ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΑΤΙΝΩΝ ΠΟΡΩΝ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

Πολυμεταβλητή στατιστική ανάλυση ακραίων βροχοπτώσεων και παροχών σε δείγμα 400 λεκανών απορροής των ΗΠΑ από τη βάση δεδομένων MOPEX

Μαρία Νέζη

Επιβλέπων καθηγητής: Ευστρατιάδης Ανδρέας, Δρ. Πολιτικός Μηχανικός, ΕΔΙΠ ΕΜΠ Υπεύθυνος καθηγητής: Μαμάσης Νίκος, Αν. Καθηγητής

Αθήνα Νοέμβριος 2018

Copyright © Μαρία Νέζη, 2018.

Με επιφύλαξη παντός δικαιώματος. All rights reserved. Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ ολοκλήρου ή τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση, αποθήκευση και διανομή για σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόθεση να αναφέρεται η πηγή προέλευσης και να διατηρείται το παρόν μήνυμα. Ερωτήματα που αφορούν τη χρήση της εργασίας για κερδοσκοπικό σκοπό πρέπει να απευθύνονται προς τον συγγραφέα.

What we observe is not nature itself, but nature exposed to our method of questioning Werner Heisenberg

Ευχαριστίες

Ολοκληρώνοντας αυτές τις γραμμές, φτάνει στο τέλος της η διπλωματική μου εργασία και ταυτόχρονα ολοκληρώνονται τα χρόνια φοίτησης μου στη Σχολή Πολιτικών Μηχανικών ΕΜΠ.

Μέσα σε ένα κυκεώνα συναισθημάτων συνειδητοποιώ πως κλείνει το σημαντικότερο ως τώρα κεφάλαιο της ζωής μου. Αναλογιζόμενη, τον εαυτό μου ως μαθήτρια πριν έξι χρόνια και ως απόφοιτο μηχανικό σήμερα, αντιλαμβάνομαι το πόσο διαφορετική με έπλασε και με διαμόρφωσε αυτή η σχολή και κρίνω απαραίτητο να αναφερθώ στους ανθρώπου που έπαιξαν καθοριστικό ρόλο στην ανέλιξη μου αυτή.

Αρχικώς, οφείλω ένα μεγάλο ευχαριστώ στον κ. Ανδρέα Ευστρατιάδη, Δρ. Πολιτικό Μηχανικό, ΕΔΙΠ ΕΜΠ, για την ιδέα και ανάθεση αυτής της διπλωματικής. Χωρίς τη συνεχή καθοδήγηση αλλά και την εμπιστοσύνη που μου επέδειξε, η ολοκλήρωση της οποίας θα ήταν αδύνατη. Το ακαδημαϊκό και προσωπικό του ήθος και η αγάπη του για τους φοιτητές τον καθιστά πρότυπο καθηγητή.

Εν συνέχεια, θα ήθελα να ευχαριστήσω το πρώην κοσμήτορα της Σχολής Πολιτικών Μηχανικών ΕΜΠ και καθηγητή μου, και να εκφράσω τον θαυμασμό μου τόσο για το επιστημονικό του έργο όσο και για την διδακτική του προσφορά, κ. Δημήτρη Κουτσογιάννη. Μέσα από την καθοδήγηση και προτροπή του, είχα την ευκαιρία να συμμετάσχω στο πρώτο μου συνέδριο το 2018 στην EGU με ένα εξαιρετικά ενδιαφέρον θέμα πάνω στην στοχαστική ανάλυση. Η συμμετοχή αυτή, μου έδωσε την δυνατότητα να αποκτήσω μια σφαιρικότερη αντίληψη πάνω έρευνες επιστημονικού περιεχομένου και αποτελεί μια από της σημαντικότερες εμπειρίες του κύκλου φοίτησης μου.

Ακόμα, αξίζει να ευχαριστήσω τον κ. Νίκο Μαμάση, αναπληρωτή καθηγητή ΕΜΠ για την ειλικρινή και εμπειρική τοποθέτηση του σε θέματα εκτός και εντός σχολής.

Στα πλαίσια της εργασίας σημαντικό ρόλο, είχε ο Γιάννης Τσουκαλάς (Υ.Δ.) που ήταν πάντα εκεί για τις απορίες μου και πάντα πρόθυμος να με βοηθήσει.

Θα ήθελα ακόμα, να πω ένα μεγάλο ευχαριστώ στον Παναγιώτη Δημητριάδη για την αμέριστη συμβολή του στην παρουσίαση της μελέτης που παρουσιάστηκε στα πλαίσια του μαθήματος «Στοχαστικές Μέθοδοι» στην EGU φέτος. Αποτελεί υπόδειγμα ανθρώπου και επιστήμονα για την άοκνη συμμετοχή του και συμβουλευτική του παρουσία τόσο σε θέματα εντός όσο και εκτός σχολής. Είναι πάντα εκεί για να ακούσει της απορίες και τις ανησυχίες των φοιτητών του, γεμάτος καινούριες ιδέες και όρεξη. Η παρουσία και ακαδημαϊκή προσφορά του συμβάλουν στην ανάδειξη της ποιότητα αυτού του ιδρύματος. Σε προσωπικό επίπεδο, θα ήθελα να ευχαριστήσω τους φίλους μου που ήταν δίπλα μου σε όλα τα χρόνια της φοιτητικής μου πορείας, στα δύσκολα και ευκολά και που χωρίς εκείνους όλο αυτό το ταξίδι θα ήταν φτωχότερο, Γιάννη Τιπτιρή, Γεωργία Νικολακάκου και Γιώργο Πολλάκη. Ακόμα θα ήθελα να ευχαριστήσω, τον καλό μου φίλο Χαράλαμπο Ντιγκάκη, για την αμέριστη συμπαράσταση και ανοχή που επέδειξε στις ιδιοτροπίες μου τα δύο τελευταία χρόνια. Θα ήθελα, ακόμα, να ευχαριστήσω τον Γιώργο Πουλιάση για την συνεχή έμπνευση που μου πρόσφερε και για την στήριξη του στις στιγμές απογοήτευσης και ανησυχίας που πέρασα.

Τέλος, το πιο μεγάλο ευχαριστώ το οφείλω στην οικογένεια μου, στον πατέρα μου Παναγιώτη, την μητέρα μου Γεωργία και τον αδερφό μου Γιώργο για την αγάπη, την υπομονή και την πίστη που μου έδειξαν και που χωρίς εκείνους τίποτα από όλο αυτά δεν θα μπορούσε να πραγματοποιηθεί. Η στάση ζωής και φιλοσοφίας τους αποτέλεσε κίνητρο και πρότυπο για εμένα, που μου έδωσε τη απαραίτητη δύναμη που χρειαζόμουν για να συνεχίσω. Τους ευχαριστώ για όλα.

Μαρία Νέζη

Αθήνα, 2018

Περίληψη

Η ανάλυση των ακραίων βροχοπτώσεων απαιτεί μια πολυδιάστατη προσέγγιση με υψηλά επίπεδα αβεβαιότητας. Η πιο διαδεδομένη πιθανοτική κατανομή που χρησιμοποιείται για να περιγράψει τις ετήσιες μέγιστες τιμές βροχόπτωσης είναι η Γενικευμένη Ακραίων Τιμών (ΓΑΤ). Βασισμένη στην θεωρίας ακραίων τιμών, η ΓΚΜ κατανομή, συμπτύσσει τρεις οικογένειες ασυμπτωτικών κατανομών, (α) την κατανομή Gumbel Τύπου Ι, (β) την κατανομή Fréchet Τύπου ΙΙ και (γ) την κατανομή Weibull Τύπου ΙΙ.

Η δίαιτα των ακραίων ετήσιων βροχοπτώσεων επηρεάζεται από πληθώρα παραγόντων. Στην παρούσα διπλωματική εργασία, εξετάζουμε την επιρροή που έχει η εδαφική υγρασία, εκφρασμένη σε συσσωρευμένη βροχόπτωση πριν από την εκδήλωση των ετήσιων ακραίων τιμών βροχής και απορροής. Αυτή η στατιστική ανάλυση εφαρμόζεται σε 400 λεκάνες απορροής στην Αμερική και χρησιμοποιεί την Γενικευμένη Ακραίων Τιμών προσαρμοσμένη από την μέθοδο Lροπών, σε μια προσπάθεια εκτίμησης των στατιστικών παραμέτρων των δειγμάτων των μέγιστων ετήσιων βροχοπτώσεων, απορροών και συναθροισμένων βροχοπτώσεων.

Στην στατιστική μελέτη, το χρονικό βήμα προηγούμενης ημερήσιας βροχόπτωσης εκτιμάται σε ποικίλα χρονικά βήματα, ξεκινώντας από πέντε έως τριάντα ημέρες πριν των ακραία παρατήρηση. Αυτή η ανάλυση επικεντρώνεται στην αναζήτηση συσχετίσεων μεταξύ των δειγμάτων και στην αναζήτηση εκείνης της συναθροισμένης χρονοσειράς βροχόπτωσης με την μεγαλύτερη στατιστικά επίπτωση πάνω στις ετήσιες τιμές μέγιστης βροχόπτωσης και απορροής.

Επιπλέον, χρησιμοποιώντας την μέθοδο των L-ροπών, η έρευνα εξάγει την Γενικευμένη Ακραίων Τιμών για τα παραπάνω δείγματα, έχοντας ως στόχο την καλύτερη ερμηνεία της στατιστική τους συσχέτισης και των στατιστικών τους συμπεριφορών. Επικεντρωνόμαστε στην συμπεριφορά της παραμέτρου σχήματος της κατανομής ΓΑΤ, για να ανιχνεύσουμε ποια από τις τρεις οικογένειές ασυμπτωτικών κατανομών ταιριάζει καλύτερα στα δείγματα των μεταβλητών μας. Φαίνεται πως τα δείγματα μας προσεγγίζονται καλύτερα από την κατανομή Fréchet (ΓΑΤ Τύπου ΙΙ).

Τέλος, ερευνάται η επιρροή των ιδιαίτερων υδροκλιματικών και γεωμορφολογικών χαρακτηριστικών των λεκανών απορροής πάνω στις στατιστικές παράμετρούς της ΓΑΤ κατανομής και του συντελεστή συσχετίσεως. Μέσω της δημιουργίας χωρικών πιθανοτικών χαρτών, επιδιώκουμε να παρατηρήσουμε και αναλύσουμε με έναν πιο σφαιρικό τρόπο την μεταβλητότητα αυτών των στατιστικών παραμέτρων.

Abstract

The analysis of extreme rainfalls requires a multidimensional approach with a high level of uncertainty. The most commonly used probabilistic distribution for describing the annual maxima of daily rainfall is the Generalized Extreme Value (GEV) distribution. Based on the extreme value theory, the GEV distribution combines the three limiting types family distribution (a) Gumbel Type I, (b) Fréchet Type II and (g) Weibull Type III.

The regime of the annual maximum rainfall variable is effected by myriad of factors. In this diploma thesis we investigate the influence of soil moisture, as it is expressed by the observed accumulative daily rainfall before the extreme rainfall and streamflow scenarios occurred. This analysis is performed in 400 catchments in USA and uses the Generalized extreme value distribution fitted by the methods of L-moments, in an attempt to calculate the statistical parameters of the extreme annual rainfall, cumulative rainfall and extreme annual streamflow time series.

In this statistical study, the temporal range of previous daily rainfall data is initially estimated in various time steps, starting from five until thirty days before the extreme observation. The analysis focuses on the correlation coefficient between the time series and which of the accumulated rainfall has the strongest statistical impact upon the maximum annual rainfall and streamflow time series.

Additionally, by using the L-moment method, the study extracts the generalized extreme distribution for these time series, aiming to better understand the statistical correlation between them and their statistical behavior. We focus on the behavior of the shape parameter of the GEV distribution for detecting which of the previous extreme value distributions fits better to the specific sample of variables. Its seems that our samples are better approached by the Fréchet distribution.

In the end, we research the effectiveness of the catchment's hydroclimatic and geographical characteristics upon the statistical parameters of the GEV distribution and correlation coefficient. By creating spatial probabilistic maps, we observe the vulnerability of the statistical parameters in a more spherical way.

Περιεχόμενα

1	Εισ	αγωγ	νή	15	
	1.1	Γενικές πληροφορίες			
	1.2	Αντ	Αντικείμενο της εργασίας		
	1.3	Διάρθρωση της εργασίας			
2	2 Θεωρητικό υπόβαθρο			18	
	2.1	Θευ	υρία ακραίων τιμών	18	
	2.2	Θεμ	ιελιώδες θεώρημα των Fisher-Tippett	19	
	2.3	Γενι	.κευμένη εξίσωση μεγίστων – GEV	21	
	2.4	L-pc	οπές	23	
	2.5	Прс	οσαρμογή γενικευμένης κατανομής μεγίστων με μέθοδο L-ροπών .	26	
3	3 Υπολογιστικά εργαλεία			29	
	3.1	.1	Λογισμικό «Υδρογνώμων»	29	
	3.1	.2	R Software	30	
	3.1.3		R Studio	31	
4	Βάση δεδομένων		δομένων ΜΟΡΕΧ	33	
	4.1 Συλ		λογή δεδομένων	33	
	4.2	Πηγ	ή δεδομένων ΜΟΡΕΧ	33	
	4.2	.1	Γενικές Πληροφορίες	33	
	4.2	.2	Δεδομένα	34	
	4.3 Διό		ρθωση και επεξεργασία δεδομένων	36	
	4.4	Τελ	ική επιλογή λεκανών απορροής	39	
	4.4	.1	Υδροκλιματικά χαρακτηριστικά λεκανών απορροής	39	
	4.4.2		Γεωμορφολογικά χαρακτηριστικά	42	
5	Με	θοδο	λογία	43	
	5.1 Υπο		λογιστική διαδικασία	43	
	5.2 Πα		ράδειγμα ανάλυσης δειγμάτων λεκάνης απορροής	45	
	5.2	.1	Κατανομή μέγιστων βροχοπτώσεων	46	
	5.2.2		Κατανομές αθροιστικών βροχοπτώσεων για τις ετήσιες ακραίες		
	βροχοπι		τώσεις	48	
	5.2	.3	Κατανομή ακραίων απορροών	50	

	5 α	5.2.4 ιπο	1 ppo	Κατανομές αθροιστικών βροχοπτώσεων για τις ετήσιες ακραίες ές	51	
	5 χ	5.2.5 χρονοσε		Συσχέτιση ακραίων ετήσιων βροχοπτώσεων με τις αθροιστικές ιρές Δt προηγούμενων ημερών βροχής	53	
	5 χ	5.2.€ ρον	5 νοσε	Συσχέτιση ακραίων ετήσιων απορροών με τις αθροιστικές ιρές Δt προηγούμενων ημερών βροχής	54	
6	Σ	υγκ	εντρ	οωτικά αποτελέσματα	56	
	6.1		Σύν	οψη αναλύσεων	56	
	6.2		Κατ	ανομές μέγιστων ετήσιων βροχοπτώσεων	57	
	6.3		Κατ	ανομές μέγιστων ετήσιων απορροών	59	
	6.4		Κατ	ανομές αθροιστικής βροχόπτωσης	61	
	6.5		Ανά	λυση χρονικού εύρους αθροιστικής βροχόπτωσης	62	
	6	5.5.1	L	Περίπτωση ακραίας ετήσιας βροχόπτωσης	62	
	6	5.5.2	2	Περίπτωση ακραίας ετήσιας απορροής	64	
	6.6		Χωρ	οικές αναλύσεις	67	
	6	5.6.1	L	Χάρτες χωρικής κατανομής	68	
	6	5.6.2	2	Επιρροή της θερμοκρασίας	71	
	6	6.6.3	3	Επιρροή γεωγραφικού πλάτους	74	
7	7 Συμπεράσματα					
	7.1	7.1 Σύνα		οψη εργασίας	. 77	
	7.2	7.2 Συμ		περάσματα	. 77	
	7.3		Προ	τάσεις για περαιτέρω έρευνα	.79	
8	β Βιβλιογραφία			οαφία	81	
	8.1	3.1 Ιστο		σελίδες	85	
9	П	Παράρτημα 1°: Οι σταθμοί που χρησιμοποιήθηκαν				

Πίνακας Εικόνων

Εικόνα 2.1: Γενικευμένη κατανομή μεγίστων με αρνητική τιμή της παραμέτ				
σχήματος γ	7			
Εικόνα 2.2: Γενικευμένη κατανομή μεγίστων με διορθωμένη τιμή της				
παραμέτρου σχήματος γ28	3			
Εικόνα 3.1: Περιβάλλον λογισμικού "Υδρογνώμων")			
Εικόνα 3.2: Περιβάλλον εργασίας R studio32)			
Εικόνα 4.1 Γεωγραφική κατανομή των λεκανών απορροής σύμφωνα με την				
MOPEX (Πηγή: https://mygeodata.cloud/)	5			
Εικόνα 4.2: Γεωγραφική κατανομή τελικού δείγματος λεκανών απορροής (Πηγή:				
https://mygeodata.cloud/)	3			
Εικόνα 4.3: Μέση ετήσια επιφανειακή βροχόπτωση (mm) για το σύνολο των 423				
λεκανών απορροής)			
Εικόνα 4.4: Μέση ετήσια απορροή (mm) για το σύνολο των 299 λεκανών				
απορροής40)			
Εικόνα 4.5:Συντελεστής απορροής για τις 299 λεκάνες τις βάσης MOPEX 41	L			
Εικόνα 4.6: Χάρτης γεωγραφικής μεταβλητότητας μέσης ετήσιας θερμοκρασίας				
	L			
Εικόνα 4.7: : Γεωμορφολογικός χάρτης Ηνωμένων Πολιτειών της Αμερικής 42)			
Εικόνα 5.1: Γεωγραφικά σύνορα λεκάνης με κωδική ονομασία 10301500 (Πηγή:				
https://mygeodata.cloud/) 45	;			
Εικόνα 5.2: Γεωγραφική θέση της λεκάνης απορροής με κωδική ονομασία				
10301500 (Πηγή: https://mygeodata.cloud/) 46	5			
Εικόνα 5.3: Προσαρμογή κατανομής GEV στις ακραίες ετήσιες τιμές				
βροχόπτωσης της λεκάνης απορροής 1030150047	1			
Εικόνα 5.4: Προσαρμογή κατανομής GEV στις ακραίες ετήσιες τιμές απορροής				
της λεκάνης 1030150050)			
Εικόνα 6.1: Μεταβολή μέσης τιμής της παραμέτρου σχήματος της GEV				
κατανομής για διαφορετικά δείγματα χρονοσειρών (Πηγή: Papalexiou and				
Koutsoyiannis, 2013)57	1			
Εικόνα 6.2: Ιστόγραμμα διορθωμένης παραμέτρου σχήματος γ της GEV				
κατανομής για τις ακραίες ετήσιες βροχοπτώσεις των 423 λεκανών απορροής. 58	3			
Εικόνα 6.3: Ιστόγραμμα παραμέτρου θέσης της κατανομής GEV για τις ακραίες				
ετήσιες βροχοπτώσεις των 423 λεκανών απορροής)			
Εικόνα 6.4: Ιστόγραμμα παραμέτρου κλίμακας της κατανομής GEV για τις				
ακραίες ετήσιες βροχοπτώσεις των 423 λεκανών απορροής)			
Εικόνα 6.5: Ιστογράμματα συσχέτισης μέγιστης ετήσιας απορροής με την				
αθροιστική βροχόπτωση66	5			
Εικόνα 6.6: Ιστογράμματα συσχέτισης μέγιστης ετήσιας απορροής με την				
αθροιστική βροχόπτωση67	/			
Εικόνα 6.7: Χωρική κατανομή της παραμέτρου θέσης της GEV κατανομής				
ακραίων ετήσιων βροχοπτώσεων74	ŀ			

Πίνακας Πινάκων

Πίνακας 4.1: Κωδικοί λεκανών που δεν ελήφθησαν υπόψη στην ανάλυση των
ακραίων τιμών βροχόπτωσης
Πίνακας 4.2: Κωδικοί λεκανών με ελλείψεις στις καταγραφές των ημερήσιων
απορροών
Πίνακας 4.3: Κωδικοί λεκανών με ελλείψεις στην καταγραφή της έκτασης των
λεκανών απορροής
Πίνακας 5.1: Στατιστικές παράμετροι κατανομής GEV
Πίνακας 5.2: Διορθωμένες τιμές στατιστικών παραμέτρων κατανομής GEV 47
Πίνακας 5.3: Μέτρα θέσης και μεταβλητότητας δείγματος ακραίων ετήσιων
βροχοπτώσεων
Πίνακας 5.4: Στατιστικές παράμετροι κατανομής GEV για τις 6 χρονοσειρές
αθροιστικής βροχόπτωσης
Πίνακας 5.5: Μέτρα θέσης και μεταβλητότητας δείγματος των 6 χρονοσειρών
αθροιστικής βροχόπτωσης
Πίνακας 5.6: Στατιστικές παράμετροι κατανομής GEV για το δείγμα των μέγιστων
ετήσιων απορροών
Πίνακας 5.7: Μέτρα θέσης και μεταβλητότητας δείγματος μέγιστων ετήσιων
απορροών
Πίνακας 5.8: Στατιστικοί παράμετροι κατανομής GEV για τις 6 χρονοσειρές
αθροιστικής βροχόπτωσης συμπεριλαμβανομένης την ημέρας που
παρατηρήθηκε η ακραία τιμή της ετήσιας απορροής
Πίνακας 5.9: Στατιστικοί παράμετροι κατανομής GEV για τις 6 χρονοσειρές
αθροιστικής βροχόπτωσης μη συμπεριλαμβανομένης την ημέρας που
παρατηρήθηκε η ακραία τιμή της ετήσιας απορροής
Πίνακας 5.10: Μέτρα θέσης και μεταβλητότητας δείγματος των 6 χρονοσειρών
αθροιστικής βροχόπτωσης συμπεριλαμβανομένης της ημέρας που
παρατηρήθηκε η ακραία τιμή της απορροής52
Πίνακας 5.11: Μέτρα θέσης και μεταβλητότητας δείγματος των 6 χρονοσειρών
αθροιστικής βροχόπτωσης μη συμπεριλαμβανομένης της ημέρας που
παρατηρήθηκε η ακραία τιμή της απορροής52
Πίνακας 5.12: Συντελεστής συσχέτισης Pearson για την μέγιστη ετήσια
βροχόπτωση και τις αθροιστικές χρονοσειρές βροχόπτωσης
Πίνακας 5.13: Συσχέτιση ακραίων ετήσιων απορροών με τις Δt προηγούμενες
ημέρες βροχόπτωσης54
Πίνακας 5.14: Συσχέτιση ακραίων ετήσιων απορροών με την αθροιστική
χρονοσειράς βροχόπτωσης συμπεριλαμβανομένης την ημέρας που
παρατηρήθηκε η ακραία τιμή54
Πίνακας 5.15: Συσχέτιση ακραίων ετήσιων απορροών με την αθροιστική
χρονοσειράς βροχόπτωσης με εξαίρεση της ημέρας που παρατηρήθηκε η ακραία
τιμή54

Πίνακας 6.1: Μέση τιμή και τυπική απόκλιση των στατιστικών παράμετρών της
κατανομής GEV για τις χρονοσειρές αθροιστικών βροχοπτώσεων
Πίνακας 6.2: Μεταβολή του συντελεστή συσχέτισης ακραίων ετήσιων απορροής
με την αθροιστική βροχόπτωση των προηγούμενων ημερών σε σχέση με το
ποσοστό ψυχρότητας της λεκάνης72

Πίνακας Διαγραμμάτων

Διάγραμμα 6.1: Συσχέτιση μέγιστων συσχετίσεων πλημμυρικής απορροής και Δt
προηγούμενων ημερών πριν με το ποσοστού ψυχρών ημερών των λεκανών
απορροής
Διάγραμμα 6.2: Συσχέτιση της παραμέτρου κλίμακας με το ποσοστού ψυχρών
ημερών των λεκανών απορροής73
Διάγραμμα 6.3: Συσχέτιση της παραμέτρου θέσης με το ποσοστού ψυχρών
ημερών των λεκανών απορροής73
Διάγραμμα 6.4: Συσχέτιση στατιστικών παραμέτρων κατανομής GEV για τις
ακραίες ετήσιες βροχοπτώσεις: (αριστερά) παράμετρος θέσης, (δεξιά)
παράμετρος κλίμακας
Διάγραμμα 6.5: Συσχέτιση παραμέτρου θέσης κατανομής GEV για τις ακραίες
ετήσιες βροχοπτώσεις με το γεωγραφικό πλάτος των λεκανών απορροής75
Διάγραμμα 6.6: Συσχέτιση παραμέτρου κλίμακας κατανομής GEV για τις ακραίες
ετήσιες βροχοπτώσεις με το γεωγραφικό πλάτος των λεκανών απορροής75
Διάγραμμα 6.7: Συσχέτιση των στατιστικών παραμέτρων θέσης και κλίμακας της
κατανομής GEV των ακραίων ετήσιων απορροών με το γεωγραφικό πλάτος των
λεκανών απορροής

1 Εισαγωγή

1.1 Γενικές πληροφορίες

Αποτελεί γενική ομολογία πως ο σύγχρονος κόσμος έρχεται αντιμέτωπος καθημερινά με ακραία και απρόβλεπτα καιρικά φαινόμενα. Παρόλα τα πολυπληθή πλεονεκτήματα της σύγχρονης τεχνολογικής έξαρσης και της συνεχής οικονομικής, κοινωνικής και τεχνολογικής ευημερίας των κοινωνιών μας, ακόμα κρινόμαστε αδύναμοι μπροστά στην πιθανότητα εκδήλωσης κάποιου ακραίου φαινομένου.

Η αύξηση στην πυκνότητα και συχνότητα των ακραίων καιρικών συνθηκών αποφέρουν καταστροφικές επιπτώσεις όχι μόνο στην ανθρώπινη κοινότητα αλλά και στο ίδιο το οικοσύστημα που την περιβάλλει. Κυρίαρχη θέση στην πληθώρα των καιρικών αυτών συμβάντων διεκδικεί το φαινόμενο της πλημμύρας. Πιο συγκεκριμένα, σύμφωνα με το γραφείο μείωσης του κινδύνου καταστροφών των Ηνωμένων Πολιτείων (United Nations Office for Disaster Risk Reduction 2015), τα πλημμυρικά επεισόδια από το 1995 είναι υπεύθυνα για τον θάνατο 157 000 ανθρώπων, και έχουν επηρεάσει περίπου στα 2.3 δισεκατομμύρια κατοίκους. Ακόμα, σε οικονομικό επίπεδο, έχουν αποφέρει τεράστιες οικονομικές απώλειες της τάξεως των 2.3 δισεκατομμυρίων αμερικανικών δολαρίων οφειλόμενες σε καταστροφές σπιτιών, περιουσιών και καταστροφές του ίδιου του περιβάλλοντος. (Moustakis, 2017).

Κρίνεται εξαιρετικά σημαντικό και αποτέλεσε προτροπή για την υλοποίηση αυτής της διπλωματικής εργασίας η προσπάθεια για καλύτερη κατανόηση και ερμηνείας της φύσης αυτών των καταστροφικών φαινομένων. Η φύση των αιτιών και συνθηκών κάτω από τις οποίες υλοποιούνται αυτές οι υδρολογικές διεργασίες, έχουν πολυδιάστατο χαρακτήρα, με σημαντικές αβεβαιότητες και απαιτούν την εφαρμογή πολυκριτηριακής επιστημονικής ανάλυσης για την εξαγωγή αξιόπιστων και ποιοτικών αποτελεσμάτων.

Η προσπάθεια για την κατανόηση και διερεύνηση των υδρολογικών χαρακτηριστικών παίρνει μορφή στα πλαίσια αυτής της διπλωματικής εργασίας μέσω της πολυμεταβλητής στατιστικής ανάλυσης των ακραίων βροχοπτώσεων και απορροών, σε ένα δείγμα τετρακοσίων λεκανών απορροής ευρισκόμενων στις Ηνωμένες Πολιτείες της Αμερικής.

