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ABSTRACT

Hydrometeorological inputs are a key ingredient and simultaneously one of the main sources
of uncertainty of every hydrological study. This type of uncertainty is referred to as
hydrometeorological uncertainty and is of utmost importance in risk-based engineering works,
due the high variability and randomness that is naturally embedded in physical processes.
Considering hydrometeorological time series as realizations of stochastic processes allow their
analysis, modeling, simulation and forecasting. Embracing the existence of randomness and
unpredictability in such processes is a first step towards their understanding and the
development of uncertainty-aware methodologies for water-systems optimization.

In this vein, due to the typical size of historical data, which is not (neither will ever be) sufficient
to extract safe conclusions about the long-term performance of a system, the common
procedure entails driving the typically deterministic water-system models (conceptual or
physical-based) using stochastic inputs (that in a statistical sense resemble the parent
information; typically, but not exclusively derived from the historical time series). This
essentially enables the establishment of Monte Carlo experiments where the intrinsic
uncertainty of the inputs (i.e., hydrometeorological processes) is propagated through a
deterministic filter (i.e., a water-system simulation model) in order to derive, or assess, the
probabilistic behavior of the output of interest (e.g., water supply coverage). Further to this,
when the objective is the optimization of the deterministic model’s control variables (i.e.,
model’s parameters) with respect to some quantity or metric (i.e., objective), this procedure
can (and should) be embed within an iterative scheme driven by an optimization algorithm
(i.e., establishing uncertainty-aware simulation-optimization frameworks).

An important step of this procedure is the realistic simulation of hydrometeorological
processes, since they are the main drivers of the whole procedure, and eventually determine its
accuracy, as well as the probabilistic behavior of the output of interest. This in turn, poses an
intriguing challenge that arises from a series of unique peculiarities that characterize such
processes, namely, non-Gaussianity, intermittency, auto-dependence (short- or long-range),
cross-dependence and periodicity. Despite the significant amount of research during last
decades, these challenges remain partially unresolved. To a large extent, this is due to the
standard hypothesis of most simulation schemes that does not lie in the reproduction of a
specific distribution, but on the reproduction of low-order statistics (e.g., mean, variance,
skewness) and correlations in time and space. This is a problem because, a) for a given set of
low-order statistics multiple distributions may be represented, thus making the simulation
problem only partially defined, and b) as shown herein, this practice may lead to bounded, and
thus unrealistic dependence forms among consecutive time steps and/or processes.

Further to this, driving water-system simulation models with long stochastically generated
sequences, thus accounting for input (hydrometeorological) uncertainty, inevitably increases
the required computational effort, especially within the context of simulation-optimization
frameworks. This in turn, poses the challenge of addressing and ensuring the practical
implementation of water-system optimization problems under uncertainty.

Thereby, the main research objectives and contributions of this Thesis are related to:

a) The development of novel non-Gaussian stochastic simulation models, able to account also
for the other peculiarities typically encountered in hydrometeorological processes, such as,
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intermittency, auto- and cross- dependence, periodicity, as well as their scale-varying
probabilistic and stochastic behavior.

b) The development of surrogate-based optimization methodologies and algorithms that can
efficiently and effectively confront water-system simulation-optimization problems under
uncertainty, i.e., when using stochastic inputs to drive the simulation-optimization procedure.

Specifically, herein a by building upon copula concepts, probability laws and the theory of
stochastic processes, a theoretically justified family of univariate and multivariate non-
Gaussian stationary and cyclostationary models is defined and thoroughly investigated. This
type of models have been unknown to the hydrological community, and this Thesis is the first
attempt to align them with hydrological stochastics. The developed models are shown to be
able to account for all the typical characteristics of hydrometeorological processes and
simultaneously exhibit a simple and parsimonious character. Furthermore, these models are
then coupled, using a disaggregation approach, thus eventually enabling the development of a
modular stochastic simulation framework that allows the simultaneous reproduction of the
probabilistic and stochastic behavior (including non-Gaussian distributions) of
hydrometeorological processes at multiple time scales (from annual to daily; as well as finer
time scales). The advantages of this class of stochastic processes and models, as well as of the
modular stochastic simulation framework for multi-scale simulations, are demonstrated and
verified through numerous hypothetical and real-world simulation studies.

Finally, in order to ensure the effective exploitation and practical implementation of these new
developments in the stochastic simulation of hydrometeorological processes within the
uncertainty-aware, engineering design and management of water-systems (i.e., driven by
stochastic inputs), this Thesis develops appropriate surrogate-based computationally-efficient
methodologies and algorithms, that effectively handle water-system simulation-optimization
problems under hydrometeorological uncertainty, thus alleviating the associated
computational barrier.
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HEPIAH‘I’H

OETONTAX TO ITAAIZIO

Ta vopopetewpoloyikd dedopéva amotedodv Pactkd CLOTATIKO Kal TAVTOXPOVA UL ATIO TIG
KVpLeg MNYEG afefatdtntog kdbe v8poloykng peAETNG. AvTov Tov TOTOL N AfePatdTnTa eival
YvwoTh wg vépopeTewporoyiks). AOyw TnG peyaAng HeTaPAnTOTNTAG KAl TuXaiag YUONG AV TWV
TV dlepyactwy, N AVTIHETWTLON TNG ATOTEAEL DYLOTNG ONUACIAG TTPOTEPALOTNTA OF £PYa Kl
HEAETEG UNXAVIKOV OL OToileq AapPAavouy LTOYLY TOVG TIG €VVOlEG TOL PIoKOV Kal Tng
Saktvdvvevong. H mapadoxn mwg ot mapatnpnuéves vOpOHETEWPONOYIKEG XPOVOOELPEG
ATOTENODY TPAYHATOTIOW|OELG 0TOXAOTIKOV aveliewv (1 alidg Sepyactdv) emitpémet v
avalvor, povtehomoinor, mTpocopoiwon kat TpdPAeyn tovg wg tétoles. H avayvwpion kat n)
napadoxn vmapéng TuxadTNTAG Kat pn TpoPAeyudTnTag 08 avTod Tov TUTOV Slepyacieg
ATOTENEL TO TIPWTO PrilLa TPOG TV KATAVONOT) TOVG, TN peAETn Kat Ty avantuén uebodoroywv
yta ™ BekTioTonoinon vdaTikwy cVoTNUATWY VTIO afefatdTnTa.

2vvnbwe, To meploplopévo péyebog Twv otopikwy dedopévwy (xpovooelpwv), dev emtpémel
(ovte mpokertar OTE) TNV €faywyr ACPAN@V CLUTEPACUATWV Yl TNV HakpotpoBeoun
emidoon evog ovoTatog. a avtd To AdYo, N oVVNONG TPAKTIKT KAVEL XPTIOT] OTOXAOTIKWYV
dedopévov €10000v (Ta OToiat Eival OTATIOTIKA OCUVETH| WUE TIG LOTOPIKEG XPOVOOELPEG 1)
yevikoTepa pe T omota Stabéon vépoloyikn TANPoPopia) o CLVSVATUO UE VTETEPHLVIOTIKA
HOVTEAQ VOATIKOV OLOTNHATWV (PUOIKAG 1 evvololoyikng Paong). Avtdg o ovvdvaopog
OVOLAOTIKA ETITPETEL TNV AVATTVEN TElpapdTwy TVov Monte Carlo, 6mov n afefatdtnta Twv
dedopévaov  e106dov  (m.X., vIpopETEWPONOYIKEG HETAPANTEG) HETAPEPETAL HEOW EVOG
VIETEPUIVIOTIKOV  QIATpOL (TI.X., MOVTEAQ TPOOOUOIWONG VAATIKOV CLOTNUATWYV) OTIG
netaPAntég e€odov (mx., afomotia kdAvyng vdatikwv avaykwv) yw ™ efaywyr kat
diepevvnon g mbavoTikng ovpumepipopds Twv teEAevtaiwv. EmmAéov, 6tav o oTtoOX0G NG
HEAETNG eivae ) PeATIOTOTOINON TWV HETAPANTWV EAEYXOV TOV VIETEPULVIOTIKOD HOVTENOV, UE
YVOHOVA KOOl AVTIKEHEVIKT) GLUVAPTNOT), N Tapandavw dadikacia pmopei (kat mpémet) va
HeTaTpamel 0g EMAVAANTITIKY), HEOW TNG XPNONG KATAAANAwV akyoplBpwv Bektiotomoinong
(On\. avantugn mawoiov pooopoivong-Pektiotonoinong mov Aapfavovy vdyty Tovg TV
apepfatdotnTa).

Eva onuavtikd onpeio g mapandvw Sadikaciag eival n peallOTIKE] TPOGOUOIWOT] TWV
vopopeTEWPOAOYIKWYV Slepyaotdv, agov amotehovv Pactiko 0d1yo tng 0Ang dadikaciag, kabwg
Tawtoxpova kabopifovv TNy akpifeta mpooopoiwong aANd kat TNy mOAVOTIKY) CVUTEPIPOPL
Twv petaPAntwv e£6dov. Avtd pe T oelpd Tov Bétel wa evdiagépovoa mpokAnon 1 omnoia
nnydadet and T aitepa XAPAKTNPIOTIKA IOV TAPOVGLAlovy avTob Tov &eidovg diepyacieg,
Onwg ot pn-Tkaovolavég katavopés, n Stakeimovoa cuunepipopd, n xpovikr eEdptnon (ukpng
1 Hakpag epPéletag), n xwpikn aAAnie§aptnon kabwg kat n meptoducdtnta. Ilapd tn onpoavTiki
épevva oL €xel mpaypatononBel TG TedevTaieg dekaetieg, To MPOPANUA TNG PEANIOTIKAG
TPocooiwong vopoueTeWpPoLoYIKDV Stepyactwv mapapéver akoun Béua ov(ntnong. Ze éva
peyalo PBabuo, avtd ogeiletar otnv ovvidn vmobeon TWV TEPLOOOTEPWV OXNUATWV
TPOCOUOIWONG, T OTOiA SEV OTOXEVOVY 0TV AVATIAPAYWYT) KATTOLAG TIHAVOTIKIG KATAVONG,
aM\d oty avamapaywyr XaunAng Tééng oTATIOTIKOV XApAKTNPIOTIKWOV (T.X., H€on Tin,
TUTIKT) ATTOKALOT] KOl OUVTEAEOTH AOCVUETPIAG) KAl CLOXETIOEWY 0TO XPOVO Kat To Xwpo. Kdtt
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Tétol0 amoTehel TPOPANpa yati, a) yia Sedopéva OTATIOTIKA XAPAKTNPLOTIKA XApUnAng Ta&ng
TIOAMEG KATAVOUEG HTTOPEL VAt Elval CUVETG, KATL ToV kKabloTd To TpOPANUA HEPIKWG OPLOEVO,
Kat B) 6Mwg avadeikvoetatl oTnV mapovoa SlatpiPry, avTn N TPAKTIKY Umopel va odnynoeL oe
PPAYUEVEG, KL dpa [ pEAALOTIKEG HOpPEG e§ApTnoNG pHeTalD Sladox KWV XPOVIKWV Prudtwy
Kat/1 Stepyactwy.

[Tépav Twv mapamdvw, 1 Xpron CVVOETIKWV XPOVOOELPOV HEYAAOV UNKoVG 08 GUVOVACHO e
HOVTEN O TTPOCOHOIWONG LOATIKWY CLOTNUATWY, VAL LEV TIAPEXEL TH SLVATOTNTA EVOWUATWONG
Mg (v8popetewporoyikrg) apeBatotntag, aAAd amod v dAAn avgdvel Tov amATOVUEVO
VTTOAOYLOTIKO XpOVO, 81KA 0TO TAAIOLO OXNUATWYV TTposopoiwonG-PedTioToNOiNONG. AVTO pe
™ oelpd Tov, BETeL TNV TPOKANOT TNG TPAKTIKNG EPAPUOYNG TETOLWV OXNUATWV Yia T
BerTioTOMOINON VOATIKWV CLOTNUATWY VTIO aPefatdTNTA.

Kvplot epevvntikoi 0toX0L Kat 6LVELTPOPA TNG TTapovoag didakTopikng SlatpiPng eivat:

a) H avéntu€n pn-Tkaovotavay 6Toxaotikdv HovTEAwV TPOCOHoiwong, Ta omoia eival emiong
(KAV& VA  TPOCOUHOLWOOVY  Ta  OLaiTepA  XAPAKTNPLOTIKA TOL  Tapovolalovy ot
vopopetewpoloyikég diepyaoieg, dnAadr, tnv Swaleimovoa cuumEPIPOPd, TNV XPOVIKN Kol
xwptkn} e&dptnon, v meptodikdtnTa Kabwg kat TNV TOAVOTIKT Kat GTOXACTIKT) CUUTEPLPOPA
TOVG 0€ TOANATAEG XPOVIKEG KAipaKeS.

B) H xprjon vrokatdotatwv povrédwv (surrogate models) yia v avantvén pebodoloyiwv
Kat alyopiBpwv mov eivar oe Béon va avtipeTwmnioovy amotedeopaTikd Kat amodoTikd
npoPAnpata BeAtiotomoinong vdaTikwyv CLOTHHATWY VTIO afePatdTnTa (LEow TOV CLVOVACHOV
OTOXAOTIKWY deSoUEVWVY EL0OSOV Kal OXNUATWY TTPOTOHOIWwoNG-PeATIoTONOINONG).

YTOXAXTIKH MONTEAOIIOIHXH KAI ITPOXOMOIOQXH
YAPOMETEQPOAOTITKQON AIEPTAXION

H 18¢a g xpnong ovvbetikwv xpovooelpwv oTig vdpoloyikés peléteg ypovoloyeital,
TEPLOCOTEPO ATIO 100 XPOVLA TIPLV, and ToV Hazen [1914] 0 omoiog cuvdDaoce TOAAEG LOTOPLKEG
TIAPATIPIOELG OE LA XPOVOOELPA e OKOTO va dnpovpynoet pia ovvOeTikn Tpaypatomoinon
NG ETHOWAG AmopponG. AVt 1 anmAfy TPooeyyon vanpée n TpdTn and TG TOANEG Tov
avantoxOnkav ev ovveyeia (8eg avaokdmnon kepalaiov 2.3) kat cvvéPale kaboploTikd otV
Y£VEOT] TOV EMOTNUOVIKOD Top€a TG ovvOeTIKNG (1) emiyelpnolakng) vdpoAoyiag.

Zopewva pe TNV KAaoolkn katnyoplonoinon tov Matalas [1975], 1 ovvBetikr) vdpoloyia
amotehel TapakAddt TG oToXaoTIKNG VOpoloYiag Kal 1) eu@avion Tng amodidetal ev ToAAoig
oTIG kaBoploTikéG epyaciag mov mpaypatonomrOnkay ota MAaiol TOV TPOYPAUUATOG YLt TO
vepd tov Harvard [Maass et al., 1962] kou oT1g 0XeTIKéG epyaoieq Twv Thomas and Fiering
[1962] oV TBavWG fTav oL TpWTOL TTOL EPAppoTaV TNV Bewpia oToXAOTIKWY avelifewv yla T
ovvBeon pnviaiwyv Xpovooelpwv amoppong. Xopewva pe tov Koutsoyiannis [2000] oxeTika
kaboplotikd emtevypata mov ovvépalav oty kabiEpwon Tov Topéa avToL (kat TNgG
0TOXAOTIKNG VEPOLOYiag yevikoTEpa) fTav 1 a§looneiwTn TPO0S0G 0TOVG VTONOYIOTEG KATA
™ Odekaetia Tov 1950 KaBWG kat N ekteTapévn vioBétnon Twv pebodwv Monte Carlo oe
Stagopa emotnpovika media (1., puotkr, floloyia kat oikovopkd). Mia dAAn afloonueint
OVVELOPOPA, TIOV TIPOEPXETAL ATIO £Val SLAPOPETIKO EMOTNUOVIKO TOpEQ, HTAV 1 ékdooT TOV
mAéov kAaoowol PipAiov avdlvong xpovooelpwv amd tovg Box and Jenkins [1970] mov
TPOOPEPEL LI ONOKANPWHEVT] AVTILETWTION TOL O€patog kat Toapéxel o AemTopepn
KATNYOPLOTIOINOT TWV YPAUHIKWDY OTOXACTIKWV LOVTEAWV TTEPIAAUPAVOUEVWY TWV HOVTEAWY
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avto-madtvépopnong (AR), kivodpevov péoov 6pov (MA) kabwg kat Twv cuVOLAOUO TOVG,
HOVTEAQ AVTO-TIAALVOPOUNOTG KIVODpEVOL pédov Opov (ARMA).

Ot apyikég epyaocieg mov ékavav xpron Tng £vvolag Twv oLVOETIKWY XPOVOOELpWY OTOXEVAY
otV a§loAdynon g emidoong Twv CLOTNUATWY TAEVTPWY [e XPNON TOAVOTIKWY OpwV,
Sn\., pe extipnon g alomotiag eni TG PAONG TWV TPOCOHOIWHEVWV XPOVOTELPWY [e.g.,
Hazen, 1914; Sudler, 1927; Barnes, 1954; Thomas and Fiering, 1962; Klemes, 1981]. Znuepa,
ovvOeTika dedopéva xpnoomolovvTatl o€ o PeydAn mokikia pedetwv (e dopr) opoLa pe avTn
Twv netpapdtwv Monte Carlo mov avagépbnkav napandavw), 6nwg o PEATIOTOG OXESIAOHOG Kat
Aettovpyia TV CLOTNHATWY TaplevThpwV [e.g., Koutsoyiannis and Economou, 2003; Celeste
and Billib, 2009; Giuliani et al., 2014; Tsoukalas and Makropoulos, 2015a, 2015b; Feng et al.,
2017], n avdhvon piokov mAnupvpag [e.g., Wheater et al., 2005; Haberlandt et al., 2011;
Paschalis et al., 2014; Qin and Lu, 2014; Moustakis et al., 2017] kL yeyovotwv Enpaociag [e.g.,
Herman et al., 2016], kaBwg kat 1 mpocopoiwon vdatikwv mopwv eni NG Paong HeANOVTIKOV
KApatikov ovvinkwv [e.g., Fowler et al., 2000; Baltas, 2007; Kilsby et al., 2007; Baltas and
Karaliolidou, 2008; Fatichi et al., 2011; Nazemi et al., 2013].

H Baowkr anaitnon yia v e§aywyn oTATIOTIKA GUVENWOV ATOTEAECUATWY AT TA TELPANATA
Monte Carlo (8edopévov 0TL To HOVTELO TTPOCOUOIWOTG TTAPEYEL LA TILOTT) AVATIAPACTACT) TOV
OVOTHHATOG TIOL UEAETATAL) E€ival 1 TIOTH AVATAPAOTACT KAl TPOCOHOIWOT TwV
vdpopeTEWPOLOYIKWV Slepyactwv Tov e T Oelpd TNG emTACOEL TN XPTON OTOXAOTIKWV
HOVTéAWV Tpooopoiwong kavwv va AdPovv vrodyn Tovg TIG ISLUTEPOTNTEG TWV
vopopetewpoloykwv depyactdv. O o ONUAVTIKEG amtd avTég eival, 1 andkAlon and v
KAvovikr Katavopr, n Okeimovoa @von, n  avto-cvoxétion (Ppaxvmpobeoun 1
Hakpomnpobeopn), n) eTepo-oVOXETION Kat 1] TtepLodikdTnTA (O€G KEPAAALO 2.2).

2e éva o agnpnuévo eminedo, Ta Svo TPWTA XAPAKTNPLOTIKA (1] ATOKALOT ATTO TNV KAVOVIKT
Katavopr kat n Stakeimovoa gvon) oxetifovral pe Tig I8LOTNTEG TNG TEPIOWPLAG KATAVOUNG TNG
dadikaoiag kat vtayopevovy TNV avaykn yla éva katdAAnho mbavotiko povtélo. Anod tnv
AAAn mAevpd, oL avTo- Kal £TEPO-OVOXETIOELG OXeTiCovVTaL Pe TIG OTOXAOTIKEG (aTd KOLVOD)
1010t TEG TG SLadikaociog, TOGO 0TO XPOVO OCO KAl GTO XWPO, KAL VTIAYOPEDOLY TNV AVAYKT Yla
XPNON €VOG OTOXAOTIKOV LOVTEAOV TPOCOUOIWONG. ZTNV TPAYHATIKOTNTA, OTHV TEPIMTWON
oV ol Quolkég diepyaoieg dev elval avTo- 1 £TEPO-CLOXETIOUEVEG, TO TPOPANHA TNG
npoocopoiwong Ba frav apketd amlovotepo, kabwg n yévvnon ocvvleTikwv xpovooelpwv Ba
otploTav ot yévvnon aplipdy and opotOHop@n KATAVON KAt 0TN Xpron TNG avtioTpoeng
Katavoung (OnA., probability integral transformation). Télog, 1 mepodikotTnTa elodyet
emMAE0V TOAVTTAOKOTNTA, Oedopévov OTL VTayopeveL TNV avanapdotaon NG dadikaciag wg
KUKAO-0TAOIUN, pe StapopeTikég eplBwpleg Kat amd KoLvol IOLOTNTEG OXL HOVO 0€ SLAPOPETIKEG
XPOVikéG KAigakes aAAd kat ot Sla@opeTikég mepLOdovg (1 YEVIKA OF OGUOTHHATIKWOG
emavalapBavopeva xpovika Slaotnpata).

Avapeoprtnra, éva KatdAAnlo oxfiua 0TOXAOTIKNG TPOsOpoiwong Ba Tpémel va eivat tkavo
va avamapdyet Ty mOAVOTIKY Kol 0TOXAOTIKT cupmepipopd (OnA., TG meplbwpleg kat amnd
KoLvoL 1810TNTeg) TG vdpopeTewpoloyikng depyaaiag, mov Stagopomoleital avaloya pe Tov
Tomo ¢ petaPAntig (m.x., Ppoxr, anoppor 1 Beppokpacia) aAld kat amd TV VIO pEAETN
XPOoVIkn KAigata (T.Y., ETAOLA, punviaia, nuepriota 1 Aentotepn).

H avaykn yla yevikevpéva oxiuata TpoCoHOiwanG TOL EMTPETOVY THV TTAPAYWYT) CLVOETIKWV
XPOVOTELP@VY ylat TOAATAEG KATAVOEG TTNYACEL TPWTIOTWG Amd TO YeYovog OTL, 1} TMOavoTikn
OVLUTIEPLPOPA TTOAAWV VOPOHETEWPONOYIKWY SlEePYATIDV deV AvaTapAyETAL LKAVOTIOTIKA ATO
Ta KAAOOIKA 0TOXAOTIKA povTéla (deg emokdmnon 01o ke@dlato 2.3). [ToAd and ta povtéla
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avtd (dnA., T KAAOOIKA YPAUHIKE OTOXAOTIKA HOVTENQ, TA LOVTENA OTUELAKTG TIPOOOUOIWOTNG
Kat Ta povTéAa emavadelypatoAnyiag) Sev eivat oXeSlaopéva yla va avamapdyovy OUavTIKEG
mBavoTikég TTuxEG TG Sepyaoiog (T.x. HEylOTa Kat EAAXLOTA - IOV OXeTI{ovVTaL pe TNV ovpd
NG Katavopng), 0edopévov 0Tt ek PUOEWS SV AvaTapdyovV KATOL CUYKEKPLLEVT] KATAVOUT
oaA\d ovykekpLEva XaunAwv Tafewv OTATIOTIKA XapaKTpLoTikd (T.X., péon T, Staomopd,
QOVHETPIA) KAl CLOXETIOELG GTO XPOVO Kat aTo Xwpo. ITépav avtov, onwg édel&av ot Tsoukalas
et al. [2018a], kat ov{nteitat 0to Kepdhalo 3, 0L TUTIKEG OTPATNYIKEG LOVTENOTIOINOTG UTTOPOVV
va odnynoovv oe @Paypéves, Kol KATA OVLVETELR, UN PEAAIOTIKEG Kol HN QUOIKEG OOpEG
OVOYETIONG, TIAPA TO YEYOVOG OTL T ONUAVTIKA OTATIOTIKA XAPAKTNPLOTIKA TWV LOTOPIKWOV
dedopévwy avamapdyovtat IKAVOTONTIKA.

