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Abstract: We provide contingent empirical evidence on the solutions to three problems 

associated with univariate time series forecasting using machine learning (ML) 

algorithms by conducting an extensive multiple-case study. These problems are: (a) 

lagged variable selection, (b) hyperparameter handling, and (c) comparison between ML 

and classical algorithms. The multiple-case study is composed by 50 single-case studies, 

which use time series of mean monthly temperature and total monthly precipitation 

observed in Greece. We focus on two ML algorithms, i.e. neural networks and support 

vector machines, while we also include four classical algorithms and a naïve benchmark 

in the comparisons. We apply a fixed methodology to each individual case and, 

subsequently, we perform a cross-case synthesis to facilitate the detection of systematic 

patterns. We fit the models to the deseasonalized time series. We compare the one- and 

multi-step ahead forecasting performance of the algorithms. Regarding the one-step 

ahead forecasting performance, the assessment is based on the absolute error of the 

forecast of the last monthly observation. For the quantification of the multi-step ahead 

forecasting performance we compute five metrics on the test set (last year’s monthly 

observations), i.e. the root mean square error, the Nash-Sutcliffe efficiency, the ratio of 
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standard deviations, the coefficient of correlation and the index of agreement. The 

evidence derived by the experiments can be summarized as follows: (a) the results mostly 

favour using less recent lagged variables, (b) hyperparameter optimization does not 

necessarily lead to better forecasts, (c) the ML and classical algorithms seem to be equally 

competitive. 

Key Words: case studies; cross-case synthesis; hyperparameter optimization; lagged 

variable selection; multi-step ahead forecasting; one-step ahead forecasting 

1. Introduction 

1.1 Background information 

Machine learning (ML) algorithms are widely used for the forecasting of univariate 

geophysical time series as an alternative to classical algorithms. Popular ML algorithms 

are the rather well-established Neural Networks (NN) and the new-entrant in most 

scientific fields Support Vector Machines (SVM). The latter algorithm has been presented 

in its current form by Cortes and Vapnik (1995; see also Vapnik 1995, 1999). The large 

number and wide range of the relevant applications is apparent in the review papers of 

Maier and Dandy (2000), and Raghavendra and Deka (2014) respectively. The 

competence of ML algorithms in univariate time series forecasting has been empirically 

proven in Papacharalampous et al. (2017a), and Tyralis and Papacharalampous (2017) 

through extensive simulation experiments. 

Nevertheless, univariate time series forecasting using ML algorithms also implies the 

handling of specific factors that may improve or deteriorate the performance of the 

algorithms, i.e. the lagged variables and the hyperparameters. In contrast to the typical 

regression problem, in a forecasting problem the set of predictor variables is a set of 

lagged variables, formed using observed past values of the process to be forecasted and, 

consequently, holding information about the temporal dependence. Although the amount 

of the available historical information taken into account increases when using a large 

number of lagged variables, the length of the fitting set concomitantly decreases; for more 

details, see Tyralis and Papacharalampous (2017). While there is a wide literature on 

applications of ML algorithms in hydrological univariate time series forecasting, mainly 

comprising single- or few-case studies that particularly focus on details about the model 

structure (e.g. Atiya et al. 1999; Guo et al. 2011; Hong 2008; Kumar et al. 2004; Moustris 

et al. 2011; Ouyang and Lu 2017; Sivapragasam et al. 2001; Wang et al. 2006), studies 
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explicitly stating information concerning the variable selection issue, such as Belayneh et 

al. (2014), Nayak et al. (2004), Hung et al. (2009) and Yaseen et al. (2016), are less. Tyralis 

and Papacharalampous (2017) have investigated the effect of a sufficient number of 

lagged variable selection choices on the performance of the Breiman’ s random forests  

algorithm (Breiman 2001) in one-step ahead univariate time series forecasting. 

On the other hand, information on the hyperparameter selection is usually emphasized 

in the hydrological literature (e.g. Belayneh et al. 2014; Hung et al. 2009; Koutsoyiannis 

et al. 2008; El-Shafie et al. 2007; Tongal and Berndtsson 2017; Valipour et al. 2013; Yu et 

al. 2004). An example of a hyperparameter is the number of hidden nodes within a neural 

networks structure. Hyperparameters are distinguished from the basic parameters, 

because they are usually optimized or tuned with the aim to improve the performance of 

a ML algorithm. Hyperparameter optimization can be performed using a single validation 

set extracted from the fitting set or k-fold cross-validation, which involves multiple set 

divisions and tests. The optimal hyperparameter values are most frequently searched 

heuristically, either using grid search or random search, while ML or Bayesian methods 

can be adopted for this task as well (Witten et al. 2017). However, non-tuned ML models 

are also used in hydrology (e.g. Yaseen et al. 2016). Finally, a popular problem arising 

when using ML forecasting algorithms is the comparison between ML and classical 

algorithms. This problem is mostly examined within single-case studies (e.g. Ballini et al. 

2001; Koutsoyiannis et al. 2008; Tongal and Berndtsson 2017; Valipour et al. 2013; Yu et 

al. 2004), as applying to lagged variable and hyperparameter selection as well. 

1.2 Main contribution of this study 

The main contribution of this study is the exploration in geoscience concepts of the 

problems presented in detail in Section 1.1 and summarized here below, together with 

their related research questions of focus: 

 Problem 1: Lagged variable selection in time series forecasting using ML algorithms 

Research question 1: Should we select less recent lagged variables or a large number of 

lagged variables in time series forecasting using ML algorithms? 

 Problem 2: Hyperparameter selection in time series forecasting using ML algorithms 

Research question 2: Does hyperparameter optimization necessarily lead to a better 

performance in time series forecasting using ML algorithms? 

 Problem 3: Comparison between ML and classical algorithms 
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Research question 3: Do the ML algorithms exhibit better (or worse) performance than 

the classical ones? 

In fact, exploration is indispensable for understanding the phenomena involved in a 

specific problem and, therefore, it constitutes an essential part within every theory-

development process. 