1.2 Αντικείμενο της εργασίας

Στόχος της παρούσας διπλωματικής εργασίας είναι, μεταξύ άλλων, η εκτίμηση και επιρροή της εδαφικής υγρασίας στα ακραία φαινόμενα κατακρήμνισης και πλημμυρικής απορροής. Η επιρροή της εδαφικής υγρασίας λαμβάνεται υπόψιν με την μορφή μια αθροιστικής χρονοσειράς βροχής για ένα χρονικό εύρος Δt που συνέβη πριν την καταγραφή της ακραίας ετήσιας τιμής της. Οι χρονοσειρές

που επεξεργάζονται και αναλύονται για την επίτευξη του παραπάνω στόχου αντιστοιχούν σε δεδομένα παρατηρήσεων βροχής και ποτάμια απορροής σε λεκάνες απορροής που ανήκουν στην εδαφική επικράτεια των Ηνωμένων Πολιτειών της Αμερικής.

Η μεθοδολογία της στατιστικής ανάλυσης εν συντομία μπορεί να διαιρεθεί σε τρεις επιμέρους ενότητες. Η πρώτη αφορά την συλλογή, επεξεργασία και διόρθωση των χρονοσειρών βροχής και απορροής από την πηγή δεδομένων MOPEX και η εκλογή του επιθυμητού μήκους χρονοσειράς για την εξαγωγή αξιόπιστων αποτελεσμάτων.

Η δεύτερη ενότητα αφορά στην ανάλυση των στατιστικών χαρακτηριστικών, των δομών συσχέτισης καθώς και την προσαρμογή της γενικευμένης κατανομής μεγίστων μέσω της μέθοδο των L-ροπών στις εξαχθέντες χρονοσειρές ακραίων βροχοπτώσεων, απορροών και αθροιστικών βροχοπτώσεων.

Η τελευταία ενότητα αφορά στην καθολική εφαρμογή της διαδικασίας για το σύνολο των λεκανών απορροής της βάσης δεδομένων MOPEX και την εξαγωγή των συγκεντρωτικών συνοπτικών πινάκων και διαγραμμάτων με τις στατιστικές παραμέτρους των δειγμάτων που εξετάζονται. Ακόμα, διερευνάται η επιρροή των υδροκλιματικών και γεωμορφολογικών ιδιαιτεροτήτων της κάθε λεκάνης στα τελικά αποτελέσματα μέσω της δημιουργίας χαρτών χωρικής κατανομής διαφόρων υδροκλιματικών και στατιστικών μεγεθών.

1.3 Διάρθρωση της εργασίας

Όπως αναφέρθηκε παραπάνω, κεντρικός στόχος της παρούσας έρευνας είναι η λεπτομερής διερεύνηση της επιρροής της εδαφικής υγρασίας στις εμφάνιση των ακραίων πλημμυρικών απορροών και βροχοπτώσεων. Η στατιστική διερεύνηση των παραπάνω διαμορφώνεται και αναλύεται στην παρούσα διπλωματική εργασία στο διάστημα των 7 κεφαλαίων και ενός Παραρτήματος των οποίων δίνεται μια συνοπτική αιτιολογική οριοθέτηση ως εξής:

Με τον παρόν εισαγωγικό κεφάλαιο επιδιώκεται μια σύντομη απεικόνιση της σύγχρονων κλιματολογικών συνθηκών μέσα από παραδείγματα και ιστορικές παρατηρήσεις που οδηγούν στο τελικό κίνητρο αλλά και αρχική παρότρυνση σύλληψης της παρούσας διπλωματικής θέσης.

Στο Κεφάλαιο 2, ανατέμνεται το βασικό θεωρητικό υπόβαθρο της πολυμεταβλητής στατιστικής ανάλυσης που εφαρμόστηκε. Παραδίδονται παραδείγματα και ορισμοί με σκοπό την εναργή κατανόηση και ερμηνεία της μεθοδολογίας και των συμπερασμάτων που θα παρατεθούν στη συνέχεια.

Στο Κεφάλαιο 3, αναπτύσσονται τα υπολογιστικά εργαλεία που χρησιμοποιήθηκαν. Η ανάγκη εφαρμογής της προαναφερθείσας στατιστικής ανάλυσης σε μια πληθώρα δειγμάτων κατέστησε θεμελιώδη την ανάγκη εξοικείωσης και χρήσης ενός προγραμματιστικού περιβάλλοντος. Για την παρούσα εργασία επιλέχθηκε η επιλογή του προγραμματιστικού περιβάλλοντος της R Software, κυρίως λόγο της ευκολίας εξάσκηση της και των υπεράφθονων δυνατοτήτων της σε επίπεδο στατιστικής ανάλυσης.

Στο Κεφάλαιο 4, γίνεται λεπτομερής παρουσίαση των δεδομένων που αναλύθηκαν. Περιγράφεται η πηγή προέλευσης των δεδομένων και οι δυσκολίες που ανέκυψαν κατά την διαδικασία διαλογής τους. Τελικώς, παρουσιάζονται οι τελικές λεκάνες απορροής που επιλέχθηκαν, με κριτήριο την ποιότητα και αξιοπιστία των χρονοσειρών τους και εκτίθενται τα ιδιαίτερα υδροκλιματικά και γεωμορφολογικά χαρακτηριστικά τους, με την μορφή χαρτών.

Στο Κεφάλαιο 5, εισάγονται τα αρχικά στάδια ανάπτυξης της μεθοδολογίας που ακολουθήθηκε. Αναλυτικότερα, παρουσιάζεται με την μορφή βημάτων η διαδικασία που εφαρμόστηκε όπως αυτή οριοθετείτε στα πλαίσια δημιουργίας κώδικα στην γλώσσα προγραμματισμού R. Στη συνέχεια, η μεθοδολογία αυτή εφαρμόζεται πιλοτικά για μία λεκάνη απορροής, για την οποία δίνονται πλήρη αποτελέσματα των αναλύσεων. Ειδικότερα, γίνεται η περιγραφή των χρονοσειρών μέγιστων ετήσιων βροχοπτώσεων, απορροών και αθροιστικών βροχοπτώσεων που επιλέχθηκαν, και παρατίθενται χάρτες, ιστογράμματα και πίνακες που δίνουν μια πρώιμη εικόνα των στατιστικών παραμέτρων και κατανομών των χρονοσειρών για την δεδομένη λεκάνη απορροής.

Στο Κεφάλαιο 6, η προαναφερθείσα μεθοδολογία εφαρμόζεται καθολικά, μέσω της χρήσης κώδικα στο περιβάλλον της R Software για όλο το δείγμα των επιλεχθέντων λεκανών απορροής. Παρουσιάζονται οι τελικοί συνοπτικοί πίνακες και χάρτες με τις στατιστικές παραμέτρους των λεκανών και προκύπτουν κάποια αρχικά συμπεράσματα για το σύνολο των δειγμάτων.

Στο Κεφάλαιο 7 παρουσιάζονται τα τελικά συμπεράσματα της πολυμεταβλητής στατιστικής ανάλυσης των λεκανών απορροής, εξετάζεται η επιρροή των ιδιαίτερων υδροκλιματικών και γεωμορφολογικών χαρακτηριστικών των λεκανών πάνω στα τελικά μεγέθη, και διατυπώνονται προτάσεις για τη μετεξέλιξη της έρευνας.

Τέλος, στο Παράρτημα 1 παρατίθενται όλοι οι σταθμοί που χρησιμοποιήθηκαν στην μελέτη με την κωδική τους ονομασία και την γεωγραφική τους θέση.

2 Θεωρητικό υπόβαθρο

2.1 Θεωρία ακραίων τιμών

Οι ακραίες τιμές σε μία κατανομή πιθανότητας εκφράζουν είτε εξαιρετικά υψηλές τιμές της κατανομής είτε εξαιρετικά ελάχιστες. Αυτά τα ακρότατα αποτυπώνονται στις «ουρές» των πιθανοτικών κατανομών που αντιμετωπίζονται μαθηματικά μέσω της θεωρίας ακραίων τιμών.

Η θεωρία των ακραίων τιμών ή αλλιώς ανάλυση της ακραίας τιμής (Extreme value analysis - EVA) είναι ένας κλάδος της στατιστικής που ασχολείται με τις ακραίες αποκλίσεις από των μέσο όρο των κατανομών πιθανότητας. Ο βασικός στόχος της θεωρίας ακραίων τιμών είναι η επιδίωξη της πρόβλεψης από ένα δείγμα τυχαίων μεταβλητών της πιθανότητας να εμφανιστούν εκείνες οι τιμές του δειγμάτων με τις πιο ακραίες τιμές από οποιαδήποτε άλλη παρατηρούμενη τιμή του δείγματος. (Κοκαλάκης κ.ά., 2009)

Σε πιο απλοποιημένη διατύπωση, στοχεύει στον προσδιορισμό του ρίσκου εμφάνισης αυτών των ακροτάτων και στην αποτύπωσή του με την μορφή πιθανότητας. Η θεωρία αυτή των ακραίων τιμών μπορεί να διαιρεθεί σε δύο μέρη: (α) το πιθανοθεωρητικό μέρος που αφορά τη μελέτη της στοχαστικής συμπεριφοράς ακραίων παρατηρήσεων και (β) στο στατιστικό μέρος που αποτελείται από μοντέλα ερμηνείας, εκτιμήσεων και προβλέψεων ακραίων συμβάντων με βάση πραγματικά δεδομένα.

Η πρώτη προσέγγιση της θεωρίας των ακραίων τιμών έγινε από τον Leonard Tippett (1902-1985) στην προσπάθεια του να βελτιώσει την ανθεκτικότητα του βαμβακιού κάνοντας τις ίνες τους ισχυρότερες για χάρη του British Cotton Industry Research Association. Κατά την διάρκεια της ερευνάς του συνειδητοποίησε πως η αντοχή του νήματος εξαρτάται από την αντοχή που έχουν οι πιο αδύναμες ίνες του. Με την βοήθεια του R. A. Fisher, ο Tippett πήρε τρία ασυμπτωτικά όρια που περιέγραφαν την κατανομή των ακραίων υποθέτοντας πως οι μεταβλητές που χρησιμοποίησε ήταν εντελώς ανεξάρτητες μεταξύ τους.

Αργότερα το 1958, ο Emil Julius Gumbel κωδικοποίησε αυτή τη θεωρία στο βιβλίο του «Statistics of Extremes», όπου και συμπεριέλαβε την κατανομή Gumbel, η οποία έφερε το όνομα του.

Η ανάλυση της ακραίας αξίας βρίσκει εφαρμογή σε πολλούς κλάδους, όπως στη μηχανική, στην οικονομία, την αστρονομία, στις γεωλογικές επιστήμες κτλ. Οι εφαρμογές αυτές αφορούν την μοντελοποίηση και μακροπρόθεσμη πρόβλεψη εμφανίσεων ακραίων συμβάντων όπως τυφώνες, έντονες χιονοπτώσεις, μεγάλες πλημμύρες, πολύ υψηλά ή πολύ χαμηλά επίπεδα στάθμης των υδάτων σε ποτάμια ή λίμνες είτε ακόμα και εξαιρετικά μεγάλες ζημιές και αποζημιώσεις σε επίπεδο χρηματοοικονομικών. Πιο συγκεκριμένα, στο πεδίο της Υδρολογίας χρησιμοποιείται στην προσπάθεια εκτίμησης της πιθανότητας ενός εξαιρετικά σπάνιου γεγονότος, όπως για παράδειγμα την πλημμύρα περιόδου επαναφοράς 1000 ετών.

2.2 Θεμελιώδες θεώρημα των Fisher-Tippett

Έστω *X*₁, *X*₂,, *X*_n όπου *n* ∈ *Z*, μια ακολουθία από ανεξάρτητες και ομοιόμορφα κατανεμημένες παρατηρήσεις που ακολουθούν μια άγνωστη κατανομή F. Επειδή δεν είναι γνωστή η κατανομή F των παρατηρήσεων θα επικεντρωθούμε στην οριακή κατανομή G της μέγιστης παρατήρησης των *X*₁, *X*₂,, *X*_n η οποία δεν εξαρτάται από την άγνωστη F.

Εν προκειμένω, εκλέγονται τα ακραία M_j (j = 1, ..., n), τα οποία αναφέρονται είτε στις μέγιστες είτε στις ελάχιστες τιμές που παίρνει η μεταβλητή μας X_n σε κάθε μια από τις m διαδοχικές, μη-αλληλοκαλυπτόμενες, περιόδους με μήκος n παρατηρήσεων. Ειδικότερα, στην περίπτωση των μεγίστων ισχύει:

$$M_j = max\{X_1, X_2, \dots, X_n\}$$
(2.1)

η οποία συγκλίνει (για $n \rightarrow \infty$) στο x_F (δεξιό άκρο του στηρίγματος της F).

Για να αποφευχθεί αυτό το εκφυλισμένο όριο τα *M_j* κανονικοποιούνται χρησιμοποιώντας το κεντρικό οριακό θεώρημα και εν συνέχεια δημιουργείται η μεταβλητή *Y* ως εξής:

$$Y_j = \frac{M_j - \mu}{\sigma} \tag{2.2}$$

Τα σύμβολα μ και σ αναπαριστούν τις παραμέτρους θέσης (μέσος) και κλίμακας (τυπική απόκλιση) της κατανομής των *M_j* (1° Θεώρημα Fisher και Tippett).

Οι Fisher and Tippett (1928) απέδειξαν πως η ασυμπτωτική κατανομή μιας σειράς μεγίστων (η ελαχίστων) *M*_j μοντελοποιείται και κάτω από συγκεκριμένους όρους η κατανομή του τυποποιημένου μεγίστου της σειράς συγκλίνει σε συγκεκριμένες κατανομές. Οι κατανομές αυτές είναι η Gumbel, η Fréchet και η Weibull.

Πιο συγκεκριμένα, απέδειξαν ότι όταν το $n \rightarrow \infty$, η μεταβλητή Y_j ακολουθεί μία από τις ακόλουθες τρείς κατανομές ακραίων τιμών:

(α) Τύπος Ι, Κατανομή Gumbel (Σχήμα 2.1)

$$\Lambda(x) = e^{-e^{-x}}, x \in R$$
(2.3)

Σχήμα 2.1:Διάγραμμα συνάρτησης πυκνότητας πιθανότητας κατανομής τύπου Ι Gumbel

(β) Τύπος ΙΙ, Κατανομή Fréchet(Σχήμα 2.2)

$$\Phi_{\alpha}(x) = \begin{cases} 0, \ x \le 0\\ e^{-x^{-a}}, \ x > 0 \end{cases}, \ a > 0$$
(2.4)

Σχήμα 2.2: Διάγραμμα συνάρτησης πυκνότητας πιθανότητας κατανομής τύπου ΙΙ Fréchet για διάφορες τιμές τις στατιστικής παραμέτρου α

(γ) Τύπος ΙΙΙ, Αντίστροφη Κατανομή Weibull (Σχήμα 2.3)

$$\Psi_{\alpha}(x) = \begin{cases} e^{(-x)^{a}}, x \leq 0\\ 1, x > 0 \end{cases}, a > 0$$

$$(2.5)$$

Σχήμα 2.3: Διάγραμμα συνάρτησης πυκνότητας πιθανότητας Τύπου ΙΙΙ Weibull για διάφορες τιμές της στατιστικής παραμέτρου α

Οι κατανομές $Φ_{\alpha}$, $Ψ_{\alpha}$, Λ καλούνται τυπικές κατανομές ακροτάτων, ενώ κατανομές που είναι του ίδιου τύπου με αυτές καλούνται κατανομές ακροτάτων.

Η τυχαία μεταβλητή Y_j, ανήκει στον ευρύτερο χώρο μιας κατανομής ακραίων τιμών, αν μ ε R και σ >0. Η κατανομή αυτή ονομάζεται Γενικευμένη Ακραίων Τιμών (Generalized Extreme Value, GEV).

2.3 Γενικευμένη εξίσωση μεγίστων – GEV

Στο τομέα της στατιστικής η κατανομή GEV είναι μια οικογένεια συνεχών πιθανοτικών κατανομών βασισμένη στην θεωρία ακραίων τιμών που αναφέρθηκε παραπάνω. Σκοπός της κατασκευής της είναι η ενοποίηση των κατανομών ακραίων τιμών Gumbel, Fréchet και Weibull.

Πιο συγκεκριμένα, οι von Mises (1936) και Jenkinson (1955), ανέπτυξαν μια συμπυκνωμένη θεωρία κατανομών ακραίων τιμών σύμφωνα με την οποία και οι τρεις ασύμπτωτες μπορούν να περιγράφουν από μια οικογένεια κατανομών που καλείται ΓΑΤ- Γενικευμένη Ακραίων Τιμών (GEV-Generalized Extreme Value distribution). Μια πιο απλοποιημένη ερμηνεία της GEV ορίζει πως είναι η ενοποίηση των τριών οικογενειών κατανομών ακροτάτων σε μια οικογένεια, που αναπαρίσταται ως εξής:

$$F(y;\xi) = \begin{cases} e^{(-(1+\xi*y)^{-1/\xi})}, & \xi \neq 0\\ e^{-y}, & \xi = 0 \end{cases}$$

όπου *y* η τυποποιημένη μεταβλητή *y = (x-μ)/σ*, με *μ ∈ R* (παράμετρος θέσης) και *σ>0* (παράμετρος κλίμακας).

Η παράμετρος ξ είναι μία παράμετρος που αναπαριστά το πάχος της ουρών και έναν δείκτη φθοράς όσο αφορά την προσέγγιση τους στην τιμή μηδέν. Πιο απλοποιημένα, όσο πιο μικρός ο δείκτης τόσο πιο παχιά είναι η ουρά και τόσο πιο αργά η κατανομή προσεγγίζει την μηδενική τιμή. Στο Σχήμα 2.4 παρατίθεται ενδεικτικά η συμπεριφορά της ουράς, για μία κατανομή με μέση τιμή μ = 0 και τυπική απόκλιση σ = 1.

Η παράμετρος ξ ισούται με μηδέν (0) για την κατανομή Gumbel, με α^{-1} για την κατανομή Fréchet και με – α^{-1} για την κατανομή Weibull. Όταν η παράμετρος ξ>0, η F(γ) αντιπροσωπεύει την κατανομή των μεγίστων τύπου II και σε αυτή την περίπτωση, η μεταβλητή είναι κάτω φραγμένη και μη άνω φραγμένη. Η οριακή περίπτωση *ξ* = 0, αντιπροσωπεύει την κατανομή τύπου Ι που είναι μη φραγμένη άνω και κάτω (-∞<χ<+∞). Τέλος, η περίπτωση *γ* < 0 αντιπροσωπεύει τον τύπο III και σε τον τύπο III και σε αυτή την κατανομής μεγίστων ή αντίστροφη Weibull.

Ο τύπος αυτός δεν έχει πρακτικό ενδιαφέρον στην ανάλυση μεγίστων, καθώς αναφέρεται σε τυχαίες μεταβλητές άνω φραγμένες. Λόγω του ότι η βροχή είναι μια διεργασία που δεν έχει φυσικό άνω όριο, ο παραπάνω τύπος δεν εμπίπτει σε αυτή την κατηγορία (Nerantzaki, 2012).

Generalized extreme value densities

All with $\mu = 0$, $\sigma = 1$. Asterisks mark support-endpoints

Σχήμα 2.4: Παράδειγμα προσαρμογής κατανομής για διάφορες τιμής της παραμέτρου ξ, <u>www.Wikipedia.com</u>

2.4 L-ροπές

Η μέθοδος των L-ροπών είναι μια στατιστική μεθοδολογία για την περιγραφή του σχήματος μίας κατανομής πιθανότητας.

Για μια τυχαία μεταβλητή *X*, η *r^η* L-ροπή είναι:

$$\lambda_r = r^{-1} \sum_{k=0}^{r-1} (-1)^k \binom{r-1}{k} E X_{r-k:r}$$
(2.6)

όπου:

- X_{k:n} είναι η k^η στατιστική τάξη από ένα ανεξάρτητο δείγμα μεγέθους n από μία κατανομή από X
- Ε είναι η αναμενόμενη τιμή

Συγκεκριμένα, οι πρώτες τέσσερεις ροπές δίνονται από τις σχέσεις:

$$\lambda_1 = EX \tag{2.7}$$

$$\lambda_2 = \frac{(EX_{2:2} - EX_{1:2})}{2}$$
 (2.8)

$$\lambda_3 = \frac{(EX_{3:3} - 2EX_{2:3} + EX_{1:3})}{3}$$
(2.9)

$$\lambda_4 = \frac{(EX_{4:4} - 3EX_{3:4} + 3EX_{2:4} - EX_{1:4})}{4}$$
(2.10)

Ένα από τα βασικά πλεονεκτήματα της μεθοδολογίας των L-ροπών είναι πως δεν επηρεάζεται σημαντικά από τις ακραίες τιμές και το μήκος του δείγματος. Αυτό είναι ιδιαίτερα σημαντικό στις περιπτώσεις που διαθέτουμε χρονοσειρές με μικρό πλήθος παρατηρήσεων. Για αυτούς τους λόγους, η χρήση τους τείνει να υπερισχύει την χρήση άλλων μεθόδων, όπως τον κλασικών ροπών (Perez *et al.*, 2003)

Μέσω την διαδικασίας L- ροπών υπολογίζονται οι στατιστικές εκτιμήτριες λ_1 , λ_2 , λ_3 και λ_4 , που με την χρήση των παρακάτω εξισώσεων αντιστοιχούν στις στατιστικές παραμέτρους της μέσης τιμής, του συντελεστής μεταβλητότητας, την παράμετρο της ασσυμετρίας και της κύρτωση για το δείγμα που μελετάμε.

<u>Για την μέση τιμή (L –moment mean)</u> :

$$\tau_1 = \lambda_1 \tag{2.11}$$

Η μέση αριθμητική τιμή ή μέσος όρος προκύπτει από το πηλίκο διαίρεσης του αθροίσματος των τιμών μιας μεταβλητής δια του συνολικού πλήθους τους, δηλαδή του συνόλου των συχνοτήτων τους. Αποτελεί το σπουδαιότερο και

χρησιμότερο μέτρο της στατιστικής, και αποτελεί μέτρο θέσης, δηλαδή δείχνει σχετικά τις θέσεις των αριθμών στους οποίους αναφέρεται.

<u>Για τον συντελεστή μεταβλητότητας (L-moment coefficient of variation)</u>:

$$\tau_2 = \frac{\lambda_2}{\lambda_1} \tag{2.12}$$

Ο συντελεστής μεταβλητότητας είναι ένα στατιστικό μέτρο που είναι χρήσιμο στις περιπτώσεις στην σύγκριση ομάδων τιμών, που είτε εκφράζονται σε διαφορετικές μονάδες μέτρησης είτε εκφράζονται στην ίδια μονάδα μέτρησης αλλά έχουν σημαντικά διαφορετικές μέσες τιμές.

Ο συντελεστής μεταβολής εκφράζεται επί τοις εκατό, είναι συνεπώς ανεξάρτητος από τις μονάδες μέτρησης και παριστάνει ένα μέτρο σχετικής διασποράς των τιμών και όχι της απόλυτης διασποράς. Εκφράζει, δηλαδή, τη μεταβλητότητα των δεδομένων απαλλαγμένη από την επίδραση της μέσης τιμής.

Για το μέτρο ασυμμετρίας (L-moment Coefficient of skew):

$$\tau_3 = \frac{\lambda_3}{\lambda_2} \tag{2.13}$$

Η κατανομή του πληθυσμού που μελετάται μπορεί να είναι είτε συμμετρική είτε μη συμμετρική. Στην περίπτωση συμμετρικής κατανομής η κορυφή, διάμεσος και μέση τιμή συμπίπτουν, ενώ στην περίπτωση της μη συμμετρικής κατανομής μια από τις τρεις παραμέτρους η κορυφή της κατανομής την διασπά σε ασύμμετρα, ως προς το πλήθος των παρατηρήσεων, τμήματα.

Το είδος της ασυμμετρίας χωρίζεται σε δύο κατηγορίες, την θετική και την αρνητική, οι οποίες ορίζουν μια κατανομή στην οποία οι περισσότερες παρατηρήσεις τοποθετούνται στη δεξιά και αριστερή, αντίστοιχα, πλευρά της κορυφής της. (Κοκαλάκης, 2009).

Σχήμα 2.5: Παράδειγμα προσαρμογής κατανομής για διάφορες τιμές του στατιστικού μέτρου της ασσυμετρίας με (α) αρνητική ασσυμετρία, (β), (γ) μηδενική ασσυμετρία, (δ) θετική ασσυμετρία

Για το μέτρο κυρτότητας (L-moment of Kurtosis):

$$\tau_4 = \frac{\lambda_4}{\lambda_2} \tag{2.14}$$

Μια κατανομή η οποία έχει σχετικά μεγάλη μέγιστη συχνότητα (κορυφή) και επομένως, υπάρχει μια μεγάλη συγκέντρωση τιμών γύρω από το μέσο λέγεται λεπτόκυρτη. Αντιθέτως στην περίπτωση που η μέγιστη συχνότητα της είναι σχετικά μικρή λέγεται πλατύκυρτη, ενώ την περίπτωση που η κατανομή προσεγγίζει την κανονική ονομάζεται μεσόκυρτη.

Έχοντας υπόψη πως οι κανονικές κατανομές έχουν τιμή κυρτότητας ίση με 3, είναι σύνηθες να ορίζεται η κυρτότητα μιας κατανομής με βάση την απόκλιση της από την παραπάνω σταθερά. Δηλαδή, κατανομές με κυρτότητα μεγαλύτερη της τιμής 3 ονομάζονται λεπτόκυρτες, ενώ με αρνητική διαφορά πλατύκυρτες.

Σχήμα 2.6: Παράδειγμα προσαρμογής κατανομής για διάφορες τιμές του στατιστικού μέτρου της κυρτότητας

2.5 Προσαρμογή γενικευμένης κατανομής μεγίστων με μέθοδο L-ροπών

Όπως αναφέρθηκε στο υποκεφάλαιο 2.3 η εξίσωση της Γενικευμένης κατανομής μεγίστων είναι η ακόλουθη (Ani Shabri *at al.,* 2007):

$$F(\chi) = \begin{cases} e^{(-(1-k*(\frac{\chi-\mu}{\sigma})^{1/k}), & k \neq 0 \\ e^{(-(\chi-\mu))/\sigma}, & k = 0 \end{cases}$$

όπου:

- μείναι η παράμετρος θέσης
- σείναι η παράμετρος κλίμακας
- k είναι η παράμετρος σχήματος

Η προσαρμογή της κατανομής ΓΑΤ (Γενικευμένη Ακραίων Τιμών) με την μέθοδο L-ροπών γίνεται μέσω των παρακάτω εκτιμητριών (Martins and Staudinger, 2000):

$$\hat{k} = 7.8590c + 2.9544 c^2 \tag{2.15}$$

$$c = \frac{2}{(3 + \hat{t}_3)} - \frac{\log(2)}{\log(3)}$$
(2.16)

$$\hat{\alpha} = \frac{\hat{\lambda}_2 \hat{k}}{(1 - 2^{-\hat{k}})\Gamma(1 + \hat{k})}$$
(2.17)

$$\hat{\mu} = \hat{\lambda}_1 - \frac{\hat{\alpha}}{\hat{k}} \{ 1 - \Gamma (1 + \hat{k}) \}$$
(2.18)

Οι εκτιμήτριες $\hat{\lambda}_1, \hat{\lambda}_2, \hat{\lambda}_3$ και $\hat{\tau}_3 = \frac{\hat{\lambda}_3}{\hat{\lambda}_2}$ υπολογίστηκαν με την χρήση της αμερόληπτης εκτιμήτριας από τις πρώτες τρεις σταθμισμένες ροπές πιθανότητας (PWM) που ορίζονται από την σχέση:

$$\beta_r = \mu + \frac{\frac{\alpha}{k} [1 - (r+1)^{-k} \Gamma(1+k)]}{r+1}$$
(2.19)

Με αμερόληπτη εκτιμήτρια της eta_r :

$$b_r = \sum_{i=1}^n \frac{(i-1)(i-2)(i-3)\dots(i-r)}{n(n-1)(n-2)(n-3)\dots(n-r)} X_{i:n}$$
(2.20)

όπου:

- *r* = 0,1,..., *n*
- X_{i:n} είναι οι διατεταγμένες παρατηρήσεις από το δείγμα

Τέλος, οι τιμές για της πρώτες τρεις L-ροπές προκύπτουν από τις παρακάτω σχέσεις:

$$\lambda_1 = \beta_0 \tag{2.21}$$

$$\lambda_2 = 2\beta_1 - \beta_0 \tag{2.22}$$

$$\lambda_3 = 6\beta_2 - 6\beta_1 + \beta_0 \tag{2.23}$$

Όπως επισημάνθηκε παραπάνω, η μέθοδος των L-ροπών επιλέχθηκε καθώς παρουσιάζει σχετικά μικρή ευαισθησία έναντι της δειγματοληπτικής αβεβαιότητας και μικρότερο σφάλμα σε σύγκριση με άλλες μεθόδους.