EmumAéov, n avanapaywyn tng ovvaptnong katavoung tng dtadikaciog kpivetal wg vyiotng
onpaciag, OTwG TPotdooeTal and OewpnTika Kat eUmelptka oTotxeia. AvTo TovileTal ep@atika
ano6 tovg Klemes and Bortivka [1974] ot omoiot avagépovv:

Simulation of a serially correlated series with a given marginal distribution is one of the
important prerequisites of synthetic hydrology and of its applications to analysis of water
resource systems.

A&iCer va avagepbel 611 N PiAoypagia mpoogépel evalaxTikég peBodovg yia v
avamapaywyr ovvOeTkdV xpovooelpwy, Onws eival Ta emovopalopeva povtéha Svo-
KATAOTACEWYV Kal TA TPOoPaTa HovTEAa Pactopéva o€ TOAVUETAPANTEG CLVAPTNHOELS YVWOTEG
wg copula. Avtoi ot TOTOL HOVTEAWYV €ival IKAVOL va TTapdyovVv ovVOETIKEG TTPAYHATOTIOOELS
e Sedopévn meplBwpla katavopr, cA& vrootnpifovy éva mepLopLopPévo eVpog amd Sopég
ovoyetioewv (T.x., Ta povtéda Svo-katactacewv ouviBwg ayvoodv v xpovikn egaptnon,
AUTOOVOXETLON), EVW XapakTnpifovtat and boxpnotodg pnxaviopos yévvnong (deg kepdlato
2.3 Ylo TEPLOCOTEPEG AETITOHEPELEG).

[Tépav Twv Tapamdvw, €va KOLVO XAPAKTNPLOTIKO TWV TEPLOCOTEPWV VTIAPXOVTWV HeBOdwV
TPOCOHOIWONG ival OTL 6TOXEVOVY OTNHY Tpooopoiwatn NG Stadlkaciag o€ Hia HOVO XPOVIKT
KAigaka kat dev AapPdvovv vmoyn Touvg TNV PNTN avamapaywyn Twv S0THTWV TNG
dadikaoiog oe TOAAmAG xpovikd emtineda. Emonpaivetat 6T n tavtdxpovn mpocopoiwon Twv
VOPOUETEWPOAOYIKWY SlEpYaoLwY 0€ TTOAAG XPOVIKA emimeda TAPAPEVEL AKOUN [Lo AVOLXTH)
npokAnon. T v Aemtopepn mapovoiaocn tov mpoPAnuatog kabwg kat Tovg mBavovg
TPOTIOVG AVTIHETWTILOTG TOV [e PAOT T véa HOVTENA TIPOOOOIWOTG TTOV TIAPOLOLALOVTAL OTA
Kepdhata 4-6, deg Kepdhato 7.

Avapeioprtnta, n kopla SuokoAia 0Ty TPocoHoiwon TWV VEPOUETEWPONOYIKWY Slepyaotdv
nnyadet amod 1o yeyovog 0T, Ta KAAoOoLkd 0ToXaoTikd povtéla (8eg kedAato 2.3.1), oL ivat
KAVA VO [LOVTEAOTIOLOOVV KAl VA T(POCOUOLWOOVV, HOVOHETAPANTEG 1) TOAvpeTaPANTES,
OTAOLEG 1) KUKAO-OTAOLUEG, Slepyaoieg e peydAo e0pog dopwv oLoXETIONG, eV elval tkava va
avanapdyovv Ty pn-Tkaovowavr kat Saleimovoa @von TV VOPOUETEWPOAOYIKWDV
diepyaoctdv dedopévov OTL Ta TEPLOOOTEPA ATO OQUTA £€XOVUV KATAOKEVAOTEL yloo TNV
npooopoiwon Otadikaciwv pe kavovikn (Gaussian) katavopr. Avti n Svokolia iowg
oxetileTal e TNV mMapakdtw TpoTacn, n omoia anoteei Tny mpooevyn Tov Chester Kisiel [1967]
otov fewpnikd vOpoAdyo [Klemes, 1997 p. 288]:

Oh, Lord, please keep the world linear and Gaussian.
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BEATIZTOIIOIHXZH YAATIKON YXYYXTHMATON YIIO ABEBAIOTHTA

H ovlevén pebodwv mpocopoiwong kat PeEATIOTOTOINONG AMOTENEL {iat LOXVPT| TEXVIKT| TTOV £XEL
Tpafngel v mpoooxr TG EMOTAUNG Kat Ttexvoloyiag vdatikwv mopwv, dedopévov OTL
napovotalel peydha TAEOVEKTNHA EVavTL TNG Tapadootakng HepovwpévIG Xprong Twv dvo
npooeyyioewv |e.g., Koutsoyiannis and Economou, 2003]. Ze avtd 10 mAaiolo, éva povtélo
TPOCOHOIWONG XPTOLUOTIOLEITAL YIAL VO AVATIAPACTHOEL TIG SUVANLKEG TIOV AVATITOGOOVTAL OTO
Vo peAéTn ovoTnpa o Stadoxikd Xpovikd Pripata kot ev ovvexeia va afloloynoet v
ovvolikn Tov emidoon emi TG Paong evog 1 TOAWY kpLTnpiwv oL opilovtal amod To xpnon.
Agdopévov OTL avTd Ta KpLTAPLA EKPPACOVTAL HLECW (LA OTOXIKNG OUVAPTNOTG, 1] TPOCOUOIWOT)
uropei va kaBodnynOei péow evog alyopiBpov fedtiotomoinong mov VAOTIOLEL [Lia CUOTNUATIKT
ava(nTnon oTov XWpo TWV TAPAUETPWY HE OTOXO TNV peyloTomoinon tng emidoong Tov
OVOTNHATOG - ot kABe dokiun, véeg Tpég amodidovtal oTig peTaPAnTég eAéyxov Tov HoVTELOL
TPOOOUOIWOT|G TO OTTOI0 KL TPEXEL AVTOHATA YLOL AVAVEWOEL TNV TN TNG OTOXIKTG CLVAPTNONG.

Ta ovvévaopéva oxnpata mpooopoiwons-PertioTomoinong yia vdaTIKd CLOTHUATA HTOPOVV
yevikd va katnyoptomoinfoiv oe dvo yevikég katnyopieg: (a) IIpoPAnpata Anyng anogacewy,
oTa ormola ot ISIOTNTEG TOV OLOTNHMATOG KAl Ol OXETIKEG OlEPYATIES €ival YVWOTEG €K TV
TPOTEPWY, WOTOOO KATola peyédn oxedlaopov kat n Staxeipton Tovg eivat dyvwoTn, kat (B)
npoPAnpata Pabuovounong (yvwotd kat wg avtioTpopa TPoPARHATA) OTa OToio KATTOLEG
E0WTEPIKEG IOLOTNTEG TOV OVLOTHHATOG, EITE QUOIKEG €ITE EVVOLOAOYIKEG, elval AYVWOTEG Kal
npémel va TpoodloploTovy péow piag dtadikaoiog mov mpoPAémel TNV elaxloTomoinong Tng
andkAiong petald TPOCOHOLWUEVWY KAl TTAPATNPNUEVWY ATTOKPioEWY TOV ovoThuatog. [Tapd
mv Stagopetikny Aoykr Tovg, kat ot dvo TOmol mpoPAnuatwv Xapaktnpilovrar amd
ovykekplpéves afefatdTnTeg Kal TOAVTAOKOTNTEG, Kal oLXVA VIOKEWVTAL 08 TOAAamAd (ko
OLXVA AVTIKPOVOHEVA) KPLTHPLA KAL APKETOVG TTEPLOPLOUOVG.

H avdykn yia mpoxwpnuéva epyaleia oAikng Pektiotonoinong (m.x., e§ehiktikoi akyopibpot)
EXEL AVAYVWPLOTEL VWPIG amo TNV VOPOAOYIKT KOLVOTNTA 1) OTOi £XEL OHAVTIKT EUTELPIA 0TV
xpron Tovg kabwg kat kaBoptotikr) cuuPorn; oty avantuél tovg. Ztnv PipAoypagia eivae
SwaBéopeg moAég emokomnoelg pebodwv Peltiotomoinong oe Ttétola mpoPAnuata. I'a
napadetypa, ota mAaiota oxedaopol Kat Slaxeiplong cLOTHUATWY VeEPOV, Slakpivovue TIg
epyaoieg Twv Labadie [2004], Fowler et al. [2008], Nicklow et al. [2010], Reed et al. [2013] (Tov
eoTdlovv otnv moAvkpLTnplakn epappoyr twv pefddwv) kat twv Ahmad et al. [2014]. H
BPAoypagia mov agopd TNV vdpoloywkn Pabuovounon eivar akopa mo ektevig. Ta
dtevkolvvon, dwakpivovpe TG Mpoopateg epyaoieq Twv Duan [2013] kot Efstratiadis and
Koutsoyiannis [2010], TOL Tap€XOLV i TAT)PT] AVACKOTNOT TWV OAKWYV KAl TOAVKPLTHPLAKOV
nebodwv, avtiotorya. Emiong, afifet va avagepbei, n epyacia twv Maier et al. [2014], mov
ovvoyilet TNy Tpéxovoa KaTaoTaon Twv eEeAMKTIKWVY alyopiBpwy kat AAAWVY HETA-EVPETIKWV
1e@odwv, kat opiet véeg katevBOVoeLg ylo LEANOVTIKT| EPEVVA OO0V APOPA GTNV EQAPHUOYT| TOVG
oe mpoPAnpata vdATIKWY TOPWV.

2tnv O0An vrohoylotikn dwadikacia,  Tpooopoiwon eivat pe Slapopd 1 CLVIOTWON HE TOV
HeyalvTEPO LITOAOYLOTIKO POpTO. KabBwg ta povtéda yivovtat 6do kat 1o moAdmAoka Kat
ATIAUTN TIKA OO0V aopd Ta SeSOHEVQ, 1) ATAUTIOELG TOVG € VTTOAOYIOTIKO POPTO Kat Loy (OnA.,
CPU) av€avet paydaia [e.g., Tolson and Shoemaker, 2007; Keating et al., 2010; Razavi et al.,
2010; Efstratiadis et al., 2015; Tsoukalas and Makropoulos, 2015b, 2015a, Tsoukalas et al.,
2015b, 20152, 2016]. Eva tumko mapddetypa amotedodv Ta VOPOAOYIKA HOVTENQ PUOIKTG
Bdong HiKpnG XPOVIKNG Kal XWPIKNG KAipakag, og avTifeon pe Ta OLYKEVTPWTIKA EVVOLONOYIKA
HovTéla BpoxnG-amoppor|G.
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2e AANEG €QAPHOYEG, TIOVL AVAPEPOVTAL WG OTOXAOTIKA TPOPARUATA TPOCOUOIWONG-
Bedtiotonoinong (mewpdpata Monte Carlo mov eumepiéxovv Ty xpron uebodwv
BeATioTomoinong - 6e¢ kePAAALO 1.1), 0 VTTOAOYLOTIKOG POPTOG avavel ToAEG Takelg neyeéBoug
Aoyw TNnG Xpnong ovvleTikawv (avti IOTOPIKWY) XPOVOOELPWV TOAV peydlov prkovg (m.x.,
XAadeg xpovia) €tot wote va ektiunfodv ta mbavotkd peyédn (mx. afomotia,
Stakvdvvevon) pe tnv anapaitntn akpifeta. Avaloya pe Tov aplpd Twv mapapéTpwy Kat Ty
TOAVTTAOKOTNTA TNG EMPAVELAG AmOKpLong, o alyoplBpog PeAtiotomoinong Ba mpémer va
KaAéoel TO HOVTENO Tpooopoiwong XIAAdeG Qopég yla va ovykAeivel oe pa kadn Avor.
ZUVENWG, 0 VTTOAOYIOTIKOG POPTOG TNG Tpooopoiwong Oétel €va mpakTikd eumodio otnv
BeAtiotomoinomn, mov Ba mpémel va oAokAnpwbel o €va TEPLOPIOREVO XPOVO, OTIWG AVTOG
ovvhBwg ekPpaleTal PHEOW TOV HEYLOTOV aplBpoD emavaAyewy 1} VITOAOYIOUWV TNG OTOXIKNG
ovvdptnone. l'a mapdderypa, ag vmobéoovpe éva mpOPAnpa Tpocopoiwong mov amattel
TEPITOV 1.5 AemTO yla kKabe pia mpooopoiwon kat €va alyoplBpo PeAtiotonoinong mov amattei
10 000 EMAVAANYELG Yla Vo Tpooeyyioel To oAkd eldyloto. Mia tétola Swadikacia Oa
dlaprooe TEPIOTOTEPO ATIO 10 PEPEG, YEYOVOG TIOV TNV KAOIOTA TTPAKTIKA [N EQLKTT.

Topewva pe tovg Razavi et al. [2010], oL tpoceyyioelg yia TNy eEdAenyn TOL VTOAOYIOTIKOV
@OpTOL, TOL eMPAAAETAL ATIO XPOVOPOPA LOVTEAQ TTPOTOHOIWONG, HTTOpEl Va KaTnyoptomounOel
o€ Té00epIG KUpLeG Katnyopieg: (1) mapdAANAog mpoypappatiopos [e.g., Schutte et al., 2004;
Cheng et al., 2005; Vrugt et al., 2006; Feyen et al., 2007; He et al., 2007; Regis and Shoemaker,
2009; Dias et al., 2013], (2) vmoloylotika anoteheopatikovs alyopiBupovg PeAtiotonoinong
[e.g., Tolson and Shoemaker, 2007; Kuzmin et al., 2008; Tan et al., 2008; Tolson et al., 2009], (3)
OTPATNYIKEG Yl TNV  ATTOPLYH LTOAOYlopWV pe XpovoPopa povtéla [e.g., Ostfeld and
Salomons, 2005; Razavi et al., 2010; Matott et al., 2012], xat (4) vrokataoTata HOVTEAA Ta
oTola ava@EPOVTAL Kal WG, HeTa-HovTéNa [Blanning, 1975], LOVTENa eMIPAVELAG ATTOKPLOTG, KA
Hovtéha e§opoiwang [Razavi et al., 2012a], 6OV OTOXEDOVV TNV TTPOCEYYLON TWV ATOKPICEWVY
TOV TPAYHATIKOV HOVTENOV Tipocopoiwong. Eival onpavtikd va emonpaviei, 6Tt ota mAaiola
TOV OLVOVACUEVOL OXNUATOG TPOCOUOIWONG-BEATIOTOTOINONG, TA VTTOKATACTATA HOVTENQ
naiCovv To pOXo TPOOEYYIoEWY HAVPOV-KOVTIOD IOV GTOXEVOLY 0TV SNovpYyia pag oxéong
eEdpmong petald twv petaPAntwv eléyxov Tov povtélov mpocopoiwong (eme§nynuotikég
HeTAPANTEG) Kal TNG OTOXIKNG OLVAPTNONG Tov HovTélov PeAtioTomoinong (petaPAntn
amokpong). O mapdAAnAog TPOYPAUUATIONOG amd TNV AAAN emTpénel TNV eKTENEON
aveEApTNTWV TPOOOUOLDOEWY amtd TOANATAOVG emeEepyaoTés, KAl avamOPELKTA amaltel
ONUaVTIKEG eeVOVOELG 08 VAKOTEXVIKO eEOTALOHO TTOV TOV KABLOTA [N TPAKTIKO Yl KOV
xprion. AgiCet va onpewwdet 6Tt yia va petwbei 0 vtoAoyloTikodg xpovog Tpetg Takels peyéboug —
Hioe Aoywkn amaitnon yia €va moldmAoko TpoPAnua mpooopoiwong — Oa mpémel va
xpnowonomnBody 1000 mapdAnlot emefepyaotés, KATL TO oOmoi0 améxel amd TNV
npaypatikotnTa. Ot dvo emopeveg emAloyég, OnA.,  PeAtiwon NG AmoTEAECUATIKOTNTAG TWV
non vrapxoviwv alyopibpwv, kabwg kat n dwakomnr g Stadikaciag 6Tav n emidoon Tov
Hovtélov deixvel va eival @Twyn amd Ta MPWTA PriHATA TNG TPOCOUOIWONG UTOPOVV Va
eEotkovournoovv xpovo, alld oxt 60o amatteitat. Ad TV GAAN, Ta HOVTEAA VTTOKATAOTATWV
dev éxovv KATIOLAL CLYKEKPEVT ATALTNOT 08 VTTOAOYLOTIKOVG TTOPOLG Kat Stacalilovv oAy
yp1yopovg vrohoyiopots kabwg avtikabiotovv, oe kamoo Pabuod, To akpiPpd vroloyloTikd
Hovtéla mpooopoiwong. O Pacikdg Tovg 0TOXOG eival i Snpovpyia evog HOVTEAOV TTOV ival
AKPLPEG O i OLYKEKPLHEVT TIEPLOXT TOL XWpov avalntnong (ovvhbws yvpw amd to oAkd
BéATIOTO) Kot emopévwg odnyovv evguwg TNV PeAtiotonoinon [Couckuyt et al, 2013]. H
onuavtikr Suvakn Twv LovTédwv avtwv Tapovotaletat ota Kepdhata 8 kat 9 péow g
avantuéng véwv pebodoroywv kat alyopiBuwv mov Pacifovrat ota vITOKATACTATA HOVTENQ
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yta tpoPAnpata mpooopoiwong-feATIoTONONONG VOATIKWY CLOTHHATWY VTIO afePatdTnTa
(OnA., ovoTHHAaTA IOV EAEYXOVTAL ATTO OTOXAOTIKEG ELGOSOVG).

EITIXKOIIHXH KAI 2YNEIZ®OPA THX AIAAKTOPIKHX AIATPIBHX

O kVpLog 6T0X06 TNG TTapovoag Sidaktopikn StatptPrig eivat n avantuén kavoTopwy epyaleiwvy
Kkat  peBodoloyiwv  yla TNV pealloTIK]  HOVTEAOTIOINON Kal TPOCOHOIWON  TWV
vopopetewpoloykwv Siepyactwv  (dnA., mapaywyr ovvOeTikdv vOpopeTEWPONOYIKWY
xpovooelpwv pe TiG embounTég mOAVOTIKEG Kal OTOXAOTIKEG IOIOTNTEG), KAl TALTOXPOVA
avTipeTwnilel Tov emmpoodeTo VITOAOYLOTIKO POPTO OV TTPOKVTITEL ATIO TNV XPTIOT) CLVOETIKWY
XPOVOOEPWY pPeEYAAOL unKovg wg eicodol oe mpoPAnuata mpocopoiwong-PeATioTomoinoNG.
Katd ovvénea, eao@alifer v mpaxtikry vAomoinon mpofAnudtwv Peltiotomoinong
VOATIKOV CLOTNHATWY VIO TO kKabeoTws afefatdTnTag.

ITio ovykekpipéva, o Paoctkodg 0ToX0G NG mapovoag didaktopikn SatpiPrg eivat SiTTdG Kot
agopa:

a) Tnv avantodn pn-T'kaovolavwy oToXaoTIKWV HOVTEAWY TIPOCOUOIWONG TTOV ELVAL LKAVA Va
avamapdyovv TG 8lautepoTnTeG oL OoLVHOWG CLVAVTWVTAL OTIG VOPOHETEWPOAOYIKEG
diepyaoieg, Omwg eivat n Stakeimovoa @O, 1 AOTO- Kal £TEPO- CLOXETLON, N TEPLOSIKOTNTA,
kabwg emiong xkat n ava xpovikn kAipaka petaBaAlopevn mibavoTikn kAl OTOXAOTIKN
ovpumeplpopd Twv petaPAntwv (Kepdalaia 3 pe 7).

B) Tnv avdntugn katdAAnlwv peBodoloywv Pektiotomoinong Paciopévov oe povtéla
VTTOKATAOTATWV OV  €lval  QMOTEAEOHATIKEG OTNV  AVTIHETWTION  TPOPANHATWY
BedTioTOMOINONG-TPOTOpOIWONG VOATIKWY CLOTNHATWY LTI To KabeoTwg afefatdotnTag, SnA.,
otav yivetal Xpron oToxaoTikwy 1008wv otnv Stadikacia mpooopoiwong-PfeAtiotonoinong
(Kegdhata 8 pe 9).

H mapovoa Swatpipr] umopei va Safactel 610 o0VOAd TG 1 0T BAON HEUOVWUEVWV
kepalaiwv. Kabe kepdhaio Baoiletal mavw oe dnpoctevpéva 1 vd-Kpion emoTnrovika dpbpa,
Kat kdbe €va elvar avtotelég pe Owkn Tov eloaywyn, pebBodoloyia, amoteléopata Kot
ovpnepdopata. To mepiexdpevo (Ue TLTIKY Ypagr)), 1 PACIKT) CLVELOQOPA Kat Ta evpripata (pe
TAAyla ypaen) kdbe kepalaiov meptypagovTal mapakdTw:

To Kegalato 2 cuvoyilel Ta KOpla XApaKTNpLOTIKE TwV vOpoUETEWPONOYIKWY Slepyaotwv
kabwg emiong xar TG emkpatéotepes wg Twpa peBodoloyieg povtelomoinong kau
T(POCOHOIWONG TOVG.

[1] AvTd TO KEQ&AmiO TIOAPEYEL EMIOKOTTHNON TWY TAéOV OVYYPOVWY TIPAKTIKWY UOVTEAOTIOINONG
K&l TIPOOOUOIWONG Yyix TNV yévvnon ovvOeTikwy xpovooeipwy vdpoueTewpoloyikwy
diepyaoiwy, kot ovlnTd KaTdk TOOO EMTVYXAVOUV THV AvATapaywyh TwV Paoikdv
XEPAKTHPIOTIKWV TOUG.

To Kepdalato 3 diepevvd v KataAANAOANTA WAG OCVYKEKPLHEVIG KATNYOPIAG OTOXAOTIKWY

HOVTEAWV, TIOV XPNOIUOTIOLEITAL EVPEWG Yl TNV TIapaywyn OLVOETIKWY XPOVOOELpWY OTOV

Topéa VOPoAOYiag, Kal CLYKEKPILEVA TWV YPAUUIKWV OTOXAOTIKWV HoVvTéAwV pe BopuPo and

un-T'kaovolavég katavouEs.

[2] To Kepdadaio avto amokadinmter éva oquavTike EAXTTWUX QUTHG THG KAXTHYOpiaG povTédwy,
amokalovuevo ws mepifdAlovoa cvumepipopi (envelope behavior), To omoio mapéueve
KPUUUEVO Vi TAVW Ao piod auwve. Ta HoVTEAX QUTK eivau EMIPPENY OTHY TIAPAYWYH U
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PUOIKWY, KAl KAT& ovvémein aovvenwv Sopwv e§dptnons mov dev mapatnpolvian oTig
PUOIKEG Olepyacies. AVTH 1] OUUTIEPIPOPE ATTOOISETAL OTOV UNYAVIOUO YEVVHONS TOUG, TTOV
orepeitar pnrig vndbeons doov agopd TV amd kool doun e&hptnons (ofuepa
povrelomoteitau péow ovvaptioewy copula).

