
depend on the case examined and can be either small or large, regardless of the used 
forecasting method and the time step of interest. This fact is illustrated with a comparative 
case study using 92 monthly time series of streamflow. 

1 Introduction 
The available methodologies for time series forecasting regarding the forecast horizon can be 

classified as one- and multi-step ahead forecasting. There are five strategies for multi-step ahead 
forecasting, namely the recursive, direct, DirRec, MIMO and DIRMO [1, 2]. Despite its far more 
challenging nature in comparison to one-step ahead forecasting, multi-step ahead forecasting is a 
common practice in hydrology (e.g. [3, 4]) and beyond. Moreover, multi-step ahead streamflow 
forecasting is of particular interest, due to the large number of relevant applications (e.g. [5, 6, 7]). 

Because of this practical value of point forecasting methodologies [8], the major consideration in 
the hydrological time series forecasting literature is undoubtedly to present point forecasts as accurate 
as possible. Nevertheless, quantification of the forecast uncertainty is also essential (see, for example, 
[9]) and strongly connected with the construction of confidence intervals [10]. The belief that “the 
forecasts should be stated in probabilistic, rather than deterministic, terms” [8], also expressed in other 
studies (e.g. [11, 12]), is increasingly adopted by hydrological scientists (e.g. [13, 14, 15]). 

Simulation experiments can admittedly constitute a highly promising approach to uncertainty 
quantification [16], since this quantification can be achieved through the estimation of the variance of 
the forecast errors [10]. In fact, since the latter cannot be avoided, it is important to increase the 



understanding on how they may occur [17]. This understanding can then facilitate their proper 
modelling, which is still an open challenge for the hydrological community. In fact, many studies are 
devoted to this problem in various hydrometeorological and hydroclimatic contexts (e.g. [12, 13, 17]). 

Herein, we examine the error evolution in multi-step ahead forecasting with an emphasis on monthly 
streamflow processes. Our aim is to create a representative image of the underlying phenomena and, 
thus, we compare an adequate number of forecasting methods on a large number of simulated time 
series, while we also present a comparative case study using monthly streamflow data to illustrate 
important points. The novelty of our study is that we examine the errors at each time step of the forecast 
horizon themselves and not their summary provided by commonly used metrics for the assessment of 
multi-step ahead forecasts (e.g. Nash-Sutcliffe, RMSE, MAPE). 

2  Methodological framework 

2.1 Time series 
We simulate time series according to the ARFIMA(p,d,q) model, where ARFIMA stands for 

Autoregressive Fractionally Integrated Moving Average. We use the fracdiff R package [18] to simulate 
2 000 time series according to each of the types stated in Table 1. The simulations are performed with 
zero mean and standard deviation of one. 

 
Time series type Simulated process Time series length 

1a ARFIMA(0,0.30,0) 150 
1b 350 
2a ARFIMA(1,0.30,0) 150 
2b 350 
3a ARFIMA(0,0.30,1) 150 
3b 350 

Table 1: Types of time series simulated in the present study 

We also examine 92 mean monthly time series of streamflow, which originate from catchments in 
Australia and are extracted from a larger data set [19]. The minimum and maximum lengths of these 
time series is 120 and 1 116 values respectively, while their median length is 300 values. We use the 
deseasonalized time series for the application of the forecasting methods. This specific practice is 
suggested for the improvement of the forecast quality [2]. The deseasonalization is performed using 
multiplicative decomposition. We estimate the mean (μ) and standard deviation (σ) of each of the 
deseasonalized time series through the HKprocess R package [20], which implements the maximum 
likelihood method [21]. To describe the long-term persistence of the deseasonalized time series we also 
estimate their Hurst parameter (H). The parameter H ranges in the interval (0,1), while values > 0.5 
indicate long-range dependence of the Hurst - Kolmogorov stochastic process, which is widely used for 
the modelling of geophysical processes instead of the ARFIMA(0,d,0) model. The μ, σ and H estimates 
are presented in Figure 1. 



   

Figure 1: Mean (μ), standard deviation (σ) and Hurst parameter (H) estimates for the deseasonalized monthly 
time series of streamflow. The vertical red dashed line denotes the median value of the estimates 

2.2 Forecasting methods 
We use the 16 forecasting methods briefly presented in Table 2. The Naïve, RW and auto_ARFIMA 

forecasting methods serve as benchmarks within our methodological approach, since the former two 
methods are the simplest ones and the latter is expected to perform better than the rest when applied to 
ARFIMA processes. The code for the implementation of the forecasting methods can be found in the 
Supplementary material. 

 
Abbreviation Category R packages 

Naïve Simple forecast [22, 23] 
RW 

auto_ARFIMA ARFIMA 
BATS State space 
ETS_s 
SES Exponential smoothing 

Theta 
NN_1 Neural networks rminer [24, 25], nnet [26] 
NN_2 
NN_3 forecast 
RF_1 Random forests rminer, randomForest [27] 
RF_2 
RF_3 

SVM_1 Support vector machines rminer, kernlab [28] 
SVM_2 
SVM_3 

Table 2: Forecasting methods used in the present study 

2.3 Methodology outline 
We provide a generalized solution to the problem of error evolution in multi-step ahead forecasting 

by conducting the SE_1a, SE_1b, SE_2a, SE_2b, SE_3a and SE_3b simulation experiments. These 
experiments are named after the time series type that they use (see Section 2.1). We additionally conduct 
a comparative case study using monthly time series of streamflow. Some basic information about these 
real-world time series are as well presented in Section 2.1. We apply several popular forecasting 
methods (see Section 2.2) to the time series. Regarding the application of the forecasting methods, we 
split each time series into a fitting and a test set. The latter is the last 50 values. We fit the models to 



the fitting set and make predictions corresponding to the test set using the recursive multi-step ahead 
forecasting method. Next, we calculate the errors and the absolute errors at each time step of the forecast 
horizon. We carry out a statistical analysis on the formed data sets and we present the results 
accordingly. We assess the performance of the forecasting methods by comparing it with the 
performance of the benchmarks, as well as by comparing the median absolute errors computed at each 
time step of the forecast horizon with the standard deviation of the time series (available in Section 2.1). 
The latter comparison is mostly meaningful for the simulated time series, since the median absolute 
errors for the real-world time series are expected to be more affected by the results of specific time 
series. The results of the comparative case study are also presented in a qualitative form, to facilitate 
the detection of systematic patterns. 

