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"Koopov t1ovde, Tov anTov andviay,

ol1e 115 Be®dV 0VtE AVvOpOT®V EMOiNCEY,
GAN” fv del koi oty koi Eoton hp dellmov

amtouevov uétpo kol dmocfevvouevov puétpa.

Hpdaxierrog, Anoonacpo B30

That which always was,

and is, and will be everlasting fire,
the same for all, the cosmos,
made neither by god nor man,
replenishes in measure

as it burns away.

Heraclitus, Fragment B30

Translated by Brooks Haxton
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Abstract

Long records and reconstructions of oceanic variables as the Sea Level (SL)
and the Sea Surface Temperature (SST) portray the intrinsic variability they
inhibit through multiple time scales. In this study we examine the Long Term
Persistence (or Long Range Dependence) that these variables exhibit by using
observed and reconstructed proxies on time scales spanning from 1 month
to 10 million years. We also associate their variability with periodic or
oscillation processes such as the Milankovitch cycles for the SL variable and
the ENSO phenomenon for the SST variable. Simple and parsimonious tools
derived from Stochastic Methods, such as the climacogram and the Hurst
exponent, which can be easily reproduced with basic elements of probabilities
and statistics, are utilized for the purposes of this study.
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Extevncg MepiAnwn o1a EAANVIKG
Extended Abstract in Greek

H petafolin (1 «aAloyn») T@V YEOQLGIK®OV KAMUOTIKOV PETABANTOV elval pia diepyacio Tov
de&ayeton amd ™ otiyun g vmopéEng tov mAavitn pog. H petafoin avtr Aappdvel yopa
EVTOC TOALATADV SLOKPITOV KALUAK®V xpdvov, 1| omoia kaBopilel tnv petafolir mov epeis, og
avOpOTIVO €100G, EPYOLOCTE VO TAPOTNPTCOVUE GTNV KAIpaK ¥pdvov ov opilel n froroyikn
KOl QLUGIKO-1GTOPIKT Lo vtootaot. H mpoondBeia pog va extipncovpe (1 v «tpofAEYoLLEY)
™V PEAAOVTIKY €EEMEN TOV PUOIKAOV LETAPANTOV OVTAOV, TPOKEUEVOL VO KOTAVONGOVUE TNV
OLVOAIKY] €EEMEN TOL KMUATIKOD GLGTHUATOS TOV TAOVITY UOG, GKOVIAPTEL TOAES POPES
Tove oty €yyevh afefotdotnta mov gumeptEyeTon ot HETOPOAN oL AauPdvel yodpo evtog
TOALOTAGDV KMUAK®V. Ze avtiBeon pe tnv Kowd otadedopévn pebodoroyia, mov «xwpilewy v
e€EMEN TV dlepyacidV € €vo VIETEPUIVIGTIKO (VIETEPUIVIOTIKA TPoPAEYIH0) Kol €va
o1oXaoTIKO («tuyaion) pépog, avtipetonilovpe v afefordtnTa e GTOXUGTIKO TPOTO, MG TO
op1o Tov opilovta g Tpdyvmongs, Kabopilopevo amd 1o ¥povikd prkog tov opilovra kabmg
KO TNV YPOVIKT KAlpoka oty onoia ektvAcceton 1| diepyocia.

o vo pmopécovpe va €appdcovpe otV TNV AOYIKY] SlEPEVVIONG O OEOOUEVES
TOPATNPNOCEL TOV PLGIKOV KOGHOV, a&lomotoVpe o mBavoTikd epyoieio TOV XTOYOCTIKOV
Mebodwv kabdg kal Ty évvola ¢ Makporpdbeounc Eppovig (Long Term Persistance —
LTP). Ot tpd1ec 1pnoomolohv amAd Kot QedmAG epyaieio yio TNV HOVTEAOTOINGT TUYAI®OY
petafAntov, péow tov delypoTog mapatnpnoewv mov eival dwbéowes. H dedtepn, pog
EMTPEMEL TNV OlEPEHYNON TNG LOKPOTPOOEGUNG OOUNG ALTO-GLGYETIONG OTNV XPOVIKT eEEMEN
pag otepyosiog, 0tvovtog SUOVTIKA 6Tot el Yia TNV eKTipunon Tov opilovta g afefatdTTdc
NG 6TV HEALOVTIKY] TNG EEEMEN.

Ye oavumv Vv egpyacia, oaflomoodue ™V mopamdve pebodoroyio yw TNV peAT
KOTOYEYPOUUEVOV KOl OVOKOTAGKEVOCUEVOV TOPATNPNCEDV OKEAVIOV UETAPANTOV OT®G
givor 1 otabun g Bdraccag (Sea Level) ko n emoavelaxn Bordocoia Oepuokpacio (Sea
Surface Temperature — SST). Mehetdpe mopoatnpNoeLg TG ¥POVIKNG EEEMENG TOV TAPOUTAV®
LETAPANTAOV HEG® dOPVPOPIKDOV UETPNCEDV OAAGL KOl OVOKOTOOKEVOCUEVO TOAOLOKAILATIKE
dedopéva, mov ovomaplotoby TV €EEMEN TV UETOPANTAOV EVIOC TOAAATADV YPOVIK®OV
KMUAK®V.

[Ma v perét tov mopamdve SElYIAT®mY XpNoILoTolovvTot Bactkés Evvoles, eEIGMOELS Kol
ePYOAElD TOV GTOXAOTIK®OV HEBOO®V. Alvovtal ol opiopol EVvolmV OTT®G 1) Tyl LeTaBANT
KO 1 GTOYOOTIKY dlepyacio LT cuvé el avapEpovtal Pacikés £Vvoles TV THovVOTHTOV Kot
NG OTATIGTIKNG Ol OTOIEG YPNOLLOTOLOVVTOL YO TNV TEPLYPAPT] TNG OOUNG HOG CTOXAUCTIKNG
depyaciag. Ot cuvoptoelg TG cvvdlaomopds (g€ a.1) kot g awtocvoyétiong (g€ a.2) sivar
V0o €€’ ATV TOL YPNCIUOTOOVVTAL KATA KOpov otnv pebodoroyia ¢ epyaciog.

var (x(©) = €0 = E[(x® - 1 0) | (a.1)

C(ty, tz) .
(ty,t,) = th |p(t,t)| <1 (a.2)
e NCABNEACED) i Pt ‘
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Avodvovion 600 emmAéov Pacikég EVvoleg, aVTEG TNG CTOGIUOTNTOG KoL TNG EPYOOKOTNTOG
Hog oToyaoTIKNG otepyaciag. ['ivetar n mapadoyn g Kavomroinong tov kprrmpiov 1060 g
OTOGUOTNTAG OGO KO TNG EPYOIKOTNTOG Y10l TIG GTOYACTIKES JIEPYAGIES TOV AVOADOVTOL GTNV
TaPOLGO EPYOCIaL.

To wMpoxoypoupo, 10 Pacikd epyoieio mov ypnoWomolEiTol otV gpyacio yoo ™
LLOVTELOTOINGT| T®V YPOVOGEP®V, 0pileTal MG TO YPAPNLLO TNG OUGTOPAS OGS GTOYXUGTIKNG
diepyaciog X(t), og mpog v ypovikn khipaka k£ ko cvpPolrileror pe Tov O6po p(k)
(Koutsoyiannis 2013a). To kApaxdypoppo gival évo Wdwitepa amhd, oTn ¥pNon Kol oTnv
AVOTOPOY®YN, EPYOLElD, LEC® TOL OTOIOL €ivol OLVOTA 1 EKTIUNGN TNG LOKPOTPOOEGUNG
EUUOVIG OALG KO TNG KUKAOGTOGIHOTNTOS (1] TEPLOJKOTNTOC) TOV EUTEPLEYEL L0 OLEPYATIOL.

To eumeipio KMpokdypoppo pmopel vo omewkoviotel voAoyilovtoag v dacmopd (q v
TUTTIKY OTOKALOT) HLOG Y POVOGEIPAG, cuvadpolopévig o€ moAomAEG KApakes K, yio kéOe po
KMpaxa K, kot poaviovtog to Simho AoyaplOpuko didypoppo dtacmtopds-kAipokog (1 Tumkng
amokMong-kAipaxkoc). To Hewpnrikdo KAMPOKOYPOUUO HIOG OTOYOCTIKNG  Olepyaciog
vroloyiletar péow tng €&lomong KAMUOKOYPAUUOTOS Yo TNV €KACTOTE Olepyacio. Xt
oLVEYELDL avoADoVTOL 000 Pooikég katnyopieg depyacidv, ot depyocieg Markov kot ot
depyacieg Hurst-Kolmogorov, «ot opifoviar o1 &flomoel 1oV Oe@pnTikdv TOVG
KMUOKOYPOUUAT®V.

H e&iowon vroloyiopo Tov EUTEPIKOL KALOKOYPALLLATOG oG dlepyaciog cuvadpolorévng
oe KAipaka k divetar wg (Dimitriadis and Koutsoyiannis, 2015):

Var[zgk(i—l)+1£lm)] _ Var[zﬁl EI(A)]
kZ - kZ

Y8 (k) = (a.3)

Ot diepyacieg Markov, amotelodv Katnyopio diepyacidv oTig omoieg 1o EALOV dev eEaptdTol
a6 to mapeAOov, otav 1o Tapehdov eivar yvwotd (Papoulis, 1991). Xtoyoaotikd poviéda mov
avtiotoyobv oe depyaciec Markov, omwg ywo moapdadetypo o poviédo AR(1) , Aoy tov
TOPOTAVE OTAOTOMTIKOD TOVG AEIOUATOG GE GYXECN UE TNV TPAYUOTIKOTNTA TNG (PLGIKNG
aAlayne, dev eival duvOTOV VO LOVTIEAOTOUGOVY TIG QUOIKES OlEPYNCies, 101C TN doun
OVTOGVGYETIONG TTOV TIG TEPLYPAPEL, TAPE LOVO GE TOAD GUYKEKPIUEVES OTAOTOGELS TOVG,.
INo va emitevyBel m povielomoinon ¢ poakpompodBeoung SOUNG GLTOGVOYETIONG TTOV
TOPOVGIALOVV 01 PUOTKEG OlEPYOGIES Ko O o1 KAMPOTKES, opilovTotl TapaKaT® 01 GTOYUCTIKEG
depyaocieg Hurst-Kolmogorov.

Ev avtibéoet pe tig diepyasieg Markov, otic diepyaocieg Hurst-Kolmogorov (HK), to uéilov
eoptdrat omd To KoToyeypappévo toperfov. O padnpoticods oprtopds ovTav TV S1EPYICIOV
yiveton péow g e&icmwong tov KApokoypaupatog tovg (e&icwon a.4) (Koutsoyiannis 2016).
>mv eElowon (a.4) ot cLVTEAESTEG A Kol @ ATMOTEAOUV OSLAOTATOUG OUVTEAECTEG TOU
KALLOKOYPAUHUOTOG, €Vvw O ouvteAeot¢ H mou PBploketal otov ekBETn tng eflowong
ovopaletol ouvteAeoTrg Hurst, kat meplypddel TNV LakpomnpoBbeoun cuunepidopd tng Soung
QUTOOUOXETLONG, OAALWG TNV UTtapén eUpOVNG o€ pa Slepyaoia, omwg meplypddetal and 1o
¢dawvopevo Hurst.

y(k) = A(a/l)* 2" (a.4)
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Ewdwn| pveia yiveton yuo 1o teAeLTOi0 QOIVOUEVO 0VTO TO OTTOT0 TNPE TO GVOLLO. TOV TPOG TNV
0V VOpordyov Harold Edwin Hurst (1880-1978). O Bpetavog vépordyoc, e ) HeAéTn g
IGTOPIKNG KaTaypoeng g otddung tov Neihov Opioe 10 QovOpevo g pokporpoBeoung
EULOVIG OE Lo GUOIKN dlepyaciol, TOL TEPYPAPETOL LOONUOTIKG HEG® TOV cuvTeleoT| H.

YuyKeKPYEVO 01 dlEPYaCieg KaTnyoptomoovuvtot e faon v T tov cvvtereot| H og e&ng:

e T H=0.5 n diepyascio coumeprpépetal og Aevrds Gopofog
o To Tywég 0.5 < H < 1 n depyacia gppavilel poakporpdOeoun eupovn (aArmg
noakporpdesun e&aptnon) Kot ovoudleTon eupovikn digpyaaia.

o T tpéc 0 <H <0.5n depyacia ovopdleton avii-supovikn diepyacio.

Ot tipég tov ovvrereot) H, avamapictavior amd v KAion Tov KMUOKOYPAUUOTOS HLOG
YPOVOCELPAS, M omoia ivan 2-2H, oty mepintmon tov KAMpokoypdppatog staonopdg kot 1-H
OTNV TEPITTMOON TOL KAUAKOYPALUOTOSG TUTIKNG omdkAong 6mwe paivetal Kot oty e&icmon
(A2.2). Mo gppovikn| depyacio epeavilel Betikn pHokpompdhesn oTOGVGYETION, 1 Onoin
TEPLYPAPEL TNV YPOVIKA TAPAAANAN EUEAVION TOV UEYICTOV Kol EAAYIOTOV TH®V. ALTO
onuaivel 0Tt o VYA T Tlavotato Ba akolovdnbel amd po GAAN VYA T Kot ot
EMOUEVES TILES Y10L EVOL LEYOAO LEAAOVTIKO YpOoVIKO O1dotna Oa tefvouv emiong va eivar vymALs.
Ytov avtinoda, e [0 OVTI-EUHOVIKT dlepyacia, po vynAn T mhovotato Bo akolovOnOet
oo pi YopnAn, Vo yuo Eva PeyOAo HeALovTIKO ypovikd dtdotnpa Oa teivel va axoiovBeitan
QLTI M KOVTIGTPOPN» HETAED LYNADY Kot younAov Tipov. M depyasio pe H=0.5 meprypdopet
TNV TANPT OTOVGI0 0VTOGLGYETIONG (AEVKOG BOPLPOG). TV TPAYLATIKOTNTA, [0 SlEPYACIN e
H kovtd oty Tiun 0.5 pmopetl va epgavilet pn-pundevikég THEG TOL GUVTEAECTN AVTOGVCYETIONG
v ToAD kpég Tipéc Prpatog (lag), n omoia dpme ekBetikd ko ypriyopa. Oa. teivel va undevioTe.
Oudepyaciec Markov, Aettovpyodv katd antdv akpipag tov tpomo, enttpémovtas va OewpnHodv
wo vromepintwon tov diepyaciov HK (Koutsoyiannis, 2002).

"Exovtog meprypdyetl T1g 000 Topamdve KT yopieg GTOXOOTIKOV dlEPyacidv, opilovial dVo
OTOYOOTIKO HOVTEAL OV OMOPPEOLY AVTIGTOLO OO OUTEC, YO TNV TOPAY®Y] GUVOETIKOV
ypovocelpdvl. To poviédo AR(1), ot Tipég Xi tov onoiov vroloyilovion pécw g eéicwong
(0.5), avtiotoyel o€ digpyacio Markov.

Xi=pXi1+V; (a.5)
OOV P 0 GLVTEAEGTIG OVTOCLGYETIONG TPATNG TAENS Kot Vi vag Tuyaiog Aevkdc B0pvPoc.

Ot ovvBetikég ypovooelpég mov mapdyovtal amd 1o povtédo AR(1) dtatnpodv ta 6TOTIoTIKA
YOPOKTNPIOTIKA TPOTOL Pabrod TG 16TOPIKNG YPOVOSEPAS, KOOMG Kol TOV GULVIEAESTH
OVTOGLGYETIONG TPATNG TAENS. AdLVaTOHV OU®S VO OVATTaPAEOLV T1) OO CVTOGVGYETIONG V1oL
ueyaAvtepo ypovikd Prpoto (lag), aAld kot yio cuvadpoion g xPOvocEPA GE LEYOADTEPEG
amd TNV KOVOVIKN NG, XPOVIKES KApokeS. YO avtiv v évvola 1o poviédo AR(1) advvartel

1 suvBeTikéC ovopAovTal OL XPOVOOELPEC TIoU éxouv TtapaxBel amd éva oToxaoTiko LovTélo e Bdon éva
Katayeypapuévo Seiyua (LOTopLkn XpovooeLpd).
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Standard Deviation of aggr. process (arb.units.)

va avomapdEel TNV HaKPOTPOBESUN SOUN VTOGVGYETIONG TG IGTOPIKNG YPOVOGELPAS Kot Yo
avTd TO AOYO, TOPE TNV OTAOTNTO TOV, KPIVETOL OKOTAAANAO Yo TN HOVIEAOTOINOT| T®V

(QUCIK®OV SLEPYOCIDV.

o va yiver gt n dwtpnon ™G HaKpompdOesung SOUNG GLTOGVOYETIONG Kol M
OVOTTOPAGTOGT] TOV (POLVOLEVOL TG HakpompoBeoung sppovig, and mapaydeices cuvOeTikég
ypovooelpéc, ypnotpomoteitar to povtého FGN (Fractional Gaussian Noise), mov amoteleiton
amo éva dBpotoua Tpldv depyasidv AR(1). O vroroyiopds tomv Tdv Wi tov povtédov yivetal
néom g e&iocwong (a.6), 6mov Xi" o1 Tyés TV Tpdv povtéhmv (n=1,2,3) AR(1) kon x4 n péon
TIUN TNG IOTOPIKNG YPOVOCELPAC, EVAD O VITOAOYIGUAS TOV GUVTEAEGT] VTOCLGYETIONG PILLOTOg
J xou khipakag & yiveton péow g e€icmong (a.7), yor ikpég TIHEG J -yia ueyddeg tipég €€. 2.29
KOprog epyacios- (Koutsoyiannis, 2002).