To Kegpdhato 4 godyel to emovopalopevo and kowvov povtélo mbavotnrag Nataf (NDM;
Nataf’s Joint Distribution Model), pa kevtpikn 1déa ng mapovoag StatpiPng, mov oxetifetat
e v évvola Twv (Gaussian) copulas, kat fe TN Oglpd TOV EMITPEMEL TNV pOVTEAOTIOINOT Kat
npoocopoiwon pun-T'kaovolavawv Toxaiwv (deopevuévov 1 pn) pHeTapAnT@V Kol 6TOXAOTIKOV
avehi&ewv (Stadikaotdv). To Kepdhato Eekivder pe pia ewoaywyr g Oewpnrikng Baong tov
HOVTEAOV, Kal TNV TepLypa@r, péow tov NDM, Tng and kowvov moAVHeTaPANTHAG KATAVOUNG
un-I'kaovolavwv Tuxaiwv petaPAntwv. Ev ovvexeia, to povtélo NDM enmekteivetal oTig
TEPITTWOEL; SEOUEVHEVWY KATAVOUDY Kol 0ToXaoTikwv avelifewv. To Kepdhawo emiong
neptéxel mANBog mapadelypdtwv mpooopoiwong TuXaiwv HETAPANTWV Kol OTOXAOTIKWV
avelifewv, pe SlakpLtég, ouveyeis kat UIKTOD TUTTOL TTEPIOWPLEG KATAVOES.

[3] H6éx Tov NDM ko 10 ovvap] epyadeio mapéuevay &yvwote oty vOpoLoYIKH KOIVOTHTK
yi xpovia, kabwg Sev vmapyer dueon avapopd oe avtd. H mapovon Siatpiffn amotelei v
TPWTH €PYXoic OTOV TOUéx aUTO, VW TUMOTOLEl THV 1060 Kol TIApéxel UIX EKTEVH
avTipeTwmon Tov Oéuatog.

[4] Eva emmAéov kauvotopo onueio 6 Siatpifnc amotelei n yprion tov NDM yie v eéaywyn
THG TOAVUETAPANTHG Seopuevpuévys KaTAVOUT.

[5] Awxtdnwon yevikdv oSnyidv yix v kataokevy) oToxaoTikwv avelifewv kot povrédwy
npogopoiwats faociouévwy ato NDM, mépav auTwv mov mepIypiYovIaL 0T0 TXPOV KEUEVO
(beg emouevo Kepddaio).

[6] Tédog, wia axdua ovveiopopd avtov Tov Kepalaiov eivar i avamtvén uiag amhis ko
evéhixtns Siadikacias Monte Carlo yi TRV avayvdpion Twv emoVvoualopevwy 160Svvapuwy
OUVTEAEOTWY OUOYETIONG TTOV éXOUV €vax 101XITEPA OHUAVTIKOG, aAA& ovyvd mapapernuévo,
poro otnv avantvén pebBodoroyiwv Paciouévwv aro povrérho NDM.

To Kegpdhato 5 €0Tidlel 0TV HOVTENOTIOINON Kal TTPOCOUOIWOT| OTACIUWY OTOXAOTIKWV

avelifewv, kat ouykekpLéva apopd SVo ONUAVTIKA XAPAKTIPLOTIKA TWV VOPOUETEWPONOYIKWY

diepyaociwv mov eivar 1 pn-Tkaovolavry @von twv katavopwv (mepthapfavopévng Tng

dakeimovoag gvong) kat 1 Sopur avTo-cVOXETIONG TOVG (Hakpompobeoun 1} Ppaxvmpobeopn).

[7] Xtifovrag ndvw ora evpruata Tov Kepalaiov 4, avantdxbnkav dvo karvotépa povtéla
Paciopéva oty Oéa Tov NDM. To povtého Symmetric Moving Average (neaRly) To
Anything (SMARTA) xou 10 povrélo Contemporaneous Multivariate Autoregressive
(neaRly) to Anything (CMARTA). Ko ta dv0 povTéda eivau IKav v poGOpOLOO0VY
othowes  povouetaPfAntés 1 molvueTaPAntéc  (érepo-ovoyetiopéves) avehielg pe
omowadnmote Souny edptnons (poaxpompdBeoun 1N PpayunpoBeoun) xar mepBwpie
KOTAVOUH].

[8] H Oswpnikh faon Twy mapamvw povréAdwv kot 1 VEMKTH QUOH TOUG TIEPIYPAPETAL UETK
amd pie oelp& VITOOETIKWY Kl TIPAYUXTIKWY OEVAPIWY TTPocouoiwots, kalws ko péoa amo
TH OVYKPLOY] TOUG e GAAX YYwOoT& povTéda mpogopoiwar.
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To Ke@dalato 6 agopd oty HOVTEAOTIOINOT KUKAO-0TACIHWY averifewv (T.X., unviaiwv) twv
omoiwv 1 Tpocopoiwon eival avap@opriTnTa pa mpokAnon, Oedopévng TG emoylakd
HetafarAopevng Sopng CLOXETIONG Kat TwV TEPLOWPLWV KATAVOUWY.

[9] To Kepadaio avto erodyer éva kvkA-ootaoipo NDM povtélo (Seg emions Kepdadaio 4), pe
™V ovopaoia Stochastic Periodic AutoRegressive To Anything (SPARTA), To omoio emitpérmel
™MV 7Ipocopoiwon povoueTaPAnTay 1§ moAvuetafAntdv kvklo-otdopwy avelifewv ue
omoteodnmote, mepiodikd petafallopevn, mepilwpia katavour.

[10] Oewpnrikd ko mpaxTikd o@éAln THG TpoTevouevns uedédov, ovykpivoueva e
amoTeléopata amd dAAX eVPEWS XPHOIUOTIOIOVUEV OTOXAOTIKE HOVTEL®, TapOvOIk(oVTaL
péoa and mpaypatikd, kabws ke vmoleTikd, TapadelypaTa UnVIKiag Tpocouoiwans Kal
agpopovv 1000 povoueTaPAnTés aAdd ko modvueTafAnTEG Siadikaoies.

[11] M yapaxtnpiotiky ovveiopopd amotelei 11 avamapaywyn Sopwv edptnons mov dev
UTIOPEL vt TTPOKVYEL e XpHoN KAXOIKWY 0TOXXOTIKOY ovTédlwv (éva (iThua mov ovlnteita
emions o1o Kepadaio 3).

To Kegdhawo 7 ov(ntd xat avtipetwmifet to mpoPAnua Tng mapaywyns ovvOeTikwv
XPOVOOELPWV TOV elval ouveTeig o TOAATAA xpovika emimeda. AvTn 1 anaitnon eivat vYioTng
onpaciag oe TOAAEG epyacieg Tov oxetifovTatl e TNV £vvota Tng Staktvdvvevong.

[12]  Avtd 10 Kepddawo mapovoidler pia kouvotoua mpocéyyion, amokalovuevy ws Nataf-
based Disaggregation To Anything (NDA), yix v 00(cvéy, uéow Siadikaoidv emuepLopor,
oToxaoTikwy HovréAdwv Paciouévwy otyy mpooéyyion Nataf (m.y. KepdAoua 4, 5 and 6).

[13] H avelaptnoia amd v ypoviks khipaka kar o “top-down” yapakthipas 06 pedoédov
NDA emitpémer tnv avamtvén piog moikidiag amo oToxaotikd oxHUaTa mpocopoiwons (Héow
™6 00(evéne moAdamdwy povrélwv) yi Ty mapaywyr, CuVENWOV o€ TOAATAG XPOVIKA
emineda, ovvheTikwv xpovooelpwv amd vOpopeTewpoloyikés Slepyacieg mov Exovv
omoladnmoTe Katavoun kat Sourn} ovoxXETIong (mephapfavopévwy oTACIHWY KAl KUKAO-
otdolpwv Stadikactwyv). Ztnv mapovoa SlatpiPr), avanTuooeTal £€Va EVOTIONUEVO OXTUA
TPOCOUOIWONG  TPLWV  XPOVIKWV emmédwv Yyl TNV  mapaywyn moAvHETAPANTWV
XPOVOOEPWY, CUVEMWV Omd TNV €TACIA HEXPL TNV TNUEPNOLAL XPOVIKN KAlpaka, pe
omoladnmote TOAVOTIKY KATavour Kot SO CVOXETIONG.

[14] H emidoon tov oxfuatos tpiwyv emmédwy empPefaiwverar péow 6vo OlXPOPETIKWY
TaPaAdELYU&TWY, EVOG TOV APOPE THY TIPOTOUOLWON THG HUEPHOIAG BPOXHG-ATTOPPOHG OE [ick
Aekdvy amoppons, kau VoG OV a@opk oTHY mapaywyy Sixdeimovowy un-I'kaovoiavav
xXpovooelpwv Bpoxngs o€ Té00EPIS 0TAOUOTS.

[15] H evelidia tn6 pebédov NDA va mpooopoioer Siadikaoies o€ aroun XounAoTepes
XPOVIKEG  KAipakes amodeikVUeTal TEpauTépW amd  Eva  emmAéov  map&Oerypa OV
nepidapPdver Tov empEpIond nuEPOLAG BPoxns o€ wplaia.

Onwg ou{ntOnke 01O KEPAAALO 1.3, 1] XPTIOT OTOXACTIKWDV €L00SWV 0 GLVSVACHO e poVTENa

npooopoiwong kai/n pedodovg PeAtiotonoinong (e kepdlato 1.1) BETouv éva TPAKTIKO

pOPANpa kabwg avfdvovv Spapatikd Tov AnATOVHEVO VTTIOAOYLOTIKO POpTO. Ta emdpeva dvo

Kegdhaia 0TOXeEVOVY OTNV AVTIHETOTION AVTOD TOV {NTHUATOG.

To Kegdlao 8 efetalet to mpOPAnpa TG avIpetdmong xpovoPopwv molvpetafAntiv
npoPAnudtov BerTioTomoinong ota mAaiola TEPLOPIOUEVOL VTTOAOYIOTIKOV XPOVOL/POPTOV.
Zav mapddetypa, OTOXEVOVHE OTNV AVATTUEN ETIXEPNOWAKWVY KAVOVWY AeLTovpyiag yia
OLOTHHATA TOANATAWY TAULEVTHPWY - £va SVOKOAO TTPOPANUA, TTOV TTPOKVTITEL ATIO TOV aplOpod
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TOV HETAPANTAOV amOPAONG, TOVG OVTIKPOVOUEVOLG OTOXOVG, TN HN YPAUUIKOTNTA TV
Suvapkwv Tov ovoTpatog kat v vdporoyikn afefatdtnta. Avti n afePfadTnTa pnopel va
avripeTwmotel  péow NG o0CevEng pHOVTENWV  TPOCOUOIWONG HE  TIOAVKPLTNPLAKOVG
alyopiBuovg PeAtioTomoinong Kat Tn XpNHon OTOXACTIKWV VOPOAOYIKWY XPOVOOELPWV OAV
e10080vG. (20T000, AVTN 1 TPOGEYYLOT £XEL HEYAAO DTIOAOYLOTIKO POPTO Kat BETEL TPAKTIKA
eunodia otV anoteleopatikr e§epevvnon tov xwpov Avoewv. To mapov Kepdhato, oe pia
npoomndfela va avTipeTwmioet avto To TpOPAnpa:

[16] Avamtvooer i  molvkpitypiaky €kboon TOU  YvwoTov  @eidwlol  mAauciov
parameterization-simulation-optimization (PSO), mov emtpémer TV ei0aywyn THG
vdporoyikng afefaidtnTag péow THG Xprong oToyaoTiKWY €1000wvV Kol mbavoTikwy
OTOXIKWY OVVAPTHOEWY.

[17]  Eéepevvé v Svvarétyra twv emovopalouevwv multi-objective surrogate-based
optimization (MOSBO) alyopiBuwyv va avripetwmioovy T0ov UTOAOYIOTIKG @QOpPTO.
Zvykekpiéva, tpeis alyopiBuoi tomov MOSBO ovykpivovrar pe dvo modvkpiTHpiakovs
eEelixTiovs alyopiBuovs. Ta amoteréouata vmodeikvoovy 6T o1 alydpiBuor MOSBO eivau
IKOVOL V& TIAPEYOVY EVPWOTOVG ETIXEIPHOIAKOUG KAVOVEG VIO affefautdThnTa TOAD TaxyVTepa,
Xwpic EXAeryn THG YeVIKOTHTAG.

To Kepalaio 9 amotelel pia KAVOTOHA OLVELCQOPA OO0V a@opd Yevikd Ta XpovoPdpa

npoPAnpata mpooopoiwong-pertioTonoinong. Tétoleq MEPMTWOEL TPOKVTITOVY OTAV 1)

EKTIHNOT TNG OTOXIKNG CLVAPTNONG eMIPAAEL TN XprioN XPOVOBOPWV LOVTEAWYV TTPOCOHOIWONSG.

O vrepPoAikd peydlog xpovog mov amatteital ano tnv OAn Stadikaoia meplopilel Tnv epappoyn

tétolwv uebodwv 1 emPalel tov teppatiopo g Stadikaoia TOAD vwpitepa. Onwg ovlnrteitot

0TO KeQAAalo 1.3 kat tapovotdletat 6Tov mapodv Kepdato, pa ToAE vTOoXOUEVN GTPATNYIKN
yla TNV aVTILETWTION aUTOV TOV HEIOVEKTHHATOG eival 1 EVOWHATWON HOVTEAWV

vrokaTaoTaTWV o€ alyopibpovg olikng PeAtiotomoinong. Xe avtd Tto mMAaiolo, El0AYETAL O

alyopiBuog Surrogate-Enhanced Evolutionary Annealing-Simplex (SEEAS). O SEEAS

ovvdvdlet TNV SHvapun Twv HOVTEAWV VTOKATAOTATWV HE TNV ATOTEAECUATIKOTNTA KOl
anodoTkOTNTA TwV e§EMKTIKDV alyopiBuwy. O alydpiBuog evowpaTwveL TPeLG Sla@opeTIKES

Texvikég PBehtioTomoinong (e§ehktikny avalitnon, mpooopowuévy avontnon kat pedodouvg

ava(nTnong KatepXouevov amhokov), evw ot Pactkég ano@doels kabodnyovvtal evPLWG Ao

TPOOEYYIOELG TNG OTOXIKNG CLUVAPTNONG HEOW HOVTEAWY VTTOKATACTATWV.

(18] H emidoon tov mpotewouevov aryopibuov eAéyyetau évavti &Alwv adyopibuwv
Baoiouévwy oe povréla vmokataoTATOV, TOOO 0f Oewpnmikd (OnA., 6 pabnuatikég
ovvapThoelg, 1ov Onuiovpyovy 24 povadik& mpoPAiuata PedtioTomoinons) oco kal
npaxTikg mpofAfuata (yh., éva mov agopd v Pabuovounon vépoloyikwv povrélwy ke
éva mpoPAnpa moAAamAwy TapevTHpWY), Ue mEPIopiouévo aplbud emavarnyewy (Aiyotepes
o 1 000).

[19] Ta amoteléopata pavepwvovy v Svvatdtnte Tov SEEAS v Siayeipiotel ko v
avripetwmioer dvokoda mpofAiuata  PedTioTomoinons, mov eumepiéyovy  xpovoPopeg
TIPOCOUOLWTELG,.

To Kegdlaio 10 mapovotdler W mePIANYN TwWV 7O ONUAVTIKOV  ETMIOTHUOVIKOV
anoTeAeoUATWV Kat ou{NTA TIG SUVATOTNTEG yLa HEANOVTIKT Epevva.

To Hapaptiuata A, B, Cand D napéxovv emmAéov cupumAnpwpatiko VAo yia ta Kegdalata
3, 5, 6 and 7, avtioTotya.
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EITIAOI'OX

Ztnv mapovoa didaktopikn StatpiPn, xpnotponowvtag Tig Bewpieg otatiotikng, mbavotiTWY
Kal OTOXAOTIKWV avelifewv, avantoooetat mepattépw Kat peletdtat Stefodikd fua katnyopia
OewpnTikd ovvenwv, Hovo-peTaPANTOV Kat TOAV-UeTAPANTWV un-T'kaovolavwy oTaotpwy Kat
KUKAO-OTAOIH®V OTOXAOTIKWV HOVTEAWY. AVTOD TOL TOTOL HOVTEAQ, NTAV UEXPL TTPOTIVOG
dyvwota otnv vdpoAoYIKr KOvOTNTa, Kal avtrh 1 datpPry eivar pia mpwtn mpoomadeia
HEAETNG TOVG KAl EVAPHOVIONG TOVG UE TN OTOXAOTIKT) bOpoloyia.

Ta mpotewvopeva povtéla eival oe Béon va mpooopolwoovy OAa Ta XAPAKTNPLOTIKA TWV
vdpopetewpoloyikwy Slepyaclwv evw Tavtoxpova xapaktnpilovrar amd amhotnta Kat
eedwAn mapapetponoinon. Emmhéov, pe Paon ta mapamdvw povtéla, kat tr Pfondeia
empeploTikng dadikaoiag, avantoooeTal £va apbpwTod 0TOXAOTIKO TAAICIO TTPOCOUOIWOTG TO
omoio emTpémel TNV avamapaywyn g mBavoTikng Kal OTOXAOTIKNG CUUTEPIPOPAS TWV
VOpOUETEWPONOYIKWDV dlepyactwv oe TOAATAEG XpOoVikéG KAipakes (TT.X., amd Ty €TNOLA WG
KOl UEPNOLAL 1] KAl AKOUN KpOTEPEG KAipakeg). Ta mAeovekTApaTa TWV TApATAVE® HOVTEAWY,
aMé& kat Tov apBpwTod TAAGIOV OTOXAOTIKNAG TPOCOUOIWONG, Tapovotalovtal Kat
enaAnBevovral péoa and mAnbwpa VTOBETIKOV KAl TPAYUATIKWY TEPIMTWOEWY CTOXAOTIKNG
T(POCOHOIWONG.

Télog, mpokelpévov va Slac@alloTel 1 anmoTeAeoUATIKN EKUETAAAEVOT] KAl EVOWHATWOT TWV
véwv autwv eEelifewv, OXETIKWOV UE TN OTOXAOCTIKN TPOCOUOIWOT) VOPOUETEWPONOYIKWY
diepyaotadv, 6To mAaioto Tov PEATIOTOV oXedLaopOV Kat Slaxeiplong LOATIKWY CLOTHHATWY (0
ovvdvaopo pe oToXaoTiKA dedopéva €l00d0V), 1 Tapovoa epyacia avantOooel KATAAANAEG
1e@odovg kat alyopibuovg Pertiotomoinong, mov Bacifovral 0 VTOKATACTATA HOVTEAQ, Ylat
TOV ATOTEAEOUATIKO XEIPLOUO TIPOPANUATWV VOATIKOV CVOTNHATWY VIO VOPOUETEWPONOYIKT)
apefatdTnTa, EAATTOVOVTAG £TOL ONUAVTIKA TOV ATIAULTOVUEVO VTTOAOYLOTIKO QOPTO.
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INTRODUCTION

The only certainty is that nothing is certain

~ Gaius Plinius Secundus (23-79 AD)

1.1 SETTING THE SCENE

Hydrological sciences are not exempted from the introductory aphorism. A phrase that despite
the tremendous technological advancements and the rise of the era of information technology
and computing is undoubtedly still valid. Evidently, the omnipresence of uncertainty poses an
intriguing challenge in decision making process regardless the scientific discipline applied to.
Decision making under uncertainty remains, and probably will remain, a fruitful scientific area
of continuous development and interest.

The need to account for uncertainty within hydrological decision making is highlighted by the
relationship that exists between, climate and water-related engineering works and operations,
and human life and security. A characteristic example is that of a water-system comprised of
several engineering works especially designed and managed to serve multiple purposes, such
as flood protection, energy production and water supply for potable and irrigation purposes.
The critical nature of these operations, and their apparent connection with the so-called water-
energy-food nexus, pose stringent reliability requirements and require the derivation of
optimal solutions, especially when considering the potential impacts of changing climatic
conditions.

Key ingredients of every hydrological study, and simultaneously one of the main sources of
uncertainty, are hydrometeorological inputs. A historical record of such observations will
rarely if ever repeat in the future, due to the high variability, randomness and uncertainty that
is inherent in the processes. This type of uncertainty is often referred to as hydrometeorological
uncertainty and is arguably of utmost importance in related engineering works and studies.

The scientific discipline of stochastic hydrology, attempts to address the challenging task of
handling hydrometeorological uncertainty, though the employment of statistical concepts,
probability laws and the theory of stochastic processes. The assumption that
hydrometeorological time series (i.e., sequences of observations ordered in time) are
realizations of stochastic processes allows their analysis, modelling, simulation and forecasting.
In this vein, it can be argued that embracing the existence of randomness and stochasticity in
such processes is a first step towards their understanding and the development of uncertainty-
aware methodologies for water-systems optimization.

It is widely acknowledged (see next section) that stochastic simulation of hydrometeorological
processes, which essentially, translates in generating alternative (statistically equivalent)
plausible realizations of the processes (i.e., synthetic time series), providing the means to
uncertainty-proof the decision-making process of design and operation of water-systems.
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Due to the typical size of historical data, which is not sufficient to extract safe conclusions about
the long-term performance of a system, the common procedure entails driving a deterministic
simulation model that implements the operation of the associated system with stochastic
inputs, i.e., realizations of input hydrometeorological processes that statistically resemble the
parent information, which are generally (but not solely) derived from historical data.
Therefore, one can obtain long time series of simulated realizations of the system’s operation
that are conditioned to the statistical characteristics of the stochastic inputs. This approach
essentially enables the establishment of Monte Carlo experiments, where the intrinsic
uncertainty of the inputs is propagated through a deterministic filter (i.e., the simulation
model) in order to derive and assess the probabilistic behaviour of the outputs of interest.
Further to this, when the objective is the optimization of the deterministic model’s control
variables (i.e., model’s parameters) with respect to some quantity or metric (i.e., objective), the
above procedure can (and should) be embed within an iterative procedure driven by an
optimization algorithm (i.e., establishing uncertainty-aware simulation-optimization
frameworks). Arguably, the use of stochastic inputs provides a conceptually flexible and
operationally effective approach for handling optimization problems of water-systems under
uncertainty, but inevitably, their use, significantly increases the required computational effort.

This Thesis focuses on two important aspects of this procedure, namely,
a) the realistic stochastic modelling and simulation of hydrometeorological processes, and

b) the effective and efficient implementation of optimization procedures for water-systems
problems under uncertainty (i.e., driven by stochastic inputs).

1.2 STOCHASTIC MODELLING AND SIMULATION OF HYDROMETEOROLOGICAL
PROCESSES

The idea of using synthetic time series within hydrological studies dates back, more than 100
years, to Hazen [1914], who in order to create a synthetic realization of annual streamflow
combined several historical observations into one enhanced time series record. This simple
approach was the first of many that followed (see the review of section 2.3), since his idea was
greatly valued by the hydrological community, and significantly motivated the birth of the
scientific discipline of synthetic (or operational) hydrology.

According to the classical classification by Matalas [1975], synthetic hydrology constitutes a
sub-branch of stochastic hydrology, and its emergence owes much to the pivotal works
conducted by the Harvard water program [Maass et al., 1962] and the associated works of
Thomas and Fiering [1962], who were probably the first that employed the theory of stochastic
processes for the synthesis of monthly streamflow time series. According to Koutsoyiannis
[2000], other significant developments that forged the establishment of the field (and stochastic
hydrology in general) was the remarkable advances in computing in the 1950’s accompanied
by the emergence and wide-spread adaptation of Monte Carlo methods in several scientific
fields (e.g., physics, biology and finance). Another notable contribution that stemmed from a
different scientific domain, was the publication of the now-classic textbook in time series
analysis by Box and Jenkins [1970] that offered a comprehensive treatment on the subject, as
well as provided a detailed classification of linear stochastic models including autoregressive
(AR), moving average (MA) and their combination, autoregressive moving average (ARMA)
models.
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1.2 STOCHASTIC MODELLING AND SIMULATION OF HYDROMETEOROLOGICAL PROCESSES

Early works that employed the notion of synthetic time series aimed in assessing the
performance of reservoir systems in probabilistic terms, i.e., by evaluating their reliability on
the basis of simulated water release data [e.g., Hazen, 1914; Sudler, 1927; Barnes, 1954; Thomas
and Fiering, 1962; Klemes, 1981]. Today, synthetic data are used in a variety of studies (with
structure similar to the aforementioned Monte Carlo experiments), among them, the optimal
planning and management of reservoir systems [e.g., Koutsoyiannis and Economou, 2003;
Celeste and Billib, 2009; Giuliani et al., 2014; Tsoukalas and Makropoulos, 2015a, 2015b; Feng
et al., 2017], risk assessment of flood [e.g., Wheater et al., 2005; Haberlandt et al., 2011;
Paschalis et al., 2014; Qin and Lu, 2014; Moustakis et al., 2017] and drought events [e.g.,
Herman et al., 2016], as well as water resources simulation under future climate conditions
[e.g., Fowler et al., 2000; Baltas, 2007; Kilsby et al., 2007; Baltas and Karaliolidou, 2008; Fatichi
et al., 2011; Nazemi et al., 2013].