Εικόνα 2.1: Γενικευμένη κατανομή μεγίστων με αρνητική τιμή της παραμέτρου σχήματος γ

Εικόνα 2.2: Γενικευμένη κατανομή μεγίστων με διορθωμένη τιμή της παραμέτρου σχήματος γ

Όπως φαίνεται στα παραδείγματα που δίνονται στην Εικόνα 2.1 και Εικόνα 2.2, πολύ αρνητικές τιμές της παραμέτρου γ δεν παρουσιάζουν καλή προσέγγιση, καθώς απομακρύνονται αισθητά από τις ακραίες τιμές του δείγματος της κατανομής. Η διόρθωση τις παραμέτρου γίνεται για να πλησιάσει η παράμετρος όσο περισσότερο είτε την μηδενική τιμή, όπου ανταποκρίνεται στην κατανομή Gumbel Τύπου Ι, είτε θετικές τιμές, που αντιστοιχούν στην κατανομή Fréchet Τύπου ΙΙ.

Η διόρθωση της στατιστικής παραμέτρου γίνεται σύμφωνα με την εμπειρική σχέση των Papalexiou *et al.* (2013):

$$\tilde{\gamma}(n) = \frac{\sigma_{\gamma}}{\sigma_{\gamma}(n)} (\hat{\gamma} - \mu_{\gamma}(n)) + \mu_{\gamma}$$
(2.24)

όπου:

- n: είναι το μέγεθος του δείγματος
- ŷ: είναι η παράμετρος του σχήματος της κατανομής όπως έχει υπολογιστεί με την μεθόδου των L-ροπών
- μ_γ ~ 0.114
- σ_γ ~ 0.045
- $\mu_{\gamma}(n) = \mu_{\gamma} 0.69 n^{-0.98}$
- $\sigma_{\gamma}(n) = \sigma_{\gamma} + 1.27n^{-0.70}$

3 Υπολογιστικά εργαλεία

3.1.1 Λογισμικό «Υδρογνώμων»

Σε αρχικό στάδιο προσέγγισης της μελέτης χρησιμοποιήθηκε το λογισμικό «Υδρογνώμων». Ο «Υδρογνώμων» είναι ένα ανεξάρτητο προγραμματιστικό πακέτο που τρέχει στο περιβάλλον Windows. Αναπτύχθηκε και σχεδιάστηκε από ερευνητές του Τομέα Υδατικών Πόρων και Περιβάλλοντος της Σχολής Πολιτικών Μηχανικών ΕΜΠ, για την ανάλυση και επεξεργασία χρονοσειρών (Κοζάνης κ.ά., 2010).

Οι κύριες εφαρμογές του συστήματος είναι:

- Μετατροπή χρονοσειρών σε σταθερό χρονικό βήμα
- Εξαγωγή χρονοσειρών μεγαλύτερου χρονικού βήματος
- Τυπικοί έλεγχοι συνέπειας όπως ακραίων τιμών και χρονικής συνέπειας
- Γραμμική παλινδρόμηση μεταξύ χρονοσειρών, πολλαπλή παλινδρόμηση, οργανική συσχέτιση και αυτοσυσχέτιση
- Υδατικά ισοζύγια: αδρομερές μοντέλο βροχής απορροής
- Συμπλήρωση ελλειπουσών τιμών με χρήση της γραμμικής παλινδρόμησης, δυνατότητα εισαγωγής τυχαίου όρου για την διατήρηση των στατιστικών χαρακτηριστικών. Επέκταση χρονοσειρών
- Γραμμικές πράξεις μεταξύ χρονοσειρών
- Κατάρτιση καμπύλων στάθμης παροχής με στατιστικές μεθόδους και καμπύλων επέκτασης με χρησιμοποίηση υδραυλικών εξισώσεων
- Εξαγωγή χρονοσειρών παροχών από χρονοσειρές στάθμης, καθώς και χρονοσειρών όγκου και επιφάνειας από χρονοσειρές στάθμης ταμιευτήρων και λιμνών
- Υπολογισμός εξάτμισης και δυνητικής εξατμισοδιαπνοής
- Επέκταση δειγμάτων εξατμισοδιαπνοής
- Εύρεση στατιστικών χαρακτηριστικών δείγματος χρονοσειράς, προσαρμογή στατιστικών παραμέτρων, στατιστικές προγνώσεις, στατιστικοί έλεγχοι και εύρεση διαστημάτων εμπιστοσύνης
- Ανάλυση χρονοσειρών εξαιρετικών βροχοπτώσεων κατάρτιση όμβριων καμπυλών με συνέπειες μεθοδολογίες

Στην Εικόνα 3.1 παρουσιάζεται το περιβάλλον εργασίας του «Υδρογνώμονα». Το λογισμικό, καθώς και ο κώδικάς του, είναι ελεύθερα διαθέσιμα στην ιστοσελίδα http://hydrognomon.org/.

3. Υπολογιστικά εργαλεία

51 5 D M C			
File Edit View Sei	ries Hydrology He	elp	
📄 📄 🖶	2 😽	A A A A A A A A A A A A A A A A A A A	
			^
1948/01/01 00:00	1.39	Statistics – – ×	
1948/01/02 00:00	2.46	Ella Edita Visuri Ostiona Essenante DR/Claterada Danametera MIE Testa	
1948/01/03 00:00	0.05	File Edit View Options Forecasts Poccintervals Parameters Mile Tests	
1948/01/04 00:00	0.00	Distribution functions plots Histogram - Density functions plots Parameter values - Forecasts Select distributions to display.	
1948/01/05 00:00	0.00	Use shift and/or ctrl key or	
1948/01/06 00:00	0.55	Weibull — GEV-Max (k spec.) drag to select many at once:	
1948/01/07 00:00	0.03	Exceedance probability (%) - scale: Normal distribution Gumbel Min	
1948/01/08 00:00	17.64	87 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
1948/01/09 00:00	2.25	86 88 88 88 89 69 69 62 62 62 63 85 85 85 95 GEV Min	
1948/01/10 00:00	0.00	Pareto	
1948/01/12 00:00	2.03	100 L-moments Normal	
1948/01/13 00:00	2.05	90 L-Moments EVI-Max	
1948/01/14 00:00	0.77	80	
1948/01/15 00:00	0.08	70 L-Moments EV3-Min	
1948/01/16 00:00	5.15	60 L-MOMENTS GEV Mix	
1948/01/17 00:00	13.43	E co	
1948/01/18 00:00	3.63	GEV Min (k spec.)	
1948/01/19 00:00	0.47	40	
1948/01/20 00:00	5.60	30	
1948/01/21 00:00	2.12	20 Empirical Distributions	
1948/01/22 00:00	0.49	10 Weibull Points	
1948/01/23 00:00	0.00	Blom Points	
1948/01/24 00:00	6.76	-3 -2 -1 0 1 2 3	
1948/01/25 00:00	4.04	Gringorten Points	
1948/01/26 00:00	0.00	ΟκτώβριΝοέμβρι Δεκέμβς Ιανουάς Φεβρου Μάρτιος Απρίλιος Μάιος Ιούνιος Ιούλιος Αύγουσ Σε	
1948/01/27 00:00	0.00		
1948/01/28 00:00	0.00		
1948/01/29 00:00	0.00		
1948/01/30 00:00	0.00		

Εικόνα 3.1: Περιβάλλον λογισμικού "Υδρογνώμων"

3.1.2 R Software

Η απαίτηση για ανάλυσης πολλών χρονοσειρών μεγάλου μήκους, καθώς και η ανάγκη επανάληψης της ανάλυσης για ένα μεγάλο αριθμό λεκανών απορροής, οδήγησε στην ανάγκη εξοικείωσης και χρήσης της γλώσσας προγραμματισμού R.

Η R είναι μια ελεύθερη προγραμματιστική γλώσσα και σχετικό λογισμικό για την πραγματοποίηση στατιστικών αναλύσεων και την παραγωγή γραφημάτων που υποστηρίζεται από το R Foundation for Statistical Computing. Υποστηρίζει γλώσσα ανοιχτού περιβάλλοντος, που επιτρέπει στον κάθε χρήστη την πρόσβαση σε αυτή με στόχο την βελτίωση και εξέλιξή της. Είναι ευρέως διαδεδομένη και συνεχώς αναπτυσσόμενη ανάμεσα σε στατιστικολόγος και αναλυτές δεδομένων (data miners) σε όλο των κόσμο (Venables *et al.*, 2018).

To R Foundation είναι ένας μη κερδοσκοπικός οργανισμός που έχει χρηματοδοτηθεί από μέλη του R Development Core Team με στόχο:

- να παρέχει υποστήριξη πάνω στο λογισμικό R καθώς και σε κάθε καινοτομία πάνω στην στατιστική ανάλυση σε προγραμματιστικό περιβάλλον,
- να αποτελεί σημείο αναφοράς για άτομα, ομάδες, ιδρύματα ή και εταιρείες που επιθυμούν να υποστηρίξουν ή να αλληλοεπιδράσουν με την όλο και αναπτυσσόμενη κοινότητα της R,
- να διαχειρίζονται τα πνευματικά δικαιώματα του λογισμικού.
Ανάμεσα στους στόχους του R Foundation είναι η συνεχής ανάπτυξη της R, η μετάδοση νέων μεθοδολογιών, η εκμάθηση και διάδοση της προγραμματιστικής στατιστικής, καθώς διεξαγωγή συνέδριων και συναντήσεων στο αντικείμενο του στατιστικού προγραμματισμού.

Η εφαρμογή παρέχει τα απαραίτητα εργαλεία προκειμένου να πραγματοποιηθεί μια στατιστική ανάλυση, όπως:

- Δημιουργία τυχαίων δειγμάτων
- Διακριτές και συνεχείς μεταβλητές (π.χ., Poisson, Gamma, εκθετική κτλ.)
- Έλεγχοι υποθέσεων
- Στατιστικά τεστ (π.χ., Kolmogorov-Smirnoff)
- Δημιουργία γραφημάτων (ιστογράμματα, qq, plot, pie chart, bar chart κτλ.)

Η R αναπτύσσεται και εξελίσσεται κυρίως μέσα από την προσθήκη πακέτων έτοιμου κώδικα, που συνήθως δημιουργούν οι χρήστες της. Αυτά τα πακέτα δημιουργούνται κυρίως στο περιβάλλον της R, αλλά μερικές φορές και στη Java, C, C++ και Fortran.

Η R και οι βιβλιοθήκες της καλύπτουν ένα μεγάλο εύρος στατιστικών και γραφικών τεχνικών, όπως γραμμική και μη γραμμική μοντελοποίηση, κλασικά στατιστικά τεστ, ανάλυση χρονοσειρών, ταξινόμηση, κτλ.

Επισημαίνεται πως παρότι η γλώσσα προγραμματισμού R καθώς και τα «πακέτα» που περιέχει διατίθενται ελευθέρα στους χρήστες, υπάρχουν επιχειρήσεις που προσφέρουν τεχνική υποστήριξη και περαιτέρω επεκτάσεις της, σε χρήστες που το επιθυμούν.

Για περισσότερες πληροφορίες σχετικά με την R πραπέμπουμε στην ηλεκτρονική διεύθυνση του επίσημου site της (<u>https://www.r-project.org/</u>), όπου υπάρχει και η δυνατότητα δωρεάν ανάκτησης του λογισμικού της.

3.1.3 R Studio

To R Studio είναι το πιο διαδεδομένο ελεύθερο, ανοιχτού τύπου προγραμματιστικό περιβάλλον ανάπτυξης για την R. Χρηματοδοτήθηκε από τον J.J. Allaire, δημιουργό της γλώσσας προγραμματισμού ColdFusion (<u>https://www.wikipedia.org/</u>).

To R Studio είναι εν μέρει γραμμένο στη γλώσσα προγραμματισμού C++ και ένα μεγάλο ποσοστό του είναι γραμμένο στη Java. Το JavaScript είναι μια από τις γλώσσες που χρησιμοποιήθηκαν επίσης.

Η κονσόλα του υποστηρίζει τη δυνατότητα απευθείας εφαρμογής του κώδικα, καθώς και εργαλεία για την παραγωγή γραφημάτων, κατανομών, ιστογραμμάτων, σε ένα πιο φιλικό και εύκολο περιβάλλον εργασίας για τον

χρήστη. Στην Εικόνα 3.2 παρουσιάζεται ένα παράδειγμα από το περιβάλλον εργασίας του R Studio.

Εικόνα 3.2: Περιβάλλον εργασίας R studio

4 Βάση δεδομένων MOPEX

4.1 Συλλογή δεδομένων

Το προκαταρκτικό στάδιο της παρούσας διπλωματικής εργασίας εστίασε στην εύρεση χρονοσειρών επιφανειακής βροχόπτωσης και απορροής ποταμών σε κατάλληλη χρονική κλίμακα (ημερήσια ή ωριαία), από ένα μεγάλο δείγμα λεκανών.

Αναζητήθηκαν πηγές που διαθέτουν αξιόπιστα δεδομένα μεγάλου μήκους (κατ' ελάχιστο 50 έτη), καθώς και όσο τον δυνατόν περισσότερες πληροφορίες για τις ιδιαιτερότητες των αντίστοιχων υδρολογικών λεκανών.

Ύστερα από εκτενή έρευνα, αποφασίστηκε η επιλογή της πηγής δεδομένων MOPEX, η οποίο διέθετε παρατηρήσεις για 438 λεκάνες απορροής. Οι λεκάνες αυτές ανήκουν στην εδαφική επικράτεια των Ηνωμένων Πολιτειών της Αμερικής και πληρούν τα ανωτέρω κριτήρια χρονικής διάρκειας και αξιοπιστίας.

4.2 Πηγή δεδομένων MOPEX

4.2.1 Γενικές Πληροφορίες

Η ανάπτυξη της βάσης δεδομένων MOPEX προέκυψε από την ανάγκη για εκτενέστερη έρευνα πάνω στις δομές και παραμέτρους που εφαρμόζονται στα υδρολογικά και ατμοσφαιρικά μοντέλα, με στόχο την καλύτερη και πιο αποτελεσματική βαθμονόμηση των τελευταίων. Η ανάγκη αυτή θα ικανοποιούνταν με την συγκέντρωση όσο το δυνατόν μεγαλύτερου όγκου παρατηρήσεων από μεγάλο πλήθος λεκανών απορροής. Η πρώτη προσπάθεια επικεντρώθηκε στην αναζήτηση και καταγραφή μεγάλου πλήθους ιστορικών υδρομετερεωλογικών παρατηρήσεων και χαρακτηριστικών των λεκανών απορροής σε παγκόσμια κλίμακα, για ένα εύρος λεκανών από 500 έως 10.000 km².

Η πρώτη φάση χρηματοδότησης της βάσης δεδομένων MOPEX ξεκίνησε το 1997 από National Oceanic and Atmospheric Administration των Ηνωμένων Πολιτειών της Αμερικής (NOAA). Η δεύτερη φάση χρηματοδοτήθηκε το 2000, ενώ η τρίτη το 2003.

Στη συνέχεια, η MOPEX υιοθετήθηκε ως ερευνητικό έργο από το IAHS/WMO Working Group και από την WMO Commission on Hydrology (CHy), και τώρα είναι συνεργάτης στο Combine Enhanced Observing Period (CEOP) του World Climate Research Program (WCRP). Ακόμα, το 2004 συμμετείχε στην πρωτοβουλία (Initiative) Prediction in Ungauged Basis (PUB) της International Association of Hydrological Sciences (IAHS), ως αυτόνομη ομάδα εργασίας. Από την φάση δημιουργίας της βάσης δεδομένων μέχρι και σήμερα η MOPEX έχει συμμετάσχει και οργανώσει σημαντικό αριθμό ημερίδων (workshops), σχετικών με υδρολογικά ή ατμοσφαιρικά μοντέλα (Schaake *at al.*, 2006).

Στους μελλοντικούς στόχους της ομάδας MOPEX περιλαμβάνονται:

- Η πλήρωση της βάσης με όλο και περισσότερα δεδομένα παρατηρήσεων που θα αφορούν λεκάνες σε παγκόσμια κλίμακα και η ενημέρωση των ήδη υπαρχόντων δεδομένων που αντιστοιχούν την περιοχή των Ηνωμένων Πολιτειών της Αμερικής, με την προσθήκη επιπλέον ετών παρατηρήσεων που θα εμπεριέχουν και παρατηρήσεις σε ορεινές περιοχές.
- Η διατήρηση και επέκταση των διεθνών workshops.
- Η παροχή ηγεσίας με στόχο την εξέλιξή και καλύτερη κατανόηση από πλευράς επιστήμης στην εκτίμηση των αρχικών παραμέτρων των μοντέλων.
- Η σημαντικότερη συμβολή στην Combine Enhanced Observing Period (CEOP) και στο Working Group of IAHS Prediction in Ungauged Basins (PUB).
- Παρουσίαση των αποτελεσμάτων MOPEX.

Περισσότερες πληροφορίες για τα δεδομένα και για την ιστορία της MOPEX δίδονται στη επίσημη ιστοσελίδα του οργανισμού:

http://www.nws.noaa.gov/ohd/mopex/mo_datasets.htm

4.2.2 Δεδομένα

Στην προσπάθεια της αποδοτικότερης βαθμονόμησης των υδρολογικών μοντέλων έγινε κατανοητή η σημαντικότητα της σύνδεσης των παραμέτρων που χρειάζονται για την εφαρμογή του εκάστοτε μοντέλου και τον φυσιογραφικών χαρακτηριστικών της αντίστοιχης λεκάνης. Επομένως, σε πρώτο στάδιο έγινε καταγραφή ενός εξαιρετικά μεγάλου όγκου ιστορικών υδρομετεωρολογικών δεδομένων καθώς και δεδομένων απορροής ποταμών που αφορούσαν σε ένα διευρυμένο χωρικά σύνολο από λεκάνες απορροής σε όλο τον κόσμο, με έκταση από 500 έως 10 000 km².

Οι παρατηρήσεις αυτές περιλάμβαναν πολυετείς παρατηρήσεις (καταγραφές από το 1948 μέχρι και το 2003) που αφορούσαν σε:

- Ημερήσιες και ωριαίες καταγραφές επιφανειακών βροχοπτώσεων με μήκος χρονοσειράς μεγαλύτερο τον 30 ετών
- 2. Μέγιστες, μέσες και ελάχιστες τιμές θερμοκρασίας
- Γεωμορφολογικά, τοπογραφικά και κλιματικά χαρακτηριστικά των λεκανών απορροής

4. Ημερήσιες τιμές ισοδύναμου ύψους απορροής ποταμών

Αξίζει να αναφερθεί πως τα δεδομένα για την απορροή των λεκανών προήλθαν από το υδρομετρικό δίκτυο της USGS. Το σύνολο αυτό των δεδομένων περιέχει τις περισσότερες μετρήσεις από το USGS hydro-climatic data network (HCDN) (Slack *et al.*, 1992) ή από παρόμοια δίκτυα επιλεγμένα από τους Wallis *et al.* (1991). Και οι δύο πηγές περιλαμβάνουν μόνο μετρήσεις που θεωρήθηκαν ανεπηρέαστες από τυχόν ανάντη επεμβάσεις ή ρυθμιστικές ενέργειες της ποτάμιας ροής (π.χ., ύπαρξη φράγματος, αρδευτικά δίκτυα κτλ.) με αρκετά μεγάλο μητρώο καταγραφής, έτσι ώστε να είναι αξιόπιστο για επιστημονικές κλιματικές έρευνες.

Τα όρια των λεκανών απορροής αναπτύχθηκαν με βάσει τις θέσεις μέτρησης των ποταμών από το USGS. Τα όρια τους βασίστηκαν σε δεδομένα συντεταγμένων από το NOHRSC (National Operational Hydrologic Remote Sensing Center).

Για περισσότερες πληροφορίες παρατίθεται η επίσημη σελίδα του οργανισμού: <u>https://www.nohrsc.noaa.gov/</u>

Επιπρόσθετα, οι παρατηρήσεις που αφορούσαν σε ημερήσιες και ωριαίες τιμές βροχόπτωσης στο χρονικό εύρος των 56 ετών (1948 έως 2003) ελήφθησαν από το National Climate Data Center (NCDC) (<u>https://www.ncdc.noaa.gov/</u>) και το δίκτυο SNOTEL της Natural Resources Conservation Service (NRCS).

Το σύνολο των δεδομένων ανταποκρίνεται στα 438 λεκανών απορροής στις Ηνωμένες Πολιτείες της Αμερικής. Δυστυχώς, παρατηρήσεις σε παγκόσμια κλίμακα που θα επέτρεπαν μια πιο σφαιρική αντιμετώπιση του προβλήματος δεν ήταν διαθέσιμες μέσω της πλατφόρμας MOPEX, και για αυτό δεν λήφθηκαν υπόψη στην παρούσα εργασία. Η κατανομή των λεκανών απορροής που χρησιμοποιήθηκαν αποτυπώνεται στην Εικόνα 4.1.

Εικόνα 4.1 Γεωγραφική κατανομή των λεκανών απορροής σύμφωνα με την MOPEX (Πηγή: https://mygeodata.cloud/)

Είναι σημαντικό να αναφερθεί πως σε μια σύντομη αναζήτηση των ερευνών και δημοσιευμένων επιστημονικών άρθρων που έχουν πραγματοποιεί τα τελευταία χρόνια με βάση τα δεδομένα της πηγής MOPEX δεν βρέθηκε κάποια δημοσιευμένη εργασία που να χρησιμοποιεί τα παραπάνω δεδομένα σε πλαίσια πολυμεταβλητής στατιστικής ανάλυσης των ακραίων τιμών των μεταβλητών. Το σύνολο των ερευνών αφορούν, κατά κύριο λόγο, την μελέτη και εξέλιξη πάνω στην εκτίμηση των παραμέτρων υδρολογικών ή ατμοσφαιρικών μοντέλων και όχι τόσο στην στατιστική ερμηνεία των δεδομένων αυτών. Αυτό, ενισχύει την σημαντικότητα τόσο της παρούσας διπλωματικής εργασίας, όσο και της ανάγκης περαιτέρω ενασχόλησης πάνω στο υπόψη ζήτημα.

Τέλος, αξίζει να επισημανθεί πως ο κυρίαρχος λόγος για την εκλογή των δεδομένων από την αναφέρουσα πηγή ήταν η ελεύθερη προσφορά τους μέσω του Διαδικτύου, η αξιοπιστία που εγγυούταν, καθώς και το γεγονός πως οι υδρολογικές παρατηρήσεις κάλυπταν ένα σημαντικό εύρος, τόσο χωρικό όσο και χρονικό.

4.3 Διόρθωση και επεξεργασία δεδομένων

Για την εξαγωγή ποιοτικότερων αποτελεσμάτων κρίθηκε σκόπιμο η εξαίρεση των χρονοσειρών που περιείχαν δεδομένα παρατηρήσεων μικρότερα εκείνων των σαράντα ετών. Η συγκεκριμένη ενέργεια έγινε μέσω του «φιλτραρίσματος» των δεδομένων με την χρήση κώδικα στον προγραμματιστικό περιβάλλον της R Studio (βλ. 3.1.3), ο οποίος εξαιρούσε από την επαναληπτική διαδικασία χρονοσειρές με μήκος μικρότερο από το επιλεχθέν.

Ακόμα, από τις λεκάνες απορροής επιλέχθηκαν μόνο εκείνες που περιείχαν ενιαίες και συνεχόμενες παρατηρήσεις, ενώ εκείνες με ελλείψεις είτε μικρότερων είτε μεγαλύτερων χρονικών περιόδων παραλήφθηκαν.

Τελικά, για την στατιστική ανάλυση των βροχοπτώσεων χρησιμοποιήθηκαν 423 λεκάνες, ενώ απομακρύνθηκαν 8 λεκάνες που είχαν ελλείψεις στις χρονοσειρές τους. Η κωδική ονομασία των λεκανών παρατίθεται στον Πίνακας 4.1.

Πίνακας 4.1: Κωδικοί λεκανών που δεν ελήφθησαν υπόψη στην ανάλυση των ακραίων τιμών βροχόπτωσης

Gauge ID	1138000 1076500		11401500	3050500	
	1064500	11403000	1334500	4115000	

Συμπληρωματικά, για την στατιστική ανάλυση των απορροών, καθώς και την ανάλυση της στατιστικής τους συσχέτισης με την βροχόπτωση, παραλήφθηκαν τόσο οι σταθμοί που περιείχαν χρονικά κενά, και αφορούσαν στις τιμές της ημερήσιας βροχόπτωσης και αναφέρθηκαν παραπάνω, όσο και οι σταθμοί καταγραφής της ημερήσιας απορροής που αναφέρει ο Πίνακας 4.2. Τέλος,, απορρίφθηκαν δύο λεκάνες για τις οποίες δεν αναφέρονται εκτάσεις τους (Πίνακας 4.3).

Ύστερα από την επεξεργασία και προσεκτική επιλογή των δεδομένων, πραγματοποιήθηκαν οι αναλύσεις μεταξύ απορροής και ακραίων βροχοπτώσεων σε ένα δείγμα από 299 λεκανών, που αποτυπώνονται στην Εικόνα 4.2.

Όλες οι λεκάνες που χρησιμοποιήθηκαν για την παρούσα εργασία παρατίθενται με την κωδική τους ονομασία, της γεωγραφικές τους συντεταγμένες καθώς και άλλες πληροφορίες που δίνονται στο Παράρτημα 1.

4. Βάση δεδομένων ΜΟΡΕΧ

	Gauge ID									
12449500	7346000	3448000	7058000	3238500	4183500	5476500				
8205500	2482000	7252000	11222000	6868000	5555300	5383000				
2236000	7289500	8340500	3165500	5514500	5555500	1138000				
8171300	8085500	3470000	11213500	6888500	5542000	1055500				
2486000	2448000	2083500	3308500	3065000	1200000	6426500				
8015500	11025500	3603000	3175500	3069000	4212000	6441500				
8150000	2218500	3455000	3213000	6890500	1520500	13298500				
8013500	2219500	3540500	6928000	5507500	4221000	1048000				
8150700	9442692	7163000	3214000	1611500	1514000	6359500				
2365500	7340000	3465500	11281000	5502040	4221500	14101500				
8103800	7307800	7049000	7144780	3361650	1500500	6334500				
8146000	11080500	7211500	1674500	6884500	1361000	14232500				
8095000	2383500	7072000	3199000	11403000	11497500	5053000				
7290000	11138500	3161000	3182500	6883000	5546500	13340500				
7348000	3567500	11210500	3289500	6817500	4144000	5244000				
7346050	7029500	3528000	3180500	3136000	5457700	13340600				
7346070	7261000	3532000	3251500	1445000	1329000	12413500				
9431500	7222500	3490000	6860000	5526000	1329500					

Πίνακας 4.2: Κωδικοί λεκανών με ελλείψεις στις καταγραφές των ημερήσιων απορροών

Πίνακας 4.3: Κωδικοί λεκανών με ελλείψεις στην καταγραφή της έκτασης των λεκανών απορροής

Gauge ID				
6847000	2273000			

Εικόνα 4.2: Γεωγραφική κατανομή τελικού δείγματος λεκανών απορροής (Πηγή: https://mygeodata.cloud/)

4.4 Τελική επιλογή λεκανών απορροής

Για την αποτελεσματικότερη κατανόηση των αποτελεσμάτων της στατιστικής ανάλυσης, ύστερα από την τελική διαλογή των λεκανών απορροής συγκεντρώθηκαν τα δεδομένα μέσης βροχόπτωσης και απορροής και εξήχθησαν συγκεντρωτικοί χάρτες με τα υδροκλιματικά χαρακτηριστικά της λεκάνης.