1.3 Research method and implementation 

We adopt the multiple-case study research method (presented in detail in Yin (2003)), 

which embraces the examination of more than one individual cases, facilitating the 

observation of specific phenomena from multiple perspectives or within different 

contexts (Dooley 2002). For the detection of systematic patterns across the individual 

cases a cross-case synthesis can be performed (Larsson 1993). Given the fact that the 

boundaries between the phenomena and the context are not clear (thus, it is meaningful 

to consider a case study design, as explained in Baxter and Jack (2008)), it is important 

that each individual case keeps its identity within the multiple-case study, so that one can 

specifically focus on it. This exploration within and across the individual cases can 

provide interesting insights into the phenomena under investigation, as well as a form of 

generalization named “contingent empirical generalization”, while retaining the 

immediacy of the single-case study method (Achen and Snidal 1989). 

We explore the three problems summarized in Section 1.2 by conducting an extensive 

multiple-case study composed by 50 single-case studies, which use temperature and 

precipitation time series observed in Greece. We examine these two geophysical 

processes, because they exhibit different properties, which may affect differently the 

results within the explorations. We focus on two ML algorithms, i.e. NN and SVM, for an 

analogous reason. Moreover, the explorations are conducted for the one- and a multi-step 

ahead horizons, as their corresponding forecasting attempts are not of the same difficulty. 

We apply a fixed methodology to each individual case. This fixed methodology provides 

the common basis to further perform a cross-case synthesis for the detection of 

systematic patterns across the individual cases. The latter is the novelty of our study. 

2. Data and methods 

2.1 Methodology outline 

We conduct 50 single-case studies by applying a fixed methodology to each of the 50 time 

series presented in Section 2.2, as explained subsequently. First, we split the time series 
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into a fitting and a test set. The latter is the last monthly observation for the one-step 

ahead forecasting experiments and the last year’s monthly observations for the multi-

step ahead forecasting experiments. Second, we fit the models to the seasonally 

decomposed fitting set, within the context described in Section 2.3, and make predictions 

corresponding to the test set. Third, we recover the seasonality in the predicted values 

and compare them to their corresponding observed using the metrics of Section 2.4. 

Finally, we perform a cross-case synthesis to demonstrate similarities and differences 

between the single-case studies conducted. We present the results per category of tests, 

which is determined by the set {set of methods, process, forecast horizon}, and further 

summarize them, as discussed in Section 2.4. The sets of methods are defined in Section 

2.3, while the total number of categories is 20. We place emphasis on the exploration of 

the three problems summarized in Section 1.2, but we also present quantitative 

information about the produced forecasts and search for evidence regarding the 

existence of a possible relationship between the forecast quality, and the standard 

deviation (σ), coefficient of variation (cv) and Hurst parameter (H) estimates for the 

deseasonalized time series (available in Section 2.2). Statistical software information is 

summarized in Appendix A. 

2.2 Time series 

We use 50 time series of mean monthly temperature and total monthly precipitation 

observed in Greece. These time series are sourced from Lawrimore et al. (2011), and 

Peterson and Vose (1997) respectively. We select only those with few missing values 

(blocks with length equal or less than one). Subsequently, we use the Kalman filter 

algorithm of the zoo R package (Zeileis and Grothendieck 2005) for filling in the missing 

values. The basic information about the time series is provided in Table 1, while Figure 1 

presents the locations of the stations at which the data has been recorded. We use the 

deseasonalized fitting sets for fitting the forecasting models, as suggested in Taieb et al. 

(2012) for the improvement of the forecast quality. The time series decomposition is 

performed exclusively on the fitting sets using the multiplicative model for the 

temperature time series and the additive model for the precipitation ones. The reason for 

this differentiation is that the use of the multiplicative model on the precipitation time 

series results in zero forecasts for some methods, as a result of zero precipitation 

observations in the summer months. 
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Table 1. Time series of the present study. 
s/n Process Code Location Station information Reference Start End Length 

(months) 

ID
 

L
a

ti
tu

d
e

 

L
o

n
g

it
u

d
e

  

1 Temperature temp_1 Araxos 16687001 38.20 21.40 Lawrimore 

et al. (2011) 

Jan 1951 Dec 1980 360 

2 temp_2 Athens 16714000 37.97 23.72 Jan 1858 Dec 1975 1416 

3 temp_3 Athens 16714000 37.97 23.72 Jan 1989 Dec 2001 156 

4 temp_4 Athens 16716000 37.90 23.73 Jan 1951 Dec 2012 744 

5 temp_5 Heraklion 16754000 35.33 25.18 Jan 1950 Dec 2015 792 

6 temp_6 Kalamata 16726000 37.07 22.02 Jan 1956 Dec 2015 720 

7 temp_7 Kerkyra 16641000 39.62 19.92 Jan 1951 Dec 2016 792 

8 temp_8 Larissa 16648000 39.63 22.42 Jan 1899 Dec 2016 1416 

9 temp_9 Lemnos 16650000 39.92 25.23 Jan 1951 Dec 1998 576 

10 temp_10 Methoni 16734000 36.83 21.70 Jan 1951 Dec 1972 264 

11 temp_11 Methoni 16734000 36.83 21.70 Jan 1975 Dec 2000 312 

12 temp_12 Patra 16689000 38.25 21.73 Jan 1951 Dec 1989 468 

13 temp_13 Samos 16723000 37.70 26.92 Jan 1955 Dec 1969 180 

14 temp_14 Samos 16723000 37.70 26.92 Jan 1974 Dec 2003 360 

15 temp_15 Souda 16746000 35.48 24.12 Jan 1961 Dec 2015 660 

16 temp_16 Thessaloniki 16622000 40.52 22.97 Jan 1892 Dec 2016 1500 

17 temp_17 Thessaloniki 16622001 40.52 23.02 Jan 1961 Dec 1970 120 

18 Precipitation prec_1 Agrinion 16672000 38.60 21.70 Peterson 

and Vose 

(1997) 