W, =X+ X2+ X +u (a.6)

Py = pj = H(2ZH — 1)j212 (a.7)

O ovvtereotg H g e€lomong (a.7) elvar o cuvtedeotng HUrsSt ¢ 16toptkng xpovooelpas Kot
YPNOOTOIEITOL YO TNV OVATOPAY®YN NG HOKPOmPpOOEoUNG EUUOVIAG TNG 1OTOPIKNG
YPOVOGELPAC.
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Ewcova 1: Aiaypopuo c0yKpITIKNG OTEIKOVIONS TV KALUOKOYPOUUATDV, TPV BewpnTik@V
oepyaoiav (HK, Aevkog Oopvfog, Apuovikn Zoviptnon), kor 000 coVOETIKOY ¥povooelpmv
(novtédo FGN, AR(1) )
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Y10 duypappo g Ewdvog 1 yivetar pior cuykpitikn avamopdotacy v Be@pnTikdv
KMUOKOYPOUUATOV  (OmA]  AOYOpOUIKY  OmEWOVION TLTIKNG  OmOKAONG  YPOVOGELPAG
ocvvabpolopévng oe KAIpoKo & g Tpog v ypovikn kAipaka k) pog depyaciog Hurst-
Kolmogorov pe H=0.8 kot pog depyaciog Agvkod Gopvfov (H=0.5), tov eumeipikdv
KMUOKOYPOUUATOV oG oVVOETIKNG ypovooelpds ukovg N=10000 ctoyeiowv kot ypovikon
Bruoatog 1 ypévov, mapaybeica amd poviédo AR(1) pe cuvieheot avtocvoyétiong 1™ tdéng
p1 = 0.75 xon pog idov punrovg cuvletikng mapaydeica and poviédo FGN pe pr = 0.75 xon
H=0.8. Tiveton eniong ovamapdotaon ToLv KALOKOYPAUUATOS MG OPHOVIKNG TEPLOOIKNG
ovvdptnong pe mepiodo T = 100 ypdvia. To Bewpntikd KMUOKOYPOUUG UG OPHOVIKNG
TEPLOdIKNAC cuvdptnong divetan oty e&icwon (a.8), dmov o 1 Tumiky amdKAoT GE YPOVIKT
KMpoka &, kot 7' n ypovikn mepiodoc.

sine (1) = [l [n () (@

Y10 810 ddypappa, yiveton eupavig mog to povtého AR(L) (pof xvkdlor), evd datnpei v
KAion (ovvteheot| H) g 16t0pikng xpovocepds Hovo yio Ayeg TIHES LUKPAOV YPOVIKADV
KMUGKoV, 1 coumepipopd o peyodvtepeg kAipaxkes mpooeyyiler avtny tov Bempntikon
KMUOKOYPAUIOTOS TOL AeukoD BopOPov (UmAe dtokeKOUpUEVT Ypouun ). AvTifET®e, T0 LOVTELO
FGN (kitpwvor k0KAor) mapovotdlel o KoAn ovomopaywyn tov cvvieheot] H=0.8 tov
Bewpntikov poviéhov HK (dnAadr v kAion g apylkng 1OTOPIKNG YPOVOCEPHS e
vroTifépevo H=0.8) apov mpoceyyilel Tnv KAlomn TG KOKKIVNG YPOUUNG TOV dtaypdppatos. To
KMUOKOYpOUHO TG Be@pnTIKNAG OPUOVIKNG oLvApTNoNG Ogiyvel T0 Tm¢ omewovifeTor
ATOAVTO TEPLOOIKT) GUUTEPLPOPE EVTOG TOL EPYOAEIOL TOV KAIUAKOYPAUUATOS, YEYOVOS TTOV
YPNCLOTOIEITOL LETETELTOL Y10 TV OVOAVCT) YPOVOGELPDV LLE EGOTEPIKT TEPLOOIKOTNTO.

o =

MeTaPANTOTNTA KAl EUUOVA OTN OTABWN TNG BAAACCAG

H e&éMEn g marykoouiag otabung g 0dAacoag amotedel oNUAVTIKO KAMUOTIKO TopdyovTa,
kaBmg emmpedlel TV yeVIK) KAMUOTIKN KOl OKEAVI KUKAOPOPio OALL Kol TO QUOIKO Kol
avOpomvo TEPIPAAAOV, LE XOAPOAKTNPIOTIKY ETITTMOOT OVTY TG HETAROANG TG LOPPOAOYiNG
TOV aKTOV. Aopueopikég HETPNGELS NG 6TdOUNG g BdAaccoc and ta téAn tov 200V mdva
HEYXPL KO CNUEPA PAVEPOVOLV GTAOEPT AOENGT TG LETAPANTG AVTHG TOGO GE TAYKOGULIO OGO
Kol 6€ Tomko eninedo. OGov apopd TNV TayKOGH LeTaBOAT, COUP®VA LE TN AtakvBepynTikn
Emtporm yu mv AAMhayn tov KAipatog (IPCC, 2013) 1 otédOun g 0dAaccdc avépnke pe
péon Ty 1.7 [1.5 pe 1.9] mm yr v nepido 1900-2010 ko péon iy 3.2 [2.8 xon 3.6] mm
yr v nepiodo 1993-2010.

H petaporn avt ovoyetietor omd tnv 0w peAétn pe TN YEVIKOTEPN EMPPON NG
avOpoTOYEVODC depyaciog o1V KAMUOTIKY 1GOPPOTio, TOL TAAVITY, UE AUECT] CLGYETION WE
TV TOPATNPOLUEVT] avénon TG  emeoavelokns Boldociog Beppokpaciog kot g
amoOnkevpévng BeproTTag £Vioc TV okedvVioV paldv, 0AAL Kot LLe TO GUVOLEV®VY TG THENS
TV TayopEvov pnalov. Melétec dnmg avtéc twv Dangendorf et al. 2015 kot twv Marcos et al.
2017, depgvvnooay v Hapén HokpoTpOBeEcUNG EUUOVIG OTNV UETAPANTH TG GTAOUNG TNG
Bdlaccoc, 1000 ce mayKOoU Oc0 Ko o tomikd emimedo. H péBodog DFA2 mov
YPNOLOTOL0VV, dloypilel Ta GNUOTO EVTOG TMV JEPYACIOV GE QLTO TOV OUTIOAOYEITOL OO
NV VTOPEN PLOIKNG LOKPOTPOBEGUNG EUUOVIG KO GTO VTOAEMOUEVO TO 0moio KataAoyileTal
oe PpayurpdOecun petafAnToTnTO OO PLGIKA Kot avBpomoyev aitia. Méom g pebddov
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aLTNG ePLPaVICeTol ONUAVTIKY HOKPOTTPOBEGUN EULOVI OTIC TOPATNPNCELS TG GTABUNG TG
Bdlaccog og Tomkd Ko maykoouo eminedo. [ap’ OAa avtd, ot peAetnTég daxpivovy Eva
ONUOVTIKO TOGOGTION0 «OMUo» TO Omoio dev Umopel va amodobel G QLGIKN EUPOVY] Kot
eMOPEVMG amodidetal kot avtovg oe eEmyeveic mapdyovieg, TPOPAEmOVTOG HEAAOVTIKT

GULVEYELDL TG TTOPATNPOVUEVNG OLENTIKNG TAONG TG LETAPANTIC.

Ye autv Vv gpyacia eEetdloope v vmopén pokpompdOeoung eppovig (1 aAlmdg ™
HoKpOTPOBecUn doU OVTOCLGYETIONG) OTN UETAPANTH NG oTabung ¢ Bdiaccos evidg
TOALOTTADV YPOVIKAOV KAUAKOV KUUOVOUEVEG OO UNVEG UEXPL Kol OEKAOEG EKATOUUVPLOL
xPOVIQ.  XPNOUOTOIOVUE  JOPVEOPIKEG UETPNOELS OAAA Kou wANnBog detypdtov  amd
TOAOLOKEAVOYPAPIKEG OVOKOTOOKEVEG TNG TayKOGHog  otdfung g Bdhaccac, to omoio
avamaplotovv TV €EEMEN TG HETAPANTNG € TOALEC SLUPOPETIKES YPOVIKES KAMUOKES. XTOV
[Tivaxa A.1 tapovoidlovtatl Oha ta dedopéva TG LETOPANTNG TG oTaUNng TG BdAaccag Tov
ypnoporotovval, pali pe Tov apldpod oV, To xpovikd Prpo (opykd Kol KAVOVIKOTOWUEVO
HE YPOUKT TOPEUPOAT]), TO GUVOAKO UNKOGC, TOV TOPEYOVTO 0 TTOL XPNGLLOTOLEITAL Yol TNV
TPOGOPLOYT TOV KALUAKOYPAUUATOC, Kabmg kot v PAoypapikn Toug avaeopd. I'paerpota
TOV YPOVOGEP®V Topatifevtor oty kopla epyacio. Ta detypoto avaKataoKev®y To. omoio
YPNOUOTOOVVTOL SOETOVY APLOTN ETEPOCLGYETION UETOED TOLG, KOl HAAIGTO €VTOG
TOAMAATADV YPOVIKAOV KAUAK®V 0poV auTh o€ Kapio tepintmon oev méptel Katw tov 0.7.

H peAiétn g petafoing e otabun e 6AA0GGOS G€ TOAUMKENVOYPUPIKO ETITEGO OTMG KO
eVPUTEPA TOV TOAMOKALATIKOV SEPYACIDV, LTOPOVV VO, GLVOLAGOLV TNV GTOYACTIKT Bewpia
ue v tpoyaky Bewpia g I'mg. And v tedevtaia, ot Teprodikoi kukior Milankovitch, wov
O0QEIAOVTOL OTIS KIVIGELG TOV TAOVITY, EUEOVILOVTOL GTIC TOANOKAUOATIKES OVOKOTOGKEVES
Kot emnpedlovv onuavtikd v €&éMEn g otdbung g Bdraccac. Xvykekpluévo 1
LETAMTOON TOV IoNUEPU®V 1 HETAPOAN GTNV Kate®OBLVGT TOV YHIVOL AEOVA TG TEPLGTPOPNS
ue mepiodo T = 21,000 ypdvia, ot ahdayég oty AOE®ON TNG EKAEWTTIKNG | 6TV 0.EOVIKT KAloM
ne mepiodo T = 41,000 ypdvia kar ot petaforég oty ekkevipotnta pe nepiodo T = 100,000
YPOVIO, EUEAVICOVTOL OTNV QOCUOTIKY OVAALGT TMV YPOVOCEIP®YV OV UEAETMOVTOL GTNV
epyacia, pe EVTOVO HOAGTO GYLL0, KOl GUVETMG LOVTEAOTOLOVVTOL OVOAOYMGS Yo TNV £EETOON
™G UETAPANTOTNTOG KOt TNG EUHOVIG. Ot KIVAGEIS TV KUKA®MY OUTOV OVOTOPIGTOVTIOL OTIG
TpEIS Pryovpeg g Ewkdvag 2.

Variation in Orbital Eccentricity

Ewova 2: Zynuatikn oavoropdaotoon twv ipiov Koxiov Milankovitch
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Juoviopoypapi | ApiOpos |Apjyko gopog | Kavovikomom 2VvoMKO Hapayovrac | Bifloypagukn

a TILOV K pipatog pévo pipa A4 Mnkog L Khapoxoypap Avagopd
(xpovia) (xypovia) * (xpovia) noTog
a
Satellite Data 915 21/773 21/773 24.86 0.046 Benada (1997)
Aviso
(2003),CNES
(2009)
Church and 1608 1/12 1/12 134 0.0157 Church and
White White
(2011)
Jevrejeva 2436 1/12 112 203 0.0118 Jevrejeva et al.
(2014)
Kemp 211 0.1-73.1 10 (49%) 2,110 9.5 Kemp et al.
(2011)
Grant 503 100-5,635 250 (28%) 125,750 0.0345 Grant et al.
(2012)
Siddall 125 147-7,660 300 (6.57%) 375,000 0.033 Siddall et al.
(2003)
Woaelbroeck 287 1500 1500 430,500 0.0268 Waelbroeck et al.
(2002)
Spratt 799 1000 1000 799,000 0.03 Spratt et al.
(2016)
Deboer 53001 100 100 5,300,100 0.0382 De Boer et al.
(2013)
Miller (short) 1801 1,000-5,000 5,000 (0%) 9,005,000 0.041 Miller et al.
(2011)
Miller (long) 910 100,000 100,000 91,000,000 0.0315 Miller et al.
(2005)
Kominz 984 100,000 100,000 98,400,000 0.023 Kominz et al.
(2008)

ITivaxag A.1: Xtoryeio ypovoaeipwv otabuns s Odiacoag

o v Bedpnon g petafAntomrog Ko G HaKpompdOeouns eUpHovig oG eviaiog
petafintmg mg otabung g Bdracoag evtdg moAlaTA®V KAMUAK®V, YpnoiLonoteitol to
gpyareio TOL GLVOVACTIKOV KAMUOKOYPAULaTOC. T TV avamapdotacn Tov GLVIVAGTIKOD
KMUOKOYPAUUOTOG, VITOAOYILETOL apYIKA TO EUTEIPIKO KALUOKOYPOLLLLLOL a,gk) TI¢ kGO pog amd
TG Y povoaelpés Xi(t), yio dtapopeTikeg ypovikég Khipakes K, avaloya pe to péyebog kot to frpa
™ kaBe ypovooelpdg. Ta gumeipikd kKApokoypapupata oxedidlovton yua kKAipokeg k < L/10,
6mov L 10 cuvolikd pnKog g Kabe ypovocelpds. Ta kKApakoypappo, ToAAaTA0GIALoVToL e
éva, ogikt Papovg a, (o deiktng g kabe ypovooepds mapatibetor otov mivoko A.l)

IMUOVLPYDOVTOG VO GLVOVACTIKO KALOKOYPOULLO TNG LETOPANTIG OTTOL:
03(,") = axa,gk) (a.9)

Me avtdév tov tpémo (HE TNV TOPOSOYN TNG YPOUUIKNG OYXEONG TOV  EUTEPIKAOV
KMUOKOYPOUUUATOV a,ﬁ")) TO GUVOLIOTIKO EUTEPIKO KAMUOKOYPOUUO eR@ovilel por eviaia
uetapfAnt) y(t) mov omewoviler v e&EMEN ¢ ToykOouog otabung e Odiocoag og
noAlamAég kKAlpaxec. To gumelpikd Khpokdypoppo epeoviletar pe v ypouun tov opilel To
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OUVOAO TOV KALAKOYPOUUAT®OV TGOV SPOP®V HOVIEAOTOMUEVOV YPOVOCEP®V (KOKAOL
SPOPETIK®OV YpoudTov) oty Ewdva 3.

To cvvdvacTtikd Bempntikd KApakoypoappa, puouiletal €161 ®ote vo TPocaproleTonl GtV
KOUTOAT TOV GUVOVOGTIKOD EUTEIPIKOD KALLOKOYPAUUATOS. To OempnTikd KAMPOKOYpOpLLo
vroAoyiletan mg cvuvovacudg evog povtéhov HK, kot tecodpmv appovikdv cuvapmoewy. To
povtého HK poBuiletan pe ovvieheot) H = 0.995 yio v mpooéyyion g kAiong tov
EUTEPIKOD KAMUOKOYPAUUOTOS, HE TNV TOpadoYn TNG HEYIOTOTOINONG TNG EUUOVIG Kol TNG
afefardmrag. To poviéda TV appovik®v cvvaptioemv puBpiloviol pe TePLodIKOTNTES
21,000, 41,000 ka1 100,000 ypdvev mov avramokpivovior otovg kokAovg Milankovitch, ot
omoiotl gpeavifovtol Kot oTnV TTOCT NG KAIONG TOV EUTEIPIKOD KALOKOYPAULOTOS, Y10 TIG
ypovikég khipaxeg 104-10° ypdvov. Mia emimhéov appOVIKY GLUVAPTNON UE YPOVIKT TEPiodo
1,200,000 ypoévav tpoctiBeton 6to Be@pnTiKd LOVTELO, Y10l VO TO TPOCAPUOGEL GTNV EMOUEVT
OGN TOv UMEPIKOD KAMpokoypaupotoc (yu k > 10%) n omoio ogsideton mbavéd os
€VOTATIKOVG KUKAOLG Tov mAavhtn. H e&lowon (a.10) meprypdoper tov vmoAoyioud Tov
Be@PNTIKOV KAUAKOYPAUUATOC MG TO GOVOLO TMV TOPOTAV® JEPYACIDV, EVM O TTivaKag A.2,
TOPABETEL TIG TYES TOV TAPAUETPMY KOl TOV CUVIEAESTOV TOV Bewpntikod poviéiov. To
oLVOLOOTIKO BewpnTikd KAMpokoypoupo epeaviCetor omv Ewova 4, pe eviaio KOKKivn

YPOLLT).

Gt(;f) = wlaék) + wzaék)

Movtého Twn HapapéTpov XovteleoTh Ty Xvovreieoty

(k)

+ w3 07, + Wy a;k) + w5at(,'f) (a.10)

Appovikn T T1=21,000 0.02
Appovikn T» T2=41,000 ®2 0.05
Appovikn T3 T3= 100,000 ®3 0.10
Appoviki T4 T4= 1,200,000 ®4 0.05
Hurst-Kolmogorov H =0.995 5 0.78

[livoxag A.2: Tlopauetpor poveéAov tov Gewpntixod kAyaroypouuatog

Ot Tég g TLmKNG amOKAIONG TOL GLVILUGTIKOD KAakoypapupatog g Ewovag 3,
dwpépouy povo katd pio taén peyéBovg. H tumkn amoxiion oty kAiipoka tov 10
ekaToppvpinv etV gtvor LOMG katd 65% pikpodtepn and avtv TS KAILOKAG TOL EVOS UNva,
Kévovtag eueoveég T peydAov peyéBovg poKpompdOESUN EULOVI] TOV EUTEPLEYETOL GTNV
HeTAPANTH TG TAYKOGULNG 0TAOUNG TG BAANGGAG. ZVYKPITIKA, o TVl dlepyacio ASVKOV
BopvPov (H=0.5, pumie Swokexoppévn ypopun oty Ewova 3), eppavifer v 010 mtdon
TUTIKNG AmOKALoNG (65%) oty KAipaka tov 3 unvov. H 1tdon touv KMpokoypappotog otig
ypovikéc kMpoxeg 10% ue 10° £ oAk kot otig ypovikés kKhMpoxeg 108 pe 107 £, epgovilet
mlovn E0OTEPIKN TEPLOSKOTNTO TNG UETAPANTAG. TNV TPATN TEPIMTOOT, QLT OPEILETAL
otovg kvkhovg Milankovitch, evd ot devtepn nepintmon oeeiletal mbava 6e peyoldtepng
nep1Odov votatikong kKokAovg (Miller, 2011). T eheyyOei av 10 Oe@pPnTIKO KAUOKOYPOLLLOL
(koKKvn ypouun, Ewkéva 3) eivar copfatd pe v atddon Tou KAUOKOYPAUUOTOS OPEIAOLEVT
0€ E0MTEPIKN TTEPLOOIKOTNTA, KOTACKELALETAL £V GTOYXOOTIKO poviého Tomov FGN, yia v
avamapoymyr] cLVOETIKNG xpovooelpds Pdaorn g eEiomong Tov Bewpntikod HOVIELOVL OV
Katookevaotike mponyovpeveg (a.10). Me Baon mv eElowon (a.10)  oAAd ko TIg
mopapétpoug tov Iivaxka A.2, mapdyetor cuvhetikny ypovooelpd péow povtéAov FGN, otig
omoiog 10 KAaKkOypappo abfpoilovior To KAUOKOYPOAUUOTO TOV TECCAPW®V OPLOVIK®OV
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ocvvaptioewv. To unKog kot to Prpa g cvvOeTIKNG Ypovocelpdsg Aapupdvovtar ica pe
xpovocelpd «Spratt» yio v Tpocopoimon Tov BewpnTikov HOVTELOL GTNV TEPLOYT OOV TO
eumelpd KApaxkoypoppa epeovifetl amdtoun ntwon kiiong. Ipdaypatt, dnwg goiveror oty
Ewova 4, o khMpokdypappa g mopoydeicos cuvOeTIKNG ¥POVOsELPAS HECH TOL BempnTiKoD
HOVTEAOL (KOKKIVOL YEMGUEVOL KUKAOL) cLUPadilel e TNV ATOTIKA KAMON TOV EUTEPIKOV
KMpokoypaupotoc. To kataokevacsOév Bewpntikd poviédo cvpPadilel pe 1o gumelpikod
KMUOKOYPOUILO TNG TOyKOGUIOG 6TAOUNG TG BdAacoaS, Yio €DPOG YPOVIKAOV KALLAK®V arnd 1
uva €og 10 exatoppvplor xpdvia, epEaviCoviog T HEYAAN HOKPOTPOBESU EUIOV] TOL
EUTEPIEXETOL OTN HETAPANTA KOOADG Kol TNV E0MTEPIKN TEPLOOIKOTNTA TOL EUPOVILEL EVTOG
OCLYKEKPLUEVOV YPOVIKOV KMUAK®V.
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MeTaPANTOTNTA KAl EPUOVA OTNV ETTIPAVEIAK OANACTIa BepUOKPATIa
Kal OTO paivouevo El Nino

To gowodpevo El Nifio — Notwa Taddvioon (ENSO) eivor o meptodikn Stakdpoven e
emoavelakng Oaldcolog Oeppokpaciog kot g mieong Tov afpa NG VIEPKEIUEVNC
aTHOGQAIPOS, otV meploy] Tov lonueptvod tov Eipnvikod Qkeavov. To wkeavoypapikd
eowopevo, eppaviCetar og o Bepun (EI Nifio) kou o woypn (La Nifia) edon, ot onoieg
aVATOPACGOLY TNV OKEAVLIO KO ATHOCPOPIKT KukAopopio toc0 Tov Elpnvikod Qkeoavod aArd
Kol OAOL TOL TAQVNTI, TPOKAADVTOG CONUOVTIKEG HETOPOAEG TG Oeppokpaciog kol g
o160unc g Bdraccog Kabmg Kol KALOTIKA QUIVOUEVA, 0T EVTOVEG PPOYOTTMCELS Kol
Enpoaoieg oe dpopeTikd uépn tov TAavinTn. To @ovopevo peTpdte HEGH OEIKTOV OTMG O
deikng SOI, 0 omoiog peTpdeL TNV SOPOPE TNG ATHLOCPALPIKNG TTEONG LETAED TOV GTAOU®V
Tahiti ka1 Darwin, 1 o dgiktng ONI, 0 omoiog petpdel TG SOKLVUAVONG TNG EMPAVELNKNC
Boldootag Oeppokpaciog oty mepoy] Nifio. Ot yewypagikéc meployéc HEAETNG TOL
eowopévov ENSO avanapiotavtor otnv Ewova 5, pe koptotepn v meproyn Nifio 3.4.