4.4.1 Υδροκλιματικά χαρακτηριστικά λεκανών απορροής

Οι παρατηρημένες τιμές στη βάση δεδομένων MOPEX ανταποκρίνονται σε χωρικές καταγεγραμμένες παρατηρήσεις. Πιο συγκεκριμένα, δίδονται οι συντεταγμένες του γεωγραφικού μήκους και γεωγραφικού πλάτους του υδρομετρικού σταθμού στην έξοδο της λεκάνης απορροής. Επισημαίνεται πως στους παρακάτω συνοπτικούς χάρτες δίνεται μια προσεγγιστική χωρική κατανομή των δεδομένων, και όχι σημειακές μετρήσεις των δεδομένων.

Για το σύνολο των 423 λεκανών απορροής, αφού απορρίφθηκαν οι μη αποδεκτές λεκάνες, συγκεντρώθηκα τα δεδομένα που αφορούσαν τις ημερήσιες καταγραφές της βροχόπτωσης. Στην συνέχεια υπολογίστηκε για κάθε λεκάνη η μέση ετήσια τιμή της βροχής για το εύρος των 56 ετών και έγινε η αναγωγή της σε mm/έτος.

Αξίζει να επισημανθεί πως τα δεδομένα παρατηρήσεων της βάσης δεδομένων MOPEX αφορούν χωρικές καταγραφές τόσο για τα δεδομένα βροχόπτωσης όσο και για τα δεδομένα της απορροής. Οι συντεταγμένες των σημείων που αποτυπώνονται στους συγκεντρωτικούς χάρτες που ακολουθούν υποδηλώνουν ενδεικτικά σημεία στην έξοδο της λεκάνης απορροής και όχι σημειακές παρατηρήσεις.

Στην συνέχεια, το χρονικό εύρος των χρονοσειρών απορροής κυμαινόταν μεταξύ των 40 έως 56 ετών για το σύνολο των 299 λεκανών απορροής. Η επεξεργασία των δεδομένων έγινε στο προγραμματιστικό περιβάλλον του EXCEL και αποτυπώνονται στην Εικόνα 3.2 ως μέσα ετήσια ισοδύναμα ύψη νερού (mm/έτος).

United States of America

United States of America

Average Precipitation Value (mm/year)

Εικόνα 4.3: Μέση ετήσια επιφανειακή βροχόπτωση (mm) για το σύνολο των 423 λεκανών απορροής

Εικόνα 4.4: Μέση ετήσια απορροή (mm) για το σύνολο των 299 λεκανών απορροής

Στη συνέχεια, μετά την έρευνα των μέσων ετήσιων βροχοπτώσεων για το δείγμα των 431 λεκανών απορροής και των μέσων ετήσιων απορροών για το δείγμα των 299 λεκανών απορροής, υπολογίστηκε ο συντελεστής απορροής για το τελικό δείγμα των 299 λεκανών. United States of America

Εικόνα 4.5:Συντελεστής απορροής για τις 299 λεκάνες τις βάσης ΜΟΡΕΧ

Όπως φαίνεται στον χάρτη της Εικόνα 4.5, υπάρχει μια συστηματική χωρική κατανομή του συντελεστή απορροής. Στην κεντρική Αμερική παρατηρούνται οι μικρότερες τιμές του συντελεστή απορροής, ενώ όσο πλησιάζουμε τον Ατλαντικό και Ειρηνικό ωκεανό φαίνεται να παρατηρείται κάποια αύξηση στις τιμές του. Οι μεγαλύτερες τιμές των συντελεστών απορροής παρατηρούνται στα παράλια και βόρεια τμήματα της χώρας.

Εικόνα 4.6: Χάρτης γεωγραφικής μεταβλητότητας μέσης ετήσιας θερμοκρασίας

Ακόμα, στη βάση δεδομένων MOPEX διατίθεται ημερήσιες καταγραφές της μέγιστης και ελάχιστης θερμοκρασίας. Οι καταγραφές αυτές αφορούσαν το χρονικό εύρος των 56 ετών και αντιστοιχούσαν στο σύνολο (431) των λεκανών απορροής. Με βάση τις χρονοσειρές αυτές, υπολογίστηκε η μέση ημερήσια θερμοκρασία ως ο μέσος όρος της μέγιστης και ελάχιστης παρατήρησης.

Από την Εικόνα 4.6 παρατηρείται μια συστηματική χωρική κατανομή της θερμοκρασίας, με χαμηλότερες τιμές στα βόρεια της Αμερικής και με θερμότερες όσο προσεγγίζουμε τον Ισημερινό, όπως ήταν αναμενόμενο.

4.4.2 Γεωμορφολογικά χαρακτηριστικά

Στην Εικόνα 4.7 δίδεται μια προσεγγιστική ένδειξη της κατανομής του υψομέτρου της Αμερικής. Όπως φαίνεται στον χάρτη της Εικόνας 3.4, στα δυτικά της χώρας υπάρχει έντονο το φαινόμενο των ορεινού στοιχείου με υψόμετρα που φτάνουν τα 3000 μέτρα. Ενώ αντίθετα όσο πλησιάζουμε προς τα ανατολικά συναντάμε συνθήκες πεδιάδας. Το σύνολο των λεκανών απορροής που τελικά επιλέχθηκε κατανέμεται σε όλη την επικράτεια της Αμερικής, με τις περισσότερες λεκάνες να βρίσκονται στην ανατολική πλευρά της, δηλαδή σε πιο χαμηλά υψόμετρα.

Εικόνα 4.7: : Γεωμορφολογικός χάρτης Ηνωμένων Πολιτειών της Αμερικής

5 Μεθοδολογία

5.1 Υπολογιστική διαδικασία

Η πολυμεταβλητή στατιστική ανάλυση στις χρονοσειρές των λεκανών απορροής μετά της συλλογή των δεδομένων από την βάση δεδομένων MOPEX ακολούθησε τα παρακάτω βήματα:

<u>Βήμα 1°</u>

Συλλογή όλων των δεδομένων ημερήσιων καταγραφών της βροχής για το σύνολο των 431 λεκανών απορροής.

<u>Βήμα 2°</u>

Διαλογή των δεδομένων, όπου και έγινε η απομάκρυνση όλων των χρονοσειρών με μήκος μικρότερο των 40 ετών και όλων εκείνων που περιείχαν κενά και δεν ήταν χρονικά συνεχείς.

<u>Βήμα 3°</u>

Υπολογισμός μέγιστων ετήσιων βροχοπτώσεων, σε κλίμακα ημερολογιακού έτους (με αφετηρία την 1 Ιανουαρίου και τέλος την 31 Δεκεμβρίου).

<u>Βήμα 4°</u>

Αποθήκευση της ημερομηνίας καταγραφής της ακραίας ετήσιας παρατήρησης.

<u>Βήμα 5°</u>

Επιλογή του χρονικού εύρους Δt της αθροιστικής βροχόπτωσης. Για την βέλτιστη διερεύνηση της επιρροής της εδαφικής υγρασίας επιλέχθηκε χρονικό βήμα προηγουμένων ημερών βροχόπτωσης ίσο με πέντε ημέρες. Για αυτό το σκοπό, δημιουργήθηκε κώδικας που θα υπολόγιζε την συναθροισμένη χρονοσειρά βροχόπτωσης που προηγήθηκε της μέγιστης ετήσιας τιμής έχοντας ως αφετηρία τις προηγούμενες πέντε ημέρες και τέλμα έως τις τριάντα ημερών πριν.

<u>Βήμα 6°</u>

Εκτίμηση αθροιστικής βροχόπτωσης που αντιστοιχεί στο αντίστοιχο χρονικό εύρος Δt, ύστερα από την ημερομηνία καταγραφής της μέγιστης ετήσιας βροχόπτωσης

<u>Βήμα 7°</u>

Υπολογισμός συντελεστή συσχέτισης Pearson ανάμεσα στην μέγιστη ετήσια βροχόπτωση και στην αντίστοιχη αθροιστική.

<u>Βήμα 8°</u>

Προσαρμογή της χρονοσειράς ακραίων ετήσιων βροχοπτώσεων στην Γενικευμένη Ακραίων Τιμών (κατανομή GEV), με την μέθοδο των L-ροπών και εκτίμηση των παραμέτρων της.

5. Μεθοδολογία

<u>Βήμα 9°</u>

Διόρθωση στατιστικής παραμέτρου σχήματος για την κατανομή των μεγίστων ετήσιων βροχοπτώσεων.

<u>Βήμα 10°</u>

Προσαρμογή χρονοσειράς αθροιστικών βροχοπτώσεων για κάθε κλίμακα Δt στην κατανομή GEV με την μέθοδο L-ροπών και εκτίμηση των παραμέτρων της.

<u>Βήμα 11°</u>

Διόρθωση στατιστικής παραμέτρου σχήματος για την κατανομή της αθροιστικής βροχόπτωσης.

<u>Βήμα 12°</u>

Υπολογισμός τεσσάρων πρώτων ροπών για τις κατανομές των ετήσιων μέγιστων βροχοπτώσεων και αθροιστικών βροχοπτώσεων.

<u>Βήμα 13°</u>

Υπολογισμός μέγιστων ετήσιων απορροών.

<u>Βήμα 14°</u>

Εύρεση της αθροιστικής βροχόπτωσης που αντιστοιχούσε στο επιλεχθέν χρονικό εύρος Δt ύστερα από την ημερομηνία καταγραφής της μέγιστης ετήσιας απορροής.

<u>Βήμα 15°</u>

Υπολογισμός του συντελεστή συσχέτισης Pearson ανάμεσα στην μέγιστη ετήσια απορροή και την αντίστοιχη αθροιστική απορροή.

<u>Βήμα 16°</u>

Προσαρμογή χρονοσειράς ακραίων ετήσιων απορροών στη κατανομή GEV με την μέθοδο L-ροπών και εκτίμηση των παραμέτρων της.

<u>Βήμα 17°</u>

Διόρθωση στατιστικής παραμέτρου σχήματος για την κατανομή των μέγιστων ετήσιων απορροών.

<u>Βήμα 18°</u>

Προσαρμογή χρονοσειράς αθροιστικών βροχοπτώσεων για κάθε ξεχωριστό Δt στην κατανομή GEV με την μέθοδο L-ροπών και εκτίμηση των παραμέτρων της.

<u>Βήμα 19°</u>

Διόρθωση στατιστικής παραμέτρου σχήματος για την κατανομή της αθροιστικής βροχόπτωσης.

5. Μεθοδολογία

<u>Βήμα 20°</u>

Υπολογισμός τεσσάρων πρώτων ροπών για τις κατανομές των ακραίων ετήσιων απορροών και αθροιστικών βροχοπτώσεων.

<u>Βήμα 21°</u>

Επανάληψη της διαδικασίας για το σύνολο των λεκανών απορροής.

<u>Βήμα 22°</u>

Αποθήκευση αποτελεσμάτων σε φύλλα EXCEL για περαιτέρω ανάλυση.

Στη συνέχεια παρουσιάζεται μια πιλοτική εφαρμογή της μεθοδολογίας σε μία λεκάνη απορροής. Κρίνεται σκόπιμο για την καλύτερη κατανόηση της διαδικασίας η ανάλυση της μεθοδολογίας να γίνει ειδικεύοντας αρχικά για την περίπτωση μιας λεκάνης και στη συνέχεια γενικεύοντας την διαδικασία. Στη γενικευμένη ανάλυση, που γίνεται στο επόμενο κεφάλαιο, παρουσιάζονται τα συγκεντρωτικά στατιστικά μεγέθη και χάρτες των στατιστικών μεγεθών που προέκυψαν μέσω της στατιστικής ανάλυσης, για το σύνολο των λεκανών απορροής.

5.2 Παράδειγμα ανάλυσης δειγμάτων λεκάνης απορροής

Αρχικά έγινε η συλλογή ημερήσιων δεδομένων βροχής από την βάση δεδομένων MOPEX για την δεδομένη λεκάνη, με κωδικό 10301500. Η λεκάνη βρίσκεται νοτιοδυτικά των Ηνωμένων Πολιτειών της Αμερικής και υπάγεται στην πολιτεία της Νεβάδα. Η έκτασή της ανέρχεται σε 6734 km² και η γεωγραφική της θέση αποτυπώνεται στην Εικόνα 5.1 και την Εικόνα 5.2,

Εικόνα 5.1: Γεωγραφικά σύνορα λεκάνης με κωδική ονομασία 10301500 (Πηγή: https://mygeodata.cloud/)

Εικόνα 5.2: Γεωγραφική θέση της λεκάνης απορροής με κωδική ονομασία 10301500 (Πηγή: <u>https://mygeodata.cloud/</u>)

Όπως αναφέρθηκε παραπάνω, απαραίτητη προϋπόθεση για την ένταξη της λεκάνης στο σύνολο της μελέτης ήταν να διαθέτει χρονοσειρά ημερήσιων καταγραφών βροχοπτώσεως μεγαλύτερη των 40 ετών. Η συγκεκριμένη λεκάνη διέθετε παρατηρήσεις εύρους 56 ετών (1948 έως 2003).

5.2.1 Κατανομή μέγιστων βροχοπτώσεων

Μετά την ολοκλήρωση της επεξεργασίας των δεδομένων συγκεντρωθήκαν σε φύλλο EXCEL οι ημερήσιες παρατηρήσεις βροχόπτωσης για της δεδομένη λεκάνη. Οι παρατηρήσεις ήταν ανοιγμένες στην έκταση της λεκάνης απορροής και δίδονταν σε mm/ημέρα. Η χρονοσειρά της βροχής δεν διέθετε κενά ή λανθασμένες τιμές, ως εκ τούτο αναλύθηκε για όλο το εύρος των 55 ετών (1948 έως 2003).

Μετά την επεξεργασία των δεδομένων, οι μέγιστες τιμές ανά έτος και οι αντίστοιχες ημερομηνίες αποθηκεύτηκαν στο λογισμικό Υδρογνώμων (βλ. 3.1.1). Στην συνέχεια, υπολογίστηκαν η μέγιστες ετήσιες βροχοπτώσεις. Η χρονοσειρά αυτή των μέγιστων ετήσιων τιμών βροχόπτωσης προσαρμόστηκε μέσω της μεθόδου L-ροπών στην κατανομή GEV. Με την διαδικασία αυτή υπολογίστηκαν οι στατιστικές παράμετροι της κατανομής, ήτοι οι παράμεροι κλίμακας, θέσης και σχήματος (Πίνακας 5.1).

Όπως επισημάνθηκε στο κεφάλαιο 2.3, είναι απαραίτητη η διόρθωση τις παραμέτρου σχήματος της κατανομής GEV. Επομένως, ύστερα από τον υπολογισμό των παραμέτρων εφαρμόστηκε η εξίσωση (2.24) και εκτιμήθηκε η νέα διορθωμένη παράμετρος σχήματος για της μέγιστες ετήσιες τιμές της βροχόπτωσης.

Εικόνα 5.3: Προσαρμογή κατανομής GEV στις ακραίες ετήσιες τιμές βροχόπτωσης της λεκάνης απορροής 10301500

Στη συνέχεια της στατιστικής ανάλυσης υπολογίστηκαν οι τέσσερεις πρώτες ροπές του δείγματος των ακραίων τιμών και έγινε η αντιστοίχισή τους μέσω των σχέσεων που περιγράφονται στο υποκεφάλαιο 2.4, στα ζητούμενα στατιστικά μέτρα (μέσης τιμής, συντελεστή μεταβλητότητας (CV), ασυμμετρίας, κυρτότητας).

Συγκεκριμένα, αναπτύχθηκε κώδικας στο προγραμματιστικό περιβάλλον της R Studio (βλ. 3.1.3) και έγινε τη η χρήση της συνάρτησης *samlmu*, που υπολογίζει τις αμερόληπτες ροπές από ένα δεδομένο δείγμα τιμών. Τα αποτελέσματα των υπολογισμών παρατίθενται στον Πίνακας 5.3.

Πίνακας 5.	1: Στατιστικές	παράμετροι	κατανομής (GEV

location	scale	shape	
24.161	9.741	0.166	

Πίνακας 5.2: Διορθωμένες τιμές στατιστικών παραμέτρων κατανομής GEV

location	scale	shape _{new}
24.161	9.741	0.138

Πίνακας 5.3: Μέτρα θέσης και μεταβλητότητας δείγματος ακραίων ετήσιων βροχοπτώσεων

μ	CV	skewness	Kurtosis	
31.673	0.255	0.035	0.026	

5. Μεθοδολογία

5.2.2 Κατανομές αθροιστικών βροχοπτώσεων για τις ετήσιες ακραίες βροχοπτώσεις

Ως γνωστό, η παραγωγή μιας πλημμύρας είναι συνδυασμένο αποτέλεσμα μιας ισχυρής καταιγίδας και της ήδη αποθηκευμένης υγρασίας στο έδαφος, στην αρχή της καταιγίδας. Η τελευταία εξαρτάται από την αλληλουχία βροχοπτώσεων που έχουν πραγματοποιηθεί την πρότερη χρονική περίοδο. Στα μοντέλα συνεχούς προσομοίωσης, η συγκέντρωση της εδαφικής υγρασίας υπολογίζεται ρητά, ενώ στα μοντέλα γεγονότος απαιτείται κάποια προσεγγιστική εκτίμηση των αρχικών συνθηκών του εδάφους κατά την έναρξη του επεισοδίου βροχής. Για παράδειγμα, η μέθοδος SCS-CN, που είναι η πλέον διαδεδομένη διαδικασία εκτίμησης της ενεργού βροχόπτωσης, χρησιμοποιεί την αθροιστική βροχόπτωση των προηγούμενων πέντε ημερών προκειμένου να ορίσει τρεις τύπους συνθηκών εδαφικής υγρασίας. Ωστόσο, η υπόθεση των πέντε ημερών δεν αποτελεί ασφαλές κριτήριο για την αντιστοίχιση των συνθηκών αρχικής υγρασίας, ειδικά σε ξηρά κλίματα, όπου παρατηρούνται λιγότερο συχνά αλλά πολύ πιο έντονα επεισόδια βροχής, σε σχέση με υγρά κλίματα. Για τον λόγο αυτό, ένα από τα ζητούμενα της παρούσας εργασίας ήταν να εντοπίσει το χρονικό εύρος της αθροιστικής βροχόπτωσης που σχετίζεται, στατιστικά, καλύτερα με την παραγόμενη απορροή αιχμής.

Για να διατυπωθεί κατά πόσο η αύξηση του χρονικού εύρους βροχόπτωσης συνδέεται και επηρεάζει τα αποτελέσματα της διερεύνησης, αποφασίστηκε ο διαχωρισμός των προηγούμενων ημερών βροχόπτωσης σε χρονικά διαστήματα μήκους Δt. Έτσι, πραγματοποιήθηκε η επιλογή του χρονικού εύρους Δt των ημερών που προηγήθηκαν της μέγιστης ετήσιας καταγραφής. Η τελική επιλογή αφορούσε τα χρονικά διαστήματα με βήμα ίσο με 5 ημέρες, με αφετηρία πέντε μέρες πριν την καταγραφή της ακραίας ετήσιας τιμής έως και τριάντα ημέρες πριν.

Η εύρεση της αθροιστικής κατανομής βροχής υλοποιήθηκε μέσω του προγραμματιστικού περιβάλλοντος της R, όπου δημιουργήθηκε κώδικας που υπολόγιζε το άθροισμα των Δt προηγούμενων ημερών ύστερα από την εκδήλωση της ακραίας ετήσιας καταγεγραμμένης τιμής.

Στην συνέχεια, έγινε προσαρμογή των 6 χρονοσειρών στην κατανομή GEV μέσω της μεθόδου L-ροπών και εξήχθησαν οι στατιστικοί παράμετροι της κατανομής για κάθε χρονοσειρά. Επιπλέον, έγινε η απαραίτητη διόρθωση του συντελεστή σχήματος και για της 6 χρονοσειρές αθροιστικής βροχόπτωσης.

Τέλος, όπως και στις αναλύσεις των δειγμάτων ακραίων ετήσιων απορροών και βροχοπτώσεων, υπολογίστηκαν οι τέσσερεις πρώτες ροπές για τα δείγματα των αθροιστικών βροχοπτώσεων των πέντε, δέκα, δεκαπέντε, είκοσι, εικοσιπέντε και τριάντα προηγούμενων ημερών, αντίστοιχα, και έγινε η αντιστοίχιση τους στα στατιστικά μέτρα μέσης τιμής, μεταβλητότητας (CV), ασυμμετρίας και κυρτότητας.

Ar	Annual P (⊿t = 5 days)				Annual P (Δt = 10 days)			
location	scale	shape	shape _{new}	location	scale	shape	shape _{new}	
7.164	8.142	0.440	0.240	13.457	13.406	0.288	0.184	
Annual P (<i>Δt</i> = 15 days)				Annual P (Δt = 20 days)				
location	scale	shape	shape _{new}	location	scale	shape	shape _{new}	
17.825	15.823	0.255	0.171	23.254	19.176	0.176	0.142	
An	Annual P (Δt = 25 days)				Annual P (Δt = 30 days)			
location	scale	shape	shape _{new}	location	scale	shape	shape _{new}	
30.840	25.400	0.067	0.101	37.137	29.664	0.051	0.095	

Πίνακας 5.4: Στατιστικές παράμετροι κατανομής GEV για τις 6 χρονοσειρές αθροιστικής βροχόπτωσης

Πίνακας 5.5: Μέτρα θέσης και μεταβλητότητας δείγματος των 6 χρονοσειρών αθροιστικής βροχόπτωσης

A	Annual P (Δt = 5 days)				nnual P	(<i>∆t</i> = 10 day	ys)	
М	CV	skewness	kurtosis	М	CV	skewness	kurtosis	
18.053	0.581	0.046	0.028	26.464	0.497	0.028	0.013	
A	nnual P	(<i>∆t</i> = 15 day	ys)	Annual P (Δt = 20 days)				
М	CV	skewness	kurtosis	μ	CV	skewness	kurtosis	
32.223	0.459	0.023	0.011	38.329	0.420	0.018	0.009	
A	Annual Ρ (<i>Δt</i> = 25 days)				Annual P ($\Delta t = 30$ days)			
М	CV	skewness	kurtosis	μ	CV	skewness	kurtosis	
47.282	0.397	0.011	0.006	55.827	0.387	0.009	0.005	

Από τα αποτελέσματα Πίνακας 5.4 μπορούν να δοθούν κάποιοι αρχικοί σχολιασμοί για την μεταβολή των στατιστικών παραμέτρων τις κατανομής GEV. Παρατηρείται μια αισθητή μείωση του συντελεστή σχήματος τις κατανομής όσο αυξάνεται ο αριθμός προηγούμενων ημερών στην κατανομή αθροιστικής βροχόπτωσης. Η ελάττωση αυτή της παραμέτρου, είναι της τάξης του 30% με 40% ανά 5 μέρες επιπλέον παρατηρήσεων, ενώ από την κλίμακα των 5 ημερών σε εκείνη των 30 η μείωση αυτή προσεγγίζει το ποσοστό του 88%. Αντιθέτως, στην περίπτωση των στατιστικών παραμέτρων της θέσης και κλίμακας παρατηρείται αύξηση της τιμής τους όσο μεγαλώνει το δείγμα αθροιστικής βροχόπτωσης.

Για την περίπτωση των μέτρων θέσης και μεταβλητότητας του δείγματος των χρονοσειρών προκύπτει μια ελαφριά μείωση στον συντελεστή μεταβλητότητας τους δείγματος όσο μεγαλώνει το μήκος προηγούμενων ημερών βροχόπτωσης. Η ίδια μείωση διαφαίνεται και στα μέτρα της ασσυμετρίας και κυρτότητας.

5.2.3 Κατανομή ακραίων απορροών

Αφού πραγματοποιήθηκε η παραπάνω διαδικασία στατιστικής ανάλυσης για τις ακραίες ετήσιες βροχοπτώσεις και για τις χρονοσειρές αθροιστικών βροχοπτώσεων, υπολογίστηκαν οι ετήσιες χρονοσειρές ακραίων απορροών για την λεκάνη απορροής 10301500.

Συγκεκριμένα, αναζητήθηκε από την βάση δεδομένων MOPEX η χρονοσειρά της αντίστοιχης λεκάνης με της ημερήσιες καταγραφές της απορροής. Η βάση διέθετε ημερήσιες τιμές καταγεγραμμένης απορροής ανηγμένες στην έκταση της λεκάνης (mm/day), που ξεκινούσαν από το έτος 1948 έως το έτος 2003.

Η χρονοσειρά αυτή ελέγχθηκε για τυχόν ελλιπείς τιμές. Μετά από το έλεγχο των δεδομένων, το τελικό δείγμα χρονοσειράς ξεκινούσε από το έτος 1948 έως το έτος 2001, δηλαδή 53 έτη παρατηρήσεων.

Ακολούθως, σύμφωνα με την ίδια διαδικασία που αναλύθηκε στο εδάφιο 5.2.1, εξήχθησαν για το κάθε έτος η τιμή της μέγιστης απορροής. Η τελική χρονοσειρά ακραίων ετήσιων απορροών προσαρμόστηκε με την μέθοδο των L-ροπών στην κατανομή GEV και υπολογίστηκαν οι στατιστικές παράμετροι της κατανομής (Πίνακας 5.6), μετά και τη διόρθωση του συντελεστή σχήματος της κατανομής.

Τέλος, υπολογίστηκαν οι τέσσερεις πρώτες ροπές του δείγματος των ακραίων τιμών και έγινε η αντιστοίχιση στα στατιστικά μέτρα μέσης τιμής, μεταβλητότητας (CV), ασυμμετρίας και κυρτότητας.

Εικόνα 5.4: Προσαρμογή κατανομής GEV στις ακραίες ετήσιες τιμές απορροής της λεκάνης 10301500

5. Μεθοδολογία

Πίνακας 5.6: Στατιστικές παράμετροι κατανομής GEV για το δείγμα των μέγιστων ετήσιων απορροών

location	scale	shape	shape _{new}	
0.204	0.241	0.076	0.105	

Πίνακας 5.7: Μέτρα θέσης και μεταβλητότητας δείγματος μέγιστων ετήσιων απορροών

μ	CV	CV skewness	
0.362	0.180	0.219	-0.047

5.2.4 Κατανομές αθροιστικών βροχοπτώσεων για τις ετήσιες ακραίες απορροές

Μετά τον υπολογισμό των ακραίων ετήσιων απορροών για την λεκάνη απορροής υπολογίστηκε η αθροιστική χρονοσειρά της βροχόπτωσης που συνέβη στα προηγούμενα στα έξι χρονικά διαστήματα που μελετώνται. Τα διαστήματα αυτά αφορούσαν την αθροιστική χρονοσειρά που συμπεριλάμβανε την βροχή της ημέρας που καταγράφηκε η μέγιστη τιμή της απορροής και την χρονοσειρά, η οποία είχε ως αφετηρία την προηγούμενη ημέρα από την ακραία τιμή.

Πίνακας 5.8: Στατιστικοί παράμετροι κατανομής GEV για τις 6 χρονοσειρές αθροιστικής βροχόπτωσης συμπεριλαμβανομένης την ημέρας που παρατηρήθηκε η ακραία τιμή της ετήσιας απορροής

Q₁max								
Annual P (Δt = 5 days)				An	nual P (∆	t = 10 da	ays)	
location	scale	shape	shape _{new}	location	scale	shape	shape _{new}	
2.090	5.061	0.630	0.310	4.568	7.937	0.575	0.289	
Annual P (Δt = 15 days)				Annual P (Δt = 20 days)				
location	scale	shape	shape _{new}	location	scale	shape	shape _{new}	
8.841	12.633	0.437	0.238	12.614	16.577	0.355	0.208	
Annual Ρ (<i>Δt</i> = 25 days)				Annual P (<i>Δt</i> = 30 days)				
location	scale	shape	shape _{new}	location	scale	shape	shape _{new}	
17.286	19.133	0.335	0.200	20.782	21.943	0.313	0.192	

Πίνακας 5.9: Στατιστικοί παράμετροι κατανομής GEV για τις 6 χρονοσειρές αθροιστικής βροχόπτωσης μη συμπεριλαμβανομένης την ημέρας που παρατηρήθηκε η ακραία τιμή της ετήσιας απορροής

Q₀max								
Annual P (Δt = 5 days)				An	nual P (Δ	t = 10 da	ays)	
location	scale	shape	shape _{new}	location	scale	shape	shape _{new}	
2.678	5.730	0.599	0.298	5.287	8.708	0.552	0.281	
Annual P ($\Delta t = 15$ days)				Annual P (Δt = 20 days)				
location	scale	shape	shape _{new}	location	scale	shape	shape _{new}	
9.286	13.124	0.442	0.240	13.790	17.613	0.330	0.199	
Annual P (Δt = 25 days)				Annual P (Δt = 30 days)				
location	scale	shape	shapenew	location	scale	shape	shapenew	
18.051	19.734	0.332	0.200	21.533	22.163	0.310	0.191	

Στην περίπτωση των αθροιστικών χρονοσειρών βροχής παρατηρείται μια μικρότερη πτώση στην παράμετρο του σχήματος της χρονοσειράς, της τάξης του 50% για τα δεδομένα του Πίνακας 5.8 και 48% για τα δεδομένα Πίνακας 5.9, μεταξύ των 5 προηγούμενων ημερών και των 30, αντίστοιχα. Αντίθετα, στις περιπτώσεις των παραμέτρων θέσης και κλίμακας υπάρχει αύξηση.