Jan 1956 Dec 1987 384 

19 prec_2 Alexandroupoli 16627000 40.80 25.90 Jan 1951 Dec 1990 480 

20 prec_3 Aliartos 16674000 38.40 23.10 Jan 1907 Dec 1990 1008 

21 prec_4 Anogeia 16754001 35.30 24.90 Jan 1919 Dec 1939 252 

22 prec_5 Anogeia 16754001 35.30 24.90 Jan 1950 Dec 1979 360 

23 prec_6 Araxos 16687000 38.20 21.40 Jan 1949 Dec 2000 624 

24 prec_7 Athens 16714000 38.00 23.70 Jan 1860 Dec 1881 264 

25 prec_8 Athens 16714000 38.00 23.70 Jan 1887 Dec 2005 1428 

26 prec_9 Athens 16716000 37.90 23.70 Jan 1929 Dec 1945 204 

27 prec_10 Fragma 16715001 38.20 23.90 Jan 1926 Dec 1990 780 

28 prec_11 Heraklion 16754000 35.30 25.10 Jan 1946 Dec 1990 540 

29 prec_12 Igoumenitsa 16641001 39.50 20.30 Jan 1951 Dec 1990 480 

30 prec_13 Ioannina 16642000 39.70 20.80 Jan 1951 Dec 1990 480 

31 prec_14 Kalamata 16726000 37.00 22.10 Jan 1956 Dec 1970 180 

32 prec_15 Kalo Chorio 16756001 35.10 25.70 Jan 1950 Dec 1984 420 

33 prec_16 Kastelli 16760001 35.20 25.30 Jan 1949 Dec 1976 336 

34 prec_17 Kerkyra 16641000 39.60 19.90 Jan 1952 Dec 1996 540 

35 prec_18 Kythira 16743000 36.30 23.00 Jan 1951 Dec 1973 276 

36 prec_19 Kos 16742000 36.80 27.10 Jan 1958 Dec 1990 396 

37 prec_20 Kozani 16632000 40.30 21.80 Jan 1955 Dec 1987 396 

38 prec_21 Larissa 16648000 39.60 22.40 Jan 1951 Dec 1997 564 

39 prec_22 Lemnos 16650001 39.90 25.30 Jan 1951 Dec 2000 600 

40 prec_23 Methoni 16734000 36.80 21.70 Jan 1951 Dec 1991 492 

41 prec_24 Milos 16738000 36.70 24.50 Jan 1951 Dec 1990 480 

42 prec_25 Mytilene 16667000 39.10 26.60 Jan 1952 Dec 1990 468 

43 prec_26 Naxos 16732000 37.10 25.50 Jan 1955 Dec 1971 204 

44 prec_27 Patra 16689000 38.20 21.70 Jan 1901 Dec 1984 1008 

45 prec_28 Sitia 16757000 35.20 26.10 Jan 1960 Dec 1983 288 

46 prec_29 Skyros 16684000 38.90 24.60 Jan 1955 Dec 1987 396 

47 prec_30 Thessaloniki 16622000 40.60 23.00 Jan 1931 Dec 1997 804 

48 prec_31 Thessaloniki 16622002 40.50 22.90 Jan 1961 Dec 1970 120 

49 prec_32 Trikala 16645001 39.60 21.80 Jan 1951 Dec 1990 480 

50 prec_33 Tripoli 16710000 37.50 22.40 Jan 1951 Dec 1985 420 
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Figure 1. Maps of the locations of the (a) temperature and (b) precipitation stations; their 

sources are Lawrimore et al. (2011), and Peterson and Vose (1997) respectively.  

We also apply the time series decomposition models to the entire time series to 

deseasonalize them. We then estimate the mean (μ), σ and H parameters of the Hurst-

Kolmogorov process for each of the seasonally decomposed entire time series using the 

maximum likelihood estimator (Tyralis and Koutsoyiannis 2011) implemented via the 

HKprocess R package (Tyralis 2016). We further estimate the coefficient of variation 

(cv), which is defined by Equation 1. The μ, σ, cv and H estimates are presented in Tables 

2 and 3. The Hurst parameter is assumed to be informative about the magnitude of long-

range dependence observed in geophysical time series. 

 cv := σ/μ (1) 

Table 2. Mean (μ), standard deviation (σ), coefficient of variation (cv) and Hurst 

parameter (H) estimates for the deseasonalized temperature time series. 
Time series μ estimate (°C) σ estimate (°C) cv estimate H estimate 

temp_1 17.95 1.25 0.07 0.66 

temp_2 17.86 1.93 0.11 0.67 

temp_3 18.51 1.81 0.10 0.68 

temp_4 18.70 1.62 0.09 0.65 

temp_5 18.97 1.18 0.06 0.69 

temp_6 17.90 1.42 0.08 0.74 

temp_7 17.75 1.47 0.08 0.67 

temp_8 15.91 2.75 0.17 0.64 

temp_9 16.36 2.11 0.13 0.74 

temp_10 18.24 1.07 0.06 0.59 

temp_11 17.83 1.20 0.07 0.61 

temp_12 17.71 1.41 0.08 0.69 

temp_13 18.21 1.46 0.08 0.64 

temp_14 18.38 1.64 0.09 0.64 

temp_15 18.63 1.47 0.08 0.71 

temp_16 16.21 2.59 0.16 0.67 

temp_17 16.13 2.16 0.13 0.48 
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Table 3. Mean (μ), standard deviation (σ), coefficient of variation (cv) and Hurst 

parameter (H) estimates for the deseasonalized precipitation time series. 
Time series μ estimate (mm) σ estimate (mm) cv estimate H estimate 