Mo v pedén g petafAnToTnTog Kot TG VITapENG ELUOVIG GTI LETOPANTN TNG EMLPAVELNKNG
Boddootog Oeprokpaciog, HEAETAUE apyKd LETPNOELS KOl OVOKOTOUCKEVEG TOV JEIKTAOV TOV
eowvopévov ENSO, pe 1t ypnon tov gpyoieiov Tov KAMPOKOYPAUUOTOS. XTI GLVEXELD,
voAoyifovpe TNV OOU OVTOCLGYETIONG TNG KOTOYEYPOUUEVNG TOYKOGUIOG EMLPOVEIOKTG
Boraociog Oeppokpaciog (SST), e€etdalovtag emiong T cLGYETION TS SIHKOUOVOTG TNG LE TN
ovumepLpopd tov patvopévov ENSO.

Ta yapoaxtnplotikd otoyeio Tov peietndéviav dsiktav eppaviovion otov Ilivaka A.3. Ot
TPELG TPADTEG GEPES TOV VALK APOPoVV deIKTEG TOL TNYALOVY O LETPNGELS, BEpLOKPACIDOV
Kol TMECEMY, EVO Ol TPEL TeEAevTaieg Oeikteg mov mapnyONoov omd TOAOLOKAUATIKES
OVOKOTOOKEVEG. ZTOV Tivaka gpeovifovtal ot cuvtehestég HuUrst, ov omoiot vrmoAoyilovtan
HECH TIG KAMOMG TOV KAUOKOYPOUUATOV (TO SOYPAULOTO TV KALAKOYPOUUAT®V glval
dwbéoa oty kopa gpyacia). To @awvdpevo ENSO mapovcidletr yia pkpéc kAipokeg
rpOVoL, Lkpotepec TV 100 TV, EVTOVN OVTI-EUUOVIKT] GUUTEPLPOPA, OO POIVETAL OTTO TOV
ovvtereotég Hurst (<0.5) tov mpotov mévte oepov tov Ilivaka A.3. T peyodvtepeg
YPOVIKEG KATpaKES, e Baom v avakatackevn Tov Moy et al. (2012), to powvdpevo paivetan
Vo TpoLGLAlEl, VIOV EUUOVIKT] GUUTEPLPOPE Yo pecaiov pnikovs kAipakeg (100-500
YPOVID), EVED EMOTPEPEL GE OVTI-EULOVIKT GUUTEPIPOPA GE YPOVIKEG KATpaKkeS peta&d 500 Kot
1000 etmv.
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Ewova 5: Hepioyes ueAétne tov poavouévov ENSO (wnyn: NOAA)
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Xpovoosipd kou Ay Mikog (L) Apyxo (O) q YUVTELEGTIG

(xpovia)  Koavovikomowmpévo Hurst
(R) Biipa (4) (H)
(xpovra)

NOAA (ONI) 68 1/12 (O) 0.166

BMC Australia 141 1/12 (O) 0.398

Uni. East Anglia 151 1/12 (O) 0.462

Lietal. (2013) 1100 1(0) 0.384

McGregor et al. (2010) 327 1(0) 0.225
Moy et al. (2002) 11,000 1(R) 0.84 (k=10-300)

0.08 (k=500-1100)
Iivaxog A.3: Ztoryeio ypovooeipawv ociktawv ENSO kou ovvteleatéc Hurst

[No mv pelém ¢ petapintotntog g emeovelokng Boldootag Oeppoxpaciog (SST)
ypnoponoleital o moykocuog kavvapfoc ERSSTVS (Huang et al. 2017), mov amoteAet
avaKatookevwn g Oepprokpaciog, PAon dopLEOPIKOV HETPNGEMY Y10 TO XPOVIKO SLAGTILLOL
1854-2018 pe pnviaio ypovikd Prpa. H xpovocelpd oe pLoper Kavvapov, HETATPETETOL ENTIONG
oe &tmol xpovooelpd (HEow wvAopevov péoov) Kabdg kol Olakprtomoleitar o 12
YPOVOGEPES Yo KaBéva amd tovg 12 punveg tov £10VG, €101 MGTE v apalpedel 1 E0OTEPIKN
KUKAOGTACIHOTNTA TNG METAPANTNC. Me Bdon ta dedopéva tov kavvapov kot v e&icmon
(0.2) vroAoyilovtol o1 TIHEG TOV GUVTIEAEGTI] GLTOGVLGYETIONG Yo KAOE onpeio Tov Kavvéafov.
Avrtiotoya, pe évav ohviopo adyopiBuo vroroyilovror ot TipéEG Tov cvvtedleot HUrSt, og n
KAMon tov KAMPoKoypappotog, exiong yu kébe onpeio.

[Mopovcidlovtal d® pepikd amod o amoteAécpote kKabmg Kot o Bactkd GUUTEPAGLLATO TOVG.
Ymv Ewova 6, eppavifeton 0 maykoouog ocvvieAeotng Hurst yio v emoia ypovocelpd
ERSSTVS. Ztig meproyég Nino 3.4, 3, 2 ko 1 gpgavileton £vTovn avT-gUUOVIKY GOUTEPLPOPU,
YEYOVOS TOL GUVAOEL LE TAL EVPNLLALTO TG AVTI-EUUOVIKNG GCUUTEPLPOPAS OTIS LETPTOELS KO TIG
OVOKOTAOKEVEG TV OEKTAOV ToV parvopévou ENSO. TTapdAinia, otic vmOLouteg TePLoyEg TOV
TAoviTn N emavelokn Bordooio Oeppokpacio epeaviCer tipég H > 0.75, o1 omoieg deiyvouv
évtovn ePPOVIKY cvumeptpopd g petafintig. Iapdpoa cvumepipopd gppaviletor otnv
Ewova 7, 6mov avorapictatal o cuvteAestg avtocvoyétiong 1M taéng (lag 1) yw g 12
SLOKPITOTOMUEVES YPOVOCELPEG TTOV OVTIGTOLYOVV GTOVG dMOEKA PNVEG TOL £Tovg. Ot pukpég
TIWEG TOV CLVTEAEGTH OVTOGVGYETIONG -KOT  OVTIOTOLI0 TOV HIKPAV TILOV TOLV GUVTIEAECTN
Hurst, epeaviCovtar otig idteg yeoypaewkés meproyxés pe v Ewova 6. TMapdAinia, m
SKVUOVOT) TOV TIULMY TOL GUVIEAEOTN aWTOGVGYETIoNG oty weployn Nifo, poptupd v
avTioTOrYN SLOKVLOVGT) TG ELPAVIGTS TOV PALVOUEVOD OVTOD OVALESH GTOVG UNVEG TOV £TOVG,.

SOUTEPOAGUATIKA, TO EVPNUATO AVTOV TOV KOUUATIOD TNG EPYNCIOG OEIYVOUV OVTI-EULOVIKT
CLUTEPLPOPA TNG empaveloknG Bardociog Oeppokpaciog oty meployn Nifio kot tavtdHypova
EUUOVIKN YEVIKN GLUTEPIPOPE NG MeTaPAntng o maykooupe kKAipoka. Ilap® ot 1
ovumepipopd otnv meployn NiA0 pmopel va ocvvemdyetoar petopévn afefotdtnra Tov
eowvopévov ENSO, ta evprjpata ¢ e£€Taomg TV SEIKT®V TOL deiyvouv OTL 68 PHEYOADTEPES
YPOVIKEG KAMUOKEG avTd TOEL Vo 10YVEL KOODS TO QOIVOUEVO EMIGTPEPEL GE EULOVIKT
ovumeplpopd. H d1a0eciudtnta deryldtov HeyaAdTepNg YPOVIKNG KMULOKOS, TOGO TOV OEIKTMV
tov @owvouévov ENSO, 660 kor ¢ maykdouog empoavelokng Bordooiag Oeppokpaciog
UTOPOVV VOl STOAEVKAVOLY TEPOLTEP® TNV PLGIKN EULOVT] TOL ERPAVILOVY 01 LETAPANTEG AVTEC,.
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Exovo 6: Toykoouio katavoun tov ovvieleatyy Hurst yio tyv etnoio. ypovooeipd, emipaveioxng
Ooloooiag Gepuoxpaciog (SST)

Februal

-100 0 100
Eixovo. 7: Loviedeatng avtoovoyétions (lag 1) yio v etnoio ypovooelpd, exipaveloxkng
Ooldooiag Oepuorpaciog (SST) kartaveunuevng oe 12 unves tov étovg
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Chapter 1: Natural Processes and change

Change is, philosophically, an intrinsic law of the universe. This concept is commonly shared
among most of the philosophical thinkers in Ancient Greece. It is especially depicted in the
infamous “za wavra pei”’ (panta rhei), everything flows, quote attributed Heraclitus of Ephesus,
a pre-Socratic Greek Philosopher, as noted in Plato’s Cratylus, 339-340, used to describe the
omnipresence of change. Heraclitus notes even more the concept unity of opposites expressed
through dialectic dipoles like “summer-winter”, “war-peace”, “the way up-the way down”.
This unity, antithesis and struggle between the opposites (avtifeta, antitheta), is for him the
driving law -the potential- of change. (Kirk, 1951)

Time as an essence of change is discussed in Plato, where it is defined as the moving image of
eternity or of the idea that time is in some other way the appearance of some unchanging thing.
For Plato, the change of reality, that is implicated through time, is caused by what he calls e
flux, which is the same as a moving but ever-present time. Aristotle, variates Plato’s view
defining time as motion, and thus including the element of the omnipresence of change. (Lieb
1991)

Aristotle notably quotes that through a natural example in Meteorologica 353al4-24,
concerning the sea level, a variable of interest in this study. For the essence of natural change
depicted here, but also for the coincidence of variables we refer the quote:

QovePOV Tolvuv, mel 6 T€ YpOvog ovy DToAeiyel kol TO OAov didtov, 6Tt ovte 6 Tavaig
obte 6 N&gihog del Eppet, GAL' v mote ENPOg 6 TOmog 80V péovctv: T yap Epyov Exet
aOTAV TEPAS, O O YPOVOC OVK EYEL. OHOIMS O€ TOVTO Kol £l TAV GAL®DV ApUOGEL
TOTAU®V AEyev. GALQ unv eimep Kol ol motapol yiyvovral kol eOsipovton kai pn det ol
a0Tol TOTOL THG YIS Evudpot, kol TV OdAattay avaykn petafdilev opoiwe. Thg 08
OaAGTTNG T PEV AmoAEImovonG Ta O' Emobong del pavepov OTL THG TAoNg VTG 0VK diel
TO 00T TG PEV €0ty BddatTo Ta &' HTEPOC, AAAL LETOPAALEL T® YPOVD TAVTAL.

"So it is clear, since there will be no end to time and the world is eternal, that neither
the Tanais nor the Nile has always been flowing, but that the region whence they flow
was once dry: for their effect may be fulfilled, but time cannot. And this will be equally
true of all other rivers. But if rivers come into existence and perish and the same parts
of the earth were not always moist, the sea must needs change correspondingly. And if
the sea is always advancing in one place and receding in another it is clear that the same
parts of the whole earth are not always either sea or land, but that all this changes in
course of time.. "

Science, from ancient times to the modern days, has come to reaffirm the philosophical thesis
of change. The philosophical perception of the omnipresence of change did not arrive
arbitrarily; it has been founded on the human observation of nature. As can be noted in the
previous quote, the observation of the flow of the Nile river but also the change in the sea level,
acted as natural stimuli to evoke the philosophical position. Natural sciences, which take this
observation into the level of experimentation and scientific knowledge have long accepted this
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thesis as an axiom. It is inherent in the laws and study of Physics, whether they are Newtonian
Quantic, or Geophysics.

In this first chapter we restrict ourselves to a basic philosophical discussion and definition of concepts
and aspects surrounding change, so as to describe the line of thought of the author behind the chapters
that follow, which present an applied scientific methodology on natural variables.

1.1 Some aspects of change

The concept of change becomes application-wise useful in natural sciences, when certain
aspects of it are acknowledged and defined. They will be discussed in this chapter in a generic
sense, the perception of which leads to the specific applications in geophysical processes
discussed in the following chapters.

1.1.1 The spiral motion

The shape of a spiralling seashell depicts in a natural and simple, yet full of complexity, way
the trajectory of change. Heraclitus used another aquatic metaphor, to depict the same
trajectory: “motauoior toiowv avroiow éufaivovary, xepa kol Etepa Boata émppel”’?, meaning
"Ever-newer waters flow on those who step into the same rivers”. Through these two images
one can derive not only the impossible of a repetition of a past state, but also the way that
change progresses forward.

If a sea-worm of change were to walk on the inside of the spiralling seashell and observed from
the outside on a 2-D plane, top view, there would be a point where the observer would guess
that the worm has completed a full circle of motion and arrived to its starting point. In reality,
if another observer watched the seashell from a side-view, as a spiralling staircase, he/she
would realise that the worm has reached what seemed to be the same point, but on a higher
level of the spiral.

Another limited perception, of the sea-worm’s trajectory, would exist through an observer
watching the worm for a limited period of time. Then he might guess that the worm is walking
on a straight line, which is only a proportion of the total trajectory, as shown also in Leibniz’s
calculus.

1.1.2 The dependence of the future on the past

The future and the past can only be defined relatively to the present. When measuring a certain
natural variable, the present could be defined as the actual moment of the measurement of the
value of the variable, defining the past as all the moments of known (by natural reality, and
observed by the human observer) values that came before it and future the moments of the
unknown (both by natural reality and the human observer) evolution of the measured variable.

As it can be seen through the previous concept, the future does not have the same essence as
the past and the present do, on a variable value. If the future variable is considered to behave
randomly, the past and the present are not as they are already measured. Applying this logic

2 DK22B12, quoted in Arius Didymus apud Eusebius, Praeparatio Evangelica, 15.20.2
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into the previous example, if we could assume a random movement for the future positions of
the worm in the spiral, all its previous positions would be known.

Complete randomness, in the sense of an independent future evolution of the variable can be
found only on isolated experiments, as is a drop of a dice. In a complex natural environment,
every future evolution would be dependent on the past values of the measured or other
variables. No one could imagine a real sea worm making its next step in the bottom of the spiral
when it has reached its top, except if it were to fall by a toppling of the sea shell itself. Even in
the latest case, the move of the worm would depend on a certain present act on the examined
natural system.

In the above sense the concept of memory (or long-term) memory in process been discussed,
in natural phenomena and mathematics (Klemes, 1974; Beran, 1994). Indeed, treating memory
as “dependence” on the past natural processes have been shown to have an inertial capability
of depending on their past evolution. However, Koutsoyiannis (2002) has discussed the
possibility of a concept of “absence of memory” in natural process in contrast to the “long-
term memory” concept, meaning that a system “forgets” not only its past values but also its
past means. The omnipresent dependency (depicted through autocorrelation in stochastic
analysis) in natural process, and specifically the long-term one, arrives, for Koutsoyiannis,
through random fluctuations occurring on different scales and creating variability of different
frequency signals in the process. The concepts of “randomness” and “scales” will be discussed
here onwards.

1.1.3 The aspect of fime scales

Processes are simultaneously occurring on multiple scales, of both time and space. To keep the
previous paradigm, if the sea-worm were to operate in a seashell trajectory, this movement
would have happened on the course of a broader movement, in temporal and spatial terms, the
one of the earth in a trajectory around the sun. Even if we can isolate a process, from all the
others in broader and narrower level, in order to observe it, it is still being affected by the
ongoing change on different scales.

Natural processes occur on multiple time scales but are only measured on specific ones. That
means that the measured variable on a certain time scale, incorporates inside it «signals» of
different frequencies, which are causing its fluctuations and are caused by the past evolution
of the variable on different time scales. Large time scales would produce low-frequency
signals, while small time scales would produce high-frequency ones.

1.2 The concept of randomness. Predictability and
uncertainty.

The notions of random events and random variables have been defined by the Russian
mathematician A.N Kolmogorov in his fundamental work (Kolmogorov, 1963) — for the latter
notion see Chapter 2. In spite of his rigid mathematic definitions on these concepts that served
as a base for the modern theory of probability, he did not define the concept of randomness
early on. Later, in about 1965, A. N. Kolmogorov and G. J. Chaitin independently proposed a
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definition of randomness based on complexity or absence of regularities or patterns -which
could be reproduced by an algorithm- (Chaitin, 1975; Kolmogorov, 1965).

These definitions seek the concept of randomness into mathematical word, outside of the
physical phenomena. When the notion of randomness is introduced into the physical world, the
cosmos, it is always paired with its sister pole, the one of determinism, forming the dialectic
dipole of “necessity-chance”, both on epistemological and ontological level (Mpitsakis, 2003).
The epistemological approach of classical Newtonian physics considers randomness only as
the not-yet understandable part of a process, or in other terms, the real “demon” limiting
humans of achieving the intellect, as portrayed in the infamous Laplace’s demon (Laplace,
2012).

The survival of this conception applied in modern physical sciences as geophysics, leads to the
separation of a “deterministic” and “random” process or “parts”, in natural processes, which in
their term produce cause-effect relations on the first case and “noise” on the second, the last of
which should be dispelled, according to this conception, by scientists to reveal the true
movement of nature. Two physical examples that picture in an absolute sense the deterministic
or Newtonian conception of nature, is the total antithesis between the absolute predictable of
the movement of the planets and the absolute random of the roll of a dice. Through the survival
of this conception, even after the foundation of modern probabilities, the field of science in
probabilities/statistics/stochastic methods and their applcation in natural processes has existed
mainly as a supporting tool to deterministic scientific methods, giving them the ability to be
able to quantify probabilistically, what cannot be predict deterministically (due to lack of data
or tools).

Here we present a conception divernget and constrasting to the previous. We refer two works
scientists, among many, who formulate it, in the field of natural systems. It is portrayed in the
work of physical chemist I. Prigogine and notably in Prigogine and Stegners (1985), where the
authors research the implementation of the aforementioned dipole of necessity-chance in the
physical world, the creation of order out of chaotic systems. They show that systems tend to
arrive at certain points of instability, where random, irreversible changes of state occur leading
to a new creation of order in the system, through an auto-organization process. This conception
cancels out the dichotomy between the concepts of randomness of determinism. Rather, it
shows the unity in its opposite in the sense of Heraclitus discussed above here, and thus the
appearance of these two concepts as the two sides of the same coin.

In a same motive, hydrologist D. Koutsoyiannis has supported that the element of randomness,
can be actually identified through the notion of “unpredictability” or “uncertainty”. In this
sense, randomness exists in processes that we may understand, we may explain, but we cannot
predict. This notion also leads to a disruption of the dichotomy, not seeing determinism and
randomness as two different (separate or additive) parts of the same process, but rather as a
unity of opposites, where the dominance of the one or the other pole depends on the time
horizon and the scale of prediction (Koutsoyiannis, 2010). In the same study Koutsoyiannis
proves the possibility of creation of random dynamics (e.g. uncertainty) from a completely
deterministic system, arriving to common conclusions with Prigogine. It is also important that
both authors note the concept of entropy (and its derivative concepts: irreversibility and arrow
of time) as the driving force of change in physical system but also as a measure of the behavior
of the system in terms of the uncertainty in its behaviour. These concepts will not be analyzed
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furtherly here and the reader is referenced to Prigogine and Stegners (1997), Ben-Naim (2008),
Theodoratos (2012) and Koutsoyiannis (2017).

Following the latter motive, this study aims to seek uncertainty in the variability of physical
processes, by utilizing probability theory, statistics and stochastic methods and tools as means
to examine change (in terms of variability and persistence, see next section) in their past
evolution and quantify uncertainty in their future prediction.