Στην συνέχεια έγινε προσαρμογή των 12 χρονοσειρών στην κατανομή GEV μέσω της μεθόδου L-ροπών και εξήχθησαν οι στατιστικές παράμετροι της κατανομής για κάθε χρονοσειρά. Επιπλέον, έγινε διόρθωση του συντελεστή σχήματος και για τις έξι χρονοσειρές αθροιστικής βροχόπτωσης. Τέλος, εξήχθησαν, οι πρώτες τέσσερεις L-ροπές για τις χρονοσειρές αθροιστικής βροχόπτωσης και έγινε η αντιστοίχισή τους στα μέτρα μέσης τιμής, μεταβλητότητας (CV), ασυμμετρίας και κυρτότητας.

Q₀max								
Annual P (Δ <i>t</i> = 5 days)				А	nnual P	(<i>∆t</i> = 10 day	ys)	
μ	CV	skewness	kurtosis	μ	CV	skewness	kurtosis	
14.288	0.763	0.057	0.034	20.707	0.702	0.040	0.025	
Annual P ($\Delta t = 15$ days)				Annual P ($\Delta t = 20$ days)				
μ	CV	skewness	kurtosis	μ	CV	skewness	kurtosis	
26.912	0.630	0.029	0.018	32.393	0.571	0.022	0.014	
Annual P (Δt = 25 days)				Annual P ($\Delta t = 30$ days)				
μ	CV	skewness	kurtosis	μ	CV	skewness	kurtosis	
38.957	0.534	0.019	0.013	43.984	0.512	0.017	0.011	

Πίνακας 5.10: Μέτρα θέσης και μεταβλητότητας δείγματος των 6 χρονοσειρών αθροιστικής βροχόπτωσης συμπεριλαμβανομένης της ημέρας που παρατηρήθηκε η ακραία τιμή της απορροής

Πίνακας 5.11: Μέτρα θέσης και μεταβλητότητας δείγματος των 6 χρονοσειρών αθροιστικής βροχόπτωσης μη συμπεριλαμβανομένης της ημέρας που παρατηρήθηκε η ακραία τιμή της απορροής

Q ₁ max								
Annual P (Δ <i>t</i> = 5 days)				A	nnual P	(<i>∆t</i> = 10 day	ys)	
μ	CV	skewness	kurtosis	μ	CV	skewness	kurtosis	
13.379	0.791	0.061	0.037	19.562	0.721	0.043	0.027	
Annual P ($\Delta t = 15$ days)				Annual P (Δt = 20 days)				
μ	CV	skewness	kurtosis	μ	CV	skewness	kurtosis	
25.615	0.631	0.030	0.018	31.025	0.585	0.023	0.014	
Annual P (Δt = 25 days)				Annual P (Δt = 30 days)				
μ	CV	skewness	kurtosis	μ	CV	skewness	kurtosis	
37.663	0.538	0.020	0.013	43.145	0.519	0.017	0.011	

Στην περίπτωση των μέτρων θέσης και μεταβλητότητας για το δείγμα των βροχοπτώσεων που αφορούν την μεταβλητή της απορροής διακρίνεται μια πτώση στην τιμή του συντελεστή μεταβλητότητας. Από την άλλη πλευρά, για τα

μέτρα ασυμμετρίας και κύρτωσης οι τιμές τους είναι πολύ κοντά στην μηδενική τιμή, με όχι σημαντική διαφοροποίηση ανάμεσα στις αθροιστικές χρονοσειρές.

5.2.5 Συσχέτιση ακραίων ετήσιων βροχοπτώσεων με τις αθροιστικές χρονοσειρές Δt προηγούμενων ημερών βροχής

Όπως επισημάνθηκε παραπάνω, ο προσδιορισμός και η ορθολογικότερη επιλογή του χρονικού εύρους των προηγούμενων ημερών βροχόπτωσης οι οποίες είχαν την μεγαλύτερη επιρροή στην ενεργό βροχόπτωση είναι αρκετά αβέβαιος. Η εμπειρία στην Ελλάδα (π.χ. Ποντικός, 2014) δείχνει ότι η τυπική υπόθεση των προηγούμενων πέντε ημερών είναι συχνά ανεπαρκής, και αρκετές φορές είναι αναγκαία η εκλογή μεγαλύτερο χρονικού διαστήματος για την εξαγωγή ασφαλώς συμπερασμάτων.

Μετά την αποθήκευση τόσο των ακραίων ετήσιων χρονοσειρών βροχοπτώσεις όσο και των χρονοσειρών αθροιστικής βροχόπτωσης πραγματοποιήθηκε η αντιστοίχιση των έξι παραπάνω χρονικών βημάτων αθροιστικής βροχόπτωσης με την ακραία ετήσια καταγεγραμμένη τιμή. Στα δείγματα αυτά υπολογίστηκε ο συντελεστής συσχέτισης Pearson για κάθε βήμα συνάθροισης Δt σύμφωνα με την σχέση:

$$\rho = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}}$$
(5.1)

όπου:

- *n* το εύρος του δείγματος
- x_i, y_i το ζεύγος των χρονοσειρών
- $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ η μέση τιμή του δείγματος x_i
- $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$ η μέση τιμή του δείγματος y_i

Η ανάλυση αφορούσε τα έτη από το 1948 έως το 2003. Μετά την ανάλυση, εξήχθησαν οι αντίστοιχοι συντελεστές συσχέτισης για το κάθε χρονικό βήμα και αποθηκευτήκαν σε φύλλα του EXCEL για περαιτέρω ανάλυση. Τα αποτελέσματα παρατίθενται στον παρακάτω πίνακα.

Πίνακας 5.12: Συντελεστής συσχέτισης Pearson για την μέγιστη ετήσια βροχόπτωση και τις αθροιστικές χρονοσειρές βροχόπτωσης

Μέγιστη ετήσια βροχόπτωση						
$\Delta t=5$ $\Delta t=10$ $\Delta t=15$						
0.78	0.61	0.56				
<i>∆t</i> =20	<i>∆t</i> =25	<i>∆t</i> =30				
0.53	0.50	0.41				

Είναι σαφές ότι υπάρχει μια μείωση του συντελεστή συσχέτισης όσο μεγαλώνει το πλήθος των προηγούμενων ημερών που αθροίζονται. Η μέγιστη συσχέτιση (ρ

= 0.78) παρατηρείται για την αθροιστική βροχόπτωση των προηγούμενων πέντε ημερών. Αντίθετα, παρόλη την μείωση που έχει ο συντελεστής όσο απομακρυνόμαστε από την χρονική στιγμή που συνέβη η μέγιστη ετήσια παρατήρηση, γίνεται αντιληπτό πως και τριάντα ημέρες πριν διατηρείται μια αρκετά υψηλή συσχέτιση, κοντά στο 0.41, που υποδηλώνει μη αμελητέα επιρροή της εδαφικής υγρασίας που έχει συσσωρευτεί τον προηγούμενο μήνα.

5.2.6 Συσχέτιση ακραίων ετήσιων απορροών με τις αθροιστικές χρονοσειρές Δt προηγούμενων ημερών βροχής

Η ίδια διαδικασία πραγματοποιήθηκε και για την χρονοσειρά των απορροών. Πιο συγκεκριμένα, έγινε αντιστοίχιση της χρονοσειράς των ακραίων ετήσιων απορροών για την υπό μελέτη λεκάνη με τις αθροιστικές χρονοσειρές βροχοπτώσεων. Η ανάλυση αφορούσε στην εύρεση του συντελεστή συσχέτισης Pearson, τόσο για τις αθροιστικές χρονοσειρές που περιλάμβαναν την ημέρα που παρατηρήθηκε η ακραία τιμή της απορροής όσο και τις χρονοσειρές που άθροιζαν την τιμή της βροχής αρχίζοντας από την προηγούμενη ημέρα και πηγαίνοντας Δt μέρες πριν. Τέλος, υπολογίστηκε ο συντελεστής συσχέτισης της ακραίας ετήσιας απορροής με τις μεμονωμένες τιμές της αθροιστικής βροχόπτωσης των προηγούμενων Δt ημέρων. Τα αποτελέσματα της ανάλυσης δίνονται στους παρακάτω πίνακες.

	, ,	,		,	,	o /
Πινακας 5.13: Συσγετιση	ακραιων ετη	σιων απορορωι	ι με τις Λ† πο	ONVOUUEVEC	ทมะกะด เ	δοογοπτωσης
	ourpointeer e urp			0.11000000	- Incon o S	<i>pononcn<i>cncncncncn<i>cncncncn<i>cncncn<i>cncncn<i>cncncn<i>cncncn<i>cncncn<i>cncn<i>cncncn<i>cncncn<i>cncncn<i>cncn<i>cnncn<i>cncncn<i>cncncn<i>cncn<i>cncncn<i>cncn<i>cncn<i>cncncn<i>cncncn<i>cncn<i>cncncn<i>cncn<i>cncncn<i>cncncn<i>cncncn<i>cncncn<i>cncncn<i>cncncn<i>cncncn<i>cncncn<i>cncncn<i>cncncn<i>cncncn<i>cncn<i>cncncn<i>cncncn<i>cncncn<i>cncncn<i>cncn<i>cncn<i>cncncn<i>cncncn<i>cncncn<i>cnncncn<i>cncnncnncn<i>cnncnncn<i>cnncnncn<i>cnncnncnnnnnnnnnnnnn</i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i></i>

Qmax							
Po	P ₅	P ₁₀	P ₁₅	P ₂₀	P ₂₅	P ₃₀	
0.10	0.27	-0.11	0.11	-0.15	0.07	-0.18	

Πίνακας 5.14: Συσχέτιση ακραίων ετήσιων απορροών με την αθροιστική χρονοσειράς βροχόπτωσης συμπεριλαμβανομένης την ημέρας που παρατηρήθηκε η ακραία τιμή

Qmax							
P ₀₋₅	P ₅₋₁₀	P ₁₀₋₁₅	P ₁₅₋₂₀	P ₂₀₋₂₅	P ₂₅₋₃₀		
0.19	0.19	0.18	0.16	0.13	0.10		

Πίνακας 5.15: Συσχέτιση ακραίων ετήσιων απορροών με την αθροιστική χρονοσειράς βροχόπτωσης με εξαίρεση της ημέρας που παρατηρήθηκε η ακραία τιμή

Qmax							
P ₁₋₅	P ₅₋₁₀	P ₁₀₋₁₅	P ₁₅₋₂₀	P ₂₀₋₂₅	P ₂₅₋₃₀		
-0.05	0.19	0.18	0.16	0.13	0.10		

Στην περίπτωση του Πίνακας 5.13 φαίνεται πως δεν υπάρχει μια ξεκάθαρη συσχέτιση της μέγιστης ετήσιας απορροής με τις βροχοπτώσεις τον προηγούμενων ημερών. Αυτό διακρίνεται και στις υπόλοιπες περιπτώσεις, όπου

ο συντελεστής συσχέτισης Pearson κυμαίνεται σχετικά σε χαμηλές τιμές, παίρνοντας τις μεγαλύτερες τιμές τους στην περίπτωση της αθροιστικής βροχόπτωσης των 10 προηγούμενων ημερών από την εμφάνιση της μέγιστης πλημμυρικής απορροής για την δεδομένη λεκάνη απορροής.

6.1 Σύνοψη αναλύσεων

Μετά την ολοκληρωμένη στατιστική ανάλυση για την λεκάνη 10301500, η διαδικασία κωδικοποιήθηκε και εφαρμόστηκε για το σύνολο των επιλεγμένων λεκανών απορροής της βάσης δεδομένων MOPEX, λαμβάνοντας υπόψη τα κριτήρια αξιοπιστίας και ποιότητας που αναφέρθηκαν στο υποκεφάλαιο 4.3.. Η διαδικασία αυτή έγινε με την δημιουργία κατάλληλου κώδικα στο προγραμματιστικό περιβάλλον της R Studio.

Στη συνέχεια, τα αποτελέσματα αποθηκεύτηκαν και συγκεντρώθηκαν σε ένα αρχείο Excel, όπου ήταν πιο εύκολη η εποπτική ερμηνεία και ανάλυση τους. Ακόμα, σε περιβάλλον Excel αποθηκεύτηκαν τα χαρακτηριστικά των λεκανών απορροής, οι γεωγραφικές τους συντεταγμένες, η έκταση τους και οι καταγεγραμμένες παρατηρήσεις των μέγιστων και ελάχιστων ημερήσιων βαθμών θερμοκρασίας.

Στη συνέχεια του κεφαλαίου περιγράφονται οι υπόψη επεξεργασίες, καθώς και περαιτέρω διερευνήσεις που έγιναν, ώστε να εντοπιστούν τυχούσες συσχετίσεις μεταξύ των στατιστικών παραμέτρων και διαφόρων υδροκλιματικών δεικτών των λεκανών.

Αρχικά, παράγονται ιστογράμματα όπου υποδεικνύουν πως η καλύτερη συσχέτιση για τις τιμές τον ακραίων βροχοπτώσεων είναι εκείνη με των 15 ημέρων πριν.

Ακόμα, παρατίθενται ιστογράμματα που υποδεικνύουν την στατιστική εξάρτηση των έξι επιλεχθέντων χρονοσειρών αθροιστικής βροχόπτωσης με τις μέγιστες ετήσιες χρονοσειρές για όλο το εύρος των λεκανών απορροής.

Αναλύονται στο σύνολο των χρονοσειρών οι στατιστικές παράμετροι και τα μέτρα θέσης και μεταβλητότητας των κατανομών και βγαίνουν τα τελικά συγκεντρωτικά αποτελέσματα.

Τέλος, γίνεται μια προσπάθεια χωρικής ερμηνείας τον αποτελεσμάτων, μέσω της δημιουργίας χαρτών που δείχνουν τα συμπεράσματα της μελέτης σε μακροκλίμακα για όλη την εδαφική έκταση της Αμερικής. Οι χάρτες αυτοί συγκρίνονται με τα ιδιαίτερα υδροκλιματικά και γεωμορφολογικά χαρακτηριστικά τα των λεκανών απορροής. Έχει ενδιαφέρον να ερευνηθεί, κατά πόσο αυτή η συσχέτιση αλλάζει με βάση την θέση της λεκάνης και το γεωγραφικό της πλάτος αλλά και την μέση θερμοκρασία της, έτσι σε επόμενο στάδιο έγινε η εξαγωγή συνοπτικών χαρτών πιθανότητας όπου παρατίθενται και τα συμπεράσματα της μελέτης.

6.2 Κατανομές μέγιστων ετήσιων βροχοπτώσεων

Στο υποκεφάλαιο αυτό περιγράφεται η προσαρμογή της κατανομής ΓΑΤ (βλ. 2.3) στις χρονοσειρές των μέγιστων ετήσιων βροχοπτώσεων όλων των λεκανών. Για κάθε χρονοσειρά υπολογίζονται οι παράμετροι κλίμακας, θέσης και σχήματος, η οποία διορθώνεται σύμφωνα με την εξίσωση (2.24).

Ειδικότερα, δίνεται έμφαση στην παράμετρο σχήματος, καθώς υποδεικνύει ποια από τις τρεις εκδοχές της κατανομής ΓΑΤ (Gumbel Τύπου Ι, Fréchet τύπου ΙΙ, Weibull Τύπου ΙΙΙ) είναι η πλέον κατάλληλη για την περιγραφή της μέγιστης ημερήσιας βροχόπτωσης (βλ.2.3). Πριν από την διόρθωση της παραμέτρου το εύρος τιμών της παραμέτρου κυμαινόταν από -0.30 έως το 0.38, ενώ ύστερα από την εφαρμογή της εξίσωσης (2.24) η τιμή της κυμάνθηκε από -0.03 έως 0.22. Πριν την διόρθωση, η μέση τιμή και η τυπική της απόκλιση της παραμέτρου σχήματος είναι 0.060 και 0.116, αντίστοιχα, ενώ μετά τη διόρθωση οι αντίστοιχες τιμές είναι 0.101 και 0.043.

Record length (years)

Εικόνα 6.1: Μεταβολή μέσης τιμής της παραμέτρου σχήματος της GEV κατανομής για διαφορετικά δείγματα χρονοσειρών (Πηγή: Papalexiou and Koutsoyiannis, 2013)

Εικόνα 6.2: Ιστόγραμμα διορθωμένης παραμέτρου σχήματος γ της GEV κατανομής για τις ακραίες ετήσιες βροχοπτώσεις των 423 λεκανών απορροής

Αξίζει να αναφερθεί πως η τιμή της παραμέτρου επηρεάζεται από το μήκος της χρονοσειράς. Σύμφωνα με τους Papalexiou *et al.* (2013), για χρονοσειρές 40 έως 50 ετών η μέση τιμή της προσεγγίζει την τιμή 0.077, ενώ για μεγαλύτερες (> 121 έτη) είναι μεγαλύτερη (0.116). Το αντίθετο ισχύει για την τιμή της τυπικής απόκλισης.

Στη συνέχεια, παρατίθεται η Εικόνα 6.2, με την τιμή της παραμέτρου γ για το σύνολο των 423 χρονοσειρών ακραίων ετήσιων βροχοπτώσεων.

Όπως επισημάνθηκε και στο κεφάλαιο 2.3, οι μικρές τιμές της παραμέτρου σχήματος υποδηλώνουν «παχιές» ουρές, δηλαδή μια κατανομή η οποία προσεγγίζει πιο αργά την μηδενική τιμή. Αντίθετα, οι αρνητικές τιμές δείχνουν πως υπάρχει κάποιο άνω όριο στην κατανομή μας, κάτι το οποίο δεν έχει φυσικό νόημα και για αυτό το λόγο εφαρμόζεται η διορθωτική εξίσωση.

Όπως διακρίνεται στην Εικόνα 6.2, μετά την διόρθωση του συντελεστή το 99.1% του δείγματος έχει τιμή μεγαλύτερη του μηδενός και μόλις το 0.9% έχει αρνητική τιμή. Το συμπέρασμα αυτό υποδηλώνει πως οι χρονοσειρές μας προσεγγίζονται καλύτερα από την κατανομή Fréchet Τύπου ΙΙ έναντι εκείνης του Gumbel Τύπου Ι.

Η μέση τιμή της παραμέτρου θέσης των ακραίων βροχοπτώσεων για το σύνολο των 423 λεκανών απορροής είναι ίση με 46.45, ενώ η τυπική απόκλιση είναι ίση με 11.03. Ενώ για την παράμετρο της κλίμακας, υπολογίστηκε η μέση τιμή της ίση με 12.83 και η τυπική της απόκλιση ίση με 3.55.

Εικόνα 6.3: Ιστόγραμμα παραμέτρου θέσης της κατανομής GEV για τις ακραίες ετήσιες βροχοπτώσεις των 423 λεκανών απορροής

Εικόνα 6.4: Ιστόγραμμα παραμέτρου κλίμακας της κατανομής GEV για τις ακραίες ετήσιες βροχοπτώσεις των 423 λεκανών απορροής

6.3 Κατανομές μέγιστων ετήσιων απορροών

Η ίδια διαδικασία με το εδάφιο 5.2.3 ακολουθήθηκε για τις μέγιστα ημερήσια ύψη απορροής των 431 λεκανών. Μετά από την απόρριψη των λεκανών με χρονοσειρές μικρότερες των 40 ετών ή με χρονοσειρές με λανθασμένες τιμές ή κενά, το τελικό δείγμα αφορούσε 305 λεκάνες. Καταρτίστηκαν τα ιστογράμματα για τις στατιστικές παραμέτρους της GEV κατανομής για τις ακραίες ετήσιες απορροές και εξήχθησαν οι μέση τιμή και τυπική απόκλιση του δείγματος.

Εικόνα 6.1: Τιμές διορθωμένης παραμέτρου σχήματος γ της κατανομής GEV για τις ακραίες ετήσιες απορροές των 305 λεκανών απορροής

Εικόνα 6.2: Τιμές της παραμέτρου θέσης της κατανομής GEV για τις ακραίες ετήσιες βροχοπτώσεις των 305 λεκανών απορροής

Εικόνα 6.3: Τιμές της παραμέτρου κλίμακας της κατανομής GEV για τις ακραίες ετήσιες βροχοπτώσεις των 305 λεκανών απορροής

Επιπλέον, έγινε διόρθωση στην παράμετρο σχήματος της κατανομής. Πριν από την διόρθωση της παραμέτρου η τιμή της μεταβλητής κυμαινόταν από το -0.33 έως το 0.605, ενώ ύστερα από την εφαρμογή της εξίσωσης (2.24) η τιμής της κυμάνθηκε από -0.04 έως 0.29. Πριν την διόρθωση, η μέση τιμή και η τυπική της απόκλιση παίρνουν τις τιμές 0.106 και 0.167, αντίστοιχα, και 0.116 και 0.061 μετά.

Σύμφωνα με την ανάλυση, μετά την διόρθωση του συντελεστή το 98.03% του δείγματος έχει τιμή μεγαλύτερη του μηδενός και μόλις το 1.97% έχει αρνητική τιμή. Το συμπέρασμα αυτό υποδηλώνει πως οι χρονοσειρές μας προσεγγίζονται καλύτερα από την κατανομή Fréchet Τύπου ΙΙ έναντι της Gumbel Τύπου Ι.

Η μέση τιμή της παραμέτρου θέσης της χρονοσειράς των ακραίων βροχοπτώσεων για το σύνολο των 305 λεκανών απορροής είναι ίση με 10.81, με τυπική απόκλιση 8.36. Για την παράμετρο κλίμακας υπολογίστηκε μέση τιμή ίση με 5.33 και τυπική της απόκλιση ίση με 3.97.

6.4 Κατανομές αθροιστικής βροχόπτωσης

Η ανάλυση αυτή εφαρμόστηκε για το σύνολο των 423 λεκανών απορροής. Για κάθε χρονοσειρά, που αναφέρεται σε έξι κλίμακες συνάθροισης (5, 10, 15, 20, 25 και 30 ημέρες), εκτιμήθηκαν οι παράμετροι της κατανομής GEV, καθώς και η μέση τιμή και τυπική απόκλιση αυτών, οι οποίοι αποτυπώνονται στον Πίνακας 6.1.

Επιβεβαιώνεται πως και στην περίπτωση του συνόλου των λεκανών απορροής η στατιστική παράμετρος σχήματος της κατανομής δέχεται μια ελάττωση της

τάξης του 54%. Η μέση τιμή του συντελεστή σχήματος μειώνεται για τις χρονοσειρές αθροιστικής βροχόπτωσης και για την κλίμακα συνάθροισης μεγαλύτερη των 20 ημερών η παράμετρος παίρνει αρνητικές τιμές. Αντίθετα, η τυπική απόκλιση των χρονοσειρών δεν λαμβάνει κάποια σημαντική διαφοροποίηση στο σύνολο των χρονοσειρών.

Όπως παρατηρήθηκε και στην περίπτωση της μεμονωμένης λεκάνης απορροής και για όλο το σύνολο των δεδομένων παρατηρείται πως οι στατιστικές παράμετροι της θέσης και κλίμακας δέχονται μια αύξηση της τιμής τους όσο μεγαλώνει το η κλίμακα συνάθροισης Δt της βροχόπτωσης.

	An	nual P (∆t	= 5 days		An	nual P (⁄	<i>t</i> = 10 d	ays)
	location	scale	shape	shape _{new}	location	scale	shape	shape _{new}
μ	13.945	14.102	0.141	0.129	27.266	21.689	0.044	0.093
σ	6.785	4.844	0.103	0.038	10.859	7.180	0.106	0.039
Annual P (Δt = 15 days)					Annual P (Δt = 20 days)			
	location	scale	shape	shape _{new}	location	scale	shape	shape _{new}
μ	39.905	27.828	0.006	0.079	53.283	33.313	-0.030	0.065
σ	14.247	8.832	0.110	0.041	18.471	10.547	0.112	0.042
	Anı	nual P (∆t	= 25 days	5)	An	nual P (A	<i>t</i> = 30 d	ays)
	location	scale	shape	shape _{new}	location	scale	shape	shape _{new}
μ	66.763	38.152	-0.047	0.059	79.806	42.859	-0.065	0.052
σ	21.939	11.909	0.103	0.038	25.740	13.480	0.107	0.040

Πίνακας 6.1: Μέση τιμή και τυπική απόκλιση των στατιστικών παράμετρών της κατανομής GEV για τις χρονοσειρές αθροιστικών βροχοπτώσεων

6.5 Ανάλυση χρονικού εύρους αθροιστικής βροχόπτωσης

6.5.1 Περίπτωση ακραίας ετήσιας βροχόπτωσης

Η διαδικασία που περιεγράφηκε στο κεφάλαιο 5.2 για την περίπτωση της πιλοτικής λεκάνης 10301500 κωδικοποιήθηκε μέσω του προγραμματιστικού περιβάλλοντος της R Studio και εφαρμόστηκε για το σύνολο των 423 λεκανών. Από τις αναλύσεις εξήχθησαν τα παρακάτω Ιστογράμματα για τα έξι κλίμακες συνάθροισης, που αντιστοιχούν σε χρονικά διαστήματα των Δt προηγούμενων ημερών.

Από τα ιστογράμματα προκύπτει πως η βέλτιστη επιλογή των Δt προηγούμενων ημερών για την εκτίμηση της επιρροής της εδαφική υγρασία στην ακραία ετήσια βροχόπτωση είναι η επιλογή των 15 ημερών πριν. Στη χρονική αυτή κλίμακα, ο συντελεστής συσχέτισης μεταξύ της μέγιστης απορροής και της αθροιστικής βροχόπτωσης των 15 προηγούμενων ημερών είναι μεγαλύτερος από 0.20 στο 46% των λεκανών, εκ των οποίων το ποσοστό του 20% ξεπερνάει την τιμή του

0.40. Ενώ, μικρότερη επιρροή φαίνεται να έχει η επιλογή αφορά τις Δt = 25 ημέρες πριν όπου ο συντελεστής συσχέτισης είναι μεγαλύτερος της τιμής 0.20 για το 43% των λεκανών από τις οποίες μόλις το 15% ξεπερνάει την τιμή του 0.40.

Σχήμα 6.1: Ιστογράμματα συντελεστή συσχέτισης ακραίων ετήσιων βροχοπτώσεων και Δt προηγούμενων ημερών αθροιστικής βροχόπτωσης

6.5.2 Περίπτωση ακραίας ετήσιας απορροής

Στην περίπτωση των ακραίων ετήσιων απορροών μετά την απαραίτητα επεξεργασία και απόρριψη ενός εύρους λεκανών απορροής. Όπως εξηγήθηκε στο υποκεφάλαιο 4.3, η τελική ανάλυση πραγματοποιήθηκε σε ένα δείγμα 299 λεκανών.

Η ανάλυση αφορούσε την εύρεση του συντελεστή συσχέτισης Pearson τόσο για τις αθροιστικές χρονοσειρές που περιλάμβαναν την ημέρα που παρατηρήθηκε η ακραία τιμή της απορροής όσο και στις χρονοσειρές η οποίες άθροιζαν την τιμή της βροχής αρχίζοντας από την προηγούμενη ημέρα και πηγαίνοντας Δt μέρες πριν. Ακόμα, για κάθε λεκάνη υπολογίστηκε ο συντελεστής συσχέτισης της ακραίας ετήσιας απορροής με τις μεμονωμένες τιμές των προηγούμενων Δt ημέρων βροχής. Τα αποτελέσματα της ανάλυσης παρατίθενται με τη μορφή ιστογραμμάτων.