A key requirement for extracting consistent statistical outcomes from such Monte Carlo
experiments (provided that the simulation model is a faithful representation of the underlying
system dynamics) is the concise representation and simulation of the hydrometeorological
inputs; which in turn requires stochastic simulation schemes that are able to account for the
main peculiarities of hydrometeorological processes, that is, non-Gaussianity, intermittency,
auto- dependence (short- or long-range), cross-dependence and periodicity (see section 2.2).

In a more abstract level, the first two characteristics (non-Gaussianity and intermittency) are
associated with the marginal properties of the process, and imply the need for a suitable
distribution model. On the other hand, auto- and cross-dependencies are associated with the
stochastic (joint) properties of the process, both in time and space, and point out the need for
stochastic simulation models per se. In fact, if the physical processes to simulate were not (auto-
or cross-)correlated, the problem would be substantially simpler, as the generation of synthetic
data would be made by, generating uniform numbers and then employing probability integral
transformations. Finally, periodicity introduces further complexity, since it implies
representing the processes as cyclostationary, thus differentiating their marginal and joint
properties not only across different temporal scales but also across seasons (or systematically
repeated time intervals, in general).

Arguably an appropriate stochastic simulation scheme should be able to reproduce the
probabilistic and stochastic behavior (i.e., marginal and joint properties) of a
hydrometeorological process, which varies according to the variable type (e.g., rainfall,
streamflow or temperature) and the time-scale of study (e.g., annual, monthly, daily or finer).

The need for generic simulation schemes that allow producing synthetic data from multiple
distributions primarily originates from the fact that the probabilistic behavior of many of
hydrometeorological processes is not satisfactory captured by classical stochastic models (see
the review of section 2.3). Many of these models (i.e., classic linear stochastic models, point
process models, resampling models) are not designed to reproduce significant probabilistic
aspects of the processes (e.g., maxima and minima, associated with the tails of the distribution),
since their standard hypothesis does not lie in the reproduction of a specific distribution, but
the resemblance of some low-order statistics (e.g., mean, variance, skewness) and correlations
in time and space. Further to this, as shown by Tsoukalas et al. [2018a], and further discussed
in Chapter 3, usual modelling strategies can lead to bounded, hence unrealistic, and non-
natural dependence patterns, even though the essential, low-order statistical characteristics of
the parent data may be well-preserved.
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Furthermore, the reproduction of the distribution function of a process is considered of
paramount importance, as suggested by both theoretical reasoning and empirical evidence.
This is also emphatically highlighted by Klemes and Boriivka [1974], who argue that (our
emphasis):

Simulation of a serially correlated series with a given marginal distribution is one of the
important prerequisites of synthetic hydrology and of its applications to analysis of water
resource systems.

It is worth noting that the literature offers alternative approaches for synthetic time series
generation, such as the so-called two-part models and the recently emerged copula-based type
of models. These type of models are capable of synthesizing realizations with the target
marginal distributions, yet they are constrained by narrow type of correlation structures (e.g.,
two-part models typically neglect temporal dependence, i.e., auto-dependence) and
cumbersome generation mechanisms (for further details see section 2.3).

Nevertheless, a common characteristic of most of the existing simulation approaches is their
focus on simulating processes at a single time scale and do not explicitly account for the
reproduction of the process’s properties (either in term of a distribution function or a set of
statistical properties) at multiple temporal levels. Highlighting that multi-scale simulation of
hydrometeorological processes still remains an open challenge. For a detailed problem
description, as well as a potential remedy that combines the new developments in modelling
and simulation of hydrometeorological processes of Chapter 4-6, into an integrated scheme,
see Chapter 7.

Arguably, the primary difficulty in simulating hydrometeorological processes, originates from
the fact that the classical linear stochastic models (see section 2.3.1), which are capable of
modelling and simulating, univariate and multivariate, stationary and cyclostationary,
processes with a wide range of dependence structures, are unable to reproduce the non-
Gaussian and intermittent nature of hydrometeorological processes, since most of them are
formally developed for the simulation of Gaussian processes. This inconvenience may also be
related with Chester Kisiel’'s [1967] pray to the theoretical hydrologist, which reads [Klemes,

1997 p. 288]:

Oh, Lord, please keep the world linear and Gaussian.

1.3 OPTIMIZATION OF WATER-SYSTEM PROBLEMS UNDER UNCERTAINTY

Coupling of simulation and optimization methods is a powerful technique that has gained
significant attention in water resources science and technology, since it ensures great
advantages over the traditional individual implementation of the two approaches [e.g.,
Koutsoyiannis and Economou, 2003]. In this context, a simulation model is used to faithfully
represent the dynamics of the system under study in subsequent time steps and next to evaluate
its overall performance against one or more user-specified criteria. Provided that these criteria
are expressed in terms of objective function, simulation can be driven by an optimization
model, which employs systematic search through the parameter (or decision) space to
maximize the system performance; at each trial, new values are assigned to the control variables
of the simulation model, which runs automatically to update the value of the objective function.

Combined simulation-optimization schemes for water resource systems can be generally
classified into two categories [ Tsoukalas et al., 2016]: (a) Decision-making problems, in which
the system properties and associated processes are known a priori, but either some of its design
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1.3 OPTIMIZATION OF WATER-SYSTEM PROBLEMS UNDER UNCERTAINTY

quantities or its management policy are unknown; and (b) calibration problems (or inverse
problems), in which some internal properties of the system, either physical or conceptual, are
unknown and have to be inverted by minimizing the departures of the simulated responses
against the observed ones. Despite their different rationale, both types of problems suffer from
significant uncertainties and complexities, and they are subject to multiple (and often
conflicting) criteria as well as numerous constraints.

The need for advanced global optimization tools (e.g., evolutionary algorithms) has been early
recognized by the hydrological community, which has significant experience in their use and
also remarkable contribution in their development. In the literature are found numerous
reviews of optimization approaches in such problems. For instance, in the context of water
resources planning and management, we distinguish the works by Labadie [2004], Fowler et al.
[2008], Nicklow et al. [2010], Reed et al. [2013] (emphasis to multiobjective applications) and
Ahmad et al. [2014]. The literature for hydrological calibration is even more extended. For
convenience, we highlight the recent works by Duan [2013] and Efstratiadis and Koutsoyiannis
[2010], who provide a comprehensive review of global and multiobjective calibration
approaches, respectively. It is also worth mentioning the article by Maier et al. [2014], who
summarize the current status of evolutionary algorithms and other metaheuristics, and
highlight new directions for future research across water resources applications.

In the whole computational procedure, simulation is by far the most time-consuming
component. As models become more complex and data-demanding, their requirements in
computational time and/or CPU increase substantially [e.g., Tolson and Shoemaker, 2007;
Keating et al., 2010; Razavi et al., 2010; Efstratiadis et al., 2015; Tsoukalas and Makropoulos,
2015b, 20154, Tsoukalas et al., 2015b, 2015a, 2016]. A typical example is the case of physically-
based hydrological models of fine spatial and temporal resolution, in contrast to lumped
conceptual rainfall-runoff models.

In other applications, referred to as stochastic simulation-optimization problems (i.e., Monte
Carlo experiments, also involving optimization; see section 1.1), the computational effort
increases by orders of magnitude due to the use of synthetic (instead of historical) time series
of very large length (e.g., thousands of years), in order to provide estimations for probabilistic
quantities (e.g., reliability, risk) with satisfactory accuracy. Depending on the number of
parameters and the irregularity of the response surface, the optimization algorithm may need
to call the simulation model thousands of times, in order to converge to a good solution.
Therefore, the time effort of simulation imposes a practical barrier to optimization, which is
necessary to run with significantly restricted budget, by means of maximum allowable number
of function evaluations. For instance, consider a simulation model that requires approximately
1.5 minutes for a single simulation run and an optimization algorithm that requires 10 ooo
function evaluations (iterations) to approximate the global minimum. Such a procedure would
last more than ten days, which makes it practically infeasible.

According to Razavi et al. [2010], the approaches to alleviate the computational burden
imposed by time-consuming simulation models are classified into four main categories: (1)
parallel computing [e.g., Schutte et al., 2004; Cheng et al., 2005; Vrugt et al., 2006; Feyen et al.,
2007; He et al., 2007; Regis and Shoemaker, 2009; Dias et al., 2013 ]; (2) computationally efficient
optimization algorithms [e.g., Tolson and Shoemaker, 2007; Kuzmin et al., 2008; Tan et al.,
2008; Tolson et al, 2009]; (3) strategies to avoid opportunistically (expensive) model
evaluations [e.g., Ostfeld and Salomons, 2005; Razavi et al., 2010; Matott et al., 2012]; and (4)
surrogate modelling techniques, also referred to as meta-modelling [Blanning, 1975], function
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approximation, response surface modelling and model emulation [Razavi ef al., 2012a], where
surrogate approaches are used to approximate the responses of the original simulation model.
It is important to remark that in the context of combined simulation-optimization schemes,
surrogate models play the role of black-box approaches that aim to establish a data-driven
relationship between the control variables of the simulation model (i.e., explanatory variables)
and the objective function of the optimization model (i.e., response variable). Parallel
computing, on the other hand, allows the execution of independent simulations by multiple
processors, and inevitably requires significant investments in hardware infrastructure, which
makes it impractical for common use. Note that in order to reduce the time of computations
by three orders of magnitude - a reasonable requirement when dealing with complex
simulation models - 1 ooo parallel processors should be used, which is far from realistic. The
other two options, i.e., the improvement of efficiency of existing algorithms, as well as the
interruption of the function evaluation procedure, when the model performance seems to be
very poor from early steps of simulation, may save some time but not as much as required.
Surrogate models do not have any specific requirements in computer resources and also ensure
very fast computations, since they replace, to some context, the (expensive) simulation model.
Their key objective is to generate models that are accurate in a certain region of the search space
(i.e., around a potential optimum) and thus intelligently guide the optimization [Couckuyt et
al., 2013]. The significant potential of such methods is also illustrated in Chapter 8 and 9
through the development of new surrogate-based methodologies and algorithms for water-
system simulation-optimization problems under uncertainty (i.e., systems driven by stochastic
inputs).

1.4 THESIS OVERVIEW AND CONTRIBUTION

The main aim of this Thesis is to provide innovative tools and methodologies for the realistic
modelling and simulation of hydrometeorological processes (i.e., the generation of synthetic
hydrometeorological time series with the desirable probabilistic and stochastic properties), and
simultaneously tackle the additional computational effort, which arises when long synthetic
time series are used to represent the input uncertainty in simulation-optimization frameworks.
Thereby, eventually ensuring the practical implementation of uncertainty-aware water-system
optimization problems.

More specifically, the main objectives of this PhD Thesis are twofold, and regard:

a) The development of novel non-Gaussian stochastic simulation models, able to account also
for the other peculiarities typically encountered in hydrometeorological processes, such as,
intermittency, auto- and cross- dependence, periodicity, as well as their scale-varying
probabilistic and stochastic behavior (Chapter 4 to 7).

b) The development of surrogate-based optimization methodologies and algorithms that can
efficiently and effectively confront water-system simulation-optimization problems under
uncertainty, i.e., when using stochastic inputs to drive the simulation-optimization procedure
(Chapter 8 and 9).

The Thesis can be read as a whole, or in a Chapter-wise basis. Each Chapter is built upon
published or under-review journal articles, and all of them are self-contained with their own
introduction, methodology, results and conclusion sections. The content (regular typeface), as
well as the main contributions and findings (italics typeface) of each Chapter are described
below:
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1.4 THESIS OVERVIEW AND CONTRIBUTION

Chapter 2 summarizes the characteristic properties of hydrometeorological processes, as well
as the prevailing modelling and simulation methodologies.

[1] This Chapter reviews the current state-of-the-art modelling and simulation practices for
synthetic times generation of hydrometeorological processes, and discusses whether they can
satisfactory resemble key the characteristics of such processes.

Chapter 3 explores the applicability of a particular class of stochastic models, extensively used
for synthetic time series generation within the hydrological domain, that of linear stochastic
models coupled with non-Gaussian white noise.

[2] This Chapter reveals a major flaw of this type of models, the so-called “envelope behavior”
that remained well-hidden for over half a century. These models are prone to the
establishment of non-natural, hence physically inconsistent dependence patterns which
cannot be observed in natural processes. This behavior is attributed to their generation
mechanism which lacks of explicit assumption regarding the joint dependence structure
(nowadays modelled using copulas functions) of the process.

Chapter 4 introduces the so-called Nataf’s joint distribution model (NDM), a pivotal concept
of this Thesis, that is closely related with the notion of (Gaussian) copulas, which in turn allows
modelling and simulation (unconditional and conditional) of non-Gaussian random variables
and processes. The Chapter begins with an introduction of the theoretical basis of the model,
and the establishment, through NDM, of the multivariate joint distribution of non-Gaussian
random variables, which was also its original purpose. Beyond this, NDM is progressively
extended to conditional distributions and stochastic processes. These are supported by several
simulation examples, that include correlated random variables (or processes) with continuous,
discrete and mixed-type marginal distributions.

(3] The concept of NDM and the related constructs have been unknown within hydrological
community for years, since there are no direct reference to it. This Thesis is the first work
within the domain that formalizes it and provides an extensive treatment on the subject.

(4] An additional innovation point of this Thesis is the use of NDM for the derivation of
multivariate conditional distributions.

[5] Formulation of general guidelines for the development of Nataf-based stochastic processes
and simulation models, beyond those developed herein (see the next three Chapters).

(6] Finally, an additional contribution of this Chapter is the development of a simple and
versatile Monte Carlo procedure for the identification of the so-called equivalent correlation
coefficients, which have an important, yet often neglected, role in the establishment of NDM-
based constructs.

Chapter 5 focuses on modelling and simulation of stationary stochastic processes, and
particularly concerns two distinguishing characteristics hydrometeorological processes, that
are non-Gaussianity (including intermittency) and auto-dependence, short- or long-range.

[7] By building upon the developments of Chapter 4, two novel Nataf-based stochastic models,
termed Symmetric Moving Average (neaRly) To Anything (SMARTA) and
Contemporaneous Multivariate Autoregressive (neaRly) to Anything (CMARTA), are being
developed. Both models are capable of simulating stationary univariate and multivariate
contemporaneously cross-correlated processes with any-range dependence and arbitrary
marginal distributions.
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[8] The sound theoretical basis, as well as the flexible character of the models are illustrated
through a series of hypothetical and real-world simulation studies, as well as with a
comparison with a well-established simulation model.

Chapter 6 concerns modelling and simulation of cyclostationary process (e.g., monthly), which
are arguably challenging to simulate, due to the seasonally-varying correlations and
distributions.

[9] This Chapter introduces a cyclostationary Nataf-based model (see also Chapter 4), termed
Stochastic Periodic AutoRegressive To Anything (SPARTA), which holds out the promise of
simulating univariate and multivariate cyclostationary processes with arbitrary marginal
distributions, which can also be seasonally varying.

[10]  Theoretical and practical benefits of the proposed method, contrasted to outcomes from
widely-used stochastic models, are demonstrated by means of real-world, as well as
hypothetical monthly simulation examples involving both univariate and multivariate time
series.

[11]  An incidental contribution is the reproduction of dependence patterns that cannot be
captured by classical stochastic simulation models (an issue also highlighted in Chapter 3).

Chapter 7 discusses and addresses the problem of generating multi-scale (temporal) consistent
synthetic time series. This modelling requirement is of paramount importance in many water-
related risk-based studies, and arguably still remains an open challenge.

[12]  This Chapter presents a novel approach, termed Nataf-based Disaggregation To Anything
(NDA), for the pairwise coupling of Nataf-based stochastic models (e.g., Chapter 4, 5 and 6)
through disaggregation procedures.

[13]  The scale-free and “top-down” character of NDA enables the development of a variety of
stochastic simulation schemes (by coupling multiple Nataf-based models) for the generation
of multi-scale consistent realizations of hydrometeorological processes (univariate and
multivariate) with any distribution and correlation structure (including both stationary and
cyclostationary ones). Herein, an integrated three-level simulation scheme is being developed
for the synthesis of multivariate time series with any distribution and correlation structure
that are consistent from annual to daily time scale.

[14]  The performance of the three-level scheme is validated on a multi-scale basis using two
particularly distinct case studies, one that concerns the simulation of daily rainfall-runoff
series at a single location, and another that involves the synthesis of non-Gaussian,
intermittent rainfall time series at four locations.

[15]  Theflexibility, as well as the modularity of NDA to simulate processes at even lower time-
scales is demonstrated through an additional study of disaggregation of daily rainfall to
hourly.

As discussed in section 1.3, the use of stochastic inputs in combination with simulation models
and/or optimization techniques (see section 1.1) unwillingly pose a practical barrier in their
application, since they substantially increase the required computational effort. The following
two Chapters, aim to address this issue.

Chapter 8 considers the problem of handling time expensive multi-objective problems using
limited computational budget. As an example, we aim at developing operational rules for
multi-reservoir systems; a challenging problem, that arises from the number of decision
variables and conflicting objectives, the non-linearity of system dynamics and the hydrological
uncertainty. This uncertainty can be addressed by coupling simulation models with multi-
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objective optimization algorithms driven by stochastically generated hydrological time series
but the computational effort required imposes barriers to the exploration of the solution space.
This Chapter in an effort to address this problem,

[16] Develops a multi-objective version of the well-established and parsimonious
parameterization-simulation-optimization (PSO) framework, that allow to embed
hydrological uncertainty though the use of stochastic inputs and probabilistic objective
functions.

[17]  Explores the potential of multi-objective surrogate-based optimization (MOSBO) to
alleviate the computational burden. Three MOSBO algorithms are compared against two
multi-objective evolutionary algorithms. The results suggest that MOSBOs are indeed able to
provide robust, uncertainty-aware operation rules much faster, without significant loss of
neither the generality of evolutionary algorithms nor of the knowledge embedded in domain-
specific models.

Chapter 9 is as a novel contribution towards time expensive water resources simulation-
optimization problems. Such cases, arise when the evaluation of the objective function entails
the use of an expensive simulation model. The excessive time required by the overall procedure
may limit the applicability of such approaches, or terminate the optimization process much
earlier than required. As discussed in section 1.3 and demonstrated in Chapter 8 and this
Chapter, a promising strategy to address these shortcomings is the use of surrogate modelling
techniques within global optimization algorithms. With this in mind, the Surrogate-Enhanced
Evolutionary Annealing-Simplex (SEEAS) algorithm is being introduced. SEEAS couples the
strengths of surrogate modelling with the effectiveness and efficiency of the evolutionary
annealing-simplex method. The algorithm combines three different optimization approaches
(evolutionary search, simulated annealing and the downhill simplex search scheme), in which
key decisions are intelligently guided by surrogate-based approximations of the objective
function.

[18]  The performance of the proposed algorithm is benchmarked against other surrogate-
assisted algorithms, in both theoretical (i.e., 6 test functions, configured into 24 unique
optimization problems) and practical problems (i.e., one that concerns hydrological
calibration and another that concerns multi-reservoir problems), within a limited budget of
trials (less than 1000).

[19]  The results reveal the significant potential SEEAS in handling challenging optimization
problems, involving time-consuming simulations.

Chapter 10 concludes the Thesis, by presenting a summary of its most significant research
outcomes, and discusses opportunities for further work.

Appendix A, B, C and D provide additional documentation and supplementary material for
Chapter 3, 5, 6 and 7 respectively.
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2

MODELLING AND SIMULATION OF HYDROMETEOROLOGICAL
PROCESSES: A REVIEW OF THE STATE-OF-THE-ART

PREAMBLE

This Chapter provides some basic concepts and definitions used throughout this Thesis
(section 2.1), as well as discusses the main characteristics of hydrometeorological processes
(section 2.2), which are in turn related with the development of appropriate stochastic
simulation models for hydrometeorological time series generation. In this vein, section 2.3
aims at providing a brief overview and discussion on the most prominent modelling and
simulation practices for this task; also hinting a critical flaw of linear stochastic models coupled
with non-Gaussian white noise, extensively discussed in Chapter 3. Finally, section 2.4
summarizes the identified problems and constraints in existing simulation schemes, which
have motivated the development of alternative simulation models (Chapter 4 to 7).
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2.1 BASIC CONCEPTS AND DEFINITIONS

2.1 BASIC CONCEPTS AND DEFINITIONS

Before describing the main characteristics of hydrometeorological processes and the associated
simulation schemes it is considered useful to provide some basic definitions regarding random
variables (RVs) and stochastic processes |[Yaglom, 1962; Papoulis, 1991; Lindgren, 2013;
Koutsoyiannis et al., 2018], that are important in this Thesis. The following definitions concern
continuous RVs, since they are easily extended for the case of discrete RVs (using summation
operators, instead of integration).

A random variable x is defined by its cumulative distribution function (CDEF), Fﬁ(x) =
P(x < x), or simply distribution function, which in turn is related with the corresponding
probability density function (PDF) by, fi(x) := dF(x)/dx. The inverse relationship is,
E.(x) = ffoo fx(W)dw, where w is a (dummy) variable used for integration. A realization of a
RV X is denoted by x and can be obtained by x = F;*(u), where F;*(*) denotes the inverse

cumulative distribution function (ICDF, or quantile function) and u € [0,1] denotes
probability. Important quantitative measures related with distribution functions are raw
(u(r)) and central moments (e (1)) of order r. Also known as, product moments about the

origin and the mean respectively. The former are defined by, u(r):= E[x"] =

0 T
[ x fu(0) dx = [ (F (W) du. Note that, 5, (0) = 1and (1) = E[z] = [ xf(x)dx,
which is the mean of RV x, also denoted by uy. The central moment of order r is given by,

e (r) = E[(x — ,uz)r] =7 (x- ,uﬁ)rfﬁ(x) dx = fol(FE‘l(u) - ,uﬁ)r du. Note that,
(1) = 0 and u,(2), denotes the variance of x. ie., Var[&] = 07 = Ux(2). Additional, and

commonly used in hydrology, measures of distribution shape, are the skewness (Csx =

— 3 _ 4
E [(E ”E) ] = #E(R’)) and kurtosis (Ckx =E [(E ”E) ] = #5(4)) coefficients. Similarly, two

Ox O3 Ox X

. 0%Fxy (%)
RVs x and y are defined by their joint CDF, F,, (g, X) or PDF, f, (g, X) o The

most common measure of association between x and y is the Pearson’s product-moment

correlation coefficient defined by Pxy = Corr [&, X] =E [Q] — E[&]E [X] / /Var[&]Var [X] ,

where E [EX] =[xy foy (g, X) dxdy is the first order joint moment of x and y. This
definition, implies that both their mean and variance have to be finite; a standard assumption
in hydrology, also implied throughout this Thesis (see the discussion in section 4.3.9).
Extensions of those definitions to multiple RVs are presented in the above-referenced works.

A stochastic process {&}te 7 is a collection or a sequence of (typically infinite and correlated)

random variables indexed using an argument ¢ € T. This index typically refers to time and may
take continuous or discrete values. Specifically, if T, the so-called index set, refers to time, and
it is comprised of continuous values, then the process is called continuous-time, while if it is
comprised of discrete values, it is referred as discrete-time process. Similarly, depending on the
state space of x;, the process can be classified as discrete- or continuous state process. In
general, a finite-dimensional stochastic process can be completely defined by the joint
distribution F&l&z“_&k (Xt Xty s Xgp ) OF X¢ ), X4, oo, Xg, . However, in practice, such level of
sophistication or complexity is rarely required, due to the common, simplifying and convenient
assumptions of stationarity and cyclostationarity, as well as ergodicity.
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Strict (or full) stationarity implies that the any-order distribution function of the process
remains invariant regardless the absolute value of argument ¢.