1.3 Long Term Persistence in natural processes

The internal “dependency on the past” of natural processes is mathematically depicted through
the autocorrelation structure of the stochastic process that represents it (see Chapter 2). The
famous work of Hurst (1951), which examined the long-term variability of the Nile river flow
records in order to calculate the long-term storage capacity of reservoirs. Through this
examination he came across a stumbling discovery, later termed the “Hurst Phenomenon” or
“Long Term Persistence” (LTP), or “Long Range Dependence”, of a long-term (else large-
scale) high autocorrelation of the Nile river time-series, appearing through the grouping of
maximum and minimum values on high scale aggregations of the time-series (for more see
Chapter 2). This phenomenon has been studied and revalidated on modern Nile river records
(Awadallah, 2014) but also observed by Hurst himself in climatic and other geophysical
records (Sutcliffe, 2016).

The Long-Term Persistence or Hurst Phenomenon portrays the multi-scale fluctuation of
natural processes, adapting to the criteria discussed early on in this chapter. The same
behaviour is observed in the long-term evolution of various geophysical parameters, such as
atmospheric temperature, wind speed, river flows, precipitation and evaporation small-scale
and large-scale turbulence, tree ring data and a lot more (Dimitriadis, 2017; Koutsoyiannis,
2018). On oceanic variables, long-term persistence has been examined and observed in data of
sea surface and oceanic temperatures (Fraedrich and Blender, 2003; Monetti et al., 2003;
Alvarez-Ramirez et al., 2008), Pacific Decadal Oscillation, North Atlantic Oscillation, and El
Nifio-Southern Oscillation indices (Stephenson, 2002; Wang and Tsonis, 2008; Khalig, 2010),
wave height (Moschos et al. 2017a and 2017b), sea level (Dangendorf et al., 2014; Dangendorf
et al. 2015, Marcos et al. 2014), as well as other parameters.

The long-term persistent behaviour is examined in this study in the evolution of geophysical
time-series depicting oceanic variables of the sea-level rise, sea surface temperatures, and of
the EI Nifio -Southern Oscillation indices through an analysis of their observed variability on
multiple scales.
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Chapter 2: Stochastic methods and tools

2.1 Why stochastics?

Modern geophysical data assessment, both regarding the comprehension of the past evolution
and the projection of the future state, uses modelling that incorporates deterministic methods,
called hereby deterministic models. In the case of climate modelling especially, the complex
software tools called General Circulation Models (GCMs), fall generally into the
aforementioned category (Loehle, 2018). Antithetically, stochastic modelling, although
incorporated as enhancement to the mainstream modelling cases is, yet, an unfavourable choice
of use.

While stochastic modelling is reading the past on a similar manner with its deterministic
counterpart, when referring to the future the stochastic method does not produce a projection
but rather a probabilistic assessment of it, which depends on past observations. This way
possibilities rather than certainties are expressed by the modelling process; or to name it better:
the uncertainty factor is considered and estimated.

Another important distinction of stochastic methodology in modelling is its parsimony. Even
though, the principle of parsimony in science broadly and in modelling natural phenomena
specifically, has long been a foundation and a basis for application, the recent evolution in
computational strength of modern machines has led to a neglection of parsimony and a
substitution by complex, multi-parameter systems that seek to replicate and reproduce every
detail of the natural complexity (Koutsoyiannis, 2016).

Seeking a probabilistic study of various natural variables regarding oceanic phenomena
through parsimonious applications, this study utilizes tools, which, albeit light and delicate in
their structure tools -demanding basic concepts of probability theory-, they may arrive into
heavy-weighted results. The parsimony element of the tools utilized in this study, allows also
for an easy reproduction of the result by the reader with simple computational tools. The
definitions and concepts of stochastic processes and methods, as well as the description of the
modelling tools used in this study are given in this section.

2.2 Definitions of key stochastic elements

2.2.1 Random Variables, Stochastic Processes and their basic properties

A random variable x is a function that maps outcomes to numbers, i.e. quantifies the sample
space Q. A particular value that a random variable may take in a random experiment, else
known as a realization of the variable, is a number. We adopt here the Dutch convention, which
is used to denote the random variables by an underlined letter e.g. X, whereas a non-underlined
letter e.g. x denotes its realization (Hemelrijk, 1966).

A stochastic process x(t), is defined as a family of random variables X(t), wheret € T, and T is
a set of real numbers (usually represents time). If T is the real axis, then x(t) is a continuous-
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time process. If T is the set of integers then x(t) is a discrete-time process (Papoulis 1991). A
realization of a stochastic process namely a set of observations x(t) of X(t), arranged in a strict
time sequence is named a time-series. Time-series produced through stochastic methods are
called synthetic time-series. In contrast, observed time-series are labelled here as historical,
observed or modelled.

For a specific t, x(t) is a random variable with distribution:

F(x,t) = P(g(t) < x) (2.1)

Where the function F(x,t) is called the first-order distribution of the process x(t), while its
derivative with respect to X, is called the probability density function f(x) , or the first order
density of x(t), i.e.:

dF (x)
dx

f&x) = (2.2)

For many applications, knowing the distribution function is not needed, as only certain properties
of the process are needed. These properties are named secondary-order properties of the
stochastic process x(t). Following we quote the definition of three of these properties the Mean,
the Autocorrelation and the Autocovariance, as stated in (Papoulis, 1991):

e Mean: The mean 5(t) of x(t) is the expected value of the random variable x(t):

0@ = Ex(D) = f xf (e, £)dx (2.3)

e Autocorrelation: The autocorrelation R(t1,t2) of x(t) is the expected value of the product
x(t)x(t2):

R(ty,t5) = E{x(t)x(ty)} = f f x1%2 f (%1, X35 t, tp)dxq dx;, (2.4)

The value of R(t1,t2) on the diagonal ti=t>=t is the average power of x(t):

E{x%(t)} = R(t,¢) (2.5)

e Autocovariance: The autocovariance C(t1,t2) of x(t) is the covariance of the random
variables x(t1) and x(t2):
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C(t1,t2) = R(ty,t;) —n(tn(tz) (2.6)

And its value C(t,t) on the diagonal ti=to=t equals the variance of x(t):

From the value of the Autocovariance function on the diagonal C(t,t), we can deduct the variance
equation of the process (Papadopoulos and Giovanis, 2017):

var (2(0) = €0 = E [(x(0 - . ©) ] @7)

Normalizing the Autocorrelation function R(t1,t2) by subtracting the mean and dividing by
the variance we obtain the autocorrelation coefficient (Papadopoulos and Giovanis, 2017 ):

C(ty, tp) )
(t,ty) = th |p(t;,ty)] <1 (2.8)
PRt VC(t1, 8)4/C(t2, 1) " Pt

2.2.2 Stationarity and Ergodicity: Two main concepts

A main concept central to that of stochastic processes is the concept of stationarity, and non-
stationarity vise-versa. Stationarity of a stochastic process can be defined in a strict-sense and in
a wide-sense (Papoulis,1991):

e A stochastic process x(t) is called strict-sense stationary if its statistical properties are
invariant to a shift of time origin, i.e. the processes x(t) and x(t+c) have the same statistics
for any c. Two processes x(t) and y(t) are called jointly stationary if the joint statistics of
x(t) and y(t) are the same as the joint statistics of x(t+c) and y(t+c) for any c. A complex
process z(t) = x(t) + jy(t) is stationary if the processes x(t) and y(t) are jointly stationary.

e A stochastic process x(t) is called wide-sense stationary if its mean is constant

Elx(®)] =7 (2.9)
and its autocorrelation depends only on z = ¢;-t2

E[x(t + D)x*(t)] = R(t) (2.10)

The variance Var(x(t)) of a stationary process remains also constant.

The concepts of stationarity and non-stationarity in geophysical processes, have been thoroughly
discussed in the past (Milly et al., 2008; Montanari and Koutsoyiannis, 2014). An important
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question raised in the referenced studies is whether the alteration of general climatic behaviour
affects the assumption of stationarity of modelled natural time-series e.g. their constant mean
value, and autocorrelation dependence, as stated before. We will assume here a stationary
conception of the past observed data used in the study. We also do not consider non-stationarity
to be synonym with “change” and stationarity with its opposite. On the contrary, admitting
stationarity of the past data allows to model the future stochastically (thus invoking greater
uncertainty), when a non-stationary assumption would imply a thesis for the ability of the
deterministic prediction of the future, which is neither the goal nor the element of this study
(Koutsoyiannis and Montanari, 2015)

Another important concept of stochastics is the one of ergodicity.

A stochastic process x(t) is considered ergodic if the time average of any (integrable) function
g(x(t)), as time tends to infinity, equals the true (ensemble) expectation E[g(x(t))] (Papoulis 1991
p. 427), which is expressed by:

T

lim % 9 (x(®)at =E g (x®)] (2.11)

T—oo

As a result, when considering deterministic systems, a stationary system is also ergodic and vice
versa, and a nonstationary system is also nonergodic and vice versa (Mackey, 1992). On the
other hand when considering stochastic systems then ergodicity and stationarity do not
necessarily coincide. However, recalling that a stochastic process is a model and not part of the
real world, we can always conveniently device a stochastic process that is ergodic (see example
in Koutsoyiannis and Montanari, 2015). Ergodicity can therefore be assumed if there is
stationarity. Thus, here we consider the time-series modelled to be ergodic, as the assumption
of stationarity has been accepted before.

2.3 Stochastic processes: realization and observation

Synthetic time-series can be used to depict a natural process. An important distinction when
modelling natural processes comes from the divergence between their evolution or realization
and their observation. While natural processes evolve in continuous time, observation and
generation of synthetic time series are only made in discrete time, thus discrete-time processes
need to be considered, and the effect of discretization on the processes to be accounted for.

This discretization is illustrated in Figure 2.1 were two different discrete-time processes are
defined from the continuous time process (with discrete time denoted as i) (Koutsoyiannis, 2016)

By sampling at spacing A we obtain the sampled instantaneous process:
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Xp 1= x(i4) (2.12)

By averaging at time scale A we obtain the averaged process:

L@ - X0~ x(( - D4)
-t = 1

(2.13)

where
t
x© = [ 2@ 214
0

X(t) is the cumulative, non-stationary process, shown in the first window of Figure 2.1. On the
contrary both the sample instantaneous process xi and the averaged process xi, are stationary,
and are depicted on the second and third windows of Figure 2.1 respectively.

From these two stationary processes we can construct the non-stationary, cumulative
processes at discrete time i: namely, that of xi®is precisely X(iA)/A, while that of Xi. is

different, i.e. (Koutsoyiannis, 2016): '
Xi=) (2.15)

j=1=

X(8) = [, x(§)d¢

(cumulative, nonstationary)

x(t) (instantaneous,
continuous-time process)

x; := x{iA)
(instantaneous process
sampled at spacing A)
X;= Zj =1%j
> (cumulative sampled at
spacing 4, nonstationary})

24 . (-1 i

=
[

Y . — ..
RARA

5 =5l pax@)dE =
= X(i4)/4 - X((i- 1)4)/4

)t (averaged at time scale A)

o — —

[
[
1
24

o - — —
59

Figure 2.1: Explanation sketch of the definitions. Source: Koutsoyiannis (2016)
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2.4 The climacogram: a useful tool for modelling fime series

A main tool used in this study, to examine the long-term properties of the modelled time series
is called the climacogram. As stated in Dimitriadis and Koutsoyiannis (2015):

The climacogram (Koutsoyiannis 2013a) comes from the Greek word climax (meaning
scale). Itis defined as the (plot of) variance of the averaged process x(t) (assuming stationary)
versus averaging time scale m and is symbolized by y(m). The climacogram is useful for
detecting the long-term change (or else dependence, persistence, clustering) of a process.

The climacogram consists a simple, yet extremely useful tool, with similarities but also
advantages over similar tools such as the power spectrum, the variogram and others
(Koutsoyiannis and Dimitriadis, 2015). Its mathematical definition is given below, while later
the depiction of persistence parameters through the climacogram is explained.

For a continuous time process the climacogram is defined as (Dimitriadis and Koutsoyiannis,
2015):

t+m

Varlf, " x(©)d§] Var[[)" x(§)d¢]
: -

m m2

y(m) := (2.16)

where me RY and y(0):= Var[x(t)]

For a discrete time process the climacogram is defined as (Dimitriadis and Koutsoyiannis
, 2015):

Var [Z;{ik(i—lﬂl EI(A)] _ Var [Zf:l &(A)]

@)} .
)/k (k) T k2 k2

= y(kd) (2.17)

where k € N isthe dimensionless scale for a discrete time process

The climacogram of the cumulative process stated below can also be derived but is not used for
the purposes of this study.

2.5 Memory and Long-Term Persistence in Stochastic
Processes

As described in chapter one, memory and long-term persistence is not just omni-present in
natural processes but is an intrinsic characteristic of change and the concept of a “process” itself.
Therefore, modelling natural processes must combine the parsimony element, described above
in this chapter, with the dependence of the future on the past evolution of the modelled
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variable(s) and the inclusion and quantification of the uncertainty parameter. In this section we
refer to two main categories of stochastic processes and their corresponding mathematical
models depicting natural processes: The Markov and the Hurst-Kolmogorov Process

2.5.1 The Markov Process

A Markov process is a process in which the future does not depend on the past when the present
is known (Papoulis, 1991). The second order properties of the Markov Process are described in
Table 2.1 for the instantaneous, the average process at scale A, and the sampled process at scale
kA (Koutsoyiannis, 2016). The autocovariance function of the process is a pure exponential
function (equation (T1.4) in Table 1), in which A (dimension [x]?) is a State-scale parameter and
a (dimension [t]) is a time-scale parameter.

By inspecting Table 1 and comparing with known equations in the time-series literature, it is
seen that in discrete time the process is identical to an AR(1) process if it is sampled at equidistant
times, or a special case of an ARMA(1,1) process if it is averaged at time windows with constant
length.

The Markov process follows the rules of simplicity in all its second order formulas, as well as
parsimony, as it contains only one parameter, a, except those that describe its marginal
distribution.

The Markovian assumption of the independence of the future on the past, at a certain point of
present observation, is an abstract assumption, not verified in observation of natural processes.
This does not imply that Markov based models, offer a poor resemblance of natural processes,
rather that, they should be used on certain simplifications of reality, where the past factor is a
priori neglected.

Table 2.1: Second-Order properties of the Markov Process

Variance
Continuous-time and sampled Yo=v0)=c(0)=7,=1 T1.1
process (Instantaneous)
Averaged process, scale A _ 24 . 1-eT4/ T1.2
. y@=_o0-—)
(Climacogram)
_ K

Sar.npled process, scale kA 7(k) _ 1—p2— 2p(1 o ) T1.3
(Climacogram) k(1 — p)? k

k=12, ..and p = e 4/@

Autocovariance Function
Continuous-time process, lag t c(t) = re 7@ T1.4

—i _ ,-4/aN2
Averaged process, lag 1=jA L@ _ Al —e ) o-G-14/a i=12,.. T15
_] (A/a)z ) &4 )

Sampled process, lag t=jA & =2re74% =2p)j=012,.., T1.6
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2.5.1 The Hurst-Kolmogorov Process

The Hurst-Kolmogorov (HK) process is defined based on its climacogram, which is a power
function of time scale, for an averaged process at scale A (Equation (T2.2) in Table 2.2)
(Koutsoyiannis, 2016) . The autocovariance function is then easily determined (Equations (T2.3)
and (T2.4) in Table 2.2).

The process in continuous time is also known as fractional Gaussian noise (FGN) due to
Mandelbrot and van Ness (1968), although these authors used a more complicated approach to
define it. In essence, though, the mathematical process had been earlier proposed by Kolmogorov
(1940), while Hurst (1951) pioneered the detection in geophysical time series of the persistence
behaviour described by this process. The name of this process refers to the names of these two
pioneers (Koutsoyiannis, 2011), referenced also in Chapter 1. Because this process has infinite
instantaneous variance, the sampled process in discrete time is not meaningful (many properties
take infinite values). However, the averaged process is well behaved, with all of its properties
(including its variance) finite, which makes it quite useful in applications.

The HK process is almost equally as simple and parsimonious as the Markov process; again, it
contains only one parameter, the Hurst coefficient, symbolized with H, in addition to those
describing its marginal distribution®. Despite that, we use the formulation shown in Table 2.2
(Koutsoyiannis, 2016) with three nominal parameters for dimensional consistency: a and A are
scale parameters with dimensions [t] and [x]?, respectively, while H, the Hurst coefficient, is
dimensionless in the interval (0,1).

Specifically, the values of the Hurst coefficient depict the persistence effect on the process:

e For H = 0.5 the process reduces to pure white noise.

e For 0.5 < H < 1 the process exhibits Long-Term Persistence (or Long-Range
Dependence) and is called a persistent process.

e For0<H<O0.5itis called an anti-persistent process.

A persistent process has a long-term positive autocorrelation, depicting that high and low values
will cluster in time, which means that a high value will more probably be followed by another
high value and the next values for a long future range will also tend to be high. An anti-persistent
process has the exactly opposite effect, depicting a long-term “switch” between high and low
values, meaning that a high value will probably be followed by a low value and vice-versa, with
this tendency lasting for a long future range. A process with A=0.5 indicates a completely
uncorrelated process. In practice a process with H close to the value of 0.5 can have an
autocorrelation for very small lag values but will decay exponentially and quickly to zero. This

; Notice that the process variance is controlled by the product A*a?2", so that A and a are not in fact separate

parameters.
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is the case of the Markov Process examined before, making it essentially a sub-case of the Hurst-
Kolmogorov process (Koutsoyiannis, 2002).

Most of the expressions shown in Table 2 are valid in the all cases. However, the autocovariance
c(t) has different expressions in the three cases, as shown in Table 2. Specifically, for H < 0.5,
the autocovariance c(t) is negative for any lag T > 0, tending to — as T— 0. However, at 1 =0,
¢(0) = +oo, because this is the variance of a process that cannot be negative; thus, there is a
discontinuity at T = 0. Consequently, the averaged process has positive variance and all
covariances negative. Such a process is not physically realistic because real-world events at near
times are always positively correlated, which means that for small t, c(t) should be positive.
Also, the infinite variance cannot appear in nature (it would be associated with infinite energy);
even the white noise, whose autocovariance is a Dirac delta function (corresponding to infinite
variance, see (T2.3) for H = 1/2), cannot describe a natural process. Thus, the HK process can
describe natural phenomena only for 0.5 < H < 1 and for time scales not too small.

It is also noted that certain studies, utilizing different methods for the calculation of the Hurst
Coefficient (such as the “DFA2” method) report values of /# > 1. This is considered by
Koutsoyiannis (2013b), as theoretically and mathematically inconsistent, and differs from the
approach adopted here.

Table 2.1: Second-Order properties of the Hurst-Kolmogorov Process

Variance
Continuous-time and Yo =v(0) =c(0) =y, = +© T2.1
sampled process
(Instantaneous)
Averaged process, scale y(4) = A(a/A)?*~2H T2.2
A (Climacogram)

Autocovariance Function
Continuous-time c(t) =AHQH — 1)(a/1)*"?H (H>1/2) T2.3
process, lag t c(t) =26(z/a) (H=1/2)
c(t) = AH(2H — 1)(a/1)?7?" + §"(1/a) (H<1/2)

: 2H : 2H

tszjiraged process, lag C]-(A) — Aa/ay2-2H (I] -1 ;— lj+ 1| B |j|2H> T2.4
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2.5 Generation of synthetic time-series

The random element of a synthetic time-series consists of a white noise function, in which
different Xi are independent identically distributed random variables, so that yj=0 (and pj=0) for
j#0. Then the aggregated process at time scale & has variance:

yo(k) = var [Z,(k)] = ky, (2.18)

autocovariance ;=0 and autocorrelation p;®=0.

Synthetic time series can be generated by certain stochastic models which contain and a random
element and preserve certain characteristics of the modelled time series. Various models exist in
the bibliography, namely AR(1), AR(2), ARMA(1,1), ARFIMA(1,1), SMA, FGN and many
others.