Τα παρακάτω ιστογράμματα αφορούν στην αθροιστική βροχόπτωση μετά την παρατήρηση της ακραίας ετήσιας τιμής της απορροής, λαμβάνοντας υπόψη την ημέρα που παρατηρήθηκε το ακραίο συμβάν. Από αυτά προκύπτει πως η βέλτιστη επιλογή των Δt προηγούμενων ημερών για την εκτίμηση της επιρροής της εδαφικής υγρασίας στην ακραία ετήσια απορροή είναι η χρονική κλίμακα των 5 ημερών. Στη χρονική αυτή κλίμακα, ο συντελεστής συσχέτισης μεταξύ της μέγιστης απορροής και της αθροιστικής βροχόπτωσης των 5 προηγούμενων ημερών είναι μεγαλύτερος από 0.20 στο 85.25% των λεκανών, εκ των οποίων το ποσοστό του 76.16% ξεπερνάει την τιμή 0.40. Η μικρότερη επιρροή φαίνεται να έχει η κλίμακα των 15 ημερών πριν, για την οποία ο συντελεστής συσχέτισης είναι μεγαλύτερος της τιμής 0.20, για το 82.25% των λεκανών από τις οποίες μόλις το 75% ξεπερνάει την τιμή του 0.40.

Συσχέτιση ακραίας ετήσιας απορροής με την αθροιστική βροχόπτωση των προηγούμενων 5 ημερών

Εικόνα 6.5: Ιστογράμματα συσχέτισης μέγιστης ετήσιας απορροής με την αθροιστική βροχόπτωση

Τα επόμενα ιστογράμματα αφορούν στην αθροιστική βροχόπτωση μετά την παρατήρηση της ακραίας ετήσιας τιμής της απορροής, μη λαμβάνοντας υπόψη την ημέρα που παρατηρήθηκε το ακραίο συμβάν. Στη χρονική αυτή κλίμακα, ο συντελεστής συσχέτισης μεταξύ της μέγιστης απορροής και της αθροιστικής βροχόπτωσης των 5 προηγούμενων ημερών είναι μεγαλύτερος από 0.20 στο 85.57% των λεκανών, εκ των οποίων το ποσοστό του 76.25% ξεπερνάει την τιμή του 0.40. Μικρότερη επιρροή φαίνεται να έχει η επιλογή αφορά τις Δt = 30 ημέρες πριν όπου ο συντελεστής συσχέτισης είναι μεγαλύτερος από 0.20 για το 84.59% των λεκανών, από τις οποίες μόλις το 70.93% ξεπερνά την τιμή 0.40.

6.6 Χωρικές αναλύσεις

Τα αποτελέσματα των αναλύσεων απεικονίστηκαν χωρικά, με τη μορφή χαρτών. Οι χάρτες αυτοί δημιουργήθηκαν μέσω κώδικα στο προγραμματιστικό περιβάλλον της R, χρησιμοποιώντας την μέθοδο Kriging.

Η μέθοδος Kriging αποτελεί ένα σύνολο μεθόδων που χρησιμοποιούνται για χωρική παρεμβολή. Η μέθοδος κάνει μια βέλτιστη γραμμική πρόβλεψη για τα σημεία του χώρου στα οποία δεν υπάρχουν παρατηρήσεις, κάνοντας την

υπόθεση πως η χωρική μεταβλητότητα της ιδιότητας που μελετάται ακολουθεί μια τυχαία συνάρτηση, η οποία έχει εφαρμογή μόνο στην τοποθεσία όπου υπάρχουν δεδομένα παρατηρήσεων. Παράλληλα με την πρόβλεψη δίνει τη δυνατότητα εκτίμησης της διασποράς του σφάλματός της (Bierkens *et al.,* 2008).

Περισσότερες πληροφορίες σε σχέση με την στοχαστική διαδικασία εφαρμογής της μεθόδου δίνονται στον παρακάτω σύνδεσμο:

https://www.nersc.no/sites/www.nersc.no/files/Basics2kriging.pdf

6.6.1 Χάρτες χωρικής κατανομής

Η στατιστική ανάλυση που περιεγράφηκε παραπάνω ολοκληρώθηκε με την δημιουργία συνοπτικών χαρτών με σκοπό της σφαιρικότερη ερμηνεία των αποτελεσμάτων και την διεξαγωγή περαιτέρω συμπερασμάτων σχετικά με την επιρροή που έχουν στα τελικά αποτελέσματα τα υδροκλιματικά και γεωμορφολογικά χαρακτηριστικά των λεκανών απορροής.

Διακρίνεται πως στην περίπτωση των απορροών, η μέση τιμή του συντελεστή σχήματος κυμαίνεται κοντά στην τιμή του 0.12, με τις μεγαλύτερες τιμές του να αποτυπώνονται στις πιο ξηρές και θερμές περιοχές των ΗΠΑ, σύμφωνα με τον Εικόνα 6.4, δηλαδή όσο πιο πολύ πλησιάζουμε την νότια και κεντρική πλευρά της.

Ακόμα, γίνεται αντιληπτό πως οι τιμές του συντελεστή συχέτισης επιρεάζονται από τις υψομετρικές ιδιότητες του εδάφους. Πιο συγκεκριμένα, παρατηρούνται πως οι πιο μεγάλες τιμές του συντελεστή συσχέτισης αποτυπώνονται στα παράλια των ΗΠΑ με μια σταδιακή πτώση μέχρι την βόρεια πλευρά της όπου αντιστοιχεί σε μια παρόμοια κλιμάκωση του υψομέτρου το οποίο διαμορφώνει συνθήκες πεδιάδας, με μέσω υψόμετρο μικρότερο των 200 m στα Νοτιοανατολικά μέχρι και τα 600 m στα Βορειοανατολικά.

Εικόνα 6.1: Χωρική κατανομή μέγιστου συντελεστή συσχέτισης Pearson για τις μέγιστες ετήσιες βροχοπτώσεις και την αθροιστική βροχόπτωση των προηγούμενων Δt ημερών

Εικόνα 6.2: Χωρική κατανομή μέγιστου συντελεστή συσχέτισης Pearson για τις ακραίες ετήσιες απορροές και την αθροιστική βροχόπτωση των Δt προηγούμενων ημερών

United States of America

GEV Corrected Shape Parameter for Annual Precipitation Value

Εικόνα 6.3: Χωρική κατανομή διορθωμένης παραμέτρου σχήματος κατανομής ΓΑΤ για τις ακραίες ετήσιες βροχοπτώσεις

Εικόνα 6.4: Χωρική κατανομή διορθωμένης παραμέτρου σχήματος της κατανομής ΓΑΤ για τις ακραίες ετήσιες απορροές

Ακόμα, στην κεντρική και Δυτική πλευρά των ΗΠΑ, όπου αναπτύσσονται ορεινές περιοχές με υψόμετρα μεγαλύτερα των 1100 m, ο συντελεστής συσχέτισης παίρνει τις μικρότερες τιμές του. Υποδεικνύεται με αυτόν τον τρόπο η σημαντική επιρροή του υψομέτρου, και συνεπώς των διεργασιών του χιονιού, που επιδρούν σημαντικά στην παραγωγή των πλημμυρικών παροχών.

Ομοίως, διακρίνεται μια κλιμάκωση του συντελεστή συσχέτισης όσο προσεγγίζονται πιο εύκρατες ζώνες, που υποδηλώνουν μια εκδηλη επιρροή του κλίματος της λεκάνης στην παραγωγή της πλημμυρικής απορροής.

Στην περίπτωση των μέγιστων ετήσιων απορροών παρατηρείται η μεγαλύτερη πτώση της παραμέτρου σχήματος στα βορειοδυτικά των ΗΠΑ. Η συγκεκριμένη περιοχή όπου παρατηρούνται η μικρότερες τιμές και η χρονοσειρά των ακραίων τιμών προσεγγίζεται καλύτερα από την κατανομή Gumbel Τύπου Ι είναι μια έντονα ορεινή περιοχή με υψόμετρα μεγαλύτερα των 3000 m (βλ. Εικόνα 4.7). Αντίθετα, οι μεγαλύτερες τιμές του συντελεστή παρατηρούνται στις κεντρικές ΗΠΑ και στα νοτιοδυτικά παράλιά τους.

6.6.2 Επιρροή της θερμοκρασίας

Στην συνέχεια έγινε διακριτοποίηση των λεκανών με βάση την μέση ετήσια θερμοκρασία, με στόχο την διεξοδικότερη αποτύπωση της επιρροή του κλίματος στα τελικά αποτελέσματα. Στην Εικόνα 4.6 φαίνεται η χωρική μεταβλητότητα της μέσης θερμοκρασίας, όπως προέκυψε από το δείγμα των 431 λεκανών απορροής.

Δημιουργήθηκε ένας προσεγγιστικός «δείκτης ψυχρότητας» της λεκάνης, με βάση τις ημέρες του έτους στις οποίες η θερμοκρασία δεν ξεπερνάει μια συγκεκριμένη τιμή. Πιο συγκεκριμένα, εξήχθησαν από την βάση δεδομένων MOPEX οι ημερήσιες μέγιστες και ελάχιστες θερμοκρασίες για όλο το εύρος των λεκανών απορροής. Επιλέχθηκε ως μέγιστη ημερήσια θερμοκρασία εκείνη των μηδέν βαθμών Κελσίου. Σε επόμενο στάδιο, πραγματοποιήθηκε ανάλυση με βάση το ποσοστό στο οποίο η μέγιστες ημερήσιες θερμοκρασίες δεν υπερβαίναν τους Ο βαθμούς Κελσίου για κάθε λεκάνη. Πιο συγκεκριμένα, μετρήθηκαν οι μέρες του χρόνου στις οποίες η μέγιστη καταγεγραμμένη τιμή της θερμοκρασίας δεν ξεπερνούσε τους μηδέν βαθμούς Κελσίους και έπειτα υπολογίστηκε το ποσοστό αυτών των ημερών για όλες τις υπό μελέτη λεκάνες.

Από το διάγραμμα γίνεται κατανοητό πως υπάρχει μια σημαντική συσχέτιση (r = 0.75) ανάμεσα στο δείκτη ψυχρότητας της λεκάνης. Αυτό υποδηλώνει τη σημαντική επιρροή της τήξης του χιονιού στην παραγωγή πλημμυρικών απορροών.

Διάγραμμα 6.1: Συσχέτιση μέγιστων συσχετίσεων πλημμυρικής απορροής και Δt προηγούμενων ημερών πριν με το ποσοστού ψυχρών ημερών των λεκανών απορροής

Στη συνέχεια ερευνήθηκε η επιρροή που έχει το ποσοστό της ψυχρότητας με την μορφή χιονιού στην δημιουργία πλημμυρικών παροχών για την κάθε λεκάνη απορροή και εξήχθη ο παρακάτω Πίνακας 6.2. Έγινε η παραδοχή πως οι λεκάνες με ποσοστό μεγαλύτερο του 16% ανήκουν σε ψυχρό κλίμα, και έγινε μια ποιοτική ομαδοποίηση μέχρι και τις πιο θερμές λεκάνες απορροής με μηδενικό ποσοστό ψυχρών ημερών.

Όπως παρατηρείται, όσο αυξάνεται το ποσοστό και προσεγγίζομε ψυχρότερα κλίμακα έχουμε και μια ανάλογη πτώση στον συντελεστή συσχέτισης. Δηλαδή, όσο προσεγγίζουμε τα πιο βόρεια εδάφη των ΗΠΑ είναι πιθανόν να έχουμε επιρροή της τήξης του χιονιού στο υπό μελέτη πλημμυρικό επεισόδιο μεγαλύτερης εκείνης των τριάντα ημερών. Αυτό δείχνει την τεράστια επιρροή του κλίματος και της ύπαρξης χιονιού στην αύξηση του χρόνου συρροής της λεκάνης και στην μεταβολή του συντελεστή συσχέτισης απορροής και βροχής από την τιμή του 0.74 στην 0.28.

		Μέση τιμή μέγιστης συσχέτισης Qmax – Ρ
	0%-5%	0.74
Ποσοστο	6%-10%	0.63
φυχρων	11%-15%	0.46
Πμερων	>16%	0.28

Πίνακας 6.2: Μεταβολή του συντελεστή συσχέτισης ακραίων ετήσιων απορροής με την αθροιστική βροχόπτωση των προηγούμενων ημερών σε σχέση με το ποσοστό ψυχρότητας της λεκάνης

Η επιρροή του κλίματος των λεκανών απορροής στα στατιστικά αποτελέσματα παρατηρείται και στις παραμέτρους θέσης (r= 0.49) και κλίμακας (r=0.55) της

κατανομής GEV για τη χρονοσειρά των μέγιστων ετήσιων βροχοπτώσεων. Αντίθετα, για την παράμετρο σχήματος δεν βρέθηκε κάποια συσχέτιση (ρ=0.06).

Στην χρονοσειρά των μέγιστων ετήσιων απορροών, η συσχέτιση του δείκτη ψυχρότητας με τις παραμέτρους θέσης και κλίμακας της κατανομής GEV υπολογίστηκαν σε r=0.30 και r=0.42 αντίστοιχα. Αντιθέτως στην παράμετρο σχήματος βρέθηκε μικρή συσχέτιση (ρ=0.24), που δεν μπορεί να αξιολογηθεί με ασφάλεια.

Διάγραμμα 6.2: Συσχέτιση της παραμέτρου κλίμακας με το ποσοστού ψυχρών ημερών των λεκανών απορροής

Διάγραμμα 6.3: Συσχέτιση της παραμέτρου θέσης με το ποσοστού ψυχρών ημερών των λεκανών απορροής

Διάγραμμα 6.4: Συσχέτιση στατιστικών παραμέτρων κατανομής GEV για τις ακραίες ετήσιες βροχοπτώσεις: (αριστερά) παράμετρος θέσης, (δεξιά) παράμετρος κλίμακας

6.6.3 Επιρροή γεωγραφικού πλάτους

Μια ακόμα παράμετρος επιρροής ήταν εκείνη του γεωγραφικού πλάτους των λεκανών απορροής στις παραμέτρους κλίμακας, θέσης και σχήματος για την γενικευμένη κατανομή μεγίστων ετήσιων απορροών και βροχοπτώσεων. Στην περίπτωση της παραμέτρου σχήματος δεν βρέθηκε κάποια εξάρτηση της με το γεωγραφικό μήκος (r=0.08).

Εικόνα 6.7: Χωρική κατανομή της παραμέτρου θέσης της GEV κατανομής ακραίων ετήσιων βροχοπτώσεων

Στην ανάλυση των στατιστικών παραμέτρων κλίμακας και θέσης για την κατανομή GEV μεγίστων στην περίπτωση των ακραίων ετήσιων βροχοπτώσεων προέκυψαν τα παρακάτω διαγράμματα. Ο συντελεστής R φαίνεται να υποδηλώνει μια εξάρτηση των δύο παραμέτρων με το γεωγραφικό πλάτος της

τάξης του 0.44 και 0.50. Δηλαδή, όσο προσεγγίζονται οι νότιες λεκάνες επέρχεται αύξηση στην διασπορά και τη μέση τιμή της κατανομής.

Αντίθετα, στην περίπτωση της κατανομής GEV για τις ετήσιες μέγιστες απορροές δεν παρατηρείται κάποια σημαντική εξάρτηση σε καμία από τις παραμέτρους.

Διάγραμμα 6.5: Συσχέτιση παραμέτρου θέσης κατανομής GEV για τις ακραίες ετήσιες βροχοπτώσεις με το γεωγραφικό πλάτος των λεκανών απορροής

Διάγραμμα 6.6: Συσχέτιση παραμέτρου κλίμακας κατανομής GEV για τις ακραίες ετήσιες βροχοπτώσεις με το γεωγραφικό πλάτος των λεκανών απορροής

Διάγραμμα 6.7: Συσχέτιση των στατιστικών παραμέτρων θέσης και κλίμακας της κατανομής GEV των ακραίων ετήσιων απορροών με το γεωγραφικό πλάτος των λεκανών απορροής

7 Συμπεράσματα

7.1 Σύνοψη εργασίας

Σκοπός της παρούσας διπλωματικής εργασίας ήταν η διερεύνηση της στατιστικής δίαιτας μέγιστων ημερήσιων απορροών και επιφανειακών βροχοπτώσεων, στην ημερήσια κλίμακα και σε κλίμακες συνάθροισης έως 30 ημερών, σε περίπου 400 λεκάνες των ΗΠΑ, που ελήφθησαν από τη βάση δεδομένων MOPEX. Για τις λεκάνες αυτές εξήχθησαν τα δείγματα ετήσιων μέγιστων τιμών των εν λόγω μεταβλητών, τα οποία καλύπτουν χρονικές περιόδους άνω των 50 ετών.

Στα δείγματα μεγίστων προσαρμόστηκε η Γενικευμένη Κατανομή Ακραίων Τιμών, με εκτίμηση των παραμέτρων της μέσω της μεθόδου L-ροπών. Η συγκεκριμένη μέθοδος επιλέχθηκε καθώς παρουσιάζει σχετικά μικρή ευαισθησία έναντι της δειγματοληπτικής αβεβαιότητας. Επιπλέον, εφαρμόστηκε μια εμπειρική μέθοδος διόρθωσης της παραμέτρου σχήματος, η οποία σχετίζεται με την ασυμπτωτική συμπεριφορά («ουρά») της κατανομής.

Κεντρικός στόχος της εργασίας ήταν η ανάλυση των συσχετίσεων μεταξύ των ακραίων απορροών και αντίστοιχων βροχοπτώσεων. Ακόμη, μελετήθηκε η συσχέτισης των παραγόμενων μέγιστων απορροών με τις προηγηθείσες αθροιστικές βροχοπτώσεις, σε έξι κλίμακες συνάθροισης. Με τον τρόπο αυτό, διερευνήθηκε, έστω και προσεγγιστικά, η στατιστική εξάρτηση των ακραίων υδρολογικών διεργασιών με την εδαφική υγρασία, η οποία είναι προφανώς εξαρτώμενη από τη συγκεντρωτική βροχόπτωση πριν από το αντίστοιχο πλημμυρικό επεισόδιο. Η εξάρτηση αυτή εκφράστηκε μέσω της κατασκευής συναθροισμένων χρονοσειρών βροχοπτώσεων σε μια ευρεία χρονικών βημάτων, Ξεκινώντας από τις πέντε προηγούμενες ημέρες και πηγαίνοντας έως και τριάντα ημέρες πριν την παρατήρηση της μέγιστης ετήσιας απορροής και βροχόπτωσης.

Τέλος, εξετάστηκε η επιρροή των υδροκλιματικών και γεωμορφολογικών χαρακτηριστικών των υπό μελέτη λεκανών απορροής στα κύρια στατιστικά μεγέθη που εξήχθησαν από τις παραπάνω αναλύσεις (παράμετροι κατανομών, συντελεστές συσχέτισης, κτλ.).

7.2 Συμπεράσματα

Στην περίπτωση των ακραίων ετήσιων βροχοπτώσεων παρατηρούμε ότι υπάρχει εμφανής στατιστική εξάρτηση με την συναθροισμένη χρονοσειρά βροχοπτώσεων των προηγούμενων ημερών. Η εξάρτηση για την περίπτωση του συνόλου των λεκανών απορροής φαίνεται να παίρνει την μέγιστη τιμή της για τις 15 ημέρες πριν από την εκδήλωση της μέγιστης ετήσιας τιμής. Η δομή συσχέτισης των χρονοσειρών επιβεβαιώνεται και στην περίπτωση των μέγιστων ετήσιων απορροών με τις αντίστοιχες χρονοσειρές συναθροισμένης βροχόπτωσης. Ωστόσο, στην περίπτωση των πλημμυρικών απορροών φαίνεται πως η επιλογή των πέντε προηγούμενων ημερών εμφανίζει την υψηλότερη στατιστική συσχέτιση. Υπενθυμίζεται ότι σε τυπικά υδρολογικά μοντέλα πλημμυρών, όπως η γνωστή μέθοδος SCS-CN, η αθροιστική βροχόπτωση των προηγούμενων πέντε ημερών χρησιμοποιείται ως δείκτης προσδιορισμού των αρχικών συνθηκών υγρασίας. Συνεπώς, η ανάλυσή μας επιβεβαιώνει, τουλάχιστον για το υδροκλιματικό καθεστώς των ΗΠΑ, την υπόθεση αυτή.

Με τις βάση τις στατιστικές αναλύσεις, φαίνεται ότι η κατανομή των μέγιστων ετήσιων επιφανειακών βροχοπτώσεων προσεγγίζεται καλύτερα από την ασυμπτωτική οικογένεια κατανομών Fréchet Τύπου ΙΙ. Ειδικότερα, η στατιστική παράμετρος σχήματος των χρονοσειρών για το σύνολο των 431 λεκανών απορροής προσεγγίζει την τιμή 0.101, χωρίς να παρουσιάζει σημαντική μεταβλητότητα. Αυτό σημαίνει ότι δεν διαφαίνεται κάποια ιδιαίτερη εξάρτηση της παραμέτρου σχήματος από τα υδροκλιματικά ή γεωγραφικά χαρακτηριστικά των λεκανών. Αντίθετα, οι παράμετροι θέσης και κλίμακας της κατανομής είναι εξαρτώμενες από τις τοπικές συνθήκες.

Τα αποτελέσματα της εφαρμογής της κατανομής ΓΑΤ για τις μέγιστες ετήσιες απορροές έδειξαν πως και σε αυτή την περίπτωση, η κατανομή Fréchet Τύπου ΙΙ περιγράφει την στατιστική δίαιτα των υπόψη διεργασιών. Η μέση τιμή για τον συντελεστής σχήματος της χρονοσειράς, ύστερα από την στατιστική του διόρθωση, προσέγγισε την τιμή 0.116, ενώ δεν φάνηκε να παρουσιάζει κάποια εξάρτηση με τα υδροκλιματικά ή γεωμορφολογικά χαρακτηριστικά των λεκανών. Η έλλειψη εξάρτησης των χαρακτηριστικών αυτών παρατηρήθηκε και για τις παραμέτρους κλίμακας και θέσης της χρονοσειράς.

Για τις κατανομές των αθροιστικών χρονοσειρών βροχόπτωσης, η παράμετρος σχήματος μειώνεται με την αύξηση της κλίμακας συνάθροισης, που σημαίνει ότι η αθροιστική βροχόπτωση σε μεγάλες κλίμακες περιγράφεται καλύτερα από την κατανομή τύπου Ι (Gumbel).

Στην ανάλυση των υδροκλιματικών χαρακτηριστικών των υπό μελέτη λεκανών απορροής αναδείχθηκε η πολύ σημαντική επίδραση του τύπου του κλίματος στην δίαιτα των πλημμυρικών απορροών. Ως κλιματικής δείκτης θεωρήθηκε το λεγόμενο ποσοστό ψυχρότητας, δηλαδή το ποσοστό των ημερών με αρνητική μέγιστη θερμοκρασία. Παρατηρήθηκε ότι υπάρχει ισχυρή αρνητική συσχέτιση μεταξύ του υπόψη δείκτη και της αθροιστικής βροχόπτωσης των προηγούμενων ημερών, με τον συντελεστή συσχέτισης να φτάνει το 78%.

Στην μελέτη της επίδρασης των γεωγραφικών χαρακτηριστικών των λεκανών απορροής βρέθηκε σημαντικά στατιστική εξάρτηση (r ≈ 0.50) των παραμέτρων θέσης και κλίμακας των μέγιστων ετήσιων βροχοπτώσεων με το γεωγραφικό πλάτος μήκος τον λεκανών. Η εξάρτηση αυτή συναρτάται με τα κλιματικά χαρακτηριστικά, και κυρίως την επίδραση των διεργασιών του χιονιού (όπως πριν, ο δείκτης ψυχρότητας). Από την άλλη πλευρά, η επίδραση του γεωγραφικού μήκους ήταν αμελητέα.

7.3 Προτάσεις για περαιτέρω έρευνα

Για την επέκταση της μελέτης και τη γενίκευση των συμπερασμάτων της παρούσας διπλωματικής εργασίας προτείνονται κάποιες περαιτέρω διερευνήσεις.

Σε πρώτο στάδιο, θα ενίσχυε την ποιότητα και αξιοπιστία των συμπερασμάτων η εύρεση χρονοσειρών με μήκος παρατηρήσεων μεγαλύτερο των 50 ετών. Αυτό προβλέπει την επέκταση της βάσης δεδομένων MOPEX με χρονοσειρές που θα καλύπτουν μεγαλύτερο χρονικό εύρος παρατηρήσεων ή ακόμα της προμήθεια δεδομένων από διαφορετικές πηγές. Ακόμα, επιβάλλεται ο περαιτέρω ποιοτικός έλεγχος των δεδομένων της βάσης και οι διόρθωση τυχόν σφαλμάτων στις μετρήσεις των καταγραφών.

Ακόμα καλύτερα, κρίνεται απαραίτητη η επέκταση των δειγμάτων μας σε παγκόσμιο επίπεδο, καθώς οι αναλύσεις αφορούν αποκλειστικά σε παρατηρήσεις στην περιοχή των Ηνωμένων Πολιτειών της Αμερικής. Έτσι, θα ήταν δυνατή η διεξοδικότερη διερεύνηση της στατιστική δομής των ακραίων υδρολογικών διεργασιών, σε πολλαπλές κλίμακες, και των συσχετίσεών τους με χαρακτηριστικά κλιματικά και γεωμορφολογικά μεγέθη των εξεταζόμενων λεκανών.

Πρόσθετα, προτείνεται η αναζήτηση συσχετίσεων των στατιστικών μεγεθών που εξάγονται από την πολυμεταβλητή ανάλυση με μεγαλύτερο αριθμό γεωμορφολογικών, φυσιογραφικών και κλιματικών δεικτών, στην κατεύθυνση κατάρτισης περιοχικών σχέσεων ικανής αξιοπιστίας, που να μπορούν να εφαρμοστούν σε λεκάνες χωρίς μετρήσεις.

Τέλος, ζητούμενο είναι η αξιοποίηση των αποτελεσμάτων τέτοιων διευρυμένων στατιστικών αναλύσεων σε προβλήματα υδρολογικού σχεδιασμού, με στόχο την δημιουργία ακριβέστερων και ποιοτικότερων χωρικών χαρτών πιθανότητας πλημμύρας.

7. Συμπεράσματα

8 Βιβλιογραφία

Ailliot, P., C. Thompson, and P. Thomson, Mixed methods for fitting the GEV distribution, May 2008

Bhattarai, K. P., An investigation of the use of partial L-moments for analyzing censored flood samples, 2004

Bierkens Marc F.P. and Frans C. van Geer, Stochastic Hydrology, Department of Physical Geography Utrecht University, 2008

Coles, S.G., An Introduction to the Statistical Modeling of Extreme Values. Springer Series in Statistics, 2001

El Adlouni, S., B. Bobée, and T.B.M.J. Ouarda., On the Tails of Extreme Event Distributions in Hydrology. Journal of Hydrology 355 (1–4) (June 20): 16–33. doi:10.1016/j.jhydrol.2008.02.011, 2008.

Gumbel, Emil Julius., 1958. Statistics of extremes. New York: Columbia University Press

Haan, Laurens de, and Ana Ferreira., 2006. Extreme Value Theory: An Introduction. 1st ed. Springer.

Hawkins, R.H., The importance of accurate curve numbers in estimation of storm runoff, Water Resources Bulletin, American water resources association, 1975

Heo, J., Boes, D., & Salas, J., 2001a. Regional flood frequency analysis based on a Weibull model: Part 1. Estimation and asymptotic variances. J. Hydrol, 242, 157–170.