prec_1 81.09 56.61 0.70 0.47 

prec_2 46.50 37.30 0.80 0.56 

prec_3 55.52 42.14 0.76 0.53 

prec_4 93.61 78.01 0.83 0.57 

prec_5 95.62 74.42 0.78 0.48 

prec_6 57.59 43.65 0.76 0.54 

prec_7 33.44 30.45 0.91 0.56 

prec_8 32.79 29.44 0.90 0.53 

prec_9 29.65 27.87 0.94 0.53 

prec_10 47.30 37.03 0.78 0.53 

prec_11 40.02 35.27 0.88 0.50 

prec_12 88.81 66.22 0.75 0.56 

prec_13 94.36 60.85 0.64 0.57 

prec_14 66.19 45.58 0.69 0.46 

prec_15 42.12 35.65 0.85 0.50 

prec_16 60.14 47.45 0.79 0.52 

prec_17 92.53 65.00 0.70 0.56 

prec_18 47.10 39.39 0.84 0.52 

prec_19 58.63 53.36 0.91 0.57 

prec_20 43.94 32.23 0.73 0.54 

prec_21 36.46 30.90 0.85 0.54 

prec_22 40.84 36.72 0.90 0.55 

prec_23 60.59 44.00 0.73 0.50 

prec_24 35.08 32.84 0.94 0.47 

prec_25 56.00 49.39 0.88 0.51 

prec_26 27.61 22.43 0.81 0.53 

prec_27 60.23 44.64 0.74 0.52 

prec_28 40.39 35.38 0.88 0.46 

prec_29 38.55 32.86 0.85 0.56 

prec_30 37.15 27.98 0.75 0.54 

prec_31 35.24 24.94 0.71 0.55 

prec_32 62.91 47.51 0.76 0.61 

prec_33 68.45 44.77 0.65 0.47 

2.3 Forecasting algorithms and methods 

We focus on two ML forecasting algorithms, i.e. NN and SVM. The NN algorithm is the mlp 

algorithm of the nnet R package (Venables and Ripley 2002), while the SVM algorithm is 

the ksvm algorithm of the kernlab R package (Karatzoglou et al. 2004). These 

algorithms implement a single-hidden layer Multilayer Perceptron (MLP), and the Radial 

Basis kernel “Gaussian” function with C = 1 and epsilon = 0.1 respectively. Their 

application is made using the CasesSeries, fit and lforecast functions of the 

rminer R package (Cortez 2010, 2016). We also include four classical algorithms, i.e. the 

Autoregressive order one model (AR(1)), an algorithm from the family of Autoregressive 

Fractionally Integrated Moving Average models (auto_ARFIMA), the exponential 

smoothing state space algorithm with Box-Cox transformation, ARMA errors, Trend and 
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Seasonal Components (BATS) and the Theta algorithm, and a naïve benchmark in the 

comparisons. The latter sets each monthly forecast equal to its corresponding last year’s 

monthly value. We apply the classical algorithms using the forecast R package 

(Hyndman and Khandakar 2008; Hyndman et al. 2017) and, specifically, five functions 

included in the latter, namely the Arima, arfima, bats, forecast and thetaf 

functions. The auto_ARFIMA algorithm applies the Akaike Information Criterion with a 

correction for finite sample sizes (AICc) for the estimation of the p, d, q values of the 

ARFIMA(p,d,q) model, while both the AR(1) and auto_ARFIMA algorithms implement the 

maximum likelihood method for the estimation of the ARMA parameters. The 

auto_ARFIMA algorithm considers the long-range dependence observed in the time 

series through the d parameter. The AR(1), auto_ARFIMA and BATS algorithms apply 

Box-Cox transformation to the input data before fitting a model to them. All the 

algorithms used herein are well-grounded in the literature; thus, in their presentation we 

place emphasis on implementation information. 

While the classical methods are simply defined by the classical algorithm, the ML 

methods are defined by the set {ML algorithm, hyperparameter selection procedure, 

lags}. We compare 21 regression matrices, each using the first n time lags, n = 1, 2, …, 21, 

and two procedures for hyperparameter selection, i.e. predefined hyperparameters 

(default values of the algorithms) or defined after optimization. The symbol * in the name 

of a ML method is hereafter used to denote that the model’s hyperparameters have been 

optimized. The hyperparameter optimization is performed with the grid search method 

using a single validation set (last 1/3 of the deseasonalized fitting set). The 

hyperparameters optimized are the number of hidden nodes and the number of variables 

randomly sampled as candidates at each split of the NN and SVM models respectively. For 

the NN* method the hyperparameter optimization procedure is described subsequently. 

First, we fit 16 different NN models (defined by the grid values 0, …, 15) to the fist 2/3 of 

the deseasonalized fitting set. Second, we use these models to produce forecasts 

corresponding to the validation set. Third, we select the one exhibiting the smallest root 

mean square error (RMSE) on the validation set. To produce the forecast corresponding 

to the test set we further fit the selected model to the whole deseasonalized fitting set. 

For the SVM* method the procedure is the same, except that the candidate models are 

five (defined by the grid values 1, … 5). Hereafter, we consider that the ML models are 

used with predefined hyperparameters and that the regression matrix is built using only 
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the first lag, unless mentioned differently. We use the sets of methods defined in Table 4. 

Each of them has a specific utility within our experiments, which is also reported in Table 

4. A secondary utility of set of methods no 5 is the investigation of the existence of a 

possible relationship between the forecast quality and the parameter estimates for the 

deseasonalized time series. 

Table 4. Sets of methods and their main utility within this study. 
s/n Set of methods Number of 

included 
methods 

Main utility 

1 {NN given a regression matrix formed 

using the first n lags, n = 1, 2, …, 21} 

21 Exploration of Problem 1 for 

the NN algorithm 

2 {SVM given a regression matrix formed 

using the first n lags, n = 1, 2, …, 21} 

21 Exploration of Problem 1 for 

the SVM algorithm 

3 {NN, NN*} 2 Exploration of Problem 2 for 

the NN algorithm 

4 {SVM, SVM*} 2 Exploration of Problem 2 for 

the SVM algorithm 

5 {Naïve, AR(1), auto_ARFIMA, BATS, 

Theta, NN, SVM} 

7 Exploration of Problem 3 for 

the NN and SVM algorithms 

2.4 Metrics and summary statistics 

The one-step ahead forecasting performance is assessed by computing the absolute error 

(AE) of the forecast, while the multi-step ahead forecasting performance by computing 

the RMSE, the Nash-Sutcliffe efficiency (NSE), the ratio of standard deviations (rSD), the 

index of agreement (d) and the coefficient of correlation (Pr). Subsequently, we provide 

the definitions of the five latter metrics. For these definitions we consider a time series of 

N values. Let us also consider a model fitted to the first N − n values of this specific time 

series and subsequently used to make predictions corresponding to the last n values. Let 

x
1
, x

2
, …, x

n
 represent the last n values and f

1
, f

2
, …, f

n
 represent the forecasts. 