Here we compare models on their ability preserve the second-order properties described in the
previous section, namely the autocovariance and autocorrelation function, not only on the
original scale & of the original time-series but on (higher) aggregated scales 4k. This essentially
means preserving the Long-Term Persistence (“LTP”) of the original process, or elseway its
behaviour as Hurst-Kolmogorov process (HK behaviour) as defined above.
We define the aggregated stochastic process at time scale k as Zi® where (Koutsoyiannis 2002):
ik
7z = Z X, (2.19)
I=(i—-Dk+1

It follows that for k=1, ZV) = Xi; for k=2, Z1® = X1+ X2, 22 = X3+ Xa etc.
The statistical properties of the aggregated process Zi are derived from those of the process Xi:

The mean is calculated as:

E [Z,(k)] = ku (2.20)

while the variance and autocovariance (or autocorrelation) is calculated as:

k (+Dk

y( = cov [z, 28] = z z Yme1,  J=0,41,2,... (2.21)
=1 m=jk+1

Here we will compare two models, whose main difference is the ability to preserve the LTP, or
else the HK behaviour found in the original time series: The AR(1) model which fails to do so,
and the Fractional Gaussian Noise (FGN) model, a model consisting of a sum of AR(1) models
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which preserves the Hurst value along with other properties. We also seek a model to replicate
the climacogram values of a harmonic process i.e. a pure deterministic one.

2.5.1 The AR(1) Model

The AR(1) model has the simplest possible introduction of a Markov-type memory, added to the
white noise function. In the AR(1) model the dependence of the current value to its previous one
is assumed. This dependence is expressed on the basic time scale in the equation of the AR(1)
model where:

Xi=pXi1+V; (2.22)

where p is the lag one autocorrelation coefficient (-1 <p <1)and Vj (i=1,2,...) are independent,
identically distributed, random variables with mean (1-p) and variance (1 — p?)yo. The process is
Markovian because the dependence of the current variable Xi on the previous variable Xi-/
suffices to express completely the dependence of the present on the past. The autocorrelation of
Xi, is:

pj = corr[Xl-,XiH-] = pll (2.23)
Through the climacogram of the aggregated process shown in equation (2.21), and by combining

it with equation (2.23), it can be shown that the aggregated process has variance (Koutsoyiannis
2002):

w _ . k(—=p?) —2p(1-p") k) _ pHI (1 = pk)°

- , , j=1 2.24
Yo Yo (1 _ p)z ]/] Yo (1 _ p)z ) ( )
and autocorrelation:
*) p(1-p")’ ® _ ®
= = p; k(j-1) > 1 2.25
P TR = —2p( =y P TP )= (2:25)

The autocovariance equation (2.24) is similar with the one of T1.3 for Markov processes. The
last, autocorrelation equation (2.25), compared with eq. (2.23), shows that the aggregated
process (2.19), is no longer a Markovian process but a more complicated one (certainly, equation
(2.25) coresponds an ARMA(1,1) process (Box et al., 2015). This means that the simple AR(1)
process, follows an AR(1) model only on its basic time scales, becoming more complicated on
aggregated, higher time scales. Notably, for a large aggregated time scale &, the numerator of
equation (2.24) is dominated by the first term, and the variance of the aggregated process
becomes:

1+p

® 5

Yo (2.26)
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i.e. it becomes proportional to the time scale %, similarly as in the white noise process. This
depicted in the visualization of the climacogram of an AR(1) process, which rapidly reaches
the theoretical climacogram of a white noise process, in aggregated time scales. This effect
will be shown later on in this chapter.

2.5.2 The FGN Model

The AR(1) model is therefore unable to reproduce natural persistence, in modelling experiments,
when not only the simplest scale values (close to the original scale k) are required. When the
synthetic AR(1) model reaches the white noise behaviour, it essentially ignores the low-
frequency signals from high aggregated time scales, «hidden» in the original time-series, and
does not reproduce them, losing the element of reproducing persistence found in the original
time series.

To restore consistency with reality, Mandelbrot (1965) introduced the process known as
fractional Gaussian noise (FGN). Fractional Gaussian noise can be defined in discrete time in a
manner similar to that used in continuous time (Peitgen and Saupe, 1988) Specifically, FGN can
be defined as a process satisfying the condition:

7% i Ky 7% 1 (2.27)
(l ) (l j

where the symbol ¢ stands for equality in (finite-dimensional joint) distribution and H is the

Hurst coefficient. Equation (2.27) is valid for any integer i and ; (that is, the process is
stationary) and any time scales £ and /. As a consequence, for i=j=[=1 one obtains:

vs = k2, (2.28)
Thus, the standard deviation is a power law of k& with exponent H, which agrees with the
observation on the real-world cases described above. The extremely simple equation (2.28) can

serve as the basis for estimating A (Montanari et al., 1997, Koutsoyiannis 2002) has shown
that, for any aggregated time scale %, the autocovariance function is independent of £, i.e.

P =p;=(1/2[G+ D + (G- DH] -2, j>0 (2.29)

Apart from small j, the above function is very well approximated by:
W) = p; = H(2H — 1)j2H~2 2.30
p;j =pj=H( )j (2.30)

which is the HK model introduced in equation (T2.3) for H>0.5 and without the scaling
parameters.

The Hurst coefficient H is for the FGN model the parameter used to express the correlation
structure of the model, as how in the AR(1) model the autocorrelation coefficient p serves for
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the same purpose. It has been discussed in (Koutsoyiannis, 2002) that the sum of three AR(1)
models with according coefficients depicting the correlation structure named p, ¢ and ¢ the
correlation structure of an FGN process Wi can be expressed as:

W, =X + X2+ X +u (2.31)

where 1 is the mean value of the original, stationary time-series and Xi, Xi?, Xi®are three
AR(1) processes with factors p, ¢ and ¢ respectively:

Xt =pXL,+V,, XP=@X:,+V, X}=E&X},+V (2.32)

Note that here the superscript numbers do not refer to the scale k of the process, but rather to
the numbering of the combined AR(1) models. As stated in (Koutsoyiannis, 2002), the choice
of three AR(1) processes suffices for modelling synthetic time-series, up to a certain length »
of values while mainting a certain level of accuracy. The number of process is kept to 3 (small
number) to achieve simplicity in the model, which, while close to the Fast Fractional Gaussian
Noice (FFGN) algorithm (Mandelbrot, 1971), it is much simpler, in terms of components and
calculation equations. Raising the number of AR(1) models allows for a more certain
reproduction of the statistical properties and the Hurst Coefficient of the modelled time-series,
by a longer (in length ») synthetic time-series

It is also shown in the study of (Koutsoyiannis, 2002) that the FGN process has a correlation
structure of:

corr[Wi, Wiﬂ-] =1 —c;—c)p! + 19/ + & (2.33)

where p, ¢ and £ are the model. parameters and c1, c2 positive constants with ci+ c2< 1

The same study has proposed a simple system to calculate the parameters of the FGN model:

p = 152(H — 0.5)132 (2.34)

@ = 0.953 — 7.69(1 — H)385 (2.35)
_(0.932+0.087 H<0.76

§= {0.993 + 0.007H H > 0.76 (2.36)

the remaining parameters C1 and Cz f can be estimated such that the approximate autocorrelation
function (equation (2.33)) matches the exact function (equation 2.29) for two lags, e.g. lags 1 and 100.

2.5.3 The harmonic model

It has been shown in (Markonis and Koutsoyiannis, 2013) that a fully deterministic, strictly
periodic process composed of a single harmonic with period 7 has a climacogram of the form:
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sin <n7k>| (2.37)

= sine (7)| = [z

where sincdenotes the normalized sine-counting function.

We transcript here the proof of the above equation as shown in Markonis and Koutsoyiannis
(2013).

We assume a fully deterministic, strictly periodic process composed of a single harmonic with
period T, described by:

x(t) = V2 cos (? + b) (2.38)

It can be seen that during the time interval [t1, t2], where 2nty 2/ T-+b=+arccos(x/\2), the process
x(t) takes on values greater than or equal to x, provided that —\2<x<\2 (see Figure 2.2).The
length of the interval [ty t2], is (T/x) arccos(x/\2). Consequently, if we treat the process x(t)
stochastically, it follows that its marginal distribution function is:

cos~1 (X
F(x)=1—#, —V2<x<V2 (2.39)

Taking its derivative with respect to x, we find its marginal density function as:

1
f(x) = —-V2<x<V2 (2.40)

el e S e =" x(t) = ﬁcus(% + b)

t, = (=) (~b — ArcCos %1

ty= (%) (~b+ ArcCos )




Figure 2.2 Sketch to illustrate the proof of (2.39). For the ease of the illustration,
it was assumed b = p, but this does not affect the result nor the length of the time
interval, which does not depend on b. Source: Markonis and Koutsoyiannis (2013)

By application of definitions of mean and variance, we readily obtain that the mean of the
process is 0, and its variance is 1. Likewise, the process autocovariance is:

R(z) = cov[x(t), x(t + T)] = E[x(£), x(t + 7)] (2.41)

where 7 is lag time. If x(t) = x then t=(T/2m)[—b-+arccos(x/\N2 )] (one of the infinitely many
possibilities), so that t+t=(T/2m)[~b+arccos(x/V2)]+t and x(t+1)=\cos[2nt/T+arccos(x/2)]
Consequently:

R(7) \/Efﬁ 2mt —1(x)] (2.42)
T) = X COS |— Ccos — .
2 T V2
which after algebraic manipulations becomes
2
R(t) = cos (;) (2.43)

Interestingly, this does not depend on t, thus behaving like a stationary process.

The climacogram value at scale k can be calculated from the variance Var [xi¥], that is,

k
Var[zi(k)] —E [{&(k)}z] — %H E[x(t)x(s)]dtds (2.44)
0
Or
1 1 (f  [2r(t—s)
Var &(k) =— || R(t —s)dtds = — || cos [ul dtds (2.45)
) e - & o2

which after algebraic manipulations becomes:
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Var[gi(k)] = [n_Y;c]Z sin? (n_;c) (2.46)

By taking the square root of Var [xi®], which by definition is the standard deviation o(K), this
gives equation (2.37).

From equation (2.37), we readily infer, that for increasing k, there appears a series of maxima
at values k£ = aT/2, with o any odd integer, so that |sin(zk/T)| = 1. This series is described by o
® = T/(n k), which is an upper envelope curve of the climacogram. Obviously, across this
envelope, 8 = d(Ina®)/d(In k) = —1. However, the local slope of the climacogram is not
constant but varies. We can easily determine it from:

0 = d(Inc ) /d(Ink) = (k/2)d{In[(c®)"1}/dk

T gin2 (7K
E (k/z)d(ln{[”k] ;;n (T)} (2.47)

which after algebraic manipulations becomes

6 = (ﬂ) cot (ﬂ) -1 (2.48)

it can be seen that 6 tends to +oo whenever k/T is integer.

2.6 Examining LTP of time series through the climacogram

2.6.1 A showcase of different processes on the climacogram

The value of the Hurst coefficient, depicting the persistence of the time series (“persistent”,
“white-noise” or *“anti-persistent”), and/or the existence of Long-Term Persistence or HK
behaviour, is shown as the slope of a simple straight line in the log-log plot of the climacogram.
That is easily derived from the equation (T2.2) where the value 2-2H is the exponent of the
variance function, leading thus to a slope of 1-H in the climacogram. Altering the values of a
and A do not change the slope of the line. The climacogram can be plotted with either with the
log of the variance or the standard deviation on its y axis. For the latter the equation (T2.2) is
square-rooted, giving an exponent of /-H which is the slope of the standard-deviation
climacogram.
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On the climacogram we call theoretical the processes following a certain mathematically defined
behaviour (such as HK, or AR(1) models), synthetic the processes which are generated through
a stochastic model, by modelling an observed, historical time-series and empirical the processes
which depict historical, observed time-series. We respectively name the climacograms of the
processes as: theoretical climacogram, synthetic climacogram or empirical climacogram.

Here we portray the processes analysed in section 2.5, both theoretical and synthetic, in a
climacogram plot. Two random windows of synthetic time series with a length of 10000 data
are plotted. The first one belongs to a time series generated through an 4R(1) model with mean
value xv=0, standard deviation ¢v=1 and first-lag autocorrelation factor p(1)=0.75. The second
one, is an FGN model, created through the sum of 3 (three) AR(1) models, with identical
properties with the previous visualized one, and the methodology described above for the
preservation of the HK behaviour through the Hurst Coefficient, which is chosen as H=0.8 for
the modelled historical time-series. The straight lines depicting a simple theoretical model with
HK behaviour, and a Hurst coefficient of H=0.8, following equation (T2.2), and a theoretical
model with H=0.5 which is identical with the White Noise behaviour. This is visualized in the
plots of Figure (2.3). On the one hand, the AR(1) model shows an initial slope close that of the
theoretical HK, which very rapidly (in ~10 climacogram values) drops to a slope close to that of
the White Noise, with the climacogram slope falling to -0.5 (H=0.5). This is essentially the
picture of a Markov process behaviour on the climacogram, as discussed above. On the other
hand, the FGN model manages to preserve the initially chosen Hurst coefficient, as the slope of
the climacogram reaches almost the value of -0.2, which is the slope of the theoretical model
(H=0.8). The slope of the theoretical model, in the case of the FGN model is the highest possible
envelop of the generated synthetic time series (not concerning the bias of the synthetic time
series). Thus, it can be said that the FGN model can represent an HK process.

The climacogram of a harmonic, deterministic function with T=100 years, is also plotted in
Figure (2.3), along with its envelope which has a slope of -1, therefore refers to a theoretical HK
model with H=0. This will be later used in this study to depict deterministic signals contained in
a modelled historic time series, which can be combined with a stochastic one following an HK
for a better understanding of the components of a process.

2.6.2. The combined climacogram

Certain studies, as are those of Markonis and Koutsoyiannis (2013) and of Pappas and
Koutsoyiannis (2017) have utilized a tool named combined climacogram in order to jointly
visualize the climacogram of time-series recorded on different scales, on the same log-log plot
of aggregated variance (or standard deviation), against the averaged scale.

Each of the different time series, allows the construction of an empirical climacogram for
aggregate scales k spanning from the available resolution A up to k = L/10 (with L being the
total length of each of the time series). With the latter choice, the sample of the averaged process
x® has at least 10 data points for the estimation of ¢, as proposed by Koutsoyiannis (2002).
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Thus, to construct the empirical climacogram, an averaged time series for each scale is (k = 1,
2,3, ---, L/10) and then the sample estimate of the standard deviation ¢ are calculated.

The processes x(t) undergo different linear transformations in order to be visualized into the
combined climacogram. As the processes mapped on the climacogram measure the same
parameter, all the different processed time series can be seen as proxies of a variable y(t) (e.g.
global sea level rise on multiple scales, see Chapter 3). These processes are considered to be
intrinsically related, and as an approximation, we can assume that they are linearly connected.
This can be expressed through:

y(t) = a,x(t) + by (2.49)

where x(t) represents any of the proxy variables and ox is a correction factor of linear
transformation.

It follows therefore that:

JJEK) = U,Sk) (2.50)

A factor that supports the approximation of linear connection can be the close match in
variability through overlapping time scales, between the different proxy variables x(t).

The value of the correction factor ox of the proxy on the smallest time scale is set so that the
value of ox® equals 1, when k has the value of the time step of the time series, or the lowest
aggregated time scale (essentially meaning that the combined climacogram begins from the
value of standard deviation 1). The rest of the correction factors are calculated empirically or
through the Generalized Reduced Gradient Method (Smith and Ladson, 1992), available on the
EXCEL solver tool, to minimize the departures among the ox & of the different series x(t) for the
same scale k.

Specifically, characteristic time scales k; = 2/ years are chosen (by choosing a varying span of /)
and each climacogram is interpolated at those points k; that fall into the domain of the empirical
climacogram. For each k;, a sample of empirical climacogram values is formed, obtained by
each of the different series that overlap at a range containing the point ki. The standard deviation
is the estimated at all points ki and the sum of the standard deviations at each point ki is
minimized. Through this process a unique set of weights (or correction factors) a. is obtained,
through which the processes now appear on the climacogram as a unified process y(t), with a
common standard deviation oy®), for the different time scales .
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Figure 2.3: Portray of the basic processes, on the climacogram. The thick red line depicts a Theoretical HK process with H=0.8. The dashed
blue line, depicts a theoretical White Noise process (corresponding to an HK model with H=0.5). The blue dots represent a theoretical
Harmonic process with time period T=100 years, and the brown dotted line it’s envelope. The purple filled circles represent a synthetic
AR(1) process with length n=10000 years and autocorrelation factor of lag-1, p=0.75. The yellow filled circles represent a synthetic FGN
process with length n=10000 years and autocorrelation factor of lag-1, p=0.75 and Hurst coefficient of H=0.8.




Chapter 3: Variability and Persistence in Sea-
Level

3.1 Variability of the sea-level variable

In this study numerous sea-level rise records spanning from monthly to millennium scales are
examined, in order to evaluate the variability of the sea-level variable across different time-
scales. Many proxy time-series of sea-level measurements and reconstructions are utilized to
create a record of variability spanning on a large number of scales. This is presented in the
following section.

Sea-level has been a parameter of great interest for past and future climate evolution as it is
both affected by other climatic variables such as ocean heat content and general temperature
variations (Barth 1984, IPCC, 2013) but it also affects the general circulation of the planet as
well as human environment, notably with the process of coastal erosion (Brunn et al., 1962,
Leatherman et al. 2000).

On a short scale where carbon emission forcing on climatic and oceanic processes has been
shown to contribute to the observed sea level rise, observations and projections are provided
by the IPCC Fifth Assessment Report (IPCC, 2013). Additionally, many authors have analysed
sea-level data of the last century to examine the relation between long-term natural variability
and variability which could be attributed to anthropogenic origin.

On a large scale, reconstruction methods through proxy data have been utilized to estimate the
sea-level record, on multiple past time-scales. The orbital theory and the theory of stochastic
variability have been both used to examine climate variations as well as glaciation cycles and
their effect on the sea-level record. Here we follow a recently adopted view of a combination
of the two, namely the examination of deterministic oscillations and their alteration through
time as well as the stochastic description of climatic variable fluctuations. The rules applied
for climate can be applied for the sea-level parameter, following the method to model stochastic
natural variables described in Chapter 2.

In this section we give a brief bibliographical review of the aforementioned cases.

3.1.1 Short scale: Natural and anthropogenic variability

According to IPCC Fifth Assessment Report, Chapter 3 (Rhein et al., 2013) “it is virtually
certain that globally averaged sea level has risen over the 20th century, with a very likely mean
rate between 1900 and 2010 of 1.7 [1.5 to 1.9] mm yr~' and 3.2 [2.8 and 3.6] mm yr~! between
1993”. Also, as stated in the same report, “it is virtually certain that interannual and decadal
changes in the large-scale winds and ocean circulation can cause significantly higher or lower
rates over shorter periods at individual locations, as this has been observed in tide gauge
records around the world.”

Regarding the anthropogenic forcing, the consideration of it as a deterministic forcing by the
IPCC Fifth Assessment Report (Church et al. 2013), on the global sea-level values, allows for
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the production of complex numerical models that resemble the geophysical processes affecting
the natural variable and also incorporate anthropogenic forcing which are described through
different Representative Concentration Pathway (RCP) scenarios. According to the Fifth
Assessment Report, Chapter 13 (Church et al.2013), “it is very likely that the rate of global
mean sea level rise during the 21st century will exceed the rate observed during 1971— 2010
for all Representative Concentration Pathway (RCP) scenarios due to increases in ocean
warming and loss of mass from glaciers and ice sheets. Projections of sea level rise are larger
than in the AR4, primarily because of improved modelling of land-ice contributions. For the
period 2081-2100 compared to 1986-2005, global mean sea level rise is likely (medium
confidence) to be in the 5 to 95% range of projections from process- based models, which give
0.26 to 0.55 m for RCP2.6, 0.32 to 0.63 m for RCP4.5, 0.33 to 0.63 m for RCP6.0, and 0.45 to
0.82 m for RCP8.5. For RCP8.5, the rise by 2100 is 0.52 to 0.98 m with a rate during 2081—
2100 of 8 to 16 mm yr~'”. Also, “it is virtually certain that global mean sea level rise will
continue beyond 2100, with sea level rise due to thermal expansion to continue for many
centuries. The amount of longer term sea level rise depends on future emissions.”