Hosking, J.R.M., L-moments: Analysis and estimation of distributions using linear combinations of order statistics, J. R. Stat Soc. Ser. B (Methodol.), 52(1), 105–124, (1990)

Hosking, J.R.M., Moments or L moments? An example comparing two measures of distributional shape, Am. Stat., 46(3), 186–189, doi:10.2307/2685210, (1992)

Jenkinson, A. F., 1955. The Frequency Distribution of the Annual Maximum (or Minimum) Values of Meteorological Elements. Quarterly Journal of the Royal Meteorological Society 81 (348)

John Schaake¹, Shuzheng Cong¹ & Qingyun Duan², The US MOPEX data set, [1] Office of Hydrologic Development, NOAA National Weather Service, 1325 East–West Avenue, Silver Spring, Maryland 20910, USA, [2] Lawrence Livermore National Laboratory, Energy and Environment Directorate, 7000 East Avenue, Livermore, California 94550, USA Katz, R.W., Parlange, M.B. and Naveau, Statistics of extremes in hydrology, Advances in Water Resources 25, 1287-1304, (2002)

Kotz, S. and Nadarajah, S., Extreme Value Distributions: Theory and Applications. Imperial College Press, London. <u>https://doi.org/10.1142/p191</u>, (2000)

Koutsoyiannis Dimitris, 2004(a), Statistics of extremes and estimation of extreme rainfall: I. Theoretical investigation, Hydrological Sciences Journal, 49 (4), 575-590

Koutsoyiannis Dimitris, 2004(b), Statistics of extremes and estimation of extreme rainfall, 2, Empirical investigation of long rainfall records, Hydrological Sciences Journal, 49 (4), 591–610

Koutsoyiannis Dimitris, Statistical Hydrology, Edition 4, 312 pages, National Technical University of Athens, Athens, 1997

Leadbetter, M. R., 1974. On Extreme Values in Stationary Sequences. Probability Theory and Related Fields 28 (4): 289–303.

Martins, E.S. and J.R. Stedinger, Generalized maximum-likelihood generalized extreme-value quantile estimators for hydrologic data, Water Resources Research, 2000

Mielke, Paul W., 1973. "Another Family of Distributions for Describing and Analyzing Precipitation Data." Journal of Applied Meteorology 12 (2) (March): 275–280.

Moustakis, Y., Pseudo-continuous stochastic simulation framework for flood flows estimation, Diploma thesis, Department of Water Resources and Environmental Engineering – National Technical University of Athens, July 2017

Murray C. Peel , Q. J. Wang , Richard M. Vogel & Thomas A. McMahon (2001) The utility of L-moment ratio diagrams for selecting a regional probability distribution, Hydrological Sciences Journal, 46:1, 147-155, DOI: 10.1080/02626660109492806

Nerantzaki S., Propability distributions of extreme rainfall Application worldwide, Diploma thesis, 118 pages, Department of Water Resources and Environmental Engineering – National Technical University of Athens, Athens, October 2012.

Papalexiou, S. M., D. Koutsoyiannis, and C. Makropoulos, How extreme is extreme? An assessment of daily rainfall distribution tails, Hydrol. Earth Syst. Sci., 17, 851-862, https://doi.org/10.5194/hess-17-851-2013, 2013.l

Papalexiou, S.M., and D. Koutsoyiannis, Battle of extreme value distributions: A global survey on extreme daily rainfall, Water Resources Research, 49 (1), 187–201, doi:10.1029/2012WR012557, 2013.

Perez Nicolas Hernandez, Santiago Carrillo Menendez Luis Seco, A theoretical comparison between moments and L-moments, 2003

Pickands J., "Statistical Inference Using Extreme Order Statistics," The Annals of Statistics, Vol. 3, No. 1, 1975, pp. 119-131. doi:10.1214/aos/1176343003

Ponce, V.M., and R.H. Hawkins, Runoff curve number: Has it reached maturity? Journal of Hydrologic Engineering, 1 (1) (1996)

Reiss Rolf-Dieter & Michael Thomas, Statistical analysis of extreme values. With applications to insurance, finance, hydrology and other fields. With CD-ROM, January 2007Journal of the American Statistical Association 93(444) DOI: 10.2307/2670066

Rosso Gianluca, Extreme Value Theory for Time Series using Peak-Over-Threshold method, 2015

Rosso, G., Extreme Value Theory for Time Series using Peak-Over-Threshold method, 2015

Shabri A. and A.A. Jemain, LQ-Moments for Statistical Analysis of Extreme Events, Journal of Modern Applied Statistical Methods, May, 2007, Vol. 6, No. 1, 228-238

Stedinger J. R., R. M. Vogel and E. Foufoula-Georgiou, "Frequency Analysis of Extreme Events," In: D. R. Maidment, Ed., Handbook of Hydrology, McGraw-Hill, New York, 1993

Venables, W.N., D.M. Smith, and the R Core Team, An Introduction to R, Notes on R: A Programming Environment for Data Analysis and Graphics Version 3.5.1 (2018-07-02)

Καλυβάς Λάμπρος, Διαχείριση κινδύνου αγοράς: μια συγκριτική μελέτη της θεωρίας ακραίων τιμών και των μεθόδων ιστορικής προσομοίωσης, Διδακτορική Διατριβή 213 σελίδες, Τμήμα Εφαρμοσμένης Πληροφορικής, Πανεπιστήμιο Μακεδονίας Οικονομικών και Κοινωνικών Επιστημών, Θεσσαλονίκη 2004

Κοζάνης, Σ., Α. Χριστοφίδης, και Α. Ευστρατιάδης, Θεωρητική τεκμηρίωση για το λογισμικό Υδρογνώμων (έκδοση 4), Ανάπτυξη βάσης δεδομένων και εφαρμογών λογισμικού σε διαδικτυακό περιβάλλον για την «Εθνική Τράπεζα Υδρολογικής και Μετεωρολογικής Πληροφορίας», Ανάδοχος: Τομέας Υδατικών Πόρων και Περιβάλλοντος – Εθνικό Μετσόβιο Πολυτεχνείο, 173 pages, Αθήνα, Ιούνιος 2010.

Κοζάνης, Σ., και Ι. Μαρκόνης, Υδρογνώμων έκδοση 4 - Οδηγός χρήστη, 141 σ., Αθήνα, 25 November 2009.

Κοκολάκης Γ. και Δ. Φουσκάκης, Στατιστική Θεωρία & Εφαρμογές (σελ. 370), Εκδόσεις Συμεών. Αθήνα 2009 **Κουτσογιάννης, Δ., και Θ. Ξανθόπουλος**, Τεχνική Υδρολογία, Έκδοση 3, 418 pages, Εθνικό Μετσόβιο Πολυτεχνείο, Αθήνα, 1999

Μιμίκου Μ.Α., Ε.Α. Μπαλτάς, Τεχνική Υδρολογία, 416 σελ.,5^η Έκδοση, 2012

Μπέμπης Θεόδωρος Κ., Θεωρία ακραίων τιμών στη διοικητική κινδύνου, Μεταπτυχιακή εργασία, 126 σελίδες, Πανεπιστήμιο Πειραιώς, Τμήμα Στατιστικής και Ασφαλιστικής Επιστήμης, 2006

Ποντικός, Σ., Πιθανοτική διερεύνηση καταστάσεων εδαφικής υγρασίας στην Ελληνική επικράτεια για χρήση τους στον υδρολογικό σχεδιασμό, Διπλωματική εργασία, 83 pages, Τομέας Υδατικών Πόρων και Περιβάλλοντος, Εθνικό Μετσόβιο Πολυτεχνείο, Νοέμβριος 2014.

Στεφανάκη, Σ.Θ., Τεχνικές bootstrap και εφαρμογή στη θεωρία ακραίων τιμών, Μεταπτυχιακή εργασία 121 σελίδες, Τμήμα Στατιστικής, Οικονομικό Πανεπιστήμιο Αθηνών, Αθήνα Νοέμβριος 2009

Φουσκάκης Δ., Ανάλυση Δεδομένων με Χρήση της R (σελ. 504), Εκδόσεις Τσότρας, Αθήνα 2013

8.1 Ιστοσελίδες

- 1. <u>http://www.statisticshowto.com/extreme-value-distribution/</u>
- 2. <u>https://gmao.gsfc.nasa.gov/research/subseasonal/atlas/GEV-RV-html/GEV-RV-description.html</u>
- 3. <u>http://hydrognomon.org/</u>
- 4. <u>https://www.r-project.org/</u>
- 5. <u>https://github.com/Robinlovelace/Creating-maps-in-R</u>
- 6. https://cran.r-project.org/web/packages/maps.pdf
- 7. <u>https://mygeodata.cloud/converter/</u>
- 8. <u>http://www.nws.noaa.gov/ohd/mopex/mo_datasets.htm</u>
- 9. https://www.nohrsc.noaa.gov/
- 10. https://www.ncdc.noaa.gov/
- 11. <u>https://mygeodata.cloud/</u>
- 12. https://www.nersc.no/sites/www.nersc.no/files/Basics2kriging.pdf
- 13. <u>http://colorbrewer2.org/#type=sequential&scheme=BuGn&n=3</u>

ID	Longitude	Latitude	km ²	STATEcode	name
2156500	-81.4222	34.5961	7226.067	SC	BROAD RIVER NEAR CARLISLE, S. C.
1567000	-77.1294	40.4783	8686.82	PA	JUNIATA RIVER AT NEWPORT, PA.
1610000	-78.4567	39.5389	8052.273	MD	POTOMAC R AT PAW PAW, WV
1531000	-76.635	42.0022	6490.51	NY	CHEMUNG RIVER AT CHEMUNG NY
6810000	-95.6256	40.6325	7267.507	IA	Nishnabotna River above Hamburg, IA
3253500	-84.3108	38.7103	8546.961	KY	LICKING RIVER AT CATAWBA, KY.
10301500	-119.097	39.1528	6733.969	NV	WALKER R NR WABUSKA, NV
2116500	-80.3861	35.8567	5905.173	NC	YADKIN RIVER AT YADKIN COLLEGE N C
6908000	-93.1967	38.9922	2900.787	MO	BLACKWATER RIVER AT BLUE LICK, MISSOURI
3274000	-84.5722	39.3911	9401.657	ОН	G MIAMI R AT HAMILTON OH
3455000	-83.1611	35.9817	4812.198	TN	FRENCH BROAD RIVER NEAR NEWPORT, TN
3070000	-79.6656	39.3467	2426.819	WV	CHEAT RIVER AT ROWLESBURG, WV
1608500	-78.6544	39.4469	3809.873	WV	SOUTH BRANCH POTOMAC RIVER NEAR SPRINGFIELD, WV
7183000	-95.4306	37.8908	9888.575	KS	NEOSHO R NR IOLA, KS
10312000	-119.311	39.2917	3372.165	NV	CARSON RIVER NEAR FORT CHURCHILL, NV
7348000	-93.8778	32.6458	8124.793	LA	TWELVEMILE BAYOU NEAR DIXIE, LA
3365500	-85.8992	38.9825	6063.162	IN	EAST FORK WHITE RIVER AT SEYMOUR IND
2339500	-85.1822	32.8861	9194.458	GA	CHATTAHOOCHEE RIVER AT WEST POINT, GA.
3251500	-84.2667	38.5978	6024.312	KY	LICKING RIVER AT MCKINNEYSBURG, KY.
6897500	-93.9425	39.9269	5827.473	MO	GRAND RIVER NEAR GALLATIN MO
5520500	-87.6686	41.16	5941.433	IL	KANKAKEE RIVER AT MOMENCE, IL
3168000	-80.7458	36.9375	5703.154	VA	NEW RIVER AT ALLISONIA, VA
1503000	-75.8033	42.0353	5780.853	NY	SUSQUEHANNA RIVER AT CONKLIN NY
3214000	-82.3889	37.8175	3076.906	WV	TUG FORK NEAR KERMIT, WV
9292500	-110.341	40.5119	341.8784	UT	YELLOWSTONE RIVER NEAR ALTONAH, UTAH
3451500	-82.5786	35.6092	2447.539	NC	FRENCH BROAD RIVER AT
3069500	-79.6806	39.1222	1859.611	WV	CHEAT RIVER NEAR PARSONS,
3364000	-85.9256	39.2	4421.11	IN	EAST FORK WHITE RIVER AT COLUMBUS, IND,
14321000	-123.554	43.5861	9538.926	OR	UMPQUA RIVER NEAR ELKTON, OREG.
3465500	-82.4575	36.1764	2084.94	TN	NOLICHUCKY RIVER AT EMBREEVILLE, TN
6813000	-95.4089	40.3389	1315.714	MO	TARKIO RIVER AT FAIRFAX MO
5518000	-87.3425	41.1828	4607.589	IN	KANKAKEE RIVER AT SHELBY, IN
1649500	-76.9261	38.9603	188.5511	MD	NE B ANACOSTIA R AT RIVERDALE, MD
6606600	-95.7969	42.4722	6474.97	IA	Little Sioux River at

					Correctionville, IA
3448000	-82.5925	35.5019	1750.832	NC	FRENCH BROAD RIVER AT BENT
1512500	-75.8486	42.2181	3840.952	NY	CHENANGO RIVER NEAR
1631000	-78.2111	38.9139	4252.76	VA	S F SHENANDOAH RIVER AT
8033500	-94.3986	31.0247	9417.197	TX	NECHES RIVER NEAR ROCKLAND, TEX
2486000	-91.0267	30.4042	8212.852	MS	PEARL RIVER AT JACKSON, MS
4183500	-84.7444	41.1989	5514.085	ОН	MAUMEE R AT ANTWERP OH
6820500	-94.7042	39.6886	4558.379	МО	PLATTE RIVER NEAR AGENCY,
9444500	-109.295	33.0494	7163.907	AZ	SAN FRANCISCO RIVER AT
9497500	-110.499	33.7981	7378.876	AZ	SALT RIVER NEAR CHRYSOTILE, ARIZ MILE 34.8
5484500	-93.9497	41.5339	8912.149	IA	Raccoon River at Van Meter, IA
1520500	-77.1325	42.0286	1996.881	NY	TIOGA RIVER AT LINDLEY NY
2387500	-84.9414	34.5783	4149.161	GA	OOSTANAULA RIVER AT RESACA,
2475000	-88.8083	31.1028	9052.008	MS	LEAF RIVER NR MCLAIN, MS
1668000	-77.5181	38.3222	4133.621	VA	RAPPAHANNOCK RIVER NEAR EREDERICKSBURG, VA
7363500	-92.0258	33.7008	5444.155	AR	SALINE RIVER NEAR RYE, ARK.
14113000	-121.209	45.7567	3359.215	WA	KLICKITAT RIVER NEAR PITT, WASH.
5517500	-86.9644	41.2214	3501.664	IN	KANKAKEE RIVER AT DUNNS BRIDGE, IND.
3528000	-83.3983	36.425	3817.642	TN	CLINCH RIVER ABOVE TAZEWELL, TN
6884500	-96.8611	39.7778	9088.268	KS	L BLUE R AT WATERVILLE, KS
7147800	-96.9944	37.2242	4869.178	KS	WALNUT R AT WINFIELD, KS
3237500	-83.4211	38.8036	1002.325	ОН	OHIO BRUSH C NR WEST UNION OH
5454500	-91.5408	41.6567	8471.851	IA	Iowa River at Iowa City, IA
3363000	-85.9864	39.3392	2745.387	IN	DRIFTWOOD RIVER NEAR EDINBURGH IND
7243500	-96.0683	35.6739	5226.596	OK	DEEP FORK NEAR BEGGS, OK
6884400	-96.8581	39.7758	8609.12	KS	L BLUE R NR BARNES, KS
3165500	-80.9528	36.8347	3470.584	VA	NEW RIVER AT IVANHOE, VA
5430500	-89.0706	42.6092	8650.56	WI	ROCK RIVER AT AFTON, WI
1559000	-78.0192	40.4847	2113.43	PA	JUNIATA RIVER AT HUNTINGDON, PA.
6890500	-95.4544	39.3508	2387.969	KS	DELAWARE R AT VALLEY FALLS, KS
3213000	-81.8439	37.4856	1305.354	WV	TUG FORK AT LITWAR, WV
2349500	-84.0439	32.2981	7510.966	GA	FLINT RIVER AT MONTEZUMA, GA.
1127000	-71.9847	41.5978	1846.662	CT	QUINEBAUG R AT JEWETT CITY, CT
5422000	-90.5347	41.7669	6034.672	IA	Wapsipinicon River near De Witt, IA
2414500	-85.5608	33.1167	4338.23	AL	TALLAPOOSA RIVER AT WADLEY AL
1606500	-79.1761	38.9911	1662.772	WV	SO. BRANCH POTOMAC RIVER NR PETERSBURG, WV
1562000	-78.2656	40.2158	1958.031	PA	RAYSTOWN BRANCH JUNIATA RIVER AT SAXTON, PA.
4191500	-84.3992	41.2375	6003.592	ОН	AUGLAIZE R NR DEFIANCE OH

88 | Σελίδα

2478500	-88.5478	31.1483	6967.068	MS	CHICKASAWHAY RIVER AT LEAKESVILLE, MS
7340000	-94.3875	33.9194	6894.548	AR	LITTLE RIVER NEAR HORATIO, ARK.
3184000	-80.8053	37.64	4193.191	WV	GREENBRIER RIVER AT HILLDALE, WV
7290000	-90.6967	32.3475	7283.047	MS	BIG BLACK RIVER NR BOVINA, MS
3054500	-80.0403	39.15	2372.429	WV	TYGART VALLEY RIVER AT PHILIPPI, WV
3065000	-79.6222	39.0722	893.5459	WV	DRY FORK AT HENDRICKS, WV
8055500	-96.9442	32.9658	6368.781	ТХ	ELM FORK TRINITY RIVER NR CARROLLTON, TX
11501000	-121.849	42.5847	4092.181	OR	SPRAGUE RIVER NEAR CHILOQUIN,OREG.
3603000	-87.7431	35.93	6622.6	TN	DUCK RIVER ABOVE HURRICANE MILLS, TENN.
3381500	-88.1597	38.0611	8034.143	IL	LITTLE WABASH RIVER AT CARMI, IL
3252500	-84.3031	38.3908	1608.383	KY	SF LICKING R AT CYNTHIANA KY
14359000	-122.986	42.4375	5317.246	OR	ROGUE RIVER AT RAYGOLD NR CENTRAL PT,OREG.
2387000	-84.9283	34.6667	1779.322	GA	CONASAUGA RIVER AT TILTON, GA.
1611500	-78.3094	39.5786	1753.422	WV	CACAPON RIVER NEAR GREAT CACAPON, WV
13302500	-113.894	45.1833	9738.355	ID	SALMON RIVER AT SALMON ID
3164000	-80.9792	36.6472	2929.277	VA	NEW RIVER NEAR GALAX, VA
2375500	-87.2342	30.965	9885.985	FL	ESCAMBIA RIVER NEAR CENTURY, FL
6899500	-93.6442	40.0794	4325.28	MO	THOMPSON RIVER AT TRENTON MO
2236000	-81.3828	29.0081	7951.263	FL	ST. JOHNS RIVER NR DELAND, FLA.
6913500	-95.2569	38.6167	3237.485	KS	MARAIS DES CYGNES R NR OTTAWA, KS
3183500	-80.6417	37.7242	3532.744	WV	GREENBRIER RIVER AT ALDERSON, WV
5593000	-89.3561	38.6117	7042.178	IL	KASKASKIA RIVER AT CARLYLE, IL
9431500	-108.675	32.7269	7327.076	NM	GILA RIVER NEAR REDROCK, NM
6898000	-93.8081	40.6403	1815.582	IA	Thompson River at Davis City, IA
5515500	-86.7011	41.4	1390.824	IN	KANKAKEE RIVER AT DAVIS, IND.
5418500	-90.6344	42.0847	4022.252	IA	Maquoketa River near Maquoketa, IA
3301500	-85.7039	37.7672	3364.395	KY	ROLLING FORK NR BOSTON KY
1518000	-77.1297	41.9083	730.3766	PA	TIOGA RIVER AT TIOGA, PA
14233400	-122.098	46.4703	2667.688	WA	COWLITZ RIVER NR RANDLE, WASH.
1548500	-77.4478	41.5217	1564.353	PA	PINE CREEK AT CEDAR RUN, PA
6933500	-91.9778	37.9264	7355.566	MO	GASCONADE RIVER AT JEROME MO
11222000	-119.335	36.8167	4384.85	CA	KINGS R A PIEDRA CA
8146000	-98.7192	31.2131	7889.104	ТХ	SAN SABA RIVER AT SAN SABA, TX
2218500	-83.2728	33.5811	2823.087	GA	OCONEE RIVER NEAR GREENSBORO, GA.
8167500	-98.3833	29.8603	3405.834	ТХ	GUADALUPE RIVER NR SPRING BRANCH, TX
8015500	-92.9153	30.5028	4402.98	LA	CALCASIEU RIVER NR KINDER, LA
7211500	-104.493	36.2969	7381.466	NM	CANADIAN R NR TAYLOR SPRINGS, NM
1426500	-75.3839	42.0031	1541.043	NY	WEST BRANCH DELAWARE RIVER AT HALE EDDY NY

7019000	-90.5917	38.5056	9810.875	MO	MERAMEC RIVER NEAR EUREKA, MO
1643000	-77.3661	39.3869	2116.02	MD	MONOCACY R AT JUG BRIDGE NR FREDERICK, MD
8150700	-99.1089	30.6606	8410.054	TX	LLANO RIVER NR MASON, TX
14101500	-121.094	45.2417	1080.025	OR	WHITE RIVER BELOW TYGH VALLEY.ORFG.
2192000	-82.77	33.9742	3703.683	GA	BROAD RIVER NEAR BELL, GA.
1520000	-77.1403	41.9967	771.8165	PA	COWANESQUE RIVER NR LAWRENCEVILLE. PA
5455500	-91.7156	41.4664	1484.063	IA	English River at Kalona, IA
3179000	-81.0106	37.5439	1020.455	WV	BLUESTONE RIVER NEAR PIPESTEM, WV
12462500	-120.423	47.4994	3369.575	WA	WENATCHEE RIVER AT MONITOR, WASH.
1138000	-71.9861	44.1539	1023.045	NH	AMMONOOSUC RIVER NEAR BATH, NH
6480000	-96.7486	44.18	10095.77	SD	BIG SIOUX RIVER NEAR BROOKINGS SD
8172000	-97.6506	29.6661	2170.41	TX	SAN MARCOS RIVER AT LULING, TX
5552500	-88.7906	41.3867	6842.749	IL	FOX RIVER AT DAYTON, IL
11403000	-121.218	40.0106	2654.738	CA	EB OF NF FEATHER R NR RICH BAR CA
6869500	-97.8739	39.0042	7303.766	KS	SALINE R AT TESCOTT, KS
3524000	-82.155	36.9447	1367.514	VA	CLINCH RIVER AT CLEVELAND, VA
4144000	-83.9458	42.8236	945.3457	MI	SHIAWASSEE RIVER AT BYRON, MI.
13298500	-114.255	44.3786	4661.979	ID	SALMON RIVER NR CHALLIS ID
3308500	-85.8861	37.2681	4333.05	KY	GREEN RIVER AT MUNFORDVILLE, KY.
3079000	-79.2278	39.8597	989.3755	PA	CASSELMAN RIVER AT MARKLETON, PA.
1628500	-78.755	38.3225	2807.547	VA	S F SHENANDOAH RIVER NEAR LYNNWOOD, VA
7186000	-94.5661	37.2456	3014.746	MO	SPRING RIVER NEAR WACO, MO
12449950	-119.984	48.0775	4589.459	WA	METHOW RIVER NR PATEROS, WASH.
7346000	-94.4986	32.7494	1833.737	ТХ	BIG CYPRESS CREEK NR JEFFERSON, TX
2273000	-80.9628	27.2256	#N/A	FL	KISSIMMEE R AT S-65E NR
1371500	-74.1656	41.6861	1800.042	NY	WALLKILL RIVER AT GARDINER NY
6808500	-95.58	40.8731	3434.324	IA	West Nishnabotna River at Randolph, IA
2102000	-79.1161	35.6272	3714.043	NC	DEEP RIVER AT MONCURE, N.C.
5482500	-94.3767	41.9881	4193.191	IA	North Raccoon River near Jefferson, IA
6609500	-95.7825	41.6425	2255.88	IA	Boyer River at Logan, IA
5592500	-89.0889	38.9597	5024.577	IL	KASKASKIA RIVER AT VANDALIA, IL
7378500	-90.9903	30.4639	3315.185	LA	AMITE RIVER NEAR DENHAM SPRINGS, LA.
1064500	-71.0914	43.9908	997.1454	NH	SACO RIVER NEAR CONWAY, NH
5479000	-94.1917	42.7239	3387.704	IA	East Fork Des Moines River at Dakota City, IA
3011020	-78.7156	42.1564	4164.701	NY	ALLEGHENY RIVER AT SALAMANCA NY
4115000	-84.6931	43.1097	1124.055	MI	MAPLE RIVER AT MAPLE RAPIDS, MICH.
6441500	-100.384	44.3267	8047.093	SD	BAD R NEAR FORT PIERRE SD

1329500	-73.4319	43.1014	1020.455	NY	BATTEN KILL AT BATTENVILLE NY
14232500	-121.863	46.4417	831.3862	WA	CISPUS RIVER NEAR RANDLE, WASH.
11401500	-120.927	40.0781	1914.001	CA	INDIAN C NR CRESCENT MILLS CA
6817500	-95.0886	40.445	3211.585	MO	NODAWAY RIVER NEAR BURLINGTON JCT, MO
1541500	-78.4061	40.9717	960.8856	PA	CLEARFIELD CREEK AT DIMELING, PA
3361500	-85.7819	39.5292	1090.385	IN	BIG BLUE RIVER AT SHELBYVILLE, IN
1421000	-75.1744	41.9731	2030.551	NY	EAST BR DELAWARE R AT FISHS EDDY NY
1664000	-77.8139	38.5306	1605.793	VA	RAPPAHANNOCK RIVER AT REMINGTON, VA
4165500	-82.9097	42.5958	1901.051	MI	CLINTON RIVER AT MOUNT CLEMENS, MICH.
3443000	-82.6242	35.2989	766.6365	NC	FRENCH BROAD RIVER AT BLANTYRE N C
8095000	-97.5678	31.7858	2507.108	TX	NORTH BOSQUE RIVER NR CLIFTON, TX
8032000	-95.4306	31.8922	2965.536	ТХ	NECHES RIVER NEAR NECHES, TEXAS
3051000	-79.9361	39.0292	1056.715	WV	TYGART VALLEY RIVER AT BELINGTON, WV
2143000	-81.4028	35.6842	215.487	NC	HENRY FORK NEAR HENRY RIVER, N.C.
5570000	-90.3428	40.4856	4237.221	IL	SPOON RIVER AT SEVILLE, IL
13186000	-115.306	43.4944	1644.642	ID	SF BOISE RIVER NR FEATHERVILLE ID
8340500	-107.189	35.5925	3600.083	NM	ARROYO CHICO NR GUADALUPE N M
3362500	-85.9975	39.3608	1227.654	IN	SUGAR CREEK NEAR EDINBURGH, IN
5555300	-88.9308	41.2083	3240.075	IL	VERMILION RIVER NEAR LEONORE, IL
8085500	-99.2242	32.9344	10328.87	ТХ	CLEAR FORK BRAZOS RIVER AT FORT GRIFFIN, TX
7346070	-94.3458	32.7128	1748.242	ТХ	LITTLE CYPRESS CREEK NR JEFFERSON, TX
2083500	-77.5333	35.8939	5653.944	NC	TAR RIVER AT TARBORO, N. C.
5594000	-89.4944	38.6097	1903.641	IL	SHOAL CREEK NEAR BREESE, IL
4073500	-88.9522	43.9539	3470.584	WI	FOX RIVER AT BERLIN, WI
2365500	-85.8278	30.7756	9062.368	FL	CHOCTAWHATCHEE RIVER AT CARYVILLE, FLA.
1500500	-75.3169	42.3214	2543.368	NY	SUSQUEHANNA RIVER AT UNADILLA NY
1076500	-71.6861	43.7592	1610.973	NH	PEMIGEWASSET RIVER AT PLYMOUTH, NH
12149000	-121.924	47.6661	1561.763	WA	SNOQUALMIE RIVER NEAR CARNATION, WASH.
6885500	-96.4375	39.6842	1061.895	KS	BLACK VERMILLION R NR FRANKFORT, KS
6894000	-94.3003	39.1006	476.5578	MO	LITTLE BLUE RIVER NEAR LAKE CITY, MO
11213500	-119.123	36.8633	2465.669	CA	KINGS R AB NF NR TRIMMER CA
11080500	-117.805	34.2358	219.113	CA	EF SAN GABRIEL R NR CAMP BONITA CA
7056000	-92.7456	35.9839	2147.1	AR	BUFFALO RIVER NEAR ST. JOE, ARK.
2126000	-80.1758	35.1483	3553.464	NC	ROCKY RIVER NEAR NORWOOD, N. C.
14080500	-120.794	44.1139	6992.968	OR	CROOKED R NR PRINEVILLE, OREG.
3349000	-86.0167	40.0472	2222.21	IN	WHITE RIVER AT NOBLESVILLE, IN