3 Results and discussion 

3.1 Simulation experiments 
In Section 3.1 we present a representative part of the results of the simulation experiments to support 

our generalized findings. In more detail, in Figure 2 we present the errors computed at each time step 
of the forecast horizon within the SE_1a simulation experiment for four forecasting methods producing 
different error evolution patterns to each other. In fact, we observe that the error evolution can differ to 
a great extent from the one forecasting method to the other. However, all the error boxplots tend to be 
approximately symmetric around zero. At the first few time steps ahead we observe an apparent increase 
of the interquartile range values. This increase is followed by a stabilization of the error histograms for 
most of the forecasting methods (e.g. Naïve and NN_3). On the contrary, when using the RW and ETS_s 
forecasting methods the errors seem to keep increasing until the last time step of the forecast horizon. 
Furthermore, the outliers are more frequent and lay farther from the median values when using specific 
forecasting methods (e.g. NN_3). This form of instability should also be considered when choosing a 
forecasting method. 

In Figure 3 we present the median absolute errors computed at each time step of the forecast horizon 
for each of the forecasting methods within each of the simulation experiments. As we observe, the 
results vary from the one simulation experiment to the other to an extent mainly depending on the 
forecasting method. For instance, NN_1 can deliver either moderate (about 30% larger and 10% smaller 
median absolute errors than auto_ARFIMA and Naïve respectively) or good performance (less than 
10% larger and about 20% smaller median absolute errors than auto_ARFIMA and Naïve respectively) 
depending on the simulation experiment. Admittedly, the findings suggest that some forecasting 
methods are more useful than others (e.g. BATS, which is always competitive to auto_ARFIMA with 
median absolute errors about 20% smaller than the standard deviation of the time series), while ETS_s 
is clearly the worst performing. Additionally, we note that the absolute errors are in general larger on 
the ARFIMA(1,0.30,0) processes and smaller on the ARFIMA(0,0.30,1) processes than they are on the 
ARFIMA(0,0.30,0) processes. They are also smaller for the fitting set of 300 values than they are for 
the fitting set of 100 values. Finally, by examining the results with respect to the standard deviation of 
the time series, we sense that forecast uncertainty is rather high than negligible and that its proper 
modelling (e.g. in [14, 15]) could perhaps be useful. The forecasting limitations have been also 
emphasized by [4, 11]. 

 



 

Figure 2: Errors computed at each time step of the forecast horizon within the SE_1a simulation experiment 
for (a) Naïve, (b) RW, (c) ETS_s and (d) NN_3 



 

Figure 3: Median absolute errors computed at each time step of the forecast horizon within the (a) SE_1a, (b) 
SE_1b, (c) SE_2a, (d) SE_2b, (e) SE_3a and (f) SE_3b simulation experiments 
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3.2 Comparative case study 
Here as well, the limitations accompanying time series forecasting are highly perceivable. In Figure 

4 we present the absolute errors computed at each step of the forecast horizon within the comparative 
case study for the Naïve and auto_ARFIMA forecasting methods, which could be examined alongside 
with the standard deviation of the used time series (see Figure 1). We observe that the errors can be 
large, while auto_ARFIMA and BATS exhibit a very close performance, in average better than the rest 
of the forecasting methods. Furthermore, in Figure 5 we present a qualitative comparison of the absolute 
errors computed at each step of the forecast horizon for three examined time series, as well as for three 
forecasting methods. The relative magnitude of the absolute errors seems to strongly depend on the case 
examined. Therefore, although some forecasting methods are more likely to produce more accurate 
forecasts than others and the errors are more likely to be smaller at the first few time steps of the forecast 
horizon than they are at the next time steps, within a specific single-case study the largest (or the 
smallest) absolute errors can result from the implementation of any forecasting method at any time step 
of the forecast horizon. 

 

 

Figure 4: Absolute errors computed at each time step of the forecast horizon within the comparative case 
study for a) Naïve and (b) auto_ARFIMA. Outliers larger than 200 mm have been removed 



  

Figure 5: Heatmaps for the comparison of the absolute errors computed at each time step of the forecast 
horizon (a) within three single-case studies, (b) across the 92 examined cases when using Naïve, BATS and 

RF_1. The values are scaled in the row direction and the darker the colour the better the forecasts 

4 Conclusions 
We examine the error evolution in multi-step ahead forecasting using the recursive technique by 

comparing the performance of 16 forecasting methods on 12 000 simulated time series. Additionally, 
we conduct a comparative case study using 92 monthly time series of streamflow. Our findings indicate 
that the error evolution can differ to a great extent from the one forecasting method to the other. This 
specific information could be used to decide on a forecasting method, since some methods have been 
proven more useful than others. It could also be used for the proper modelling of the errors, which is 
still an open challenge for the hydrological community. 

Supplementary material 
The analyses and visualizations have been performed in R Programming Language [29] by mainly 

using the contributed R packages forecast [22, 23], fracdiff [18], ggplot2 [30], HKprocess [20], kernlab 
[28], nnet [26], randomForest [27] and rminer [24, 25]. We provide the code for the implementation of 
the forecasting methods [31]. 
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