The RMSE metric is defined by 

 RMSE := ((∑
n
i = 1(fi – xi)2)/n)1/2 (2) 

It can take values between 0 and +∞. The closer to 0 it is, the better the forecast. 

Let x‾ be the mean of the observations, which is defined by 

 x‾ := (1/n) ∑
n
i = 1xi (3) 

The NSE metric is defined by (Nash and Sutcliffe 1970) 

 NSE := 1 − (∑
n
i = 1(fi – xi)2/∑

n
i = 1(xi – x‾)2) (4) 

It can take values between −∞ and 1. The closer to 1 it is, the better the forecast, while 



11 

 

NSE values above 0 indicate acceptable forecasts. 

Let sx be the standard deviation of the observations, which is defined by 

 sx := ((1/(n – 1)) ∑
n
i = 1(xi – x‾)2)1/2 (5) 

Let f‾ be the mean of the forecasts and sf be the standard deviation of the forecasts, 

which are defined by Equations (6) and (7) respectively. 

 f‾ := (1/n) ∑
n
i = 1fi (6) 

 sf := ((1/(n – 1)) ∑
n
i = 1(fi – f‾)2)1/2 (7) 

The rSD metric is defined by (Zambrano-Bigiarini 2017a) 

 rSD := sf/sx (8) 

It can take values between 0 and +∞. The closer to 1 it is, the better the forecast. 

The Pr metric is defined by (Krause et al. 2005) 

 Pr :=  (∑
n
i = 1(xi – x‾) (fi – f‾))/(∑

n
i = 1(xi – x‾)2 ∑

n
i = 1(fi – f‾)2)1/2 (9) 

It can take values between −1 and 1. The closer to 1 it is, the better the forecast. 

The d metric is defined by (Krause et al. 2005) 

 d := 1 − (∑
n
i = 1(fi – xi)2/∑

n
i = 1(|fi – x‾|+|xi – x‾|)2) (10) 

It can take values between 0 and 1. The closer to 1 it is, the better the forecast. 

To summarize the results of the multiple-case study we compute some summary 

statistics for the values of each metric, i.e. the minimum, median and maximum, 

separately for each algorithm. For the ML ones, these summary statistics are computed 

by aggregating the total of the values of each metric computed for methods that are based 

on each specific ML algorithm (tested for the exploration of Problems 1, 2 or 3). We also 

compute the linear regression coefficient (LRC) for each method per category of tests. 

This summary statistic can be used to measure the dependence of the forecasts fj on their 

corresponding target values xj, when this dependence is expressed by the following linear 

regression model: 

 fj = (LRC) xj + b (11) 

It can take values between −∞ and +∞. The closer to 1 it is, the better the forecasts. The 

subscript j in the above notations indicates the serial number of each of the pairs 

{forecast, target value} formed for a specific category of tests. 
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3. Results and discussion 

In Section 3 we present and discuss the results of our multiple-case study. We place 

emphasis on the qualitative presentation of the results, because of its importance in the 

exploration of the research questions of Section 1.2. Especially the heatmap visualization 

adopted herein allows the examination of each single-case study alone and in comparison 

to the rest simultaneously. Quantitative information, derived by our multiple-case study 

and particularly significant for the case of Greece, is also presented. Regarding this type 

of information, the present study could be viewed as an expansion of Moustris et al. 

(2011). The latter study has focused on four long precipitation time series observed in 

Alexandroupoli, Athens, Patra and Thessaloniki (a subset of the time series examined 

within our multiple-case study), with the aim to present forecasts for the monthly 

maximum, minimum, mean and cumulative precipitation totals using NN methods. 

3.1 Exploration of Problem 1 

Section 3.1 is devoted to the exploration of Problem 1. In Figures 2 and 3 we visualize the 

one and twelve-step ahead temperature forecasts respectively, produced for this 

exploration for the NN and SVM algorithms, in comparison to their corresponding target 

values. We observe that, for a specific target value, the forecasts are more scattered (in 

the vertical direction) for the NN algorithm than they are for the SVM algorithm. This fact 

indicates that the performance of the SVM algorithm is affected less than the performance 

of the NN algorithm by changes in the lagged regression matrix used in the fitting process. 

The effect under discussion may result in more or less accurate NN forecasts (laying 

closer or farther from the 1:1 line included in the scatterplots of Figures 2 and 3) than the 

ones produced by the SVM algorithm. Evidence that the NN algorithm is more prone to 

changes in the regression matrix than the SVM one is provided by the tests conducted 

using the precipitation time series as well. In Figure 4 we present the twelve-step ahead 

precipitation forecasts in comparison to their corresponding target values. 
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Figure 2. One-step ahead temperature forecasts, produced for the exploration of Problem 

1 for the (a) NN and (b) SVM algorithms, in comparison to their corresponding target 

values. 
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Figure 3. Twelve-step ahead temperature forecasts, produced for the exploration of 

Problem 1 for the (a) NN and (b) SVM algorithms, in comparison to their corresponding 

target values. 
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Figure 4. Twelve-step ahead precipitation forecasts, produced for the exploration of 

Problem 1 for the (a) NN and (b) SVM algorithms, in comparison to their corresponding 

target values. 

More importantly, in Figures 5 and 6 we comparatevely present the AE, RMSE, NSE 

and d values computed for the temperature forecasts, produced for the exploration of 

Problem 1 for the NN and SVM algorithms, for each individual case examined. By the 

examination of these two figures we observe the following: 

(a) There are variations in the results across the individual cases, to an extent that it is 

impossible to decide on a best or worst method. Therefore, no evidence is provided 

by the respective categories of tests that any of the compared lagged regression 
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matrices systematically leads to better forecasts than the rest, either for the NN or 

the SVM algorithms. 