Various studies have used methods which compare to, but have quite different axioms, from
the ones used here, e.g. the examination of the Hurst parameter in time-series or the general
estimation of the variability across different time scales:

Dangendorf et al. (2015) analysed both global and local sea level time-series data for the last
century, to examine persistence (long-term correlations) in natural variability signals. This is
done through a second-order detrended fluctuation analysis (DFA2) analysis method, which
also incorporates the variance plot, but with a different definition of the Hurst parameter which
allows it to reach values higher than 1, which in this study is considered naturally and
mathematically inconsistent with basic stochastic definitions (for more see Koutsoyiannis
(2013Db) ). This study separates the volumetric and atmospheric components of the local sea
level time-series, which are measured through gauges around the world. It results that the fast-
varying atmospheric component masks an important amount of natural persistence found in the
slower varying, volumetric one. Additionally, such persistence is examined for the volumetric
component for the global sea-level on most parts around the world. The study concludes the
importance of persistence natural variation not taken before into account, but also considers
the residue variation of sea-level (45% of the Global Sea-Level rise) as of anthropogenic origin.

In the same motive Dangendorf et al. (2014), Becker et al. (2014) and Marcos et al. (2017) both
used a DFA2 analysis to seek persistence into local-sea level time-series obtained by different
gauges around the globe, through a DFA2 method, to seek long-term correlations. Both of these
studies also agree on a significant part of the examined local-sea level rise that cannot be
adhered to a long-term correlation and is thus explained through forcings of anthropogenic
origin.

Finally, Ercan et al (2013) used stochastic models, which model the “long-rage dependence”
— the term the authors use for what we call long-term persistence here- in sea level time series,
such as ARFIMA models. They apply this model to two case studies one of the Caspian Sea
and another one of the Peninsular Malaysia and Sabah-Sarawak, to forecast possible future
evolution of the sea level values. While our study does not move to the extent of setting up a
stochastic model for the estimation of possible future scenarios based on the modeled data, it
has a similar motive to that of Ercan et al., allowing for this logic to be used for future
applications.
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3.1.2 Large Scale: Orbital Theory and Stochastic Variability

The following section is excerpted and taken from Markonis and Koutsoyiannis (2013)
explaining thoroughly orbital theory and stochastic variability in climate process, as well as
their relation. As stated later, sea-level records which are presented here follow a common
response to the glaciation cycles and their orbital causes described in orbital theory and can be
thus described in terms of general climate. The aforementioned study is common in terms of
methods and tools used to this one, while modelling different natural variables.

We use the term ‘orbital theory’, originally proposed by Bolshakov (2008), to describe the
hypothesis that global climate is affected by changes in Earth’s orbital characteristics, such
as the eccentricity, the precession of the equinoxes and the axial tilt or obliquity, at scales
ranging from 20 to 100 thousand years or even more (Berger 1978). This hypothesis was
set forth by Milankovitch (1941), following the theoretical ideas of Adhemar and Croll
(Imbrie 1982). According to it, the intensity of incoming solar radiation during the summer
solstice at high latitudes (65°) of the Northern Hemisphere causes the glaciation and
deglaciation periods. Direct insolation changes by eccentricity or insolation at the Southern
Hemisphere are not regarded to have a clear effect on climate as underlined by several
researchers (Imbrie et al. 1993; Liu and Chao 1998, Balshakov 2008; Huybers 2009),
despite the fact that it has been shown that the glaciations were almost synchronous in both
hemispheres (Kawamura et al. 2007). Rather, glaciation cycles are mainly affected by
precession forcing (19 and 24 thousand years) and obliquity forcing (41 thousand years).
Thorough reviews of the historical development of the theory, as well as a full description
of the celestial mechanics, are presented by Imbrie (1982), Bolshakov (2008) and Paillard
(2010).

Recently, the orbital climate theory has been challenged by several studies arguing that it
cannot sufficiently describe the links between climate and insolation variations (Winograd
etal. 1992; Muller and MacDonald 2000, Elkibbi and Rial 2001; Wunsch 2004; Bolshakov
2008). A well-known example of the weaknesses of the orbital theory is the mid-Pleistocene
transition (MPT), which refers to the switch, around 900 thousand years BP, from
predominant 41 thousand years glaciation cycles to 100 thousand years glaciation cycles
This transition occurred without a corresponding change in orbital forcing (Pisias and
Moore 1981), and the duration of each of the last four glacial cycles increased from 80 to
130 thousand years, which suggests that major climate shifts were aperiodic (Winograd et
al. 1992). Till today, there is no confirmed explanation for MPT, although some efforts have
been made and some hypotheses have been formulated, including those of a glacial-
modulated threshold (Paillard 1998), frequency modulation (Rial 1999), possible CO2
correlation (Berger et al. 1999) and obliquity-modulated threshold (Huybers 2006).

An alternative path to the understanding of the global climate cycles was based on
stochastic dynamics (Petersen and Larsen 1978; Kominz and Pisias 1979; Benzi et al. 1981;
Saltzman 1982, Pelletier 2003; Ditlevsen 2009). In this concept, insolation forcing could
have a minor role in the glaciation cycles, or even could have no role at all, whereas the
self-sustained internal variability of the climate system could be the actual driver of the
glaciations (Ashkenazy and Tziperman 2004). Small periodic perturbations could be
amplified by the variability of the climate system through the mechanism of stochastic
resonance (Benzi et al. 1981), which was based on the works of Hasselmann (1976) and
Sutera (1981). The former demonstrated that short-time-scale phenomena, modelled as
stochastic perturbations, could affect long-term climate variations. The latter showed that,
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if such stochastic perturbations are imported into an energy balance model with no other
forcing, they could lead to random transitions between the equilibrium states of the model.

In the last few years, there has been an effort to bridge the gap between the classical orbital
theory and stochastic dynamics. Huybers and Wunsch (2005) proposed that obliquity may
be a more important mechanism of glacial dynamics, in a nonlinear way though, and
showed that the integrated summer insolation at high latitudes is relevant to the obliquity
cycle. Their suggestion was supported recently by high-resolution empirical data (Liu et al.
2007; Suwa and Bender 2008; Drysdale et al. 2009, Naish et al. 2009; Lourens et al. 2010)
and as Paillard (2010) highlights: ‘the relative weight of 23,000 and 41,000 years
periodicities is quite different with such a definition of the astronomical forcing, pleading
for a more prominent role of obliquity on climate than usually assumed’. An important
addition to the development of modern orbital theory is the mechanism of nonlinear phase
locking, describing a mechanism in which obliquity can act as a pace maker for the glacial
periods, amplified by the internal system dynamics (Gildor and Tziperman 2000, Ashkenazy
2006, Tziperman et al. 2006). On the other hand, Roe (2006) showed that insolation is in
good agreement with the change in ice volume (dV/dt) for the last million years, which led
to further investigation of possible combination of obliquity and precession forcing
(Huybers and Tziperman 2008, Huybers 2011).

3.2 Sea level measurements and reconstructions spanning
different time scales

On this section the sea-level data drawn either from measurements or from reconstruction
through proxy data are presented, together with the methods and conclusions of the studies they
are drawn from. Additionally, the time series used later for the purposes of creating a combined
climacogram, are illustrated here on different plots, for the different time-scale values. In each
time-series graph a blue rectangle represents the time length of the previous, smaller time-scale
time-series (i.e. process which happens in smaller time period). In plots where two or more
time series are plotted together some transformations have been applied to match the data
values, which are explained onwards.

Time-series whose resolution followed different values (i.e. did not have a constant time-step)
were regularized through linear or nearest-neighbour interpolation, in order to be consistent
with the climacogram equations, shown in Chapter 2. The criteria for the chosen step of
regularization are the following: (1) the lowest enough percentage of time-steps above the
regularized time-step A (2) the climacogram (e.g. variance plot) of the time-series keeping the
same form and slope values (3) the time-series covering all time scale areas of the combined
climacogram plot (see later on)

Finally, two tables present important data values for the used time-series. Table 3.1, contains
the information, data and time length, original and regularized resolution, the a climacogram
factor (see later), as well as the reference and the source of the data for each of the time-series.
Table 3.2, contains the cross-correlation values between the time-series, on different
aggregated scales, to test consistency between some of the proxies used, which stem from
different studies. The values of Table 3.2 show good consistency between the proxies used, on
their overlapping time-scales.
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The measurements of global sea-level rise with the highest resolution available are those of the
high-quality satellite altimeters (TOPEX/Poseidon (Benada 1997), Jason-1 (Aviso 2003), and
OSTM/Jason-2 (CNES 2009)). The three satellite altimeter missions measure sea surface
height (SSH) relative to the centre of mass of the Earth along the satellite ground track. While
achieving important resolution in its time steps the data is available for a very limited time
period. Here we have used the satellite altimetry data of the Global Mean Sea Level (GMSL)
variation for the time period of 1993-2017. The Global Isostatic Adjustment is not accounted
for, as these alterations are not relevant for the purposes that the time-series is used in this study
(i.e. variability and persistence examination).

Church and White (2006 and 2011) reconstructed the global average sea level for the period
1880-2009 and estimated its rise from altimeter data for 1993-2009 and from coastal and island
sea-level measurements from 1880 to 2009. According to their reconstruction, for 1993-2009,
the estimated rate of rise is 3.2 + 0.4 mm year* from the satellite data and 2.8 + 0.8 mm year*
from the in-situ data. The global average sea-level rise from 1880 to 2009 is about 210 mm.
The linear trend from 1900 to 2009 is 1.7+0.2mmyear! and since 1961 is
1.9 + 0.4 mm year 1 They also state variability on the rate of rise during the whole twentieth
century, but also a statistically significant acceleration since 1880.

Jevrejeva et al. (2006 and 2014), in a similar manner, used 1277 tide gauge records since 1807
to reconstruct the global average sea level rise for the period 1807-2009. According to this
reconstruction there is a rate of sea level rise of 3.2 + 0.4 mm-yr* for the period 1993-2009,
which agrees with the satellite data. This reconstruction, suggests a linear trend of 1.9 + 0.3
mm-yr? during the 20th century, with 1.8 + 0.5 mm-yr, since 1970, deviating slightly from
that of Church and White (2011). The total acceleration for the reconstructed period (1807-
2009) is calculated as 0.02 + 0.01 mm-yr2,

Both of these three aforementioned time series are illustrated together in Figure 3.1, where
there have been some adjustments to match the plot values for better visualization. Specifically,
the reconstructions of Church and White (2011) and Jevrejeva et al. (2014) have been both set
to zero on 1990, by superimposing the rest of the values on the Jevrejeva et al time series, while
they have also been set to the same average values over 1960-1990 by altering again those of
Jevrejeva et al. In a similar manner, the Satellite Altimetry Data has been set to match the value
of the Church and White time series on 1993, while the averages of both time series have been
set to be the same for the period 1993-2009, by altering the Satellite Altimetry Data values.

Kemp et al. (2011) reconstructed the sea level in North Carolina for the past 2100 years based
on salt-mash sedimentary sequences from the US Atlantic coast. Based on the reconstruction,
the data on North Carolina, reveal four phases of persistent sea-level change on this time scale.
Sea level was stable from at least BC 100 until AD 950. Sea level then increased for 400 y at
a rate of 0.6 mm/y, followed by a further period of stable, or slightly falling, sea level that
persisted until the late 19th century. Since then, sea level has risen at an average rate of 2.1
mm/y, representing the steepest century-scale increase of the past two millennia. This rate was
initiated between AD 1865 and 1892. The authors of the reconstruction have also shown that
the North Carolina proxy sea level changes are consistent with global temperature values for
at least the past millennium. The time series of Kemp et al. (2011) is illustrated in Figure 3.2.
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Figure 3.1: Satellite Altimetry Data (Topex/Poseidon, Jason 1 and 2),
Church and White (2011) and Jevrejeva et al. (2014) sea level time-series.
The values of the y axis represent the global-mean sea-level in millimetres.
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Figure 3.2: Kemp et al. (2011) sea-level time series. The values of the y
axis represent the North Carolina Relative sea level in meters. The x axis
counts years from the age of -200 B.C. until the age of 2000 A.D. The blue
window represents the length of the time series in Figure 3.1.

30| Page



Grant et al. (2012), reconstructed a continuous and millennial-scale detail record of Red Sea
relative sea-level (RSL) for the past 150,000, through ice volumetric changes in core data. The
ice volumetric changes were correlated with proxy data of changes in 520 values in nearby
eastern Mediterranean marine sediments and cave speleothem data from the Soreq Cave. Based
on the reconstruction, the rates of sea-level rise reached at least 1.2m per century during all
major phases of ice-volume reduction and were typically up to 0.7m per century when sea-
level exceeded 0 during the Last Interglacial. Rates of sea-level lowering rarely exceeded 0.8m
per century. The time series of Grant et al. (2012) is illustrated in Figure 3.3. It can be seen that
the scale difference between this time series and that of Kemp et al. (2011) is high. This is due
to low data availability, as the proxies available for timescales between the two aforementioned
time series had either very coarse or low-quality data.
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Figure 3.3: Grant et al. (2012) sea-level time series. The values of the y axis
represent the Red Sea Relative sea level in meters. The x axis counts
thousand years before present. The blue window represents the length of
the time series in Figure 3.2.

Siddall et al. (2003) also reconstructed the Red Sea relative sea-level, through oxygen isotope
records of the sea’s sediment, forming a record of the past 470 thousand years, which
approximates to the last glacial cycle. In our study only the record of approximately 380
thousand years was used, as it had the appropriate resolution. The same study reconstructed a
higher quality record with a centennial scale resolution from 70kyr to 25kyr before present. It
is evident from this record that sea-level changes of up to 35m, at rates of up to 2cm yr?,
coincident with abrupt changes in climate. The maximum rate of change of 0.02 m yr? Is
similar to the mean rate of change during the last deglaciation.
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Waelbroeck et al. (2002) reconstructed a global sea-level record of almost 450 thousand years
long, through long benthic isotopic records retrieved at one North Atlantic and one Equatorial
Pacific site, which were compared with sparse available relative sea-level data. In Figure 3.4
both the time series of Waelbroeck et al. that of Siddall et al are illustrated. It is shown the
global sea-level record of the first study agrees with the Red Sea level record of the latter.
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Figure 3.4: Siddall et al. (2003) and Waelbroeck et al. (2002) sea-level time
series. The values of the y axis represent the Red Sea and the Global-mean
sea-level respectively, in meters. The x axis counts thousand years before
present. The blue window represents the length of the time series in Figure
3.3.

Spratt et al. (2016) reconstructed a late Pleistocene global sea-level record spanning 800
thousand years before present, from ocean sediment core data using a wide variety of proxies
and models. The orbital forcing signal is evident through a spectral analysis of this record but
also through the spectral analysis of the proxy data that was used for its creation. Sea-level
estimates for each interglacial vary greatly between them, producing standard deviations of
11-26 m. The time series is illustrated in Figure 3.5.
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Figure 3.5: Spratt et al. (2016) sea-level time-series. The values of the y
axis represent the Global-mean sea-level in meters. The x axis counts
thousand years before present. The blue window represents the length of
the time series in Figure 3.4.

De Boer et al. (2013) constructed an almost 5.5 million year-long global sea-level
reconstruction using a fully coupled system of four 3-D ice-sheet models is used, simulating
glaciations on Eurasia, North America, Greenland and Antarctica. The ice-sheet models use a
combination of the shallow ice and shelf approximations to determine sheet, shelf and sliding
velocities. The framework used consists of an inverse forward modelling approach to derive a
self-consistent record of temperature and ice volume from deep-sea benthic §*30 data over the
past 1 million years, a proxy for ice volume and temperature. It is shown, that for both eustatic
sea level and sea water 880 changes, the Eurasian and North American ice sheets are
responsible for the largest part of the variability. De Boer et al. (2014) through the simulation
of these proxies showed persistent 400,000-year eccentricity cycles of Antarctica dominating
through the past 35 million years, which was eventually supressed by the smaller 100,000-year
cycle found also in the higher resolution proxies we refer to in this study.

Miller et al. (2005 and 2011) reconstructed a coarse 180-million-year global sea-level record
with a resolution of 0.1 million years and a higher-resolution record of a step of thousand years
and a length of 9 million years, by studying coral reef records, the 8180 proxy of ice volume,
and continental margin sequences. Many of proxies used for the reconstruction were acquired
through an Ocean Drilling Program (ODP). The effect of the 41,000-year tilt-cycle is evident
through the spectral analysis of the record and played a special role especially during the
Pliocene to Brunhes (i.e., from 5.2-0.8 million years before present) when it dominated
between the Milankovitch-scale sea level cycles. The evidence of the small precessional cycle
is also apparent, but not yet explained. The larger ~100,000-year eccentricity cycle is
dominating during the last Brunhes (780 thousand years before present). A large million year-
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scale cycle is apparent during the Oligocene to middle Miocene, where large (50-60 m) sea
level falls occurred. This cycle is approximated by the authors at a periodicity of 1.2 million
years and may be paced by the long planetary tilt cycle.

Kominz et al (2008) reconstructed a sea-level record for the past 108 million years through
backstripping of corehole data from the New Jersey and Delaware Coastal Plains. This study
points out the importance of million-year scale sea-level cycles and suggests that may be
eustatic in origin. The reconstructed time-series suggests that sea level ranged from about 75-
110 min the Late Cretaceous, reached a maximum of about150 m in the Early Eocene and fell
to zero in the Miocene.

The 10 million-year scale time-series of De Boer et al. (2013) and Miller et al. (2011) are
illustrated in Figure 3.6, while the 100 million-year scale time-series of Miller et al. (2005) and
Kominz et al. (2008) are illustrated in Figure 3.7. The time series where plotted together with
their values unchanged, while they follow different mean values or fluctuations on certain time
periods.
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Figure 3.6: De Boer et al. (2013) and Miller et al. (2011) sea-level time
series. The values of the y axis represent the Global-mean sea-level in
meters. The x axis counts million years before present. The blue window
represents the length of the time series in Figure 3.5.
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Table 3.1: Characteristic Values of the Sea-Level Time Series

Total
length L

Climac Reference Data availability from
ogram

Factor

Abbreviati | Numbe
on r of
data n

Original | Regularize
resolution d

resolution CELS))

a

Satellite Data 915 21/773 21/773 24.86 0.046 TOPEX/Poseidon https://www.nodc.noaa.gov/
(Benada 1997) SatelliteData/jason/
Jason-1
(Aviso 2003),
OSTM/Jason-2 (CNES
2009)
Church and 1608 1/12 1/12 134 0.0157 Church and White http://www.cmar.csiro.au/sealevel/
White (2011) sl_data_cmar.html
Jevrejeva 2436 1/12 112 203 0.0118 Jevrejeva et al. http://www.psmsl.org/products/reconstructions
(2014) ljevrejevaetal2014.php
Kemp 211 0.1-73.1 10 (49%) 2,110 9.5 Kemp et al. https://www1.ncdc.noaa.gov/pub/data/paleo
(2011) Ipaleocean/relative_sea_level/kemp2011rsl.txt
Grant 503 100-5,635 250 (28%) 125,750 0.0345 Grant et al. https://www1.ncdc.noaa.gov/pub/data/paleo/
(2012) contributions_by_author/grant2012/grant2012rsl.txt
Siddall 125 147-7,660 300 (6.57%) 375,000 0.033 Siddall et al. https://www1.ncdc.noaa.gov/pub/data/paleo/
(2003) contributions_by_author/siddall2003/siddall2003.txt
Waelbroeck 287 1500 1500 430,500 0.0268 Waelbroeck et al. https://www1.ncdc.noaa.gov/pub/data/paleo/
(2002) contributions_by_author/waelbroeck2002/waelbroeck2002.tx
t
Spratt 799 1000 1000 799,000 0.03 Spratt et al. https://www1.ncdc.noaa.gov/pub/data/paleo/
(2016) contributions_by_author/spratt2016/spratt2016.txt
Deboer 53001 100 100 5,300,100 0.0382 De Boer et al. https://www1.ncdc.noaa.gov/pub/data/paleo/
(2013) reconstructions/deboer2014/deboer2014.txt
Miller (short) 1801 1,000- 5,000 (0%) 9,005,000 0.041 Miller et al. https://www1.ncdc.noaa.gov/pub/data/paleo/
5,000 (2011) contributions_by_author/miller2005/miller2011.txt
Miller (long) 910 100,000 100,000 91,000,000 0.0315 Miller et al. https://www1.ncdc.noaa.gov/pub/data/paleo/
(2005) contributions_by_author/miller2005/miller2005-backstrip.txt
Kominz 984 100,000 100,000 98,400,000 0.023 Kominz et al. https://www1.ncdc.noaa.gov/pub/data/paleo/
(2008) contributions_by_author/miller2005/miller2005-

kominz08.txt

* the values in parenthesis represent the percentage of the data with a time step higher than the chosen regularized time steps.