Weak (or second order) stationarity implies that the second order distribution of the process
remains invariant regardless the absolute value of argument t. In the case of Gaussian
processes, strict and weak stationarity are equivalent, since such processes are fully described
by the mean value and the covariance structure.

Cyclostationarity implies a cyclic (and deterministic, in terms of recurrence) fluctuation of the
marginal and joint properties of the process according to the value of argument ¢.

A realization of a process x;is denoted by x, and if it observed at multiple ¢;;i = 1,2 ... is
termed time series.

2.2 CHARACTERISTICS OF HYDROMETEOROLOGICAL PROCESSES

Depending on the type and time-scale of study, hydrometeorological variables exhibit a variety
of different characteristics, that need to be reproduced by a good stochastic model. According
to Moran [1970], Salas et al. [1980], as well as Koutsoyiannis [2005b] the most prominent are
the following:

Non-Gaussianity: It is widely acknowledged, and also supported by theoretical and empirical
findings [e.g., Kroll and Vogel, 2002; Koutsoyiannis, 2005¢c; McMahon et al., 2007; Bowers et al.,
2012; Papalexiou and Koutsoyiannis, 2012, 2016; Blum et al., 2017], that hydrometeorological
processes are characterized by non-Gaussian distribution functions, which is partially
attributed to their non-negative nature (common for all processes) and the intermittent
behaviour of some processes (see below). This peculiarity, usually quantified in terms of third-
order moments, is amplified as the time scale becomes finer. In fact, it is argued that non-
Gaussianity and intermittency (next paragraph) are the origin of most of the theoretical and
computational challenges encountered in stochastic hydrology.

Intermittency: This phenomenon, denoting the realization of a sequence of zero values
interposed between non-zero ones, is a dominant characteristic of finely-resolved (i.e. sub-
monthly) processes, such as rainfall and runoff, in arid and semiarid regions [e.g.,
Koutsoyiannis, 2006]. The same behaviour is also evident across spatially-distributed processes,
e.g., point rainfall simulated at different locations [e.g., Bardossy and Plate, 1992; Wilks, 1998].

Auto-dependence (also referred to as intra-dependence, temporal dependence, memory, or
persistence): This is a property of all hydrometeorological processes at all temporal scales,
whereby the current value of a process depends on its previous ones. Usually, we distinguish
short- and long-range dependence, i.e., SRD and LRD. SRD refers to a stochastic process with
a weak autocorrelation structure (e.g., exponential) that decays rapidly. On the other hand,
LRD implies the exact opposite. In this case, the autocorrelation structure is a slowly decreasing
function (typically power-type) of the time lag. LRD processes are omnipresent in geophysics,
hydrology, climate and other scientific disciplines [Beran, 1994; Koutsoyiannis, 2002; Beran et
al., 2013; O’Connell et al., 2016]. LRD dependence is associated with the widely studied Hurst
phenomenon [Hurst, 1951 and fractional Gaussian noise process [Mandelbrot and Wallis,
1969a, 1969b, 1969c|; which are special cases of LRD, implying a simple scaling behavior.
Recently, the term Hurst-Kolmogorov (HK) dynamics was introduced [Koutsoyiannis and
Montanari, 2007; Koutsoyiannis, 2011a] to give credit to the early mathematical work by
Kolmogorov [1940].
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Cross-dependence (also referred to as interdependence): Hydrometeorological processes
exhibit statistical interdependencies attributed either to cause-effect relationships (e.g., rainfall-
runoff) or to spatial proximity and thus climatic homogeneity [Efstratiadis et al., 2014a]. In
several cases, water-system models are driven by more than one inputs, thus highlighting the
need for multivariate stochastic simulation schemes, able to represent multiple correlated
processes simultaneously.

Periodicity: This characteristic implies a kind of non-stationary behavior that cyclically
alternates the marginal and joint properties of the process. Within the context of rainfall and
streamflow processes, its presence is typically encountered in monthly time scale, which is often
the time scale of interest in many water resources management studies. Depending on the type
of the process (e.g., wind or solar radiation), periodicity can be detected at finer time scales
(e.g., hourly). The effect of periodicity is generally handled either by standardizing the data or
by employing explicit cyclostationary schemes with seasonally varying marginal and joint
characteristics. We remark that the classic standardization has notable drawbacks since it fails
to seasonally vary higher than second order marginal properties (e.g., skewness) and season-
to-season correlations coefficients (due to the underlying assumption of stationarity) [ 7iao and
Grupe, 1980; Bras and Rodriguez-Iturbe, 1985 p. 118]. For a review on the topic (that spans
beyond hydrology), see the work of Gardner et al. [2006].

2.3 SIMULATION SCHEMES

Arguably, a good stochastic model should be able to provide synthetic realizations that resemble
the above characteristics. This has led to intriguing challenges, which have motivated a
significant amount of research during the last decades. In this vein, a plethora of simulation
schemes have been developed (typically for rainfall processes), thus leading to a divert literature
landscape. The following paragraphs aim at the ambitious task of providing a critical overview
of some of the most widely used simulation schemes. The simulation schemes are organized
according to their generation mechanism in a similar manner to the recent classification of
rainfall stochastic models by Haberlandt et al. [2011]. Specifically, the models are categorized
to: 1) Linear stochastic models, 2) point process models, 3) two-part models, 4) resampling
models, and 5) copula-based models. Special attention is given to the class of linear stochastic
models, both because they have been for years the main tool for stochastic simulation of
hydrometeorological processes, but also because they are the main building blocks of the
stochastic simulation models proposed in this Thesis (see Chapters 4, 5, 6 and 7).

2.3.1 Linear stochastic models

Early attempts to generate synthetic time series were based on the theory of stochastic processes
and the use of linear stochastic models. Almost all these models have been originally developed
for the simulation of stationary Gaussian processes, that are either ARMA-type, hence short-
range dependent [e.g., Fiering, 1964; Matalas, 1967; Matalas and Wallis, 1971, 1976; Pegram
and James, 1972; Camacho et al., 1985, 1987] or long-range dependent [e.g., Mandelbrot and
Wallis, 1969a; Ditlevsen, 1971; Mandelbrot, 1971; Mejia et al., 1972; Granger and Joyeux, 1980;
Hosking, 1984; Koutsoyiannis, 2000, 2002]. In addition, the hydrological literature also offers
several models for cyclostationary Gaussian processes [e.g., Thomas and Fiering, 1962; Salas
and Pegram, 1977; Troutman, 1979; Salas et al., 1980, 1982; Tiao and Grupe, 1980; Vecchia,
1985; Bartolini et al., 1988; Salas and Abdelmohsen, 1993; Rasmussen et al., 1996; Shao and
Lund, 2004]. These early days developments, as well as detailed descriptions of the associated
models can be found in the classic textbooks of stochastic hydrology [Kottegoda, 1980; Salas et
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al., 1980; Bras and Rodriguez-Iturbe, 1985; Salas, 1993; Hipel and McLeod, 1994; Reddy, 1997].
Beyond hydrology, an in-depth treatment on the subject can be found in textbooks that discuss
stochastic processes in general [e.g., Yaglom, 1962; Papoulis, 1991; Lindgren, 2013] or time
series modelling and analysis [e.g., Box and Jenkins, 1970; Brockwell and Davis, 2006; Cryer and
Chan, 2008; Tsay, 2013].

To account for the non-Gaussian and skewed character of hydrometeorological process, these
models had to be modified accordingly. The need for simulation schemes able to account for
non-Gaussian distributions, was early recognized by many researchers [e.g., Thomas and
Burden, 1963; Matalas, 1967; Fiering and Jackson, 1971; Klemes and Boriivka, 1974; Matalas
and Wallis, 1976; Lawrance and Kottegoda, 1977] and motivated the introduction of
appropriate adjustments and modifications, which are briefly summarized below.

The standard hypothesis for synthetic time series generation via linear stochastic models does
not lie in the reproduction of a specific distribution, but on the resemblance of the essential
statistical characteristics of the parent historical time series. These are usually expressed in
terms of low-order statistics (e.g., mean, variance, skewness) and correlations (that express
dependence) in time and space [Matalas and Wallis, 1976; Salas, 1993]. For a given set of low-
order statistics multiple distribution functions may be represented [cf. Matalas and Wallis,
1976 p. 66], thus making the simulation problem only partially defined.

The standard approaches to handle skewness within linear stochastic models can be further
classified in three categories | Tsoukalas et al., 2018e]: a) Explicit methods, b) transformation-
based methods, and c) implicit methods, that treat skewness via employing non-Gaussian white
noise for the innovation term.

Explicit methods are typically designed, and hence constrained, to generate realizations from
a specific distribution family [e.g., Matalas, 1967; Klemes and Boriivka, 1974; Lawrance and
Lewis, 1981a; Lombardo et al., 2012, 2017]. Common approaches include the stationary
multivariate lag-1 model with Log-Normal distribution, proposed by Matalas [1967], and the
univariate first order gamma-autoregressive (GAR) model of Lawrance and Lewis [1981a], as
well as its periodic extension [Fernandez and Salas, 1986] (see also the model of Klemes and
Boriivka [1974] with similar capabilities). Recent literature also offers alternative schemes, such
as the univariate Log-Normal model of Lombardo et al. [2012, 2017] which was specifically
designed for the simulation of processes with HK autocorrelation structure. As such, these
schemes are either limited in simulating a narrow type of autocorrelation functions or
restricted to specific non-Gaussian distributions (typically Gamma and Log-Normal).
Furthermore, they are typically able to simulate only univariate processes (with the exception
of Matalas [1967]), which is a major limitation, since in most water resources applications
multiple processes have to be represented simultaneously.

Transformation-based approaches initially aim to normalize the non-Gaussian historical data
through a transformation function, which in turn allows modelling a plethora of dependence
structures (due to the well-developed theory of Gaussian processes); next, parameter
estimation and simulation are performed on the normalized data and the final product, i.e., the
synthetic data, are obtained via the inverse transformation [Salas ef al., 1985]. See for example
the stochastic simulation software packages SPIGOT |[Grygier and Stedinger, 1990], SAMS-
2003 [Salas et al., 2006] and SAMS-2007 [Sveinsson et al., 2007]. The key component of such
schemes is the transformation function. Early attempts used relatively simple conversions, such
as Box-Cox, logarithmic, and alternatives, which cannot always ensure a satisfactory
normalization (e.g., when the original data are too asymmetric or contain many zero values).
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For this reason, for the case of hydrometeorological data, exhibiting significant skewness, more
complex schemes have been proposed, involving however several unknown parameters and
also require the use of optimization [e.g., Koutsoyiannis et al., 2008; Papalexiou et al., 2011]. In
fact, the increase of complexity inevitably raises several questions about the transformation
function, such as,

— How many parameters should be used?

— How does the sample size affect their estimation?

— In the case of multivariate and cyclostationary simulations, should we use the same
transformation function for all processes and seasons?

Nevertheless, even an accurate normalization procedure does not ensure that the inverse
transformation (i.e., the normalization - simulation — de-normalization scheme) will preserve
both the statistical characteristics (let alone the marginal distribution) and the correlation
structure of the original variables [Salas et al., 1980 p. 73; Bras and Rodriguez-Iturbe, 1985; Lall
and Sharma, 1996; Sharma et al., 1997]. Actually, it is argued that a general method for
normalizing all types of data does not exist [Papalexiou et al., 2011]. We could also argue that
neither an optimal transformation for each specific process exists (particularly in the
multivariate case), since the selection and the parameters of the transformation model are
prone to subjectivity and indefiniteness. To avoid such ill-transformations, the practice has
leaned towards incorporating skewness within the generation mechanism of the stochastic
model itself (see below).

Implicit schemes embed non-Gaussian white noise within the innovation term, and are
arguably the most popular approaches for synthetic time series generation [e.g., Matalas, 1967;
Matalas and Wallis, 1971, 1976; McMahon and Miller, 1971; O’Connell, 1974; Lettenmaier and
Burges, 1977; Lawrance and Kottegoda, 1977; Todini, 1980; Vogel and Stedinger, 1988;
Koutsoyiannis and Manetas, 1996; Koutsoyiannis, 1999, 2000; Koutsoyiannis et al., 2003b; Unal
et al., 2004; Kim et al., 2008; Jothiprakash and Shanthi, 2009; Efstratiadis et al., 2014a; Adeloye
et al., 2015; Detzel and Mine, 2017; Montaseri et al., 2017]. The first attempts are attributed to
Thomas and Fiering [1963] (presented in the book of Thomas and Burden [1963]) and Fiering
and Jackson [1971] who proposed a univariate simulation scheme for skewed and periodic
streamflow data. Their key assumption is the preservation of the desirable statistical
characteristics through the generation of white noise from a given distribution, usually the
three-parametric Gamma (i.e., Pearson type-III). It is remarked that such approaches generate
explicitly gamma-distributed variables for the white noise, while the strict explicitness is lost
when the these are synthesized to provide the variables of interest [cf. Matalas and Wallis, 1976
p. 66; Moschopoulos, 1985]. Hence, the desirable distribution is only approximately preserved
through the reproduction of the process’s moments [Fiering and Jackson, 1971 pp. 53-57;
Lettenmaier and Burges, 1977; Koutsoyiannis and Manetas, 1996]. Implicit approaches, that
employ skewed white noise, have been developed for several other linear stochastic models. We
distinguish those of the first order AR model [Thomas and Fiering, 1963; Matalas, 1967], the
low order univariate stationary ARMA model, [O'Connell, 1974; Lettenmaier and Burges,
19771, the modification of Lettenmaier and Burges [1977] to the fast fractional Gaussian noise
(ffGn) model [Mandelbrot, 1971]), the univariate and multivariate broken line model
[Ditlevsen, 1971; Mejia et al., 1972; Bras and Rodriguez-Iturbe, 1985 pp. 266-280], the first order
multivariate periodic autoregressive (PAR) model [see, Matalas and Wallis, 1976;
Koutsoyiannis, 1999, the univariate and multivariate symmetric moving average (SMA) model
[ Koutsoyiannis, 2000, 2002], which has been recently extended [Koutsoyiannis et al., 2018 and
references therein] for the reproduction of moments higher than skewness (e.g., kurtosis) by
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the inclusion of additional model parameters, as well as the disaggregation-based approach
implemented in Castalia software [Efstratiadis et al., 2014a; Tsoukalas et al., 2018c].

Despite the approximation of the marginal distribution, this class of implicit schemes, exhibits
a series of other constraints and limitations that are thoroughly discussed in Chapter 3, as well
as demonstrated by means of simulation studies in Chapters 5 and 6. Briefly, they are prone to
the generation of negative values, encounter difficulties when modelling highly skewed
(univariate or multivariate) processes [Todini, 1980; Koutsoyiannis, 1999], while, only few
schemes, such as the SMA model, are able to describe a variety of temporal correlation
structures. Furthermore, Chapter 3, as well as Tsoukalas et al. [2018a], reveal almost half a
century after their introduction, an important and well-hidden, physical inconsistency of the
implicit approach related with the reproduction of dependencies through such schemes.
Particularly, it shown, both empirically and theoretically that this type of approach may lead to
bounded, thus unrealistic and non-natural dependence patterns, that do not agree with
observations.

Finally, it is noted that all above categories of linear stochastic models are typically employed
for the simulation of hydrometeorological processes at annual and monthly time scales. This is
due to the weaknesses discussed above, that limit their capability to handle intermittency
without the use of additional modelling tricks, such as, truncation of negative values to zero,
power-transformation functions or latent Gaussian processes [e.g., Bell, 1987; Bardossy and
Plate, 1992; Rasmussen, 2013].

2.3.2 Point process models

Point process models, such as the Newman-Scott and Barlett-Lewis rectangular pulse models,
are alternative simulation schemes specifically designed for the simulation of fine time scale
processes, typically rainfall. This class of models builds upon the theory of continuous-type
point processes and have been originally introduced in hydrology by Rodriguez-Iturbe et al.
[1987]. Since then numerous simulation schemes have been developed that either improve or
extend these schemes [e.g., Rodriguez-Iturbe et al., 1988; Cowpertwait, 1991; Bo et al., 1994;
Onof and Wheater, 1994a, 1995; Onof et al., 2000; Koutsoyiannis and Onof, 2001; Smithers et
al., 2002; Koutsoyiannis et al., 2003b; Kilsby et al., 2007; Burton et al., 2008; Evin and Favre,
2008; Kaczmarska et al., 2014; Kossieris et al., 2015, 2016]. Their main advantages are the
physical interpretation of the model’s parameters and their signature feature regards their
potential to reproduce the statistical characteristics of rainfall at multiple time scales. However,
it is remarked, that similar to the classic linear stochastic schemes, this type of models aim at
the resemblance of low order marginal statistics (typically up to skewness coefficient) and not
to the reproduction of the marginal distribution of the process. Other notable weaknesses are
related with difficulties in simulating multivariate processes and cyclostationary correlation
structures, the reproduction of probability dry and extreme events [e.g., Rodriguez-Iturbe et al.,
1988; Onof and Wheater, 1994b], as well as parameter identification through optimization
techniques [e.g., Wheater et al., 2005]. Detailed reviews are given by Onof et al. [2000], Wheater
et al. [2005] and Kossieris et al. [2016].

2.3.3 Two-part models

Two-part models (also referred as product models or chain-dependent processes), are fine time
scale simulation schemes for intermittent processes (e.g., daily, or sub-daily). This class of
models has been introduced by Todorovic and Woolhiser [1975] and later formalized by Katz
[1977] for the simulation of univariate intermittent daily rainfall processes. It builds upon the

Page | 16



2.3 SIMULATION SCHEMES

idea of representing the intermittent rainfall process as the product of two distinct processes:
the occurrence process, which is utilized to express the realization or not of a certain event (e.g.,
rain or no rain; wet or dry state), and the amount (or intensity) process, which in turn is
employed to assign an amount value in the case of event occurrence (e.g., rainfall amount, given
a realization of a rain event, i.e., wet state). This dichotomy is an attempt to cope with the
discrete-continuous nature typically encountered in several hydrometeorological processes
such as rainfall. The following discussion is centered around rainfall simulation schemes, which
was the main driver for the development of two-part models.

The prevailing approach to model the occurrence process lies in the use of Markov chain
models, which provide realizations of the occurrence process that typically alternate between
wet and dry states through the use of the so-called transition probability matrix. Most
commonly, first-order, two-state models are employed, which are parsimonious and easy to
simulate [e.g., Gabriel and Neumann, 1962; Todorovic and Woolhiser, 1975; Katz, 1977; Stern
and Coe, 1984]. Higher order Markov chain models have also been proposed to better describe
the occurrence process, yet at the cost of additional model parameters and complexity [e.g.,
Pattison, 1965; Gates and Tong, 1976; Chin, 1977; Wilks, 1999; Srikanthan and Pegram, 2009;
Mammas and Lekkas, 2018]. Beyond Markov chains, an alternative, albeit not so frequently
employed, approach lies in the use on alternate renewal processes [e.g., Buishand, 1978;
Foufoula-Georgiou and Lettenmaier, 1987; Acreman, 1990; Wilby et al., 1998]. A somewhat
dated, yet thorough, comparison of Markov chains and alternate renewal processes for
modelling daily rainfall occurrence processes is given by Roldan and Woolhiser [1982].

Regarding the amount process, the typical modelling approach, employed by such simulation
schemes, uses sequences of independent, identically, distributed (i.i.d.) random variables,
which may by cross-correlated in the case of multivariate models, from a variety of
distributions functions. The explicit use of distribution models is one of their key advantages,
yet the assumption of independence implies that two-part models ignore the serial correlation
of amounts (with the exception of few univariate [e.g., Katz and Parlange, 1995; Lee, 2016;
Lombardo et al., 2017] and multivariate [e.g., Breinl et al., 2013, 2015] models that only account
for short-range dependence). This is considered as a major limitation for the simulation of
processes at sub-daily time scales, where temporal dependence extends for many time lags. In
the course of time, a plethora of distribution functions have been employed, that span from
classic continuous-type distributions, such as Exponential [e.g., Todorovic and Woolhiser,
1975; Richardson, 1981; Wilby, 1994], Gamma [Katz, 1977; Richardson, 1981; Richardson and
Wright, 1984; Stern and Coe, 1984; Srikanthan and Pegram, 2009; Lee, 2017], Weibull [e.g,
Breinl et al., 2013] and log-Normal [e.g., Katz and Parlange, 1995; Lombardo et al., 2017] to
more complex, mixed-type distributions, that arguably better describe the behavior of extremes
[e.g., Foufoula-Georgiou and Lettenmaier, 1987; Wilks, 1998; Furrer and Katz, 2008; Neykov et
al., 2014; Breinl et al., 2015; Evin et al., 2018]. Another common assumption is that the
probability distribution of the amount process is conditionally independent of the previous
states of the occurrence process. This means that the distribution function at every time step is
the same, regardless of the state of occurrence (e.g., wet or dry) at previous time steps. This
modelling approach, in combination with the fact that the final process is obtained as the
product of occurrence and amount processes, may lead to sudden and sharp transitions (from
heavy to no rain at all) among consecutive time steps. As remarked by Bdrdossy and Plate
[1992] and Wilks [1998] the same issue is also apparent in spatial scale. However, there are
some rare exceptions (limited in univariate and rather complex models) that explicitly model

Page | 17



MODELING AND SIMULATION OF HYDROMETEOROLOGICAL PROCESSES

this behavior [e.g., Chin, 1977; Katz, 1977; Wilks, 1999] through the use of additional
parameters and conditional distributions.

An important step towards the widespread adaptation and further development of two-part
models was the pivotal contribution of Wilks [1998] who proposed the first multivariate two-
part simulation scheme for daily rainfall processes. The model combines a multivariate first-
order, two-state Markov chain model with multivariate distribution sampling of
contemporaneously correlated (yet serially independent) random variables. Its basis lies in the
establishment of an empirical link between an auxiliary multivariate Gaussian distribution and
its mapping to the real-domain via combining the notion of probability integral transformation
and the target marginal distributions. Interestingly, as noted by Tsoukalas et al. [2018e, 2018d],
and further discussed in section 4.6, the foundations of Wilks’ empirical approach can be
retrospectively attributed to the theoretical background of the so-called Nataf joint distribution
model [Nataf, 1962] (and the associated Gaussian copula), which is also a key concept of this
Thesis.

The work of Wilks’ has motivated the development of numerous multivariate daily rainfall
stochastic simulation schemes, that either employ parametric distributions [e.g., Brissette et al.,
2007; Khalili et al., 2009; Srikanthan and Pegram, 2009; Baigorria and Jones, 2010; Mhanna and
Bauwens, 2012; Breinl et al., 2013; Lee, 2017] or use non-parametric ones, in combination with
resampling schemes [e.g., Beersma and Buishand, 2003; Mehrotra, 2005; Mehrotra et al., 2006;
Breinl et al., 2013]. For a short discussion on non-parametric distribution and the associated
resampling scheme, see section 2.3.4. Further details and discussion on this type of rainfall
models can be found in the review of works Srikanthan and McMahon [2001] and Haberlandt
et al. [2011].

Beyond the realm of rainfall simulation, such models are key components of many (univariate
and multivariate) weather generator models, a term probably firstly used by Richardson and
Wright [1984] and popularized by the review work of Wilks and Wilby [1999]. Weather
generators facilitate the simulation of additional weather variables (e.g., solar radiation,
minimum and maximum temperature), by conditioning them on the state of rainfall process
[Richardson, 1981; Richardson and Wright, 1984]. However, these schemes are not truly
multivariate, in the sense that they consist of two distinct sub-models, one to simulate the
intermittent rainfall process and another, typically a low-order Gaussian ARMA model (that
links upon the former rainfall model), to simulate the other weather processes. Further to these
early day schemes, the literature offers a variety of weather generation models, that build upon,
extend or improve these original schemes [e.g., Semenov and Barrow, 1997; Semenov et al.,
1998; Buishand and Brandsma, 2001; Qian et al., 2002; Apipattanavis et al., 2007; Kilsby et al.,
2007; Khalili et al., 2009; Flecher et al., 2010; Chen et al., 2014; Breinl et al., 2015, 2017], as well
as detailed review works [ Wilks and Wilby, 1999; Ailliot et al., 2015].