(b) The heatmaps formed for the SVM algorithm are smoother in the row direcion than 

those formed for the NN algorithm, a fact rather expected from Figures 2 and 3. In 

other words, the variations within each single-case study are of small magnitude for 

the case of the SVM algorithm, while they are significant for the NN algorithm. 

(c) For the SVM algorithm there are no systematic patterns and the small variations 

seem to be rather random. 

(d) For the NN algorithm and especially for the twelve-step ahead forecasts the left parts 

of the heatmaps are smoother with no white cells. Alternatively worded, it seems that 

is is more likely that the forecasts are better when using less recent lagged variables 

in conjuction with this algorithm. 

Observation (a) is particularly important, because it reveals that the forecast quality is 

subject to limitations. Each forecasting method has some specific theoretical properties 

and, due to the latter, it performs better or worse than other forecasting methods, 

depending on the case examined. Even forecasting methods based on the same algorithm 

can produce forecasts with very different quality, as indicated by the results obtained for 

the NN algorithm. Observation (d), on the other hand, provides some interesting 

evidence, which however is contigent and, therefore, should be further investigated 

within larger forecast-comparing studies, such as Tyralis and Papacharalampous (2017). 

Furthermore, in Figure 7 we present the AE and RMSE values computed for the 

precipitation forecasts, produced for the exploration of Problem 1 for the NN and SVM 

algorithms, within each single-case study. Observations (a) and (b) apply here as well. 

Moreover, both the ML algorithms, seem to perform rather better, to a small extent 

though, when given a lagged regression matrix using less recent lags. 
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neural networks support vector machines 

  

  
 

Figure 5. Cross-case synthesis for the exploration of Problem 1 for the NN and SVM 

algorithms using the temperature time series (part 1).  
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neural networks support vector machines 

  

  
 

Figure 6. Cross-case synthesis for the exploration of Problem 1 for the NN and SVM 

algorithms using the temperature time series (part 2).  
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neural networks support vector machines 

  

  
 

Figure 7. Cross-case synthesis for the exploration of Problem 1 for the NN and SVM 

algorithms using the precipitation time series.  
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3.2 Exploration of Problem 2 

Section 3.2 is devoted to the exploration of Problem 2. In Figure 8 we present the twelve-

step ahead precipitation forecasts, produced for this exploration for the NN and SVM 

algorithms, in comparison to their corresponding target values. Figure 8 could be studied 

alongside with Figure 4, providing contingent evidence that hyperparameter 

optimization affects less the performance of these two ML algorithms than lagged 

variable selection does. The latter observation applies more to the NN algorithm. 

Furthermore, in Figure 9 we comparatively present the AE, RMSE, rSD and d values 

computed for the one- and twelve-step ahead temperature forecasts, produced for the 

exploration of Problem 2, within each single-case study. By the examination of Figure 9 

we observe the following: 

(a) Here as well, none of the compared methods seems to be systematically better across 

the individual cases examined. In other words, the results do not systematically 

favour any of the two tested hyperparameter selection procedures and, therefore, we 

can state that hyperparameter optimization does not necessarily lead to better 

forecasts than the use of the default values of the algorithms. 

(b) For both the ML algorithms the observed variations within each of the single-case 

studies are of smaller magnitude for the one-step ahead forecasts than they are for 

the twelve-step ahead ones. 

(c) For the case of the NN algorithm the twelve-step ahead forecasts seem to be rather 

better when hyperparameter optimization precedes the fitting process, while the 

opposite applies to the case of the SVM algorithm. 

Finally, in Figure 10 we present the AE, NSE, rSD and d values computed for the one- 

and twelve-step ahead precipitation forecasts, produced for the exploration of Problem 

2, within each single-case study. Observation (a) also applies to the precipitation 

forecasts, while the variations can be significant for both the one- and twelve-step ahead 

forecasts. For the latter it seems that hyperparameter optimization mostly leads to less 

accurate forecasts. This may be explained by the fact that the default values of the 

algorithms are usually set based on tests performed by their developers or in the 

scientific literature, so that the performance of the algorithms is mostly maximized for a 

variety of problems. 
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Figure 8. Twelve-step ahead precipitation forecasts, produced for the exploration of 

Problem 2 for the NN and SVM algorithms, in comparison to their corresponding target 

values. 
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Figure 9. Cross-case synthesis for the exploration of Problem 2 for the NN and SVM 

algorithms using the temperature time series. 
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Figure 10. Cross-case synthesis for the exploration of Problem 2 for the NN and SVM 

algorithms using the precipitation time series. 
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3.3 Exploration of Problem 3 

Section 3.3 is devoted to the exploration of Problem 3. In Figure 11 we present the one- 

and twelve-step ahead temperature forecasts, produced for this exploration, in 

comparison to their corresponding target values, while in Figure 12 we present an 

analogous visualization for the precipitation forecasts serving the same purpose.  

Moreover, in Figures 13 and 14 we comparatively present all the metric values computed 

for the temperature forecasts and the AE, RMSE and d values computed for the 

precipitation forecasts respectively within each single-case study. By the examination of 

these four figures we observe the following: 

(a) Here as well, the results of the single-case studies vary significantly. 

(b) The best method within a specific single-case study depends on the criterion of 

interest. In fact, even within a specific single-case study, we cannot decide on one best 

(or worst) method regarding all the criteria set simultaneously. 

(c) Observations (a) and (b) apply equally to the ML and the classical methods. In fact, it 

seems that both categories can rarther perform equally well, under the same 

limitations. 

(d) We observe that the Naïve benchmark, competent as well, frequently produces far 

different forecasts than those produced by the ML or classical algorithms. 