Table 3.2: Cross-Correlation factor (lag 0) between different time-series

Cross - Correlations

Scale  Jevrejeva | Scale Grant Scale Siddall Scale  Waelbroeck
Kemp Spratt Spratt Spratt

5 0.93 1000 0.82 2000 0.76 3000 0.91
10 0.94 2000 0.83 4000 0.79 6000 0.93
15 0.95 3000 0.83 6000 0.84 9000 0.94
4000 0.84 8000 0.87 12000 0.95
5000 0.85 10000 0.85 15000 0.96
6000 0.85 12000 0.90 18000 0.97

14000 0.92

16000 0.95

18000 0.93

3.3 The combined climacogram: seeking persistence and
deterministic cycles in the sea-level record

3.3.1 The empirical climacogram

To construct the empirical part combined climacogram, i.e. the log-log plot of the standard
deviation of the historical time series versus the time scale values, we follow the methodology

proposed in Chapter 2, section 2.6.2. The aggregated standard deviation values 0,5’0 for
different scales of each time series is calculated from the available resolution A up to the scale

values of k=L/10 (Koutsoyiannis 2002). The standard deviation values a,§k>, for each time-
series x(t) are multiplied by a climacogram scaling factor, a, so that the values of

ay(k) = axa,gk) are visualized combinedly beginning from the value 1 (see more in section
2.6.2). The values of the factors a, for each of the time series are presented in Table 3.1. The
log/log plots of the empirical climacogram each time series are shown in the combined

climacogram plot of Figure 3.8, with circle dot-plots of different colours.

The combined empirical climacogram of Figure 3.8 gives us an impressive view of overall sea
level variability spanning eight orders of magnitude — from 1 month to 10 million years. We
derive from the empirical climacogram some basic conclusions:

1. It is observed that, for this huge variation of the scale %, the (combined) standard deviation
ay(k) of all series, which depicts the standard deviation of the sea-level variable, ranges in a
very small interval, varying less than an order of magnitude (between 0.1 and 1). The red
horizontal dashed line in Figure 3.8, which is drawn from the rightmost bottom point of the
empirical climacogram, shows that the variability at the scale of 10 million years is about 65%
percent of the variability at the monthly scale. The essence of this value can be shown by
comparing this process with a process without any persistence e.g. a pure random white noise
process with Hurst coefficient, / = 0.5. The theoretical climacogram of a white noise process
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is visualized in Figure 3.8 through a blue dashed line. It seems that if the fluctuation of the sea
level rise was consistent with classical statistics and followed no persistence pattern the
reduction in variability to 65% percent (from 100% in the monthly scale) would appear at the
scale of only 3 months (1), calculated from the point of intersection of the blue dashed line of
the white noise process with the red horizontal dashed line. This huge difference of 3 months
against 10 million years (!) suggests enhanced change particularly at the large time scales. The
fact that the variability at large time scales remains at such a high percentage of the variability
at low time scales, also suggests that there is enhanced unpredictability — or else uncertainty,
aside from the predictable deterministic cycles affecting the sea-level process. This concludes
to the description of the existence of a long-term persistent behaviour (or Hurst-Kolmogorov
behaviour) of the sea-level process, on a scale span from months to ten million years.

2. Between the scale magnitudes of 10%to 10° years, a sudden drop of slope, and a steeper
general slope is observed for the time-series which depict process on this magnitude, namely
the Grant, Siddall, Waelbroeck and Spratt time-series. The magnitude of scale values where
the drop of slope of the climacogram occurs, coincides with the scale magnitude of the
Milankovitch cycles, as described in section 3.1.2. To show that this drop of model is due to
the deterministic harmonic oscillation caused by the Milankovitch cycles — as is also evident
from the spectral analysis of the aforementioned time series, described above — we construct
and describe later on, a stochastic FGN model, incorporating harmonic deterministic
oscillations (see section 3.3.3).

This drop of slope values is also followed by the de Boer and Miller (short) time-series on the
scale magnitudes of 10%to 10° years. The higher length of these time series allows us to better
understand the effect of the Milankovitch forcing, as after the scale values of 10° the
climacogram of the time-series becomes again flat, thus showing the continuation of the long-
term persistent behaviour after those scales.

Another, -milder- drop is observed for the time-series occurring on time scales of magnitude
10 to 107 years. This is also attributed to a deterministic forcing of cycles with eustatic origin
as described in Miller et al. (2011), which occur on million-year time-scale values. The effect
of these cycles can be studied more coherently if sea-level reconstruction data of higher time-
scale values are available.

3. Certain time-series, especially that of Jevrejeva, but also those of Topex/Poseidon satellite
altimetry observations, Church and White and Miller (short) reconstructions, show a flat part
and/or a rise of slope on the tail of the climacogram. Positive slope values of the climacogram
are inconsistent with the stochastic theory presented in Chapter 2, as they imply a negative
Hurst coefficient. The reason this inconsistency appears is because of data uncertainties (both
in sampling and ageing) combined with the bias in sample estimation (Koutsoyiannis 2003a,
2011b)*. The aforementioned studies show a method of bias estimation and extraction from the
climacogram values, which was not applied hereby.

4 Koutsoyiannis D (2003a) Climate change, the Hurst phenomenon, and hydrological statistics. Hydrol Sci J
48(1):3-24

Koutsoyiannis D (2011b) Hurst-Kolmogorov dynamics and uncertainty. ] Am Water Resour Assoc
47(3):481-495
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The reason for the flat or rising tail is related to the fact that the entire length of the
aforementioned time series is located on a branch of the process with a monotonic trend (see
the plotted windows of the respective time series e.g. Jevrejeva or Church and White). When a
longer time series is viewed, which shows that the monotonic trend is in fact part of a longer
fluctuation, the problem of the climacogram tail is indeed remedied. For this reason, we choose
to ignore the bias in the climacogram estimation.

4. For the scale magnitudes of 10 to 100 years, there was an important unavailability of data,
as the only study available was that of Kemp et al. (2011). The climacogram on this scale values
is fluctuating, as the resolution of the provided time-series is not adequate enough. The
consistency of the climacogram on these values with the rest of the combined climacogram
arises from consistency between slope of the time series for the scales before (Church and
White and Jevrejeva time-series) and after (Grant time-series) these values.

3.3.2 The theoretical climacogram

A theoretical climacogram is adapted to the empirical climacogram values by combining a
simple Hurst-Kolmogorov (HK) model with a harmonic model integrating different oscillation
periods, and modelling it to adapt to the form of the empirical climacogram:

1. For the Hurst-Kolmogorov (HK) model we use a simple and parsimonious edition of the
model as described in Chapter 2, section 2.5.1, Table 2.1:

y(4) = A(a/4)*~2 (3.1

where p(A) is the variance at scale A, H is the theoretical value of the Hurst coefficient for the
HK model and « and / are scaling factors.

Thus, the values of the standard deviation agg of the HK model are given by the simple power-
law relationship:

agg = ki 1g (3.2)

where ¢ is the combined scaling factor (which incorporates previously used factors o and )
that is equal to the first value of the theoretical climacogram:

=05 =1/12 (3.3)

The value of the Hurst coefficient is chosen through consecutive trials to follow the slope of
the log/log empirical climacogram plot, mainly on its beginning (scales 1/12 - 10%) and its tail
(scales 10°- 107). A value of H = 0.995 is chosen to reflect a maximization of uncertainty on
small and high scales, thus allowing to create an HK model with maximum long-term
persistence.
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2. For the harmonic model we incorporate three Milankovitch cycles, namely the precession
cycle with an approximate period of T1 = 21,000 years, the obliquity/axial tilt cycle with an
approximate period of T2 =41,000 years and the eccentricity cycle with an approximate period
of T3 = 100,000 years (Milankovitch 1941, Bolshakov 2008, Paillard 2010). A million-year
scale cycle, of eustatic origin is also incorporated in the model to account for the drop in the
empirical climacogram at time-scales of 10° to 107 years, with an approximate period of
T4 =1,200,000 years (Miller et al. 2011).

In section 2.5.3 the climacogram of a harmonic process is presented. Accounting to the
presented methodology, the four harmonic processes are incorporated into the theoretical
climacogram following equation (2.37), which formulates the climacogram of a harmonic
process:

ot = [ [ (ﬂk>| G4

where a(") is the aggregated standard deviation of the harmonic process, with time period T;,
for |—1,2,3,4.

3. The complete theoretical model consists of the sum of the climacogram values of the HK
model and the four harmonic models, each multiplied by a model weight coefficient wi, as
follows:

(k) (k)

— ()
O = W10r + Wa07

(k) (k)

+ w30y +wyo0p” + wsa(k) (3.5)

The values of the w; coefficients are chosen so that the plot of the climacogram of the
theoretical model agrees with the one of the combined empirical climacogram. The theoretical
model values, as well as the values of the w; coefficients are presented in Table 3.3. The
theoretical model spanning from scales of 1 month to 107 years is plotted with a thick
continuous red line in Figure 3.8. The red line plot fits perfectly the fluctuations of the empirical
climacogram, except for those sections analysed before, which will be furtherly examined in
the following section.

Table 3.3: Values of parameters and coefficients for the HK and the four Harmonic models

CoeffICIent

Harmonic T; T1=21,000 0.02
Harmonic T» T2=41,000 ®2 0.05
Harmonic T3 T3=100,000 ®3 0.10
Harmonic T4 T4=1,200,000 W4 0.05
Hurst-Kolmogorov H =0.995 ®5 0.78
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Standard Deviation

Figure 3.8: The combined empirical climacogram and the theoretical climacogram all in one plot. The dotted plots represent the empirical
climacogram plots of the various time-series shown with different colours on the legend. The thick continuous red line represents the theoretical
climacogram which consists of a combination of an HK model with H=0.995 and four harmonic models with T= 21,000, 41,000, 100,000 and
1,200,000 years respectively. The blue dashed line represents a white noise model with H=0.5. The purple dashed line shows the lowest standard
deviation value of the combined empirical climacogram, which is approximately o,/ =0.65.
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3.3.3 Effect of the deterministic forcing on the climacogram —
construction of an FGN model

As discussed in section 3.3.1 the drop of slope and the overall steeper slopes observed on the
combined climacogram of Figure 3.8 between the scale magnitudes of 10° to 10° years. It is
also discussed that this drop is attributed to deterministic forcing, especially the one arriving
from the effect of Milankovitch cycles, as they occur on time periods of approximately 21,000,
41,000 and 100,000 years. The effect of the Milankovitch cycles is not only seen on the time
series that show a steep and important drop of slope (those of Grant, Siddall, Waelbroeck and
Spratt), but also on those of Deboer and Miller (Short), which while having a head and a tail
of constant slope, they follow a drop between 10*and 10° years. The theoretical climacogram
discussed on section 3.3.2, incorporating harmonic deterministic functions together with and
HK model, accounts for this forcing and follows the slope of the empirical climacogram of
Deboer and Miller (Short).

To evaluate completely the adaptability of the theoretical climacogram to the empirical data,
but also to evaluate the effect of deterministic forcing of Milankovitch cycles, on the sea-level
variable, the construction of a stochastic reproduction of the sea-level time process, on the
scale magnitudes of concern is followed here. To account for and to preserve the main
elements of concern on variability and the climacogram which are the short-term correlation
(represented through the autocorrelation factor) as well as the long-term correlation
(represented through the Hurst coefficient) an FGN model is constructed. The FGN model, as
discussed on section 2.5.2 has the ability not only to preserve the autocorrelation of small lags,
but also to preserve the long-term correlation of the time series, e.g. the long-term persistence
through the Hurst coefficient. The combination of an FGN model which adapts to the Hurst
values of the theoretical HK model constructed on section 3.2.3, with a harmonic model as
the one used in the theoretical model, creates a combined FGN/Harmonic model, the
characteristic values of which are based on the theoretical model. This allows for a random
generation of synthetic time-series on the modeled scale values and plotting of their
climacograms. To show adaptability with the empirical climacograms, the climacogram of a
synthetic time series generated through the combined FGN/Harmonic model, with length
equal to a time series occurring on scale magnitudes of 10*to 10° years, should follow the
drop of slope of the empirical climacogram on scale magnitudes of 10*to 10° years.

For the construction of the FGN model we follow the methodology presented on section 2.5.2.
The general equations of the model follow equations (2.31) and (2.32), combining three AR(1)
autoregressive models. The FGN model preserves the mean value and the standard deviation
of the modeled time-series, as well as the first-lag autocorrelation factor (p1), and the Hurst
coefficient of the theoretical model. The factors which are needed to construct the
autocorrelation structure of the FGN model are calculated through equations (2.33) — (2.36).
The constructed FGN model is then combined with the harmonic model through the same
methodology that was followed to create the theoretical model in section (3.3.2) but also
through preserving the same values of the model coefficient factors wi.

The climacogram of the combined FGN/Harmonic model is calculated as follows.

k K K k K K
Uéva/Harmonic = w10;1) + wzagz) + w3 0;3) + W, 054) + wsaéagv (3.5)
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where the factors wi and the rest of the model values (periods T7i, Hurst Coefficient H), are
equal to the ones referenced in Table 3.3.

After the set-up we utilize the FGN/Harmonic model, by considering as model time-series one
following the statistical characteristics, the resolution (time-step) and length of data of the
reconstruction of Spratt et al. (2016), which falls on the time-scales of interest. Thus, by
generating a synthetic-time series through the FGN/Harmonic model with time-step of 1000
years, and length » = 1000, and plotting its climacogram, its values would fall on the same
scale level as the Spratt time series on the climacogram e.g. on scale magnitudes of 10* to 10°
years.

This is visualized in Figure 3.9, where the climacogram of a synthetic time-series generated
by the FGN/Harmonic model, plotted with red dots, not only falls on the scale magnitudes
discussed above but also preserves the exact slope that the empirical climacogram data follow,
not only that of the Spratt time series, but from all the rest of the time series occurring on these
scales starting from the Grant time series (102 scale) up to Spratt (10° scale).

This agreement between the FGN/Harmonic model, which is based on the characteristics of
the theoretical model in section 3.3.2, and the empirical data, shows the agreement between
the general theoretical model (red line on the climacogram plot) and the empirical data, as on
the theoretical model agrees with the drop of slope, when considering a time series of equal
length as to those occurring on the time scale range where the slope is dropping. Also, the
agreement shows the drastic deterministic forcing of the Milankovitch cycles on the time-
scale range where they occur, as the climacogram drops to a slope close to 0.5 which would
signify close-to-zero uncertainty. At the same time, the differentiation of the slope before and
after this time-scale values, shows that uncertainty works vice-versa for the time scales where
the deterministic forcing does not occur, preserving great persistent behaviour (thus
uncertainty). Altogether, the good adaptation of the theoretical model to the empirical data,
describes a general long-term persistent behaviour of the sea-level variable on a multiple time
scales, as also discussed above.
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Standard Deviation

Figure 3.9: The combined climacogram is ploted both for the empirical part (coloured dots) and the theoretical model (red line), for scale
values between 103 and 106 years. Additionally, the climacogram of a random realization of the FGN/Harmonic model is plotted with red filed
dots
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Chapter 4: Variability and Persistence in
Sea Surface Temperature and the El Nino
Southern Oscillation

In this part of the study, various measurements and reconstructions of the recent
evolution of the Sea Surface Temperature (SST) variable, are analyzed through
stochastic tools. The El Nifio Southern Oscillation (ENSO) in the equatorial Pacific,
which affects the SST and the whole climatic stability of the planet is also analyzed
here.

4.1 The ENSO phenomenon and SST variability

We describe the basic definition and physical explanation of the ENSO phenomenon
with a description taken from the National Oceanic and Atmospheric Administration
(NOAA) of the United States Department of commerce®:

The El Ninio-Southern Oscillation (ENSO) is a periodic fluctuation in sea surface
temperature (El Nifio) and the air pressure of the overlying atmosphere (Southern
Oscillation) across the equatorial Pacific Ocean. The term El “Nifio” (the boy in
Spanish) stems from early Christian inhabitants of western equatorial South
America, who equated the warm water current at the finish of the year, when the
ENSO oscillation caused a peak of water warming and the resulting impacts in local
fishing and other activities, with their holiday celebrating the birth of Jesus.

The Southern Oscillation describes a bimodal variation in sea level barometric
pressure between observation stations at Darwin, Australia and Tahiti. It is
quantified in the Southern Oscillation Index (SOI), which is a standardized
difference between the two barometric pressures. Normally, lower pressure over
Darwin and higher pressure over Tahiti encourages a circulation of air from east to
west, drawing warm surface water westward and bringing precipitation to Australia
and the western Pacific. When the pressure difference weakens, which is strongly
coincidental with El Nifio conditions, parts of the western Pacific, such as Australia
experience severe drought, while across the ocean, heavy precipitation can bring
flooding to the west coast of equatorial South America.

The SOI is one measure of the large-scale fluctuations in air pressure occurring
between the western and eastern tropical Pacific (i.e., the state of the Southern
Oscillation) during EI Nifio and La Ninia episodes. In general, smoothed time series
of the SOI correspond very well with changes in ocean temperatures across the
eastern tropical Pacific. The negative phase of the SOI represents below-normal air

5 https://www.ncdc.noaa.gov/teleconnections/enso/enso-tech.php
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pressure at Tahiti and above-normal air pressure at Darwin. Prolonged periods of
negative (positive) SOI values coincide with abnormally warm (cold) ocean waters
across the eastern tropical Pacific typical of El Nifio (La Nifia) episodes. The
evolution of the SOI index values through the years 1951-2018 is depicted in Figure
4.2.

Although the exact initiating causes of an ENSO warm or cool event are not fully
understood, the two components of ENSO — sea surface temperature and
atmospheric pressure are strongly related. During an El Nifio event, the easterly
trade winds converging across the equatorial Pacific weaken. This in turn slows the
ocean current that draws surface water away from the western coast of South
America and reduces the upwelling of cold, nutrient—rich water from the deeper
ocean, flattening out the thermocline and allowing warm surface water to build in
the eastern part of the basin.

The strengthening and weakening of the trade winds is a function of changes in the
pressure gradient of the atmosphere over the tropical Pacific. Ironically, the
warming of the sea surface works to decrease the atmospheric pressure above it by
transferring more heat to the atmosphere and making it more buoyant. So, in
summary, the pressure gradient affects the sea surface temperatures, and the sea
surface temperatures affect the pressure gradient. These mechanics are illustrated
in Figure 4.1 (a).

The connection between the Southern Oscillation and precipitation is also manifest
in the quantity of long—wave (e.g., infrared) radiation leaving the atmosphere.
Under clear skies, a great deal of the long—wave radiation released into the
atmosphere from the surface can escape into space. Under cloudy skies, some of
this radiation is prevented from escaping. Satellites are able to measure the amount
of long—wave radiation reaching space, and from these observations, the relative
amount of convection in different parts of the basin can be estimated.