3345500	-88.0194	38.9361	3926.422	IL	EMBARRAS RIVER AT STE. MARIE,
7289500	-89.9661	32.8806	3866.852	MS	BIG BLACK RIVER AT PICKENS, MS
2492000	-89.8972	30.6292	3141.656	LA	BOGUE CHITTO NEAR BUSH, LA
8171300	-97.9097	29.9792	1067.075	ТХ	BLANCO RIVER NR KYLE, TX
3567500	-85.2075	35.0139	1108.515	TN	SOUTH CHICKAMAUGA CREEK NEAR CHICKAMAUGA, TN
6815000	-95.5958	40.0356	3470.584	NE	BIG NEMAHA RIVER AT FALLS CITY, NEBR.
5471500	-92.6586	41.3553	4234.631	IA	South Skunk River near Oskaloosa, IA
5555500	-89.0122	41.2553	3310.005	IL	VERMILION RIVER AT LOWELL, IL
7288500	-90.5431	33.5472	1986.521	MS	BIG SUNFLOWER RIVER AT SUNFLOWER, MS
7307800	-100.073	34.2275	7132.827	ТХ	PEASE RIVER NR CHILDRESS, TX
3410500	-84.5333	36.6269	2470.849	KY	SOUTH FORK CUMBERLAND RIVER NEAR STEARNS, KY
3109500	-80.5408	40.6758	1284.634	ОН	L BEAVER C NR EAST LIVERPOOL OH
2202500	-81.4161	32.1914	6863.468	GA	OGEECHEE RIVER NEAR EDEN, GA.
3198500	-81.7117	38.1797	1012.685	WV	BIG COAL RIVER AT ASHFORD, WV
1361000	-73.7444	42.3306	852.1061	NY	KINDERHOOK CREEK AT ROSSMAN NY
6607200	-95.8097	42.1569	1732.702	IA	Maple River at Mapleton, IA
8150000	-99.7342	30.5042	4804.791	ТХ	LLANO RIVER NR JUNCTION, TX
5472500	-92.2044	41.3008	1890.691	IA	North Skunk River near Sigourney, IA
1556000	-78.2	40.4631	753.6865	PA	FRANKSTOWN BR JUNIATA RIVER AT WILLIAMSBURG, PA.
6868000	-98.5333	38.9333	4920.977	KS	SALINE R NR WILSON, KS
6192500	-110.565	45.5972	9197.048	MT	YELLOWSTONE RIVER NEAR LIVINGSTON, MT.
3521500	-81.7811	37.0861	354.8284	VA	CLINCH RIVER AT RICHLANDS, VA
1423000	-75.1403	42.1661	859.8761	NY	WEST BRANCH DELAWARE RIVER AT WALTON NY
8205500	-99.1444	28.7364	8881.069	ТХ	FRIO RIVER NR DERBY, TX
3182500	-80.1308	38.1858	1398.594	WV	GREENBRIER RIVER AT BUCKEYE, WV
3032500	-79.3944	40.9944	1367.514	PA	REDBANK CREEK AT ST. CHARLES, PA.
2135000	-79.2472	34.0569	7226.067	SC	LITTLE PEE DEE R. AT GALIVANTS FERRY, S.C.
3540500	-84.5581	35.9831	1978.751	TN	EMORY RIVER AT OAKDALE, TN
6860000	-100.855	38.7925	9207.408	KS	SMOKY HILL R AT ELKADER, KS
12144500	-121.841	47.5453	971.2455	WA	SNOQUALMIE RIVER NEAR SNOQUALMIE, WASH.
2347500	-84.2325	32.7214	4791.478	GA	FLINT RIVER NEAR CULLODEN, GA.
5508000	-91.4083	39.6122	6423.171	MO	SALT RIVER NEAR NEW LONDON, MO
11413000	-120.937	39.525	647.497	CA	N YUBA R BL GOODYEARS BAR CA
3531500	-83.095	36.6619	826.2062	VA	POWELL RIVER NEAR JONESVILLE, VA
5582000	-89.7356	40.1336	4672.339	IL	SALT CREEK NEAR GREENVIEW, IL
5462000	-92.5828	42.7119	4522.119	IA	Shell Rock River at Shell Rock, IA
6888500	-96.1811	39.0622	818.4362	KS	MILL C NR PAXICO, KS
6847000	-99.8931	40.12	#N/A	NE	BEAVER CREEK NEAR BEAVER CITY, NEBR.

1560000	-78.4928	40.0717	445.478	PA	DUNNING CREEK AT BELDEN, PA.
13336500	-115.513	46.0867	4946.877	ID	SELWAY RIVER NR LOWELL, ID
5451500	-92.9075	42.0658	3967.862	IA	Iowa River at Marshalltown, IA
4178000	-84.8017	41.3856	1579.893	ОН	ST. JOSEPH RIVER NEAR
7052500	-93.4614	36.8053	2556.318	MO	JAMES RIVER AT GALENA, MO
5412500	-91.2617	42.74	4001.532	IA	Turkey River at Garber, IA
12449500	-120.115	48.3653	3369.575	WA	METHOW RIVER AT TWISP, WA
6340500	-101.622	47.2853	5801.573	ND	KNIFE RIVER AT HAZEN, ND
4079000	-88.7403	44.3922	5853.373	WI	WOLF RIVER AT NEW LONDON, WI
3490000	-82.5681	36.6086	1740.472	VA	N F HOLSTON RIVER NEAR GATE CITY, VA
3512000	-83.3536	35.4614	476.5578	NC	OCONALUFTEE RIVER AT BIRDTOWN, N. C.
5507500	-91.6722	39.5403	5775.673	MO	SALT RIVER NEAR MONROE CITY, MO.
5554500	-88.6361	40.8778	1499.603	IL	VERMILION RIVER AT PONTIAC, IL
7068000	-90.8475	36.6219	5278.396	MO	CURRENT RIVER AT DONIPHAN,MO.
1197500	-73.3553	42.2319	730.3766	MA	HOUSATONIC RIVER NEAR GREAT BARRINGTON, MA
3010500	-78.3864	41.9633	1424.493	PA	ALLEGHENY RIVER AT ELDRED, PA.
3504000	-83.6192	35.1269	134.4204	NC	NANTAHALA RIVER NEAR RAINBOW SPRINGS, N. C.
3114500	-80.9972	39.475	1186.215	WV	MIDDLE ISLAND CREEK AT LITTLE, WV
3331500	-86.5636	41.1572	2217.03	IN	TIPPECANOE RIVER NEAR ORA, IN
5585000	-90.6319	40.0253	3348.855	IL	LA MOINE RIVER AT RIPLEY, IL
1055500	-70.2303	44.2694	437.708	ME	NEZINSCOT RIVER AT TURNER CENTER, ME
1595000	-79.3072	39.3019	189.0691	MD	NB POTOMAC R AT STEYER, MD
9251000	-108.029	40.5028	8831.859	CO	YAMPA RIVER NEAR MAYBELL, CO.
6600500	-96.3119	42.5767	2294.729	IA	Floyd River at James, IA
2482000	-89.335	32.7983	2341.349	MS	PEARL RIVER AT EDINBURG, MS
9442692	-108.515	33.8914	243.4589	NM	TULAROSA RIVER ABOVE
1329000	-73.1572	43.0772	393.6782	VT	BATTEN KILL AT ARLINGTON, VT
7163000	-96.8675	36.1161	80.28963	ОК	COUNCIL CREEK NEAR STILLWATER, OK
3303000	-86.2283	38.2375	1232.834	IN	BLUE RIVER NEAR WHITE CLOUD,
7196500	-94.9233	35.9228	2483.799	OK	ILLINOIS RIVER NEAR TAHLEQUAH, OK
7221000	-104.783	35.8003	2859.347	NM	MORA RIVER NR SHOEMAKER N MEX.
11355500	-121.424	40.6867	419.5781	CA	HAT CREEK NEAR HAT CREEK CALIF
6928000	-92.4517	37.7592	3237.485	MO	GASCONADE RIVER NEAR HAZLEGREEN, MISSOURI
3361650	-85.8856	39.7142	243.1999	IN	SUGAR CREEK AT NEW PALESTINE, IND.
5410490	-90.8583	43.1828	1779.322	WI	KICKAPOO RIVER AT STEUBEN, WI
5440000	-88.9986	42.1958	2846.397	IL	KISHWAUKEE RIVER NEAR PERRYVILLE, IL
4176500	-83.5311	41.9606	2698.768	MI	RIVER RAISIN NEAR MONROE, MI
2055000	-79.9389	37.2583	1023.045	VA	ROANOKE RIVER AT ROANOKE, VA

3069000	-79.6778	39.0958	554.2575	WV	SHAVERS FORK AT PARSONS, WV
4223000	-78.0425	42.5703	2548.548	NY	GENESEE RIVER AT PORTAGEVILLE NY
6799500	-96.5217	41.7128	2628.838	NE	LOGAN CREEK NEAR UEHLING,
11532500	-124.075	41.7917	1589.346	CA	SMITH R NR CRESCENT CITY CA
2219500	-83.3494	33.6086	1129.235	GA	APALACHEE RIVER NEAR BUCKHEAD, GA.
7069500	-91.1719	36.2053	3063.956	AR	SPRING RIVER AT IMBODEN, ARK.
7144200	-97.3878	37.8322	3436.914	KS	L ARKANSAS R AT VALLEY CENTER, KS
3328500	-86.2639	40.7819	2043.501	IN	EEL RIVER NEAR LOGANSPORT, IN
14308000	-122.947	42.9306	1162.905	OR	S. UMPQUA RIVER @ TILLER, OR
7177500	-95.9539	36.2783	2343.939	ОК	BIRD CREEK NEAR SPERRY, OK
11427000	-121.023	38.9361	885.7759	CA	NF AMERICAN R A NORTH FORK DAM CA
3289500	-84.8147	38.2686	1225.064	KY	ELKHORN CREEK NEAR FRANKFORT, KY
1334500	-73.3775	42.9386	1320.894	NY	HOOSIC RIVER NEAR EAGLE BRIDGE NY
3167000	-80.8869	36.9394	639.7271	VA	REED CREEK AT GRAHAMS FORGE, VA
3161000	-81.4072	36.3931	530.9476	NC	SOUTH FORK NEW RIVER NEAR JEFFERSON, N. C.
1558000	-78.1408	40.6125	569.7974	PA	LITTLE JUNIATA RIVER AT SPRUCE CREEK, PA.
6454500	-103.171	42.4597	3625.983	NE	NIOBRARA RIVER ABOVE BOX BUTTE RESERVOIR, NE
10296000	-119.449	38.3797	466.1979	CA	W WALKER R BL L WALKER R NR COLEVILLE, CA
4100500	-85.8486	41.5933	1538.453	IN	ELKHART RIVER AT GOSHEN, IND.
5452000	-92.3131	41.9642	520.5876	IA	Salt Creek near Elberon, IA
8171000	-98.0886	29.9942	919.4458	ТХ	BLANCO RIVER AT WIMBERLEY, TX
3075500	-79.4256	39.4219	347.0584	MD	YOUGHIOGHENY R NR OAKLAND, MD
8013500	-92.8139	30.6403	1950.261	LA	CALCASIEU RIVER NEAR OBERLIN, LA.
12459000	-120.613	47.5833	2589.988	WA	WENATCHEE RIVER AT PESHASTIN, WASH.
2475500	-88.9097	32.3264	955.7056	MS	CHUNKY RIVER NR CHUNKY, MS
3532000	-83.6303	36.5417	1774.142	TN	POWELL RIVER NEAR ARTHUR, TN
5526000	-87.8242	41.0089	5415.665	IL	IROQUOIS RIVER NEAR CHEBANSE, IL
3050500	-79.8792	38.925	704.4768	WV	TYGART VALLEY RIVER NEAR ELKINS, WV
4113000	-84.5553	42.7506	3185.685	MI	GRAND RIVER AT LANSING, MICH.
4221000	-77.9575	42.1222	745.9166	NY	GENESEE RIVER AT WELLSVILLE NY
3266000	-84.2825	39.8694	1683.492	ОН	STILLWATER R AT ENGLEWOOD OH
3159500	-82.0878	39.3289	2442.359	OH	HOCKING R AT ATHENS OH
5569500	-90.2814	40.7089	2776.467	IL	SPOON RIVER AT LONDON MILLS, IL
13340600	-115.62	46.8406	3522.384	ID	N.F. CLEARWATER RIVER NR CANYON RANGER STATION
4221500	-77.9806	42.1639	797.7163	NY	GENESEE RIVER AT SCIO, N. Y.
12413500	-116.307	47.5639	3159.785	ID	COEUR D'ALENE RIVER NR CATALDO. IDAHO
9430500	-108.537	33.0611	4827.738	NM	GILA RIVER NEAR GILA, NM

5481000	-93.8033	42.4336	2185.95	IA	Boone River near Webster City, IA
1663500	-77.9653	38.5917	743.3266	VA	HAZEL RIVER AT RIXEYVILLE, VA
8103800	-98.0164	31.0817	2118.61	TX	LAMPASAS RIVER NR KEMPNER, TX
1634000	-78.3364	38.9767	1989.111	VA	N F SHENANDOAH RIVER NEAR STRASBURG, VA
12340000	-113.756	46.8997	5931.073	MT	BLACKFOOT RIVER NEAR BONNER MT
9299500	-109.927	40.5869	292.6687	UT	WHITEROCKS RIVER NEAR
5476500	-94.8439	43.3975	3553.464	IA	Des Moines River at Estherville,
3020500	-79.6956	41.4817	776.9964	PA	OIL CREEK AT ROUSEVILLE, PA.
7172000	-96.315	37.0036	1152.545	KS	CANEY R NR ELGIN, KS
1667500	-77.9753	38.3503	1222.474	VA	RAPIDAN RIVER NEAR CULPEPER,
2165000	-82.1764	34.4444	611.2372	SC	REEDY RIVER NEAR WARE
4212000	-81.0467	41.7406	1504.783	ОН	GRAND R NR MADISON OH
5408000	-90.6431	43.5742	688.9368	WI	KICKAPOO RIVER AT LA FARGE, WI
3324300	-85.4536	40.7125	1100.745	IN	SALAMONIE RIVER NEAR WARREN, IND.
11160000	-121.955	36.9914	104.1175	CA	SOQUEL CR AT SOQUEL CALIF
13200000	-115.989	43.6481	1033.405	ID	MORES CREEK AB ROBIE CREEK NR ARROWROCK DAM ID
3024000	-79.9561	41.4375	2662.508	PA	FRENCH CREEK AT UTICA, PA.
2479300	-88.7806	30.7361	1142.185	MS	RED CREEK AT VESTRY, MS
6191500	-110.794	45.1119	6793.539	MT	YELLOWSTONE RIVER AT CORWIN SPRINGS, MT.
5244000	-94.8789	46.6403	2615.888	MN	CROW WING RIVER AT NIMROD, MN
11224500	-120.47	36.2147	248.1209	CA	LOS GATOS C AB NUNEZ CYN NR COALINGA CA
3269500	-83.8703	39.9231	1269.094	ОН	MAD R NR SPRINGFIELD OH
3470000	-83.5778	35.8783	914.2658	TN	LITTLE PIGEON RIVER AT SEVIERVILLE, TENN.
1200000	-73.5289	41.6589	525.7676	NY	TENMILE RIVER NEAR GAYLORDSVILLE, CT
6426500	-104.94	44.3219	4377.08	WY	BELLE FOURCHE RIVER BELOW MOORCROFT, WYO.
1348000	-74.7411	43.0167	748.5066	NY	EAST CANADA CREEK AT EAST CREEK NY
3175500	-80.85	37.3056	577.5673	VA	WOLF CREEK NEAR NARROWS, VA
13337000	-115.586	46.1506	3056.186	ID	LOCHSA RIVER NR LOWELL, ID
12413000	-116.253	47.5722	2318.039	ID	N FK COEUR D ALENE RIVER AT ENAVILLE ID
5435500	-89.6158	42.3036	3434.324	IL	PECATONICA RIVER AT ERFEPORT, II
6334500	-103.973	45.5469	5102.277	SD	LITTLE MISSOURI R AT CAMP CROOK SD
10296500	-119.454	38.5153	647.497	CA	W WALKER R NR COLEVILLE, CA
5514500	-90.9833	39.0164	2338.759	MO	CUIVRE RIVER NEAR TROY, MO
13351000	-118.148	46.7586	6474.97	WA	PALOUSE RIVER AT HOOPER, WA
7067000	-91.0147	36.9914	4317.51	МО	CURRENT RIVER AT VAN BUREN, MO
7057500	-92.2481	36.6228	1452.983	MO	NORTH FORK RIVER NEAR TECUMSEH. MO
11342000	-122.416	40.9397	1100.745	CA	SACRAMENTO R A DELTA CA

2383500	-84.8331	34.5642	2152.28	GA	COOSAWATTEE RIVER NEAR PINE CHAPEL, GA.
3550000	-83.9806	35.1389	269.3588	NC	VALLEY RIVER AT TOMOTLA, N. C.
10309000	-119.703	38.8472	922.0358	NV	EAST FORK CARSON RIVER NEAR GARDNERVILLE. NV
2456500	-86.9833	33.7097	2292.139	AL	LOCUST FORK AT SAYRE, AL.
4185000	-84.4297	41.5044	1061.895	OH	TIFFIN R AT STRYKER OH
6811500	-95.8128	40.3925	2053.861	NE	LITTLE NEMAHA RIVER AT AUBURN, NE
11497500	-121.238	42.4472	1328.664	OR	SPRAGUE RIVER NEAR BEATTY,OREG.
5502040	-91.1486	39.6931	188.2921	IL	HADLEY CREEK AT KINDERHOOK, IL
1060000	-70.1792	43.7992	365.1883	ME	ROYAL RIVER AT YARMOUTH, ME
12358500	-114.009	48.4953	2921.507	MT	MIDDLE FORK FLATHEAD RIVER NEAR WEST GLACIER MT
1514000	-76.2708	42.1292	479.1478	NY	OWEGO CREEK NEAR OWEGO NY
2472000	-89.4069	31.7069	1924.361	MS	LEAF RIVER NR COLLINS, MS
1674500	-77.1633	37.8878	1556.583	VA	MATTAPONI RIVER NEAR BEULAHVILLE, VA
12027500	-123.034	46.7761	2318.039	WA	CHEHALIS RIVER NEAR GRAND MOUND, WASH.
7058000	-92.3044	36.6258	1476.293	MO	BRYANT CREEK NEAR TECUMSEH, MO
8189500	-97.2789	28.2917	1787.092	TX	MISSION RIVER AT REFUGIO, TX
2448000	-88.5611	33.1022	1989.111	MS	NOXUBEE RIVER AT MACON, MS
1321000	-74.2708	43.3528	1271.684	NY	SACANDAGA RIVER NEAR HOPE NY
3111500	-80.7344	40.1933	318.5685	ОН	SHORT C NR DILLONVALE OH
4201500	-81.8872	41.4067	691.5268	OH	ROCKY R NR BEREA OH
2296750	-81.8761	27.2219	3540.514	FL	PEACE RIVER AT ARCADIA, FLA.
4164000	-82.9514	42.5772	1149.955	MI	CLINTON RIVER NEAR FRASER, MICH.
2030500	-78.3778	37.7028	585.3373	VA	SLATE RIVER NEAR ARVONIA, VA
3574500	-86.3064	34.6242	828.7962	AL	PAINT ROCK RIVER NEAR WOODVILLE AL
2138500	-81.8903	35.7947	172.7522	NC	LINVILLE RIVER NEAR NEBO N C
5458500	-92.465	42.6483	4301.97	IA	Cedar River at Janesville, IA
1574000	-76.7203	40.0822	1320.894	PA	WEST CONEWAGO CREEK NEAR MANCHESTER, PA.
5542000	-88.3597	41.2861	1178.445	IL	MAZON RIVER NEAR COAL CITY, IL
2143500	-81.2644	35.4222	179.2272	NC	INDIAN CREEK NEAR LABORATORY N C
5320500	-94.0411	44.1111	2874.887	MN	LE SUEUR RIVER NEAR RAPIDAN, MN
4198000	-83.1589	41.3078	3240.075	OH	SANDUSKY R NR FREMONT OH
3265000	-84.3561	40.0578	1302.764	ОН	STILLWATER R AT PLEASANT HILL OH
3155500	-81.2778	39.1194	1170.675	WV	HUGHES RIVER AT CISCO, WV
2018000	-79.9117	37.6658	852.1061	VA	CRAIG CREEK AT PARR, VA
1543500	-78.1033	41.3172	1774.142	PA	SINNEMAHONING CREEK AT SINNEMAHONING, PA
3339500	-86.8994	40.0489	1318.304	IN	SUGAR CREEK AT CRAWFORDSVILLE, IND.
7252000	-94.0153	35.5769	966.0656	AR	MULBERRY RIVER NEAR MULBERRY, ARK.
5584500	-90.8986	40.3292	1696.442	IL	LA MOINE RIVER AT COLMAR, IL
5383000	-91.1181	43.9014	1030.815	WI	LA CROSSE RIVER NEAR WEST

					SALEM, WI
1372500	-73.8731	41.6531	468.7878	NY	WAPPINGER CREEK NEAR WAPPINGERS FALLS NY
3136000	-82.1956	40.5147	2455.309	OH	MOHICAN R AT GREER OH
3238500	-83.9286	38.8581	564.6174	ОН	WHITEOAK C NR GEORGETOWN OH
3473000	-81.8442	36.6517	779.5864	VA	S F HOLSTON RIVER NEAR DAMASCUS, VA
2143040	-81.5672	35.5906	66.56269	NC	JACOB FORK AT RAMSEY, N. C.
3281500	-83.6772	37.4792	1869.971	KY	SOUTH FORK KENTUCKY RIVER AT BOONEVILLE,KENTUCKY
3346000	-87.9464	39.0103	823.6162	IL	NORTH FORK EMBARRAS RIVER NEAR OBLONG, IL
11138500	-120.167	34.8397	727.7867	CA	SISQUOC RIVER NEAR SISQUOC, CALIF.
2228000	-81.8675	31.2211	7226.067	GA	SATILLA RIVER AT ATKINSON, GA.
6914000	-95.2486	38.3336	865.056	KS	POTTAWATOMIE C NR GARNETT, KS
3180500	-79.8333	38.5436	344.4684	WV	GREENBRIER RIVER AT DURBIN, WV
3199000	-81.8364	38.0797	696.7068	WV	LITTLE COAL RIVER AT DANVILLE, WV
1541000	-78.6772	40.8969	815.8463	PA	WEST BRANCH SUSQUEHANNA RIVER AT BOWER, PA
1672500	-77.5492	37.7967	1020.455	VA	SOUTH ANNA RIVER NEAR ASHLAND, VA
7029500	-88.9767	35.2753	3833.182	TN	HATCHIE RIVER AT BOLIVAR, TN
12134500	-121.666	47.8375	1385.644	WA	SKYKOMISH RIVER NEAR GOLD BAR, WASH.
6817000	-95.0131	40.7386	1973.571	IA	Nodaway River at Clarinda, IA
3186500	-80.4842	38.3789	331.5185	WV	WILLIAMS RIVER AT DYER, WV
7261000	-92.4028	35.2989	437.708	AR	CADRON CREEK NEAR GUY, ARK.
5447500	-90.1583	41.4889	2597.758	IL	GREEN RIVER NEAR GENESEO, IL
12098500	-121.949	47.1514	1038.585	WA	WHITE RIVER NEAR BUCKLEY, WASH.
6892000	-95.0108	39.1164	1051.535	KS	STRANGER C NR TONGANOXIE, KS
11210500	-118.953	36.4067	1344.204	CA	KAWEAH R NR THREE RIVERS CA
7072000	-91.1133	36.3467	2937.047	AR	ELEVENPOINT RIVER NR RAVENDEN SPRINGS, ARK.
6359500	-102.156	45.1978	6889.368	SD	MOREAU R NEAR FAITH SD
7346050	-94.7508	32.6725	991.9654	ТХ	LITTLE CYPRESS CREEK NR ORE CITY, TX
11025500	-116.865	33.1069	290.0787	CA	SANTA YSABEL CREEK NEAR RAMONA, CALIF.
5457700	-92.6731	43.0625	2729.847	IA	Cedar River at Charles City, IA
5280000	-93.7339	45.0867	6526.77	MN	CROW RIVER AT ROCKFORD, MN
1048000	-69.9392	44.7072	1336.434	ME	SANDY RIVER NEAR MERCER, ME
3173000	-80.7097	37.2681	789.9464	VA	WALKER CREEK AT BANE, VA
1445500	-74.9786	40.8306	274.5387	NJ	PEQUEST RIVER AT PEQUEST NJ
7074000	-91.4497	36.1103	1225.064	AR	STRAWBERRY RIVER NEAR POUGHKEEPSIE, ARK.
5546500	-88.1792	42.5111	2248.11	WI	FOX RIVER AT WILMOT, WI
7375500	-90.3617	30.5064	1673.132	LA	TANGIPAHOA RIVER AT ROBERT,LA
1534000	-75.895	41.5583	991.9654	PA	TUNKHANNOCK CREEK NEAR TUNKHANNOCK PA
7049000	-93.8556	36.2006	681.1669	AR	WAR EAGLE CREEK NEAR HINDSVILLE, ARK.

9.	Παράρτημα	10: Οι α	σταθμοί που	χρησιμοποιήθηκαν

2118000	-80.6594	35.8447	792.5364	NC	SOUTH YADKIN RIVER NEAR MOCKSVILLE N C
3438000	-87.7217	36.7778	631.9571	KY	LITTLE R NR CADIZ,KY.
2329000	-84.3842	30.5539	2952.586	FL	OCHLOCKONEE RIVER NR HAVANA, FLA.
2016000	-79.7597	37.7917	1193.985	VA	COWPASTURE RIVER NEAR CLIFTON FORGE, VA
1445000	-74.7767	40.9811	80.28963	NJ	PEQUEST RIVER AT HUNTSVILLE NJ
6883000	-98.0667	40.3328	2548.548	NE	LITTLE BLUE RIVER NEAR DEWEESE, NE
6225500	-109.01	43.2425	4897.668	WY	WIND RIVER NEAR CROWHEART, WYO.
7197000	-94.8383	35.9211	795.1263	OK	BARON FORK AT ELDON, OK
7222500	-104.443	35.4028	1354.564	NM	CONCHAS RIVER AT VARIADERO, N. MEX.
2058400	-79.525	36.9458	906.4958	VA	PIGG RIVER NEAR SANDY LEVEL, VA
11530000	-123.671	41.05	7389.236	CA	TRINITY R A HOOPA CA
7147070	-97.0125	37.7958	1103.335	KS	WHITEWATER R AT TOWANDA, KS
11281000	-120.012	37.8217	225.329	CA	SF TUOLUMNE RIVER NR OAKLAND RECREATION CAMP CAL
3326500	-85.6594	40.5761	1766.372	IN	MISSISSINEWA RIVER AT MARION, IND.
2217500	-83.4228	33.9467	1015.275	GA	MIDDLE OCONEE RIVER NEAR ATHENS, GA.
13340500	-115.508	46.6314	2579.628	ID	N FK CLEARWATER RIVER AT BUNGALOW RANGER STA ID
9132500	-107.434	38.9258	1362.334	СО	NORTH FORK GUNNISON RIVER NEAR SOMERSET, CO.
5517000	-86.6206	41.3028	1126.645	IN	YELLOW RIVER AT KNOX, IND.
7378000	-91.0736	30.5125	735.5566	LA	COMITE RIVER NEAR COMITE, LA.
3348000	-85.6722	40.1061	1051.535	IN	WHITE RIVER AT ANDERSON, IND.
7144780	-97.9358	37.8447	2038.321	KS	NF NINNESCAH R AB CHENEY RE, KS
5053000	-96.7833	46.4681	5387.175	ND	WILD RICE RIVER NR ABERCROMBIE, ND
7152000	-97.2769	36.8114	4814.788	ОК	CHIKASKIA RIVER NEAR BLACKWELL, OK