If we further compare Figures 11(a), 11(b) and 12 with Figures 2, 3 and 4 respectively, 

we observe that the performance of the NN algorithm (when given the 21 regression 

matrices examined in the present study) can vary more than the performance of the here 

compared ML and classical methods. This observation does not apply to the case of the 

SVM algorithm. Finally, we note that the exploration presented in Section 3.3 and 

Papacharalampous et al. (2017a) effectively complement each other. In fact, the former 

illustrates and provides evidence on important points by presenting real-world results, 

while the latter confirms the evidence derived by the former by conducting simulation 

experiments of large scale. Both illustration and confirmation are integral parts of every 

theory-building process. 
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Figure 11. (a) One- and (b) twelve-step ahead temperature forecasts, produced for the 

exploration of Problem 3, in comparison to their corresponding target values. 
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Figure 12. (a) One- and (b) twelve-step ahead precipitation forecasts, produced for the 

exploration of Problem 3, in comparison to their corresponding target values. 
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Figure 13. Cross-case synthesis for the exploration of Problem 3 using the temperature 

time series. 
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Figure 14. Cross-case synthesis for the exploration of Problem 3 using the precipitation 

time series. 

3.4 Additional information 

Section 3.4 is devoted to some additional worth-discussed information derived by our 

multiple-case study. In fact, the results produced mainly for the exploration of Problems 

1, 2 and 3 can also be examined from different points of view, which are considered of 

secondary importance within this study. In Tables 5 and 6 we present the summary 

statistics of the metric values, separately for each algorithm, and in Table 7 the LRC values 

for each category of tests. This information stands as a summary of the quantitative 

information provided by our multiple-case study and, together with Figures 2-14, can 

facilitate the below discussion in a satisfactory manner. Regarding an overall assessment 

of the algorithms, they are all found to mostly have a better average-case forecasting 

performance than the Naïve benchmark, with the NN algorithm being the worst. This is 

due to the reported high effect of the lagged regression matrix on the performance of this 

algorithm. On the contrary, the SVM algorithm has a better average-case performance, 
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(almost) as good as the one of the best-performing classical algorithms, i.e. BATS, Theta 

and auto_ARFIMA. 

Table 5. Summary statistics of the metric values computed for the temperature forecasts. 

The values reported for the NN and SVM algorithms are computed for the total of the NN 

and SVM methods implemented in this study respectively. 
Metric Algorithm Summary statistic 

Minimum Median Maximum 

AE (°C) Naïve 0.10 1.00 2.20 

 AR(1) 0.08 0.66 4.41 

 auto_ARFIMA 0.02 0.88 4.22 

 BATS 0.00 0.86 4.07 

 Theta 0.11 1.00 3.92 

 NN 0.00 0.98 5.79 

 SVM 0.01 0.90 4.52 

RMSE (°C) Naïve 0.92 1.60 2.62 

 AR(1) 0.96 1.32 2.12 

 auto_ARFIMA 0.74 1.28 1.95 

 BATS 0.74 1.14 1.75 

 Theta 0.74 1.14 1.73 

 NN 0.63 1.70 6.05 

 SVM 0.73 1.31 2.30 

NSE Naïve 0.87 0.94 0.97 

 AR(1) 0.89 0.96 0.97 

 auto_ARFIMA 0.91 0.95 0.98 

 BATS 0.93 0.96 0.99 

 Theta 0.93 0.96 0.99 

 NN 0.44 0.93 0.99 

 SVM 0.85 0.95 0.99 

rSD Naïve 0.87 1.01 1.18 

 AR(1) 0.90 1.01 1.22 

 auto_ARFIMA 0.90 1.01 1.21 

 BATS 0.92 1.00 1.19 

 Theta 0.92 0.99 1.19 

 NN 0.89 1.01 1.24 

 SVM 0.89 1.02 1.24 

Pr Naïve 0.96 0.97 0.99 

 AR(1) 0.98 0.99 0.99 

 auto_ARFIMA 0.98 0.99 0.99 

 BATS 0.98 0.99 0.99 

 Theta 0.98 0.99 0.99 

 NN 0.79 0.98 1.00 

 SVM 0.97 0.99 0.99 

d Naïve 0.97 0.98 0.99 

 AR(1) 0.98 0.99 0.99 

 auto_ARFIMA 0.98 0.99 1.00 

 BATS 0.99 0.99 1.00 

 Theta 0.98 0.99 1.00 

 NN 0.86 0.98 1.00 

 SVM 0.97 0.99 1.00 
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Table 6. Summary statistics of the metric values computed for the precipitation forecasts. 

The values reported for the NN and SVM algorithms are computed for the total of the NN 

and SVM methods implemented in this study respectively. 
Metric Algorithm Summary statistic 

Minimum Median Maximum 

AE (mm) Naïve 0 72 239 

 AR(1) 2 52 199 

 auto_ARFIMA 1 45 178 

 BATS 0 41 175 

 Theta 2 40 178 

 NN 0 51 340 

 SVM 0 39 206 

RMSE (mm) Naïve 17 52 147 

 AR(1) 15 46 94 

 auto_ARFIMA 16 45 105 

 BATS 17 41 76 

 Theta 18 41 75 

 NN 17 47 588 

 SVM 11 41 101 

NSE Naïve –13.20 –0.21 0.48 

 AR(1) –46.17 –0.90 0.64 

 auto_ARFIMA –46.17 –1.01 0.61 

 BATS –4.46 –0.35 0.69 

 Theta –5.07 –0.30 0.70 

 NN –7.55 –0.42 0.86 

 SVM –5.44 –0.44 0.76 

rSD Naïve 0.35 1.05 3.59 

 AR(1) 0.55 1.60 4.10 

 auto_ARFIMA 0.56 1.55 4.10 

 BATS 0.53 1.47 2.53 

 Theta 0.53 1.46 2.71 

 NN 0.19 1.10 2.60 

 SVM 0.48 1.38 2.71 

Pr Naïve –0.09 0.46 0.93 

 AR(1) 0.09 0.62 0.92 

 auto_ARFIMA 0.09 0.62 0.93 

 BATS 0.21 0.60 0.91 

 Theta 0.24 0.60 0.91 

 NN –0.74 0.54 0.96 

 SVM –0.37 0.62 0.92 

d Naïve 0.20 0.59 0.89 

 AR(1) 0.17 0.70 0.89 

 auto_ARFIMA 0.17 0.73 0.89 

 BATS 0.46 0.73 0.90 

 Theta 0.47 0.73 0.90 

 NN 0.01 0.67 0.97 

 SVM 0.25 0.71 0.93 
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Table 7. LRC values computed for each category of tests. 
Set of methods 
(see Table 4) 