2.3.4 Resampling models

A well-known alternative simulation scheme is offered by the so-called non-parametric
approaches, which aim to reproduce the empirical distributions of the observed processes,
typically through resampling of historical data (most often using the well-known k-nearest
neighbor algorithm). This class of models has been pioneered in hydrology by Lall and Sharma
[1996] and Sharma et al. [1997] for the simulation of monthly streamflow processes. Since then,
numerous resampling schemes have been developed for the simulation of several
hydrometeorological processes at time scales that span from annual [e.g., Lee and Salas, 2011],
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to monthly [e.g., Lall and Sharma, 1996; Sharma et al., 1997; Prairie et al., 2007; Lee et al., 2010;
Salas and Lee, 2010], and daily [e.g., Brandsma and Buishand, 1998; Rajagopalan and Lall,
1999; Buishand and Brandsma, 2001; Clark et al., 2004; Mehrotra, 2005; Mehrotra et al., 2006;
Apipattanavis et al., 2007; Mehrotra and Sharma, 2007] or even finer time scales [e.g., Wojcik
and Buishand, 2003; Lee and Jeong, 2014]. Such approaches have gained particular attention
due to their ability to empirically establish marginal distributions that exhibit bi- or multi-
modality; a characteristic that typically arises in processes driven by multiple (often
anthropogenic) generation mechanisms [Lall and Sharma, 1996; Sharma et al., 1997].
However, the use of the empirical, non-parametric, distributions (instead of fitting a theoretical
model) prohibits the extrapolation out of the observed data ranges and the synthesis of
unobserved values, which eventually limits their capability to simulate extreme events (low or
high). Further to this, the lack of theoretical basis makes it difficult to reproduce long-range
dependence and cross-correlations among multiple variables. As Serinaldi and Kilsby [2014]
critically argue (within the context of rainfall simulation), Resampling models do not model
rainfall but sample the observed values according to suitable rules that preserve the
spatiotemporal statistical properties of the rainfall measurements. Heuristic solutions to the
above limitations, such as the optimization-based approach of Bdrdossy [1998] and the recent
scheme of Borgomeo et al. [2015], do not necessarily mitigate these weaknesses. Such schemes
are also subject to extremely high computational effort (due to their trial-and-error nature),
and they are prone to inherent inefficiencies of optimization algorithms.

2.3.5 Copula-based models

Another relatively new option is offered by copula-based simulation schemes. These, build
upon the notion of copulas [Sklar, 1959, 1973 |, which provide them with the ability to explicitly
model a wide range of distribution functions and dependence structures. For a general
discussion on copulas, see for instance, the works of Embrechts et al. [2003], Nelsen [2007] or
Joe [2014]. Copulas have been initially developed for modelling and simulation of random
variables, not stochastic processes. Nevertheless, nowadays, the hydrological literature offers
several copula-based schemes, typically able to model only short-range dependence structures,
specifically designed for the simulation of hydrometeorological processes. Among them, the
works of Bardossy and Pegram [2009] and Serinaldi [2009a] that proposed simulation schemes
for multivariate daily rainfall processes. These schemes are probably the first works that
formally use copulas for this purpose. In a similar vein, Lee and Salas [2011], proposed a
univariate copula-based model for the simulation of annual streamflow processes, while similar
schemes for periodic (typically monthly) univariate [e.g., Hao and Singh, 2011; Jeong and Lee,
2015] and multivariate streamflow processes [e.g., Hao and Singh, 2013; Chen et al., 2015] have
also emerged recently. However, it is argued [Mikosch, 2005], that copulas are not directly
compatible with the theory of stochastic processes and the associated linear stochastic models,
which rely on Pearson’s correlation coefficient, since copulas typically employ rank-based
correlation statistics (e.g., Spearman’s 7 or Kendall’s £) to describe the dependencies among
the variables. Furthermore, they are considered more sensitive against sampling uncertainty
than classical stochastic schemes, in their attempt to describe complex (i.e., nonlinear)
dependencies on the basis of usually limited hydrological data. However, as many researchers
argue (see [Hao and Singh, 2013; Chen et al., 2015]), they rely on quite complicated and
computationally demanding generation schemes, especially in high-dimensional spaces, a fact
which may also be related with the emphasis, on the development of (only) short-range
dependent simulation schemes.
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2.4 SUMMARY

Most of the available simulation schemes emphasize on the reproduction of summary statistical
characteristics, up to third order (i.e., skewness coefficient), which arguably cannot provide the
full behavior of a random variable (or processes), including its tails. Particularly, Chapter 3,
focuses on a critical flaw of linear stochastic models with non-Gaussian white noise, which
remained well-hidden for over half a century [ Tsoukalas et al., 2018a].

Currently, only few stochastic simulation schemes (i.e., two-part and copula-based models) are
able to fully and explicitly account for non-Gaussian distributions, yet they are mainly focused
on narrow-type of correlation structures (e.g., two-part models often completely neglect
temporal dependence, while copula-based schemes often model only few time lags) and involve
high-dimensional complex generation mechanisms (e.g., copula-based models). In this respect,
to address the associated simulation challenge, Chapter 4 provides the theoretical basis of a new
type of models, the so-called Nataf-based models | Tsoukalas et al., 2017a,2018e, 2018d, 2018b],
that can cope with this challenging task. Particularly, by building upon their theoretical
background, Chapter 5 and Chapter 6 focus on modelling and simulation of non-Gaussian,
stationary and cyclostationary processes respectively.

Furthermore, it is observed that most of available simulation schemes are specifically designed
for the simulation of specific type of processes (e.g., rainfall) at a specific time scale (e.g., daily).
However, it is argued, that a good stochastic model should be able to provide synthetic
realizations that resemble the probabilistic behavior and structure of the process across
multiple time scales [e.g., Klemes et al., 1981; Koutsoyiannis, 2005a].

It is well-known that the resemblance of marginal and stochastic properties at a certain time
scale (e.g., daily) does not necessarily implies the resemblance of the process’s properties at
multiple, higher time scales (e.g., annual). This fact imposes the requirement of multi-scale
consistency, which is also related with so-called issue of low-frequency variability or over-
depression, that is often encountered in many weather-generation models [e.g., Wilks and
Wilby, 1999].

Depending on the type of study, different aspects of the process may be of interest. For instance,
in the case of water resources management studies (e.g., in water supply and/or hydropower
reliability studies) that are typically conducted at a monthly basis, it is considered important to
simulate both the over-annual correlation structure, the periodic structure at the monthly scale
and the marginal distributions. Multi-scale consistency is an important operational
requirement, since it can significantly affect the outcome of a Monte Carlo experiment, and
hence the probabilistic behavior of the output of interest, and eventually, affect the design and
operation of the engineering works.

In this vein, Chapter 7 moves beyond the previously discussed, single-scale, simulation
methods, and considers the simulation challenge through the prism of
disaggregation/downscaling methods, which in principal aim at the generation of multi-scale
consistent realizations via the transfer of information among different time scales.
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ON THE REPRODUCTION OF DEPENDENCIES THROUGH LINEAR
STOCHASTIC MODELS WITH NON-GAUSSIAN WHITE NOISE *

Remember that all models are wrong; the practical question is how wrong do they have to be to
not be useful.

~ George Box and Norman Draper [1987 p. 74]
PREAMBLE

Since the early days of stochastic hydrology back in 1960’s, autoregressive (AR) and moving
average (MA) models (as well as their extensions) have been widely used to simulate
hydrometeorological processes. Initially, AR(1) or Markovian models with Gaussian noise
prevailed due to their conceptual and mathematical simplicity. However, the ubiquitous
skewed behavior of most hydrometeorological processes, particularly at fine time scales,
necessitated the generation of synthetic time series to also reproduce higher-order moments.
In this respect, the former schemes were enhanced to preserve skewness through the use of
non-Gaussian white noise— a modification attributed to Thomas and Fiering (TF). Although
preserving higher-order moments to approximate a distribution is a limited and potentially
risky solution, the TF approach has become a common choice in operational practice. In this
study, almost half a century after its introduction, we reveal an important flaw that spans over
all popular linear stochastic models that employ non-Gaussian white noise. Focusing on the
Markovian case, we prove mathematically that this generating scheme provides bounded
dependence patterns, which are both unrealistic and inconsistent with the observed data. This
so-called envelope behavior is amplified as the skewness and correlation increases, as
demonstrated on the basis of real-world and hypothetical simulation examples.

The Chapter is structured as follows: section 3.1 provides the historical background of the TF
approach; section 3.2 details the issue of envelope behavior. Section 3.3 demonstrates this
problem through a real-world case study. Section 3.4 and 3.5 discuss and conclude this chapter
respectively.

3.1 A GLIMPSE OF HISTORY

The celebrated Harvard water program and the development of the so-called Thomas-Fiering
(TF) model in the early 60s [Maass et al., 1962; Thomas and Fiering, 1962; Fiering, 1967; Fiering
and Jackson, 1971] played a historically crucial role in definition and advancement of the

*Based on:

Tsoukalas, I, S. Papalexiou, A. Efstratiadis, and C. Makropoulos (2018a), A cautionary note on the reproduction
of dependencies through linear stochastic models with non-Gaussian white noise, Water, 10(6), 771,
d0i:10.3390/W10060771.
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scientific discipline of stochastic hydrology—more specifically, of synthetic hydrology. The
emergence of this field was mainly motivated by the need to generate synthetic streamflow data,
to be used in water resources planning and management models [Matalas, 1967; Jackson, 1975;
Hirsch, 1979]. The use of synthetic streamflow generators (or more generally weather
generators) allowed for representing the operation of complex hydrosystems and deriving risk-
related quantities that could not be obtained through classical statistics. Among the many
different alternative models (see references below, as well as section 2.3.1), the TF model
prevailed for many years and still remains a popular choice. To date, the original Thomas-
Fiering paper [1962] and the related works of the Harvard water program [Maass et al., 1962;
Thomas and Fiering, 1962; Fiering, 1967; Fiering and Jackson, 1971] have been cited in the
literature almost 2000 times, a fact highlighting its vast popularity and reasonably justifying its
denomination as the Ford’s Model T of stochastic hydrology [ Klemes, 1997]. Additionally, more
than halfa century since its conception, the TF model, its variants, and the associated approach
to handle skewness (see below) are standard educational material in most stochastic-hydrology
courses and are disclosed in prominent positions in many classic and contemporary textbooks
[Kottegoda, 1980; Bras and Rodriguez-Iturbe, 198s5; Salas, 1993; Hipel and McLeod, 1994;
Reddy, 1997; Loucks and van Beek, 2017]. The wide acceptance of the model is also
acknowledged by Salas and Pielke [2003], who asserted that, the PAR(1) model (also known as
the Thomas-Fiering model) is likely one of the most widely used models in hydrology.

The original TF model is essentially a cyclostationary version of the classic stationary linear
autoregressive model of order 1 (AR(1)), also formulated as a periodic autoregressive of order
1 (PAR(1)), in order to account for systematic changes and non-stationarities of statistical
characteristics across seasons. The fact that the marginal distributions of many
hydrometeorological processes are not Gaussian, motivated Thomas and Fiering [1963] to
propose the replacement of the Gaussian white noise with Gamma (G) or Pearson type-III
(PII) distributed white noise | Fiering and Jackson, 1971, pp. 53-57] in order to account for the
skewness coefficient (to our knowledge, this modification first appears in the book of Thomas
and Burden [1963]). Note that the PIII distribution is a simple extension of the G distribution,
which introduces an additional location parameter.

This approach was subsequently adopted by many other researchers [e.g., Matalas, 1967;
McMahon and Miller, 1971; Fiering and Jackson, 1971; O’Connell, 1974; Lawrance and
Kottegoda, 1977; Vogel and Stedinger, 1988; Koutsoyiannis and Manetas, 1996; Koutsoyiannis,
1999, 2000; Koutsoyiannis et al., 2003b; Unal et al., 2004; Kim et al., 2008; Jothiprakash and
Shanthi, 2009; Efstratiadis et al., 2014a; Adeloye et al., 2015; Montaseri et al., 2017], and can be
classified as an implicit one, since it aims to approximate the distribution of the target process
via the introduction of non-Gaussian white noise [ Tsoukalas et al., 2018¢]. Hereafter, we refer
to the use of non-Gaussian white noise in linear stochastic models (e.g., AR(1)) as the TF
approach.

Nevertheless, herein, we mainly focus on AR models with non-Gaussian white noise, which
have been widely adopted in hydrology, and briefly discuss three alternative schemes, two of
which are based on moving average (MA) models and one based on an autoregressive moving
average model (ARMA). Specifically, we investigate the effect on the established dependence
patterns that arise from the use of PIIl white noise within stationary univariate and
multivariate linear stochastic models for generating synthetic hydrological data via stochastic
simulation. Based on theoretical reasoning and empirical evidence, it is shown that the use of
the implicit TF approach results in bounded and thus unrealistic dependence patterns,
highlighting this approach’s limitations in simulating skewed hydrometeorological processes.
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Our motivation stems from an observation of Tsoukalas et al. [2018¢e], who noticed this
dependence pattern flaw while simulating 2000 years of monthly streamflow data at Aswan
dam through the TF approach (i.e., PAR(1) with skewed white noise), hereafter called envelope
behavior. A characteristic sample of this work is shown Figure 3.1, where we depict the scatter
plots of historical and synthetic data for three pairs of consecutive months (January-February,
March-April, and September—October). It is observed that the synthetically-derived scatter is
bounded by a linear threshold, while the historical data clearly extend below this limiting line.
It is remarkable that the model reproduces almost perfectly the (often regarded as essential)
statistical characteristics of historical data, i.e., the mean, variance, and skewness, as well as the
month-to-month linear correlations (Pearson’s), which is the typical measure of statistical
dependence that is encountered in all linear stochastic schemes. However, it seems that the
preservation of these statistical characteristics does not ensure the generation of fully consistent
dependence patterns.
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Figure 3.1 | Comparison of the (A) January-February, (B) March-April, and (C) September-October
dependence patterns between historical and synthetic monthly runoff data (10° m?) of the Nile, at
Aswan dam. Synthetic time series were generated by the cyclostationary Thomas-Fiering (TF) approach
(adapted by Tsoukalas et al. [2018e]; the simulated negative values were not truncated to zero in order
to avoid distortion of the dependence pattern). The red line (—) depicts the envelope equation of the
TF model (when combined with PIII white noise. See also Appendix A).

3.2 THE ENVELOPE BEHAVIOR OF LINEAR STOCHASTIC MODELS WITH NON-
(GGAUSSIAN WHITE NOISE

3.2.1 The Thomas-Fiering approach

The basic idea of the TF approach lies in using non-Gaussian, skewed, white noise within linear
stochastic models in order to resemble the target marginal statistics, i.e., sample mean, variance,
and skewness. Note that the derivation of a theoretical formula for the white noise skewness in
AR(p) models of a higher order (p = 2) aiming to reproduce skewness is theoretically possible
but practically of no use, as it involves high-order joint statistics (that are difficult to estimate
and are also subject to significant sample uncertainties [Lombardo et al., 2014]). Thus,
application is possible only based on sample estimates of these joint statistics. This is the major
reason why the TF modification was originally restricted in AR(1) models, and thus similarly
we also concentrate our main analysis in stationary univariate and multivariate AR(1) models
with skewed white noise, while we briefly explore the cases of some other linear stochastic
models (i.e., an ARMA and two variants of MA models).
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Apparently, the selection of the underlying model determines the stochastic characteristics of
the resulting simulation scheme. For example, when an AR(1) model is employed, the overall
scheme will reproduce only Markovian autocorrelation structures, while if a more flexible MA--
based scheme is used, the simulation scheme will be able to resemble a wider range of
correlation structures.

However, regardless of the choice of the underlying model, such schemes exhibit a number of
shortcomings and limitations, which are briefly summarized here | Tsoukalas et al., 2018e]: (1)
They provide just an approximation of the marginal distribution, as reproducing statistics
generally is not equivalent to reproducing the distribution. Furthermore, the resulting
distribution is not known a priori (e.g., in general the sum of Gamma distributed variables is
not Gamma; see also, Moschopoulos [1985]). We remark that this was acknowledged by the
authors [Fiering and Jackson, 1971, pp. 53-57], as well as later remarked by other researchers
[Matalas and Wallis, 1976, p. 66; Lettenmaier and Burges, 1977; Koutsoyiannis and Manetas,
1996]; (2) In order to reproduce the skewness of the underlying process it is required (due to
central limit theorem) to use white noise with higher skewness [Lettenmaier and Burges, 1977;
Kottegoda, 1980; Todini, 1980; Koutsoyiannis, 1999], which can cause, in some cases, failure of
the random number generator itself; (3) This simulation scheme generates time series that can
have negative values, which is not consistent with many physical processes (e.g., rainfall, wind,
streamflow, etc.). This is attributed to the fact that the lower bound of the white noise
distribution may be negative in order to match the target statistics (as estimated from observed
time series); (4) Finally, we prove and demonstrate in the next sections that this scheme leads
to bounded and thus unrealistic dependence patterns that are not observed in natural processes
(such as those depicted in Figure 3.1).

3.2.2 The envelope behavior in the classical univariate AR(1) model

Let us assume we wish to simulate a continuous-state (not necessarily Gaussian), discrete-time,
stationary AR(1) process (also referred to as the Markov process) x;,t € Z, where t is the time
index. The main equation of the model reads:

Xt =Xy + & (3.1)

wherea, = p,: = Corr[&t, &t—1] is a model parameter and &, denotes an i.i.d. random variable
(RV) known as white noise or the innovation term. The theoretical autocorrelation function

(ACF) of the AR(1) model is p;: = Corr[&t, gt_f] = alfl, where 7 stands for the time lag. The
mean y, : = E[&] and variance oy, : = Var[&] =E [(g — ,uﬁ)z] of x; are related with those of
& via the following equations (hereafter, due to stationarity, the index ¢ will be omitted when
possible):

te = py(1—a,) (3.2)
of =07 (1—a,?) (3.3)

Apparently, if the process of interest is Gaussian (or well-approximated by it), Equations (2)
and (3) in combination with Gaussian white noise would be sufficient and exact, since a linear
combination of Gaussian RVs is also Gaussian. However, this is not the case for most
hydrometeorological processes. In this context, the TF approach attempts to approximate the
non-Gaussian behavior of x; by employing non-Gaussian white noise for &, where the
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‘) ] of x, is related with that of & by [Fiering and Jackson,

skewness coefficient (s = E [(

Ox
1971; Kottegoda, 1980; Bras and Rodriguez-Iturbe, 1985; Reddy, 1997; Loucks and van Beek,
2017]:

1—a,s
s ( 1)

: =Gy g o (3.4)

Hence, in order to capture the first three marginal moments of x;, one has to generate non-
Gaussian white noise with certain statistical characteristics, which are all functions of the lag-1
autocorrelation coefficient of the process x;, given that a, = p,. In Figure 3.2 we provide two
alternative views of Eq. (3.4), both depicting the variability of the required skewness Cs_ of the

white noise against the skewness Cs_and the lag-1 autocorrelation p, of the target process x;.
Particularly, in Figure 3.2A we fix p, to specific values, ranging from o to 0.9, and with Cg_
varying from o to 5, while in Figure 3.2B we set Cs, € {1,2,3,4,5}and vary p, from o to 0.9.

Considering a high p, = 0.9 and aiming to reproduce a moderate skewness, e.g., = 1, results
in a white noise skewness = 3.5, while for a highly skewed variable the deviation becomes much
larger (related of course to p,). For example, for a process with p, = 0.9 and Cs_= 4, the

required white noise skewness is Cg, ~ 12.5, i.e., more than three times higher than the target

value.
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Figure 3.2 | Relationship between (A) the target skewness coefficient of process x; and the required
skewness for white noise term &; for a given lag-1 autocorrelation coefficient p,; and (B) the lag-1
autocorrelation coefficient p, and the required skewness coefficient of white noise term &, to attain the
target skewness coefficient of process x;.

Within non-Gaussian simulations, the selection of the underlying statistical model of the white
noise and the associated random number generation procedure is a pivotal step. Thomas and
Fiering proposed the use of Pearson type-III (PIII) distribution, which is also one of the most
commonly used distributions in hydrology. The probability density function (PDF) of PIII is
given by:
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f:Plll(fi a,b,c)
1 E—c\*! -\ (ifb>0 c<&<o (3.5)
_|b|F(a)( b ) eXp( b )'{ifb<o —o<E<c

where a > 0,b # 0,and ¢ € R are shape, scale, and location parameters, respectively (if ¢ =
0, then PIII reduces to the Gamma distribution). The mean i, variance 05;2 and skewness Cj .

of the random variable § are given by:

_2b
£ |blVa

Of course, as Matalas and Wallis [1976] noted, choosing the white noise distribution is a matter
of convenience (see also discussion in Tsoukalas et al. [2018e]) and simplicity in generating
random numbers, given of course that the selected distribution can reproduce the desired
statistics of white noise, i.e., e, T, and Cs,-

Ke = c + ab, 052 = ab?, Cs (3.6)

The non-Gaussian formulation of the AR(1) model through the TF approach results in the so-
called envelope behavior issue, which is associated with the distribution of the white noise. Let
us write Eq. (3.1) in the equivalent form:

X =a,x, + F(u) (3.7)

where F; ' denotes the inverse cumulative density function (ICDF) of the white noise & and u
expresses a uniform (U) RV in [o, 1] (probability), i.e., u~U(0,1). In the above formulation,
we see that in the Gaussian case, where & € (—, o), the random variable x, takes any value
in (—oo, 00). However, when the distribution of &, has a finite left support, as in PIIl or Gamma
(G) cases, then 11}_1}3) F7*(u) = £,, where £, stands for the lower bound of &;. Hence, for given

a, (e.g., specified from the data) and x,_,, we can estimate at any step of the generation
procedure the lower bound of x, by:

Xe = Xy + 4 (3.8)

and thus calculate the theoretical lower bound of the synthetic data. Similarly, when the

distribution of ¢, is bounded from above (as in the PIII case adjusted for negative skewness),

then lim F,*(u) = v,, where v is the upper bound of the distribution of &;. In this case the
u->1 = = =

generation mechanism is bounded from above, i.e.:
X S QX + U (3.9)

This limitation is especially important since hydrometeorological variables, such as river
discharge, cannot be considered unbounded from above, even when the sample statistics
erroneously indicate negative skewness. To the best of our knowledge, despite the popularity
of the TF model and the associated approach of coupling it with skewed white noise, this
shortcoming has never been reported in literature, regardless of its straightforward and
intuitive theoretical derivation. This limitation also holds for the univariate cyclostationary TF
model (i.e., PAR(1) with PIII white noise), for which we provide the corresponding
relationships in Appendix A.
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Apart from the above relationships, based on the previous formulation it can be shown that a
simple recursive procedure facilitates the estimation of the theoretical minimum (or
maximum) value of the TF approach. Without the loss of generality, assuming x,: = i, and
by sequentially applying Eq. (3.7) for g steps with &, = Fg‘1 (0)=7¢ £, We can obtain the model’s
theoretical minimum, which can differ from £, (they are identical when £, = 0). The recursive
procedure can be written as follows: ) )

Xoi = Uy
X, = a,;x, + F;*(0)
X, =

a,x, +F*(0) (3.10)
Xq = @,Xq-, + F1(0)

Alternatively, and more vigorously (depending on the support of &;), the theoretical minimum
and maximum are given, respectively, by min(gt) =+¥;/(1—a,) and max(&) =
ve/(1—ay).