Monitoring of ENSO conditions primarily focuses on sea surface temperature (SST)
anomalies in 4 geographic regions of the equatorial Pacific (see image to the right).
SST anomalies equal to or greater than 0.5°C (0.9°F) in the Niio 3.4 region
(comprising portions of Nifio regions 3 and 4, from 170°W to 120°W longitude) are
indicative of ENSO warm phase (El Nifio) conditions, while anomalies less than or
equal to —0.5°C (—0.9°F) are associated with cool phase (La Nifia) conditions. Nifio
3.4 SST anomalies are averaged over the three months ending with the current
month, and that value is called the Oceanic Nifio Index (ONI). If the ONI exhibits
warm or cool phase conditions for at least five consecutive values, it officially
becomes an El Niiio or La Nifia event. The geographic regions of ENSO are shown
in Figure 4.1 (c). Figure 4.3 depicts the SST variability in the Nino 4.3 area through
the years 2000-2018.

In addition, the thermal expansion of the warming water in the eastern part of the
basin measurably raises sea level in these regions, and this change in sea level can
be measured by satellite sensors. Therefore, variations in sea level are good
indicators of the presence of an El Nifio. During an El Nifio, sea level in the eastern
Pacific is well above average, while during a La Nifia, the increased flow of cold
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deep water to the surface acts to lower the sea level. Sea level fluctuations in the El
Nifio and La Nifia phases are pictured in Figure 4.1 (b).
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Figure 4.1: a. Driving physical mechanisms in Neutral and EI Nifio
conditions b. Sea level anomalies in El Nifio and La Nifia events
c. Geographic regions of ENSO. Source: NOAA
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the years 2000-2018. Source: NOAA
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4.2 Variability, persistence and climacogram of ENSO
measured and reconstructed indexes, on mulfiple time
scales

The ENSO variability, can be studied through the record of its indexes. The basic
indices, through which the evolution of the ENSO phenomenon is observed, namely
the Southern Oscillation Index (SOI), and the Oceanic Nifio Index (ONI) have been
presented in Section 4.1. In this chapter we will analyse the variability of the ENSO
phenomenon on different time-scales through observed and reconstructed time-series
of ENSO indices. In addition to the observed data, reconstructed value of indices
through various proxies are utilized. The tool used to study the variability is the
climacogram, presented on Chapter 2 and used to study the behaviour of the variability
and the persistence of the time-series.

The ONI index for the years 1950-2018 is derived from the ERSSTv5 data (Huang et
al., 2017) through an application of a high frequency filter. The data is provided by the
National Oceanic and Atmospheric Administration (NOAA)®, in a 3-month running
mean of ERSSTv5 SST anomalies in the Nifio 3.4 region (5°N-5°S, 120°-170°W).
Periods which surpass the threshold of +/- 0.5°C for five consecutive values, are
considered to exhibit an El Nifio or a La Nifia phenomenon, for a positive or negative
temperature values accordingly.

The SOI index is provided from two sources: The National Climate Centre of the
Bureau of Meteorology of the Australian Government’ provides a SOI index monthly
time-series for the time period of 1876-2017 based on the monthly Mean Sea Level
Pressure (MSLP) time-series of the Darwin and Tahiti stations. Additionally, the
Climatic Research Unit of the University of East Anglia® also calculated through the
normalized difference of the MSLP of the Darwin and Tahiti stations (Ropelewski and
Jones, 1987), creating a time series of the SOI index for the years 1866-2017.

The three indices are represented in Figure 4.4, where their values have been normalised
by subtracting the mean and diving by the standard deviation of each time series, in
order for them to follow a common distribution. The high adaptation between the two
SOI index time-series, and the variability of the ENSO phenomenon through the last
century is evident from this figure.

& Available online:
http://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php

7 Available online: http://www.bom.gov.au/climate/current/soihtm1.shtml
8 Available online: https://crudata.uea.ac.uk/cru/data/soi/
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Figure 4.4: ONI Index for the years 1950-2018 (Source: NOAA), SOI
Index for the years 1876-2017 (Source: BMC Australia), SOI Index for the
vears 1866-2017 (Source: University of East Anglia). All indices have
been normalised

Li et al. (2013) reconstructed a seven-century-long ENSO index based on 2,222 tree-
ring chronologies from both the tropics and mid-latitudes in both hemispheres. The
authors derive certain conclusions from the reconstructed data:

“Our results show marked interdecadal—centennial variations in ENSO amplitude that
modulate its effects on extratropical climate, suggesting that ENSO variance, rather
than alternative mechanisms such as mid-latitude waveguide modulation, is a primary
control of the modulations. On longer timescales, ENSO variance is low in the early
LIA period and high in the twentieth century. The elevated ENSO variability in recent
decades is unprecedented over the past seven centuries, suggesting a response to
increased anthropogenic radiative forcing [...] Although ENSO is an internal mode of
the coupled system, our analysis with a large sample size reveals a robust response to
large tropical volcanic eruptions. [...] The response to the 11-year solar cycle is
inconsistent in phase over the record, possibly because of weak forcing”

The reconstructed time series of the ENSO Index based on Tree Ring data is visualized
in Figure 4.5 for the years 900-2000 A.D.
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Figure 4.5: Reconstructed SOI Index through tree-ring data for the years
900-2000 from Li et al. (2013)

McGregor et al. (2010) combined different proxy reconstructions of ENSO indices to
consolidate their common signal into one individual proxy titled the Unified ENSO
Proxy (UEP). The study presents a high correlation between the UEP and the proxies
used for its construction, and according to the authors it “provides better representation
of observed indices of ENSO, discrete ENSO events and documented historical
chronologies of ENSO than any of the input ENSO reconstructions”. Additionally, this
study shows shows that “multi-year El Nino events similar to the 1990—1995 event have
occurred several times over the last 3 1/2 centuries” and is consistent with the
previously presented study of Li et al. (2013) in showing the effect of volcanic eruptions
on ENSO variability. The UEP reconstruction over the period 1650-1977 is illustrated
in Figure 4.6

Lastly, Moy et al. measured and constructed a record of sedimentation in Laguna
Pallcacocha, southern Ecuador, which is strongly influenced by ENSO variability, and
covers the past 12,000 years continuously. The authors “find that changes on a
timescale of 2—-8 years, which we attribute to warm ENSO events, become more frequent
over the Holocene until about 1,200 years ago, and then decline towards the present.
Periods of relatively high and low ENSO activity, alternating at a timescale of about
2,000 years, are superimposed on this long-term trend. We attribute the long-term trend
to orbitally induced changes in insolation and suggest internal ENSO dynamics as a
possible cause of the millennial variability.”. The reconstructed 11,000-year Laguna
Pallcacocha Sediment Red Colour Intensity data, that is used as a proxy of the ENSO
phenomenon, and depicted in Figure 4.7, shows a low concentration of ENSO events
in the early Holocene, followed by an increasing occurrence after 7,000 years before
present (B.P.), with a peak event frequency around 1,200 years B.P and a decline then
onwards. Additionally, around 5,000 years B.P. the periodical oscillation shifts from a
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Unified ENSO Proxy

Laguna Pallcacocha Sediment

1,500-year period in the middle/early Holocene to a 2,000-year period in the late
Holocene. It is shown that internal mechanisms of ENSO variability, in addition with
deterministic orbital and carbon cycle forcings, account for this oscillation periods and
their shifts through the Holocene era. This will also be shown in the climacogram of
the time-series.
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Figure 4.6: Unified ENSO Proxy reconstruction for the years 1650-1977
from McGregor et al. (2010)
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Figure 4.7: Red Intensity of the Laguna Pallcacocha Sediment through a
period of 11,000 years before present from Moy et al. (2002)
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The climacograms are constructed through the methodology presented in Chapter 2.
The aggregated standard deviation o of each of the time-series present before, is
calculated for multiple scales k, and their values are plotted on a log-log plot.

As stated in Chapter 2, the slope o of the log-log plot signifies the value of the Hurst
Coefficient via the equation:

a=1—H (4.1)

Although many values of scales k are plotted in the climacograms presented here, the
value of the Hurst Coefficient is only for the part of the climacogram that combines
the following criteria:

Shows a constant linear slope, usually occurring after several small time-
scales on which a more horizontal slope is found, due to bias on small-time
scale values.

Does not exceed the scale value of k = L / 10, where L is the time Length of the
time-series, calculated as the product of the data length of the time series n with
its time step (or resolution).

The climacograms of the ENSO indices time-series are shown through Figures 4.8-
4.13. The slope which is used to calculate the value of the Hurst Coefficient is shown
with a red line in Figures 4.8-4.12 and with dashed lines in Figure 4.13. The values of
the Length, the time step and the Hurst Coefficient of each time-series are presented in
Table 4.1.

Here we present basic conclusions on the ENSO variability and persistent behaviour:

1. The climacogram of the ONI index (Figure 4.8), shows a strong anti-persistent

behaviour, with a Hurst Coefficient of H = (.166 for scales of 2 months to
almost a yearly scale. An anti-persistent behaviour also applies for the two SOI
index time-series, on the same scales, but with much higher Hurst Coefficient
values (less strong anti-persistence), of H = 0.398 for the BMC Australia time-
series (Figure 4.9) and H = 0.462 for the East Anglia time-series (Figure 4.10).
This is easily understood and explained from the variability of the ENSO indices
that portray a fluctuation between opposite “El Nino” and “La Nina” phases,
shown by positive and negative values on their indices. The anti-persistent
behaviour signifies exactly this “switch” between high and low values. The
existence of a long-term anti-persistence behaviour can be examined by
observing the climacogram of time-series occurring on higher scale values.
The climacograms of the Li et al. (2013), (Figure 4.11) and the McGregor et al.
(2010) (Figure 4.12) ENSO index reconstructions, show the occurrence of an
anti-persistent behaviour on higher time scales of 10 to 100 years, which can
signify a long-term anti-persistent behaviour of the ENSO phenomenon on these
time-scales. Specifically, the values of H = 0.384 for the firstand H = 0.225 for
the second time-series are low enough to support the previous argument.
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3. The climacogram of Moy et al. (2002) Red Intensity data (Figure 4.13), which
illustrates the behaviour of the ENSO variability on time scales spanning 10 to
~1.1 thousand years, shows a different behaviour. A long-term persistent
behaviour is observed through scales of 10 to ~300 years, with a constant slope
depicting a Hurst Coefficient of H = 0.84. This result coincides with that of
Wang and Tsonis (2008), which noted a Hurst Coefficient of H = (.85 for the
Red Intensity time-series, through a method of calculation different than the
climacogram. After the scale of ~300 years a fluctuation occurs at the
climacogram until the scale of ~500 years which turns into a constant drop of
slope until the scale of ~1.1 years, depicting a very low Hurst Coefficient value
of H = 0.08. This signifies two cases: (a) An anti-persistent behaviour occurring
on higher time-scales for the ENSO phenomenon, and/or (b) A deterministic
forcing, and a periodical cycle occurring through the time-series on these scales
which creates a sudden drop on the climacogram (see Chapters 2 and 3). As
discussed in Moy et al. (2002) the latter case is evident by orbital and carbon
cycle forcings which occur on the time scale periods from ~1.500-2000, but also
internal ENSO variability that creates a fluctuation on these periods. The shape
of the climacogram reaffirms this statement. The strong persistent behaviour
found on low time scales shows a strong internal variability of the ENSO
phenomenon while the sudden drop can be accounted to periodical external
forces. The combination of these two processes on a theoretical model, creating
the theoretical climacogram of the ENSO process, in the same means that it is
carried on in Chapter 3, could easily coincide with the values of the empeirical
climacogram.

Overall it is observed through the climacogram analysis that the ENSO process,
exhibits a strong anti-persistent behaviour on time scale values of 2 months to 1
year, but also on higher time scale values of 10-100 years. A strong persistent
behaviour on medium scales appearing on the climacogram of the Red Intensity
data possibly shows strong internal variability of the ENSO phenomenon, and high
uncertainty in its evolution on this time-scales. Finally, the drop of the climacogram
on time scales of ~1,000 years, shows the effect of periodical deterministic forcings
such as orbital cycles on the ENSO variability.

Table 4.1 Properties of the ENSO indices time-series

Time-series Length (L) Original (O) or Hurst Coefficient
Source (years) Regularized (R) (H)
Resolution (A)
(years)

NOAA (ONI) 68 1/12 (O) 0.166
BMC Australia 141 1/12 (O) 0.398
Uni. East Anglia 151 1/12 (O) 0.462
Li et al. (2013) 1100 1(0) 0.384
McGregor et al. (2010) 327 1(0) 0.225

Moy et al. (2002) 11,000 1(R) 0.84 (k=10-300)

0.08 (k=500-1100)
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Figure 4.8: Climacogram of the ONI index, scale values in months.
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Figure 4.9: Climacogram of the SOI index, scale values in months.
Source: BMC Australia
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Figure 4.10: Climacogram of the SOI index, scale values in months.
Source: University of East Anglia
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Figure 4.11: Climacogram of the tree-ring reconstructed ENSO index by
Lietal (2013), scale values in years.
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Figure 4.12: Climacogram of the Unified ENSO Proxy index by
McGregor et al. (2010), scale values in years.
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Figure 4.13: Climacogram of the Pallcacocha Red Intensity proxy by

Moy et al. (2002), scale values in years.
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4.3 Spatial and temporal persistence in the global SST
reconstruction

The Extended Reconstructed Sea Surface Temperature (ERSST) dataset (Huang et al.
2015a, Liu et al. 2015) is a global monthly sea surface temperature analysis on a 2x2
degree grid derived from the International Comprehensive Ocean-Atmosphere Dataset
(ICOADS). The latest ERSST Version 5 (Huang et al. 2017) is used for this study,
which provides a global gridded SST reconstruction from the year 1854 until the year
2018°.

The Extended Reconstructed Sea Surface Temperature (ERSST) dataset is a global
monthly sea surface temperature dataset derived from the International Comprehensive
Ocean-Atmosphere Dataset (ICOADS). Production of the ERSST is on a 2° x 2° grid
with spatial completeness enhanced using statistical methods. This monthly analysis
begins in January 1854 continuing to the present and includes anomalies computed with
respect to a 1971-2000 monthly climatology.

The original gridded time-series has a monthly time resolution. In order to analyze its
properties, the time series is presented into three forms, of which the first is the original
one, and the other two are created through averaging:

(@) The original monthly time-series
(b) An aggregated annual time-series
(c) The twelve annual time series for each of the twelve months of the year.

Through the two transformations of the original time-series the cyclostationarity,
evident in the evolution of the autocorrelation structure as shown later, is removed, and
thus the persistence can be observed.

The autocorrelation structure of these three gridded time series is analyzed by
examining the evolution of the autocorrelation factor (ACF) through time lag, and the
value of the Hurst coefficient which portrays the long-term correlation or persistence
statue in the time-series. The ACF is calculated through a simple algorithm for the
autocorrelation function as shown in equation (2.8) of Chapter 2. The Hurst coefficient
is calculated through a simple algorithm for an averaged process at scale A, as shown
in equation T2.4 of Table 2 in Chapter 2. It is reminded here that:

. For H = 0.5 the process reduces to pure white noise.

. For 0.5 < H < 1 the process exhibits Long Term Persistence (or Long-Range
Dependence) and is called a persistent process.

. For 0 <H < 0.5 1t is called an anti-persistent process.

® Data can be accessed through the site of NOOA: https://data.nodc.noaa.gov/cgi-
bin/iso?id=gov.noaa.ncdc:C00884
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We present here the results of the algorithms on gridded figures with the same spatial
analysis as the original ERSST data:

1. The values of the Hurst Coefficient for the monthly time-series (a) are
illustrated in Figure 4.14

2. The values of the Hurst Coefficient for the annual time-series (b) are
illustrated in Figure 4.15

3. The values of the Hurst Coefficient for the twelve annual time-series for the
twelve months of the year (c) are illustrated in the twelve windows of Figure
4.16

4. The values of the ACF for the monthly time-series (a) for monthly time lags
of 2 consecutive years (24 total values) are illustrated in the twenty-four
windows of Figure 4.17 (a and b).

5. The values of the ACF for the annual time series (b) for annual lags for 24
consecutive years are illustrated in the twenty-four windows of Figure 4.18
(aand b).

6. The values of the ACF for the twelve annual time-series for the twelve
months of the year (c), for a time lag of one year are illustrated in the twelve
windows of Figure 4.19.

By examining the values of the Hurst Coefficient of the monthly ERSST time-series
(@), in Figure 4.14, strong H values are observed through various oceanic regions
around the equator. Specifically values of Hurst coefficient greater than (.75 are
concentrated in the area of the equatorial pacific especially in the Nino 3.4 and Nino 4
areas, but also in the Indonesian seas, the northern Indian ocean and the equatorial
Atlantic. Additional areas of high Hurst values are spotted southwards but are outside
of the purposes analyzed here.

By examining the ACF evolution for the monthly ERSST time-series (a), through
monthly lags, in Figure 4.17 we can observe evidence of an annual cyclostationarity in
the modeled time-series. Characteristically, the twelve windows for the monthly lags
of 1-12 show identical shape with those for lags of 13-24 months. In the second case,
the monthly evolution of the ACF values in preserved, due to internal cyclostationarity
of the time-series, while the high ACF values observed during the first-year lags (lags
1-12 months), are decreasing. The picture of windows 13-24, depicted in Figure 4.7b is
repeating for longer modeled time lags up to 10 years, as the high autocorrelation values
have already dropped from year 2 (after ~24 lags). For this reason, no more time
windows were illustrated here. Consequently, the internal cyclostationarity needs to be
firstly removed to unmask long-term persistence through the Hurst Coefficient, as the
high H values depicted in Figure 4.14, which spatially coincide with those of Figure
4.17 in the equatorial Pacific, are affected by the cyclostationarity. This is done by
creating the aggregated time series (b) and (c) as explained earlier and analyzing the
ACF and the Hurst Coefficient in these time series.

By examining the Hurst Coefficient of the annual ERSST time-series (b), in Figure
4.15, the picture is reversed. Strong Hurst coefficient values, larger than 0.75, even
reaching higher than 0.9 in many cases, are observed throughout the globe, showing an
intense persistent behavior of the SST variable. At the same time, in Nino 3 (including
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3.4) and 1,2 areas the values of Hurst coefficient are around 0.5, moving to less than
0.5 in Nino 1,2 areas. This implies a white-noise behavior of the SST in the area of the
Nino 3.4 area, while at the same time a mild anti-persistent behavior in Nino 1,2 and
part of the Nino 3 area. The first is attributed to the cyclical pattern of the EI Nino
phenomenon, which while not strictly periodical follows a biennial to septennial cycle,
at the modeled time-scale. The latter agrees with the climacogram studies of the
measured and reconstructed Nino Indexes time-series, analyzed in Chapter 4.2, which
show anti-persistent behavior on small time scales.

By examining the ACF evolution for the annual ERSST time-series (b), through Figure
4.18, we observe the exact pattern depicted through the Hurst coefficient, on the first
window, which shows the ACF for a lag of 1 year. Following the increase of yearly
lags, we can note a strong auto-correlation structure on certain areas of the Pacific
Ocean, which imply long-term persistent behavior that explains a part of the persistence
shown in Figures 4.14 and 4.17 which is not masked by the monthly time-series
cyclostationarity. Still, some of the values of the annual time-series are masked by
internal cyclostationarity, which is only fully removed through the separation of the
time-series for each month, done in formation (c), analyzed here onwards.

By examining the Hurst coefficient for the annual ERSST time-series for each of the
twelve months of the year (c), in Figure 4.16, we observe a pattern common to that of
Figure 4.15. This shows that cyclostationarity has been removed, when the annual time-
series is plotted. Even more, in Figure 4.16 the anti-persistent behavior in Nino 3.4, 3,
2 and 1 regions is more evident, as the Hurst coefficient reaches values of 0.3 for
specific months in the area of the EI Nino Oscillation. Additionally, the length of the
anti-persistent (blue-coloured) area, which changes depending on the modeled month
might be connected to the months of strong ENSO presence in the equatorial. The ACF
for lag values of 1 year for the same time-series, depicted in Figure 4.19, shows the
same pattern as that of Figure 4.6, with low ACF values in Nino areas and an important
autocorrelation structure in some areas of the Pacific Ocean.
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Figure 4.14 (top) and Figure 4.15 (bottom): Hurst Coefficient (H) values
of the Monthly (top) and the Annual (bottom) ERSSTvS time-series
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Figure 4.16: Hurst Coefficient (H) values of the twelve Annual ERSSTv5
time-series for each of the twelve months of the year.
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