Process One-step ahead forecasts Twelve-step ahead forecasts 
 Minimum Maximum Minimum Maximum 

1 Temperature 0.62 0.79 0.88 0.97 

2  0.70 0.75 0.93 0.96 

3  0.69 0.70 0.94 0.94 

4  0.70 0.70 0.94 0.95 

5  0.69 0.88 0.94 0.96 

1 Precipitation 0.00 0.43 0.41 0.56 

2  0.21 0.29 0.49 0.52 

3  0.25 0.27 0.48 0.52 

4  0.25 0.29 0.49 0.51 

5  0.21 0.29 0.40 0.52 

The reported values of the summary statistics, as well as Figures 2, 3, 4, 8, 11 and 12, 

reveal that the temperature forecasts are remarkably better than the precipitation ones. 

This may be explained by the cv estimates presented in Tables 2 and 3. Finally, in Figure 

15 we visualize the AE values computed for the one-step ahead temperature forecasts, 

produced using the set of methods no 5 of Table 4, in comparison to their corresponding 

σ, cv and H estimates for the deseasonalized time series (presented in Table 2), while in 

Figures 16 and 17 we present an analogous visualization for the AE values computed for 

the one-step ahead precipitation forecasts and the RMSE values computed for the twelve-

step ahead precipitation forecasts respectively, produced for the exploration of Problem 

3. The estimated parameters for the deseasonalized precipitation time series are 

presented in Table 3. These figures are representative of the conducted investigation of 

the existence of a possible relationship between the forecast quality and the estimated 

parameters for the deseasonalized time series and provide no evidence of such existence 

either for temperature or precipitation. This fact may be related to our methodological 

framework and, in particular, to the way that we handle seasonality to produce better 

forecasts. 
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Figure 15. AE values of the one-step ahead temperature forecasts, produced by set of 

methods no 5 (see Table 4), in comparison to the σ, cv and H estimates. 
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Figure 16. AE values of the one-step ahead precipitation forecasts, produced by set of 

methods no 5 (see Table 4), in comparison to the σ, cv and H estimates. 
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Figure 17. RMSE values of the twelve-step ahead precipitation forecasts, produced by set 

of methods no 5 (see Table 4), in comparison to the σ, cv and H estimates. 
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4. Summary and conclusions 

We have examined 50 mean monthly temperature and total monthly precipitation time 

series observed in Greece by applying a fixed methodology to each of them and, 

subsequently, by performing a cross-case synthesis. The main aim of this multiple-case 

study is the exploration of three problems associated with univariate time series 

forecasting using machine learning algorithms, i.e. the (a) lagged variable selection, (b) 

hyperparameter selection, and (c) comparison between machine learning and classical 

algorithms. We also present quantitative information about the quality of the forecasts 

(particularly important for the case of Greece) and search for evidence regarding the 

existence of a possible relationship between the forecast quality, and the standard 

deviation, coefficient of variation and Hurst parameter estimates for the deseasonalized 

time series (used for model-fitting). We have focused on two machine learning 

algorithms, i.e. neural networks and support vector machines, while we have also 

included four classical algorithms and a naïve benchmark in the comparisons. We have 

assessed the one- and twelve-step ahead forecasting performance of the algorithms. 

The findings suggest that forecasting methods based on the same machine learning 

algorithm may exhibit very different performance, to an extent mainly depending on the 

algorithm and the individual case. In fact, the neural networks algorithm can produce 

forecasts of many different qualities for a specific individual case, in contrast to the 

support vector machines one. The performance of the former algorithm seems to be more 

affected by the selected lagged variables than by the adopted hyperparameter selection 

procedure (use of predefined hyperparameters or defined after optimization). While no 

evidence is provided that any of the compared lagged regression matrices systematically 

leads to better forecasts than the rest, either for the neural networks or the support 

vector machines algorithms, the results mostly favour using less recent lagged variables. 

Furthermore, for the algorithms used in the present study hyperparameter optimization 

does not necessarily lead to better forecasts than the use of the default hyperparameter 

values of the algorithms. Regarding the comparisons performed between machine 

learning and classical algorithms, the results indicate that methods from both categories 

can perform equally well, under the same limitations. The best method depends on the 

case examined and the criterion of interest, while it can be either machine learning or 

classical. Some information of secondary importance derived by our experiments is 

subsequently reported. The average-case performance of the algorithms used to produce 
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one- and twelve-step ahead monthly temperature forecasts ranges between 0.66 °C and 

1.00 °C, and 1.14 °C and 1.70 °C, in terms of absolute error and root mean square error 

respectively. For the monthly precipitation forecasts the respective values are 39 mm and 

72 mm, and 41 mm and 52 mm. Finally, no evidence is provided by our multiple-case 

study that there is any relationship between the forecast quality and the estimated 

parameters for the deseasonalized time series. 

Appendix A Statistical software 

The analyses and visualizations have been performed in R Programming Language (R 

Core Team 2017) by using the contributed R packages devtools (Wickham and Chang 

2017), forecast (Hyndman and Khandakar 2008; Hyndman et al. 2017), fracdiff 

(Fraley et al. 2012), gdata (Warnes et al. 2017), ggplot2 (Wickham 2016), 

HKprocess (Tyralis 2016), hydroTSM (Zambrano-Bigiarini 2017b), kernlab 

(Karatzoglou et al. 2004), knitr (Xie 2014, 2015, 2017), maps (Brownrigg et al. 2017), 

nnet (Venables and Ripley 2002), readr (Wickham et al. 2017), rminer (Cortez 2010, 

2016), tidyr (Wickham and Henry 2017)  and zoo (Zeileis and Grothendieck 2005). 
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