In order to better demonstrate the envelope behavior, we apply the AR(1) model coupled with

PIII white noise (termed AR(1)-PIII) to 12 hypothetical scenarios by simulating 5 ooo time
steps for each. For all scenarios we fix 4, = 0.5 and oy = 1 combined with Cs € {1, 2,4} and

p1 € {0.2,0.4,0.6,0.8} (see Table 3-1 for a summary). Since the PIII is used for generating
white noise and C; > 0, in all cases a lower bound is anticipated.

Table 3-1 | Summary of target statistics for all scenarios (in all cases, px = 0.5and o7 = 1).

Scenario A B C D E F G H I J K L
Cs, 1 2 4 1 2 4 1 2 4 1 2 4
pr=a 02 0.4 0.6 0.8
He 0.4 0.3 0.2 0.1
a? 0.96 0.84 0.64 0.36
Cs, 105 211 422 122 243 486 153 306 613 226 452  9.04

a 359 0.899 0.225 2706 0.677 0.169 1.706 0.426 0.107 0.784 0.196 0.049
Plldistributio b 0.517 1.033 2.067 0.557 1.114 2229 0.613 1.225 2450 0.678 1356 2.711
n c -145 -0.52 -0.06 -1.20 -0.45 -0.07 -0.84 -0.32 -0.06 -0.43 -0.16 -0.03

8 9 5 8 4 7 5 2 1 1 6 3

As theoretically expected, the model reproduces the target ACF and target statistics for all
scenarios with high accuracy (see Figure A.1and Table A-1 of Appendix A). However, the
envelope behavior of the dependence pattern is apparent and indicates its limitation, a fact
demonstrated by the scatter plots (Figure 3.3) corresponding to the 12 simulation scenarios.
The theoretically-derived Eq. (3.8), defining the lower bound of the feasible space of the
(x¢—,, x¢) points, is depicted by a red line (Figure 3.3). Note that labels in each subplot follow
the scenarios’ naming convention in Table 3-1 (e.g., panel C corresponds to scenario C of
Figure 3.3). Apparently, in every case, regardless of the (s _and p, values, the model generates

bounded dependence patterns enveloped by Eq. (3.8). This behavior appears even for low
combinations of Cs _and p, (e.g., scenario A).
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G xe=0.6 x,_1 - 0.845 H xe=0.6 x,_1—0.322 I x:=0.6 x,.1—0.061
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Figure 3.3 | Scatter plots depicting the simulated (using the TF model, i.e., the autoregressive model
of order 1 (AR(1))-PIII) lag-1 dependence pattern among consecutive time steps (i.e., pair values () of
the previous and current time steps). The labels of each plot resemble the corresponding scenarios of
Table 3-1. The red line (—) depicts the envelope equation shown in the title of each plot.

3.2.3 From the univariate to the multivariate AR(1) model

It is reasonable to expect that the envelope behavior will also be observed in the multivariate
case, i.e., when the multivariate autoregressive process of order 1 is used (MAR(1)) in
combination with non-Gaussian white noise. Let us assume that we wish to generate an m-

. T
dimensional vector x; = [&l, e Xy e ﬂ”] of m cross-correlated AR(1) processes, indexed by
i. The generation mechanism of the model is:

xX; =A x4 + & (3.11)

where A, is an m X m matrix and &; is an m-dimensional column vector of cross-correlated
yet serially independent RVs with covariance X, € R™™. The model is often called the
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multivariate lag-1 model when a full A, matrix is employed, while there exists a variation that
assumes a diagonal A, matrix, often called multivariate Markov model or contemporaneous
multivariate autoregressive model of order 1 (i.e., CMAR(1)). Both formulations explicitly
account for the lag-o cross-correlations of the variables while their major difference is that the
former is able to explicitly account for the lag-1 cross-correlations [Pegram and James, 1972;
Matalas and Wallis, 1976; Kottegoda, 1980]. On the other hand, the use of diagonal A, ensures
that each individual process is a Markov process and significantly simplifies the parameter
estimation procedure, since the lag-1 cross-correlations are not explicitly modeled. Its use is
often advocated by the literature, since several authors suggest that lag-1 cross-correlations can
be neglected [e.g., Pegram and James, 1972; Camacho et al., 1985; Salas, 1993; Koutsoyiannis
and Manetas, 1996; Efstratiadis et al., 2014a; Tsoukalas et al., 2018e]. Yet it is noted that while
this simplification could be valid for processes considered at a coarse time scale (e.g., monthly
or annual), it should be used with caution in cases of fine time scale processes (e.g., hourly) or
for modelling phenomena characterized by cause-effect relationships (e.g., rainfall-runoff).
Nevertheless, here we focus on the so-called multivariate Markov model (i.e., CMAR(1)).
Regarding its parameter estimation and assuming that 4, is a diagonal matrix of the form:

Aq[1,1] 0 0
0 0
0 0 al[m,m]

= [A,]i; (3.12)

where a,[; ;) = Cov[ﬁ, ﬁ_l]/Var[ﬁ_l] = Corr[ﬁ', ﬁ_l] = p!, the following holds true:
I, =M,— A, MA,’ (3.13)

where M, = Cov[gt, gt] € R™™ is the lag-o cross-covariance matrix. For instance, its i*, j
element is [M,];; = Cov[ﬁ, gg ] The theoretical cross-covariance matrices M, =
Cov[x;, x;_;| can be obtained for any time lag 7 by recursively applying the equation:

M,=AM,,,T>0 (3.14)

Meanwhile, the theoretical and cross-correlation matrices R; = Corr[gt, gt_f] are obtained by

R, = (diag(MT))_l/2 MT(diag(MT))_l/z. Furthermore, the covariance matrix X, can be
expressed as:

BBT =X (3.15)

where B is an m X m, typically lower triangular, matrix (also known as the square root of X,)
obtained by standard decomposition techniques (e.g., the Cholesky technique) or optimization
approaches [Koutsoyiannis, 1999; Higham, 2002]. The latter methods are usually employed
when B is non-positive definite. Typically, such problems arise when the sample estimates of
the required statistics are extracted from historical time series of different and/or limited
lengths [Kottegoda, 1980]. Nonetheless, given that A, is diagonal and assuming that &, = B&,,
where &, is an m-dimensional column-vector of i.i.d. RVs, the decomposition of Eq. (3.11) can

be given as follows:

Page | 29



LINEAR STOCHASTIC MODELS WITH NON-GAUSSIAN WHITE NOISE

Xf= Gy Xfoq + Z by, & (3.16)

Additionally, the moments of §; and x; are interrelated through (index ¢ is omitted due to

stationarity):
ue = E|§] = B {E[x] - 4,E[x]) (3.17)
of = Var[§] = [1,...,1]" (3.18)
Csg = i [f] = (B®) " {i;[x] — 4,9 p,[ «]} (3.19)

where i, [E] and p, [g] denote column-vectors that contain the third central moments of & and
X, respectively; we remark that & coincides with the skewness coefficient, since the model
assumes unit variance for . Similar to the univariate case, the white noise term is typically

generated using the PIII distribution (Eq. (3.5)). To illustrate the envelope behavior of the
model, we rewrite the Eq. (3.11) similarly to Eq. (3.7), i.e.:

m
Xp= Qi X, t Z b jFei (W) (3.20)
=1 -

where Fej (W) denotes the quantile function of 3 J for a given probability u/. If the distribution
of fj is bounded below or above by ;) or v, respectively, then l}_m ¢ '(wW)=¢ ¢i» and
2 2 ul-o0 % 2

7 = ; i
151_1)11 F & '(w) = Vi Therefore, we obtain:

Xf 2 @y Xig + Z bii j1€ei (3.21)
.=1 -

xf < aypgxio, + Z b[i,j]Uif (3.22)
j=1

or lower (left)- and above (right)-bounded cases, respectively.

However, in the multivariate case, and since x} depends on multiple values of &/, the limiting

behavior (assuming that all RVs are left-bounded) is identified by setting u =
[ul, ool um] — 0. Of course, the envelope behavior diminishes if the white noise term i ¢

is normally distributed (or more generally if §; € (—0, )), yet in this case skewness cannot be

preserved. Without the loss of generality, we examine the bivariate case of x, = [x{, xt] where
both processes eXhlblt zero autocorrelation but thelr lag o cross-correlation is equal to 0.8. For
E[x] = [0.5,0.5]", Var[x] = [1,1]T, and p,[x]| = C,, = [2,2.5]T we find:
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A=y oJB=los o (3:23)

where B is obtained by the Cholesky decomposition), while the generating equation (Eq.
(3.11)) becomes:

1 1 f 1
Xt 0 07|Xt-1 1 0 1|st

2| = [ ] . |t [ ] 2 (3.24)
X} 0 ol|x?, 0.8 0.6 it
Given the target moments of x, the statistics of the white noise term are calculated as E [E] =

[0.50,0.16]T, Var [g] =[1,1]7, and p, [g] = Cs, = [2.00, 6.83]T. Using the PIII for white

noise generation we obtain the lower bound vector £ = [—0.500, —0.126]". Thus, from Eq.

(3.22) the limiting envelope equations are x; = 0 x;/_, — 0.500 and x7 = 0 x7_, — 0.475. In
this case, it is also possible to estimate the envelope relationship a priori between x} and x7 as
A, is a zero matrix. Particularly, since x; = &} and x? = 0.8&} + 0.6¢7, and substituting the

former into the latter, we get x7 = 0.8x; — 0.6¢7, and by setting {7 = £;2 the envelope line
x? = 0.8x} — 0.076 is obtained.

In order to demonstrate the envelope behavior in the multivariate case, we employ the above
model and synthesized a time series of 5 ooo time steps. Figure 3.4A-C depicts the established
dependence patterns of each individual process for lag-1 (panels A and B), while panel C shows
the pattern among the two processes for lag-o. Also, at each panel we display the corresponding
envelope equation. We remark that the model was able to accurately reproduce the theoretical
stochastic structure, expressed by the autocorrelation (ACF) and cross-correlation functions
(CCF) shown in Figure 3.4D-F, as well as, to approximate very well the target moments (Table
A-2).
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Figure 3.4 | Scatter plots depicting the simulated (using the contemporaneous multivariate
autoregressive model of order 1 (CMAR(1) model) with PIII white noise) for (A) and (B) lag-1
dependence patterns of the zero-autocorrelated processes x¢ and x7, respectively, for consecutive time
steps (i.e., pair values (o) of the previous and current time steps). Panel (C) depicts the contemporaneous
dependence (lag-o) of x{ and x7. The red line (—) depicts the envelope equation shown in the title of
each plot. Panel (D) compares the simulated and theoretical autocorrelation function (ACF) of x{ while
panel (E) compares that of x7. Finally, panel (F) compares the simulated and theoretical cross-
correlation function (CCF) of x{ and xZ.

In order to extend our working examples, we simulate another vector of bivariate time series
(5 ooo time steps) using the same marginal moments as before, but this time with a different
autocorrelation structure. Specifically, we assumed Corr[gtl, gtl_l] = p; = 0.7 and
Corr[xZ, x2_,] = p? = 0.5. Thus, we get:

_[07 O _[0.714 0
A, = [ 0 0-5]'3 - [0.728 0.468 (3.25)
and the generating formula (i.e., Eq. (3.11)):
1
x; =[0.7 0] Xi +[O.714 0 ] St e
x? 0 05|x2, 0.728 0.4681 (&2 '

Similar to the previous analysis, Figure 3.5A-C depicts the established lag-1 and lag-o
dependence patterns, while the envelope equation of each process is displayed in the title of
each panel. It is apparent that at each simulated step, the model poses significant constraints in
the range of subsequent plausible values, which is far from reality. We remark that in this case
the contemporaneous lag-o relationship cannot be displayed in a two-dimensional (2D) plot
since it involves the lag-1 values of x} and x7. Nevertheless, the model successfully reproduced
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the target stochastic structure (Figure 3.5D-F) and the marginal moments (see Table A-3), at
the cost, however, of unrealistically bounded dependence patterns.

A B

X/ =07x},-0.246 xZ=0.5x2,-0.275 10.0 -
10.0 -
L]
e N oo
x >
00 25 50 75 10.0 00 25 50 75 10.0 00 25 50 75 10.0
1 2 1
X Xe1 Xy
D s E
¢ Synthetic data
0.6 - — Theoretical
a
29
Q
<
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Lag, 1 Lag, 1 Lag, 1

Figure 3.5 | Scatter plots depicting the simulated (using the CMAR(1) model with PIII white noise)
for (A) and (B) lag-1 dependence pattern of the autocorrelated processes x; and x7, respectively, for
consecutive time steps (i.e., pair values (o) of the previous and current time steps), while panel (C)
depicts the contemporaneous dependence (lag-o) of x; and x7. The red line (—) depicts the envelope
equation shown in the title of each plot. Panel (D) compares the simulated and theoretical ACF of x}
while panel (E) compares that of x7. Lastly, panel (F) compares the simulated and theoretical CCF of
x; and x7.

3.2.4 The envelope behavior beyond AR models

To demonstrate the impact of employing non-Gaussian white noise in combination with other
linear stochastic models, we employed (1) a low-order autoregressive moving average model
ARMA(p,q); (2) a simple moving average model MA(q); and (3) its symmetric variant, termed
SMA(q). The parameters p and g determine the order of the models. As shown by O'Connell
[1974] and later discussed by Lettenmaier and Burges [1977], it is possible for the case of
ARMA(1,1) to derive an analytical relationship that links the skewness of the white noise with
the skewness of the target process. Furthermore, it has been shown [Koutsoyiannis, 2000] that
similar relationships can be established for the two moving average schemes regardless of the
order g (i.e., MA(q) and SMA(q)).

In this demonstration we utilized the aforementioned relationships for the simulation of a
univariate stationary process with the characteristics of the hypothetical Scenario I of Table
3-1, which refers to the Markovian process with p, = 0.6/*! and Cs, = 4. Regarding the
ARMA(1,1) process, it is noted that its autocorrelation structure is somewhat different from
the Markovian one, hence we carefully choose its parameters in order to have p, = 0.6. On the
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other hand, both MA(q) and SMA(q) are able to resemble the Markovian autocorrelation
structure with satisfactory accuracy by setting g = 32. Nonetheless, in all cases we used PIII
distribution for the white noise, hence the models are termed ARMA((1,1)-PIII, MA(32)-PIII,
and SMA(32)-PIII. However, due to a lack of analytical solution for the envelope function, and
in order to derive a clear picture of the established dependence patterns, we generated very long
realizations, each one consisting of 500 ooo time steps. Figure 3.6 shows the lag-1 dependence
pattern obtained by the three schemes as well as a comparison of the simulated and theoretical
ACEF, which is very well reproduced by all models. Despite the accurate reproduction of the
target marginal statistics (mean, variance, and skewness) by all models, they establish
peculiarly-shaped and always bounded dependence forms. However, it should be noted that
the MA(gq) and SMA(q) schemes are typically employed for the simulation of annual processes,
which are typically well approximated by the Gaussian distribution, and thus it is reasonable to
expect a minimization of this issue.

A ARMA(1,1) B MA(32) ¢ SMA(32)

20-

10-

' '
15 20 20

0.6- 0.6- 0.6-
® Synthetic data ® Synthetic data ® Synthetic data

=== Theoretical w===_Theoretical w===_Theoretical

0.4~

ACF, p;

0.0- 0.0-

; ;: I'U ]I.': .Z.l) 1 11 lIO llﬁ .Z'“ i ;» 1‘0 1‘5 ZIO
Lag, t Lag, 1 Lag, t
Figure 3.6 | Scatter plots depicting the simulated lag-1 dependence pattern among consecutive time
steps (i.e., pair values (e) of the previous and current time steps) obtained by: (A) ARMA(1,1)-PIII; (B)
MA(32)-PIII; and (C) SMA(32)-PIII models. Comparison of synthetic and theoretical autocorrelation
function (ACF) obtained by: (D) ARMA(1,1)-PIII; (E) MA(32)-PIIL; and (F) SMA(32)-PIII models.

3.3 REAL-WORLD CASE STUDY

In this section we demonstrate the envelope behavior of the TF approach using a real-world
and long dataset (1 January 1970 to 31 December 2008) of daily streamflow data (m?/s) of river
Achelous at Kremasta dam in Western Greece. It is assumed that the autocorrelation structure
of the daily streamflow of each month can be described by a stationary AR(1) model. The
historical monthly and daily time series are characterized by non-Gaussian distributions and
skewness coefficients ranging from 1.6 (June) up to 6.7 (October). Specifically, we generate
daily synthetic time series with a length of 1000 years, using for each month a different AR(1)
model with PIII white noise (i.e., AR(1)- PIII). The model very satisfactorily reproduced the
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target historical marginal statistics of each month (Table A-4), as well as the theoretical
Markovian autocorrelation structure (see Figure A.2 for a comparison among the empirical,
synthetic, and theoretical ACFs), which however deviates from the empirical ACF for some
months, showing a more persistent behavior. Yet a comparison of the lag-1 dependence
patterns between the synthetic and the historical data, using scatter plots for each month
(Figure 3.7), reveals the omnipresence of the envelope behavior. As shown, the model
generates unrealistic dependence patterns that are far from the historical ones. The synthetic
pairs of values are bounded by the theoretical envelope function (red line; embedded in each
plot), while the historical pairs clearly extend beyond that line. In an effort to provide a
quantitative metric, we calculate the empirical probability of a historical pair to lie below the
envelope function. The overall mean value of this metric estimated from all months is 27%,
while it ranges from 14% (in November) to 42% (in April).

A Jan : x, = 0.69 x,_; + 13.333 B Feb:x,=0.661x,;+20244 € Mar: x, = 0.754 x,_; + 13.879
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Figure 3.7 | Scatter plots showing the lag-1 dependence pattern of the daily streamflow (m?/s) of the
Achelous river at the Kremasta dam, Greece (orange dots; ) and of a synthetic time series generated
using an AR(1)- PIII model (black dots; «). The red line (—) depicts the envelope equation embedded
each plot.
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3.4 DISCUSSION

Historically, most of the questions raised regarding the TF approach have concerned the case
of the AR(1) model and the range of attainable skewness coefficients [McMahon and Miller,
1971; Lettenmaier and Burges, 1977; Obeysekera and Yevjevich, 1985]. This was mainly due to
the use of Wilson-Hilferty transformation which was used for generating Gamma or Pearson
type-III RVs [Kirby, 1972]. Nowadays, this technical issue is out of interest, since such RVs can
be easily generated with high accuracy by modern random number generators which are
available in almost every programming language (e.g., R, MATLAB, etc.). Additionally, we note
that McMahon and Miller [1971] reported that Thomas and Burden [1963] and Fiering [1967]
tested their approach for skewness values ranging in (-o.5, 1.0).

This work focused on the effect of using Pearson type-III white noise in AR(1) models and we
show that this approach leads to unrealistic dependence patterns. Furthermore, preliminary
investigations have also shown that this issue extends over other popular linear stochastic
models when coupled with non-Gaussian white noise. Particularly, we demonstrated three
such cases using PIII white noise in combination with (1) a classical ARMA(1,1); (2) a simple
MA(q); and (3) its symmetrical variant SMA(q) [Koutsoyiannis, 2000]. In all cases the resulting
dependence patterns exhibited a peculiar and unrealistic bounded shape which can be bounded
from both directions.

Nevertheless, it is noteworthy that Song et al. [1996] and Jeong and Lee [2015] also observed
this issue independently while studying AR(1) with exponential white noise [Gaver and Lewis,
1980; Lawrance and Lewis, 1981b, 1981a] and periodic Gamma autoregressive (PGAR)
processes [Fernandez and Salas, 1986], respectively. However, to the best of our knowledge,
these works, or any other, have not revealed the envelope limitation, neither provided a
theoretical proof and a justification for this behavior, which probably arises from the lack of
explicit assumption regarding the joint dependence structure of the process. Particularly, the
joint moment of order k + n of two continuous RVs, x and y, is given by:

E[x*y| = j j X y" fey C, y)dxdy (3.27)

where f,,, denotes the joint probability distribution function (PDF) of x and y. The first cross

product joint moment is embedded in the definition of covariance, as well as in the Pearson’s
correlation, i.e.:

xy = - [zl] _Fl® [X] (3.28)

y \[ Var|x] Var [X]

Hence, this points to the requirement for an assumption regarding fy,,. When both x and y are

Gaussian, and simulated through a typical decomposition scheme (e.g., the Cholesky
technique) which applies linear operations on them, the joint PDF of x and y is also Gaussian

(due to the affine transformation property of Gaussian RVs). When x and y are not Gaussian,

this convenient property does not hold. By analogy, the joint moment of order k +n of a
continuous-state, discrete-time stochastic process x; can be expressed as:
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_ k
xt X r] = j j&t &?—rfgt,&_f(xt»xt—r)dxtdxt—r (3.29)

If x; is Gaussian and modeled using a linear stochastic process (e.g., AR or MA-type) with
Gaussian white noise, then it is well known that the joint PDF f, ., is also Gaussian. This
implies linear operations on Gaussian RVs. On the other hand, this does not hold for the TF
approach, which uses non-Gaussian white noise and thus the form of f; , . is unclear.

We remind that summary statistics such as mean, variance, skewness, and correlation are
nothing more than some useful measures of location, dispersion, asymmetry, and dependence,
and do not involve in their estimation the actual joint distribution. A classic example is
provided by the so-called Anscombe’s Quartet [Anscombe, 1973] and recently by Matejka and
Fitzmaurice [2017]. Both works stress the importance of data science’s first principle: Visualize
your data. They demonstrate this issue by devising several examples of datasets that have the
same summary statistics but completely different dependence patterns. Apparently, as shown
in this work, the aforementioned simple principle also applies in synthetic hydrology.

Nowadays, multivariate random variables are typically modeled by copula functions [Sklar,
1959, 1973 ], which despite the early-days skepticism [Sklar, 1973] have found wide acceptance
and practical use. In hydrology, copulas have been popularized by the studies of De Michele
and Salvadori [2003] and Favre et al. [2004], and since then have been widely applied for the
description of correlated yet time-independent variables [e.g., De Michele and Salvadori, 2003;
Favre et al., 2004; Salvadori and De Michele, 2004, 2007; Zhang et al., 2006; Genest and Favre,
2007; Zhang and Singh, 2007; Hao and Singh, 2016; Wang et al., 2017], while only lately they
have been adapted and modified accordingly to account for time-dependence, which led to the
development of copula-based schemes for the simulation of hydrometeorological processes
[e.g., Bdrdossy and Pegram, 2009; Serinaldi, 2009a; Gyasi-Agyei, 2011; Lee and Salas, 2011; Hao
and Singh, 2013; Chen et al., 2015; Lee, 2017].

A conceptually related, yet until recently unknown to the hydrological community, approach
relies on the so-called Nataf joint distribution model [Nataf, 1962], which is associated to the
well-known Gaussian copula [Sklar, 1973; Lebrun and Dutfoy, 2009]. Since their inception,
Nataf-based models have been developed and applied for the simulation of univariate or
multivariate autoregressive processes with arbitrary marginal distribution mainly within
operations research, [e.g., Cario and Nelson, 1996; Biller and Nelson, 2003], and probabilistic
engineering mechanics [e.g., Grigoriu, 1998; Deodatis and Micaletti, 2001, while recently they
have been aligned with hydrological stochastics [Serinaldi and Lombardo, 2017; Tsoukalas et
al., 2017a, 2018e, 2018d, 2018b; Papalexiou, 2018] in order to account for non-Gaussian
processes, both univariate and multivariate, exhibiting intermittency, periodicity, and any-
range dependence.

Apparently, both Nataf- and copula-based approaches can provide a remedy to the limitations
of the TF approach, as well as explicitly account for non-Gaussianity, which is omnipresent
within hydrometeorological processes [e.g., Kroll and Vogel, 2002; Koutsoyiannis, 2005¢;
McMabhon et al., 2007; Bowers et al., 2012; Papalexiou and Koutsoyiannis, 2012, 2016; Blum et
al.,2017]. We deem that Nataf-based models provide a convenient and more precise alternative
given that they utilize (in an auxiliary or parent role) existing and well-known stochastic models
which provide the basis for a straightforward and operational efficient generation scheme. It is
also noted that the celebrated Log-Normal model of Matalas [1967], which incidentally can be

Page | 37



LINEAR STOCHASTIC MODELS WITH NON-GAUSSIAN WHITE NOISE

classified as a Nataf-based approach [Tsoukalas et al., 2018e, 2018d], does not exhibit the TF
approach limitation and thus can provide a rather easy and consistent option for practitioners.

3.5 SUMMARY

To conclude, we bring back the aphorism and the question set by Box and Draper.
Paraphrasing, we could say that indeed since all models are wrong and TF is not an exception,
the question is how wrong the TF approach has to be to not be useful. A way to answer this
question is through impact assessments of the envelope behavior in real-world applications,
e.g., in important engineering studies (reservoir design and sizing, hydropower assessment,
reliability-based studies, etc.), and of its effect on decision-making related to water resources
management. Another question arising here is why should one use a model with known
limitations and flaws (irrespective of whether these flaws have minor or major impacts on real-
world applications) which reproduces unrealistic rainfall or streamflow patterns?

We recognize that the TF model and the associated approach was a major contribution that
shaped stochastic hydrology, yet in practice linear stochastic models should be used cautiously
when combined with non-Gaussian white noise, given the limitations shown in this Chapter.
This approach preserves important summary statistics (i.e., mean, variance, and skewness) and
correlations, yet for processes showing medium to high skewness values and/or correlations it
will inevitably reproduce bounded and unrealistic dependence patterns that are then used in
simulations.

In this context, after half a century of use of this model and approach, we would suggest that it
is time to move to alternative methods which are consistent in generating realistic dependence
structures as well as the marginal distribution itself. The theoretical background of such an
approach will be discussed in the next Chapter 4, while Chapters 5 to 7, are build upon it, and,
propose a series of novel stochastic simulation schemes, suitable for a variety of stochastic
simulation problems (i.e., univariate or multivariate, stationary or cyclostationary, as well as
multi-scale).
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NON-GAUSSIAN MODELS FOR UNCONDITIONAL, CONDITIONAL AND
STOCHASTIC SIMULATION OF RANDOM VARIABLES AND PROCESSES *

PREAMBLE

This Chapter provides an overview of the theoretical foundations of the Nataf’s joint
distribution model, a construct closely related with the Gaussian copula, which in turn allows
modelling, and simulation (unconditional and conditional) of non-Gaussian random variables
and processes. The description and background of the model is initially introduced for the
establishment of the multivariate joint distribution (section 4.1) of non-Gaussian random
variables, while progressively is extended to conditional distributions (section 4.2) and
stochastic processes (section 4.3). Furthermore, section 4.5, presents a simple and efficient
algorithm, based on a hybrid Monte Carlo procedure that is used to approximate the so-called
equivalent correlation coefficients, an important concept of any Nataf-based method. Section
4.6 discusses and highlights the similarity between the rationale of Nataf-based methods with
other commonly used in hydrology approaches; which interestingly can be retrospectively
classified as Nataf-based methods. Finally, section 4.7 summarizes the key points and findings
of the Chapter.

* Partially based on:

Tsoukalas, I., C. Makropoulos, and D. Koutsoyiannis (2018d), Simulation of stochastic processes exhibiting any-
range dependence and arbitrary marginal distributions, Water Resour. Res., d0i:10.1029/2017WR022462.

Tsoukalas, I, A. Efstratiadis, and C. Makropoulos (2018e), Stochastic Periodic Autoregressive to Anything
(SPARTA): Modeling and simulation of cyclostationary processes with arbitrary marginal distributions, Water
Resour. Res., 54(1), 161-185, d0i:10.1002/2017WR021394.

Tsoukalas, I., A. Efstratiadis, and C. Makropoulos (2018b), Building a puzzle to solve a riddle: a new approach to
multi-temporal stochastic simulation, J. Hydrol., doi:(in review).

Tsoukalas, 1., A. Efstratiadis, and C. Makropoulos (2017a), Stochastic simulation of periodic processes with
arbitrary marginal distributions, in 15th International Conference on Environmental Science and Technology.
CEST 2017., Rhodes, Greece.
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4.1 ON THE NATAF JOINT DISTRIBUTION MODEL

4.1.1 Introduction and historical background

The problem of obtaining the joint distribution of random variables has long been discussed
within the statistical community. The formal introduction of copulas [Sklar, 1959, 1973] was
arguably a hallmark development with broad impact. Copulas have been developed to describe
multivariate distribution functions using simpler mathematical objects (i.e., using univariate
distributions and the so-called copula functions) [e.g., Fréchet, 1951; Féron, 1956; Dall’Aglio,
1959; Nataf, 1962; Mardia, 1970]. For a general discussion on copulas, see for instance, the
works of Embrechts et al. [2003], Nelsen [2007] or Joe [2014].

Among them, Nataf [1962] proposed a quite simple, yet general solution by mapping a
multivariate Gaussian distribution with a given correlation matrix to multivariate uniform
variables, which in turn are mapped to the desired distributions via the corresponding inverse
cumulative functions, hereafter called Nataf joint distribution model (NDM). The key
challenge of NDM is to identity the equivalent correlations to be applied within the generation
of random variables in the normal (Gaussian) domain, in order to attain the desired correlation
in the actual (or else, real) domain. In their classical work, Liu and Der Kiureghian [1986]
showed that the NDM is suitable for describing a wide range of correlation values. Later, Cario
and Nelson [1997] developed a generalized procedure based on NDM and referred to as
NORTA (NORmal To Anything), for the generation of correlated random vectors with
arbitrary marginal distributions, including also, combinations of continuous and discrete
random variables. NDM may be considered as a specific case of copulas [Sklar, 1973],and more
specifically the Gaussian one. In fact, it is argued, that linear stochastics are naturally
compatible with the this copula, since both use the Pearson’s linear correlation as measure of
dependence. Lebrun and Dutfoy [2009], in view of copula theory, provide an extensive and
insightful discussion on the relation of NDM with the Gaussian copula, as well as provide an
alternative formulation of the former in terms of Spearman’s 7 and Kendall’s £ (under some,
rather strict, assumptions — see also the discussion below).

Admittedly Cario and Nelson [1997] argued that the generality of their approach came at the
cost of computational efficiency (i.e., computational time), since the estimation of equivalent
correlations presupposed solving numerically a double integral in the infinite domain.
However, continuous advances in computing make this issue less and less relevant.

4.1.2 Theoretical background

Let X =[xy, ..., X;n]T denote a vector of m cross-correlated (yet, time-independent) random
variables (RVs), indexed using i, each one characterized by an arbitrarily specified marginal
distribution function in(x) = P(gi < x), with finite variance; also referred to as cumulative
distribution function (CDF). Let also fﬁi(x) = dFEi(x) /dx denote the corresponding
univariate probability density function (PDF). Furthermore, let R := Corr[&, ET] denote their
(target) correlation matrix (m x m).

Let also, Z = [Z, ..., Z;,] T be a vector characterized by a m-dimensional multivariate standard
normal distribution, i.e., z ~ Ny, (f, Z), where fi: = E[z] = 07 is the mean vector (m x 1) and
2 :=Cov|z,z"| =E [(g — i) (z- ﬁ)T] = E[z "] — fEi" is the covariance matrix (m x m),
which has to be positive semi-definite and in the case of multivariate standard normal
distribution is synonymous with its correlation matrix, R: = Corr[z,2z"| = Z. The multivariate
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standard normal CDF, IV, is denoted for simplicity as ®,, (z; TZ), while its multivariate PDF
as @, (z; Ti’). Notice that the mean, has been omitted for brevity. Apparently, each element of
z is also characterized by standard normal distribution, ®(-) with density ¢(-), ie.,
ze~N'(0,1).

The main idea of NDM lies into establishing the multivariate joint distribution F(x) =
Fe(xy, iy Xm) = P(& < Xy e X < xm) of x through the joint CDF of z. Particularly, by
expressing each element of Z as,

z; =97 (ng(&)) (4.1)

where ®7*(-) denotes the quantile function, else known as inverse cumulative density function
(ICDEF), of the univariate standard normal distribution. It is straightforward to see that by
employing the probability integral transformation to each marginal CDF we obtain u;: =
in (&-) which is a uniformly distributed RV in [0, 1] that denotes probability. See also, Papoulis

[1991 p. 101]. Nevertheless, through the rules of probability transformation, the joint
distribution (CDF) of x can be written as,

Fo(Xy, o) Xm) = Ppy (q>-1 (Fﬁl(xl)), o, D1 (Fﬁm(xm)) ; Te) (4.2)

It is interesting to note that Eq. (4.2) is identical with the Gaussian copula. In brief copulas,
denoted with C(*), are m-dimensional distribution functions on [0, 1]™ with uniform marginal
distributions. Sklar [1959], established the theory of copulas and provided their general
properties. Among them, it has been shown that any multivariate joint distribution can be
regarded as a copula function. Particularly, Sklar’s theorem states that a multivariate
distribution Fl(x) = Fl(xl, .e» X;m) With marginal CDFs F, =y Fﬁm’ assuming that they are

with continuous and differentiable, can be written as,
Fy(xty o) = C (Fﬁl(xl), ...,Fﬁm(xm)) (43)

In this work we are interested in the Gaussian copula C¢(+) which is defined as multivariate
standard normal distribution with correlation matrix R [e.g., Embrechts et al., 2003],

CO(U) = C(Uy, oy Upy) = P (D7 (1), oo, @7 (U ); R) (4.4)

which apparently, after some substitutions can be transformed in in Eq. (4.2), i.e., NDM’s main
equation. Generally, according to copula theory, assuming that both F. and C(-) are
-1

differentiable, the joint PDF of x can be written as,
m
futys ) = (B G B, o)) [ [ G0 (45)
i=1

where ¢ () denotes the joint PDF (referred also as copula density) of copula C(-) and it is given
by,
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0™C(Uy, oo, Upy)
c (Fgl(%)' ...,Fﬁm(xm)) =c(Uy, oo, Upy) = ou, - 0y, (4.6)
Interestingly, by rearranging Eq. (4.5) as follows,
J A CI
clE, (x,),...,E (x )=cu,...,u = )
( 51( 1) Em( m) ( 1 m) ﬁ1f£i(xi) (4.7)

It can be observed that the copula density c(+) denotes the ratio of multivariate joint PDF to
the case of independence, which can be translated as the necessary correction to transition from
independence to dependence. It can be shown that in the case of Gaussian copula its joint
density c©(+) can be written as:

gDTn(CI)_l(ul)' LR (:I)_l(um); Te)
?i1 gp(d)‘l(ui))

Uy, vy Upy) = (4.8)

Thus in the case of NDM and Gaussian copula the joint PDF of x is given by substituting Eq.
(4.8) to Eq. (4.5) [ct. Liu and Der Kiureghian, 1986],

o (@7 (Fﬁl(xl)), vy @7 (Fﬁm(xm)) R

Y (dﬂ (ng(&)))

From these equations it is clear that, copula theory, in general, as well as NDM specifically,

allow us to describe complex multivariate distributions using as individual components the

marginal distributions Fy, , ..., F, and the copula C(-), which eventually allow the formulation
-1 -m

fg(xv ) xm) =

) ' Ufgi(xi) (4.9)

of the joint distribution.

Nevertheless, it is shown from Eq. (4.2) and Eq. (4.9), that in the case of NDM (i.e., Gaussian
copula) the joint distribution of x depends on the correlation matrix R of z and not directly on
R of x. To elaborate, let us consider the inverse case where x is obtained through z via the
following mapping equation:

x; = Byt (0(z)) (4.10)

where Fy* is the ICDF of variable x;. It is noted that similar to the previous case (i.e., Eq. (4.1))

U= db(gi) is also a RV uniformly distributed in [0, 1] that denotes probability. A direct
outcome of Eq. (4.10) is that for two variables x; and x; their correlation is given by:

pi; = Corr[x;, x;| = Corr [Fz_il (d)(gi)),F&;1 (db(gj))] (4.11)
thus the target correlations p; ; of R are associated with the corresponding elements p; ; of R.
An apparent approach could be setting R = R, however, both theoretical and empirical

evidence have indicated that this assumption will result in misspecification of the underlying
model (i.e., NDM) and lead to systematically underestimating correlations within the generated
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data. The theoretical justification of this behavior stems from the Pearson correlation
coefficient itself, since it is not invariant under non-linear monotonic transformations, such as
those imposed by the ICDFs [Embrechts et al., 1999 p. 8]. More specifically, the largest the
departure of the actual distribution, Fxg’ from the normal one, the largest will be the

underestimation. Therefore, and except the trivial normal case, in order to eliminate biases, it
necessary to a priori identify the values of p; ;.

NDM and its theoretical background can provide a theoretical solution to the above problem
by means of specifying an appropriate (i.e., equivalent) correlation matrix R that leads to the
target correlation matrix R. As highlighted by Liu and Der Kiureghian [1986], in order to
employ NDM it is essential to ensure 1) one to one mapping of Eq. (4.10), and 2) positive
definite correlation matrix R. The first requirement is by definition valid in typical cases of
distributions used in hydrology, while the second is also usually satistied, since the distances
&)t | pij — Pi, j| are often small (provided, of course, that the target matrix R is positive
definite). The following procedure is applied to each specific pair of variables x; and x; of x
(i.e.,, m(m — 1)/2 times). Given the definition of Pearson’s correlation coefficient, i.e.,

E[x; x;] — E[x;] E[x;] )
\/Var[x;] Var[x;] w2

pij = Corr[x;, x;] =

where E[x;], E[x;] and Var[x;], Var[x;] are the mean and variance of x; and x; respectively,
which are known since the associated marginal distributions are already specified (and have
finite variance, otherwise the Pearson correlation coefficient cannot be defined). Thereby, the
computational procedure is limited to identifying E[x; x j]. Since the corresponding variables
to be mapped, z; and z;, respectively, are by definition jointly normally distributed, with
correlation Corr[gi, z j] = p; > then, using Eq. (4.10), the fundamental theorem of expectation
(also known as the law of unconscious statistician) and the first cross-product moment of
x; and x; we get:

E[xlx]]—E[F T (0(@) E (q>(z,))]
- j j B (@) B (9(2)) 922055 i)z

(4.13)

where ¢, (Zi, zj; P, j) is the bivariate standard normal PDF. By substituting Eq. (4.13) to Eq.
(4.12) we obtain,

f_oooo fjooo ng_l(cb(zi)) F ( ( )) ¢2(Zl' ]; pl])dZLdZ [ i] EEJ]

= (4.14)
oL \/Var[x;] Var[x;]
For simplicity, let us rewrite this relationship as,
'Di’j =F (ﬁi'j Fﬁi' FEJ ) (415)
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where F(-) denotes an arbitrary function, which has the meaning that each target p; ; is a
function of p; ;, that is embedded in ¢, (Zi, zj; P, j), and the given marginal distributions F,
-1

and F; . Eq. (4.15) have to be inverted in order to identify the values of p; ; that result in the
Zj

target values p; ;. i.e.,

pij=F! (Pi,j

Fﬁi' Fﬁj ) (4.16)

Unfortunately, Eq. (4.15), and thus Eq. (4.16), does not have a general closed-form solution,
with the exception of few special cases [Li and Hammond, 1975; Cario and Nelson, 1997; Crouse
and Baraniuk, 1999; Xiao, 2014]. Among them the Log-Normal case [Mostafa and Mahmoud,
1964] which is of particular interest in hydrology (see section 4.5.2). The aforementioned
researchers, as well as Liu and Der Kiureghian [1986], provided several Lemmas that can be
useful in order to approximate Eq. (4.15). Among them,

Lemma 1: p; ;is a strictly increasing function of p ;.
Lemma 2: p;; = 0 forp; ; = 0 aswell as, p; ; = (<) 0if p;; = () 0.
Lemma 3: | pi’jl < |ﬁi,j|-

Note that in Lemma 3, the equality sign is valid when p;; = 0 or when both marginal
distributions are normal. Furthermore, the minimum and maximum attainable value of p; ;
are in accordance with the Fréchet-Hoeffding bounds [Fréchet, 1957; Hoeffding, 1994] and are
given for p; ; = —1 and p; ; = 1, respectively. Particularly, the following holds true, —1 <

F(-1|F, . )<py=F(

comprehensive discussion on the topic.

Fﬁi'sz)S 1. See also the work of Whitt [1976] for a

In this Thesis, unless stated otherwise, in order to establish the relationship F (-) we employ the
simple, yet efficient method proposed by Tsoukalas et al. [2018e]| which in a nutshell, is based
on the evaluation of few pairs of p; ; and p; ; using Monte Carlo simulation and subsequently,
the establishment of the F (-) relationship through polynomial interpolation. For further details
regarding the identification of equivalent correlation coefficients, as well as the above algorithm
see section 4.5. Hereafter it is assumed that the equivalent correlation p; ; have been properly
identified.

Nevertheless, in order to shed some light on the functional form of F(*) (i.e., Eq. (4.15)) let us
consider the case of two variables x, and x, are described by the two-parameter Gamma
distribution (G). Its PDF is given by:

a—1

fotia,b) = (7)

X
bIT(a) \b eXp(_E)' x>0 (4.17)

where a > 0 and b # 0 are the shape and scale parameters respectively, while I'(-) denotes the
gamma function. Figure 4.1a depicts the relationship among p, , and p, , (i.e., F(*), computed
via numerical integration) for various values of distribution parameters. Specifically, we
assumed a :=a, = a, and constant b:= b, = b, = 1. We remind that the theoretical
skewness coefficient of a Gamma distributed variable is given by C;, = 2/va. From this figure

we also observe that the non-linearity of F(-) increases with low values of a (i.e., high
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skewness), and that the maximum attainable value of pg ., is equal to 1, which is due to the
fact that Fy, = Fy,. In addition, one may observe that the a is also related with the minimum

attainable value of p, , . For example, when a = 0.01, the latter value is practically restricted
to zero, something that may be considered a reasonable behavior that is attributed to the very
high value of positive skewness which does not allows for negative correlations. In a similar
vein, in Figure 4.1b we set a; = 5 and vary the parameter a, from 5 to 0.01 (assuming again
that b: = b, = b, = 1). In this case, both the minimum and maximum attainable values of
p1 . are affected. We observe that when a, and a, exhibit significant differences, the range of
feasible values p,, is getting narrower. This implies that two variables with considerable
different shape (expressed through parameter a) cannot be highly correlated. From an
engineering point of view, and similar to the previous case (i.e., when a := a, = a,), this is
barely considered a limitation of the NDM approach, since such behavior is rarely encountered
in practice. For instance, it is not expected, or rational, two variables (or in general processes),
one with skewness ~0.9 and one with 20 to be highly (positively or negatively) correlated. In
any case, we stress the importance of checking the range of attainable correlation coefficients
when employing the concepts of NDM [see, Demirtas and Hedeker, 2011; Leonov and Qagqish,
2017/, especially within the context of stochastic process simulation (see section 4.3). For
instance, given the non-linear and asymmetric nature of F(+), for some combinations of
marginal distributions, a target correlation coefficient may be inadmissible (this also applies in
any Nataf-based construct, including stochastic processes; see section 4.3 as well as, Chapter 5,
6 and 7). However, in the examples (both hypothetical and real-world) employed in this Thesis
such problems did not occur, a fact which by no means overrules the aforementioned need for
compatibility verification.

a:=a1=a2(Cs:=C51=C52) a1=5 (C51=089)

1.0- e 1.0- ~
p=p p=p

—ay=ay=5 (C;=0.89) / —ay=5 (C,,=0.89)
—aj=ay=2 (Cs=141) —ay=2 (C;,=141)
ay=ay=1 (Cs=2) ar=1(Cy,=2)
05- —a;=ay=0.5 (C;=2.83) 0.5- —ay=0.5 (Cy,=283)
ay=a;=0.1 (C;=632) ay=0.1 (C,=6.32)
ay=ay=0.05 (C,=8.95) ay=0.05 (Cy,=8.95)
—a;=ay=0.01 (C;=20) — ay=0.01 (Cy,=20)
0.0-

12
T
12

-0.5- -0.5-

-1.0- -1.0-

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 05 1.0
P2 P2

Figure 4.1 | Graphical illustration of function F () (i.e., Eq. (4.15)) that expresses the relationship
between the equivalent, p, , and target p,, correlation coefficients assuming that both x; and x, are
described by the two-parameter Gamma distribution (assuming that b: = b; = b, = 1) with a) equal
shape parameters (i.e., a :== a, = a,) and b) different shape parameters by setting a; = 5 and varying
a, from 5 to 0.01.
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Additionally, in order to investigate the form of the established joint distribution functions, let
us setup a hypothetic example where both x, and x, have identical marginal distribution,
fs (x;0.5,1) and p, , € {0.1, 0.4, 0.8, 0.95}. Each row of subplots of Figure 4.2, corresponds to
a specific value of p, , (the equivalent value of p, , is also shown with red color - see also the
corresponding curve in Figure 4.1a) and depicts, from left to right, the joint PDF in the
Gaussian and uniform domain (copula density) as well as the joint CDF in the real domain. It
is remarked that isolines of these plots were drawn using the theoretical equations provided by
the mathematical background of NDM while, some random samples were generated (black
dots) for visualization purposes. The plot depicts, in a step-by-step manner, the mapping
procedure imposed by Eq. (4.10), as it illustrates the transition, from the Gaussian to uniform
(copula) and finally the actual domain. Besides the various forms of the attained joint PDF it is
also interesting to observe how NDM transforms a homoscedastic input (i.e., Gaussian) to a
heteroscedastic one.
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Figure 4.2 | Hypothetical example of two RVs, x;, x,~G(a=o0.5b=1) with p,, €
{0.1,0.4,0.8,0.95}. Each row of subplots corresponds to a specific value of p, , and each column of
subplots, from left to right, depicts the joint PDF in the Gaussian and uniform domain as well the joint

CDF in the actual domain.
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4.1.3 Unconditional Monte Carlo simulation

Unconditional Monte Carlo simulation is implemented in many applications in science and
real-word practice [e.g., Robert and Casella, 2010; Kroese et al., 2011, 2014]. Characteristic
tields are those of physics, biology, finance and engineering. Often, its purpose is to propagate
uncertainties related with input variables to the outputs of interest. For example, in finance, it
is used to identify optimal portfolios of financial securities. In this case, each security (the input
variables) is assumed to be a RV (often time-independent), and thus described by a distribution
function. Since the overall portfolio (i.e., its performance; the output of interest) is composed
by a linear combination of them, the ultimate goal is to estimate its efficiency and risk, i.e., the
uncertainty of the overall portfolio (typically expressed via measures of dispersion or through
its distribution function) via propagating the uncertainty of each individual security. This task
can be accomplished with the use of Monte Carlo simulation, which, loosely speaking, holds
out the promise of generating correlated inputs with the desired marginal distributions. In a
similar vein, in engineering, one often has at his disposal a deterministic model that under some
inputs returns the output variable of interest. In many cases we are particularly interested in
quantifying (and eventually accounting for) the input variables uncertainty®. Analogous to the
previous example, the central idea is to feed the deterministic model with multiple realizations
of the input variables, run the model multiple times, and finally, derive the distribution
function of the output variable of interest. Interestingly, both examples, and many other
applications [e.g., Makropoulos et al., 2017; Tsoukalas et al., 2017b; Psarrou et al., 2018] of
Monte Carlo simulation, can be viewed as derived distribution problems, since, regardless of
the case, we are interested in deriving the distribution function of the output variable(s). This
kind of problems are becoming particularly challenging when the input variables are non-
Gaussian and cross-correlated. A potential remedy in such cases relies on the use of copulas.
As such, the theoretical background of NDM [Nataf, 1962] and the NORTA procedure [Cario
and Nelson, 19971, can provide a well-justified and easy to implement solution.

Specifically, the problem of generating a m-dimensional correlated random vector x =
[X1) o) Xiy ooes X ] T With a priori specified target marginal distributions F51' . Fﬁi' . Fﬁm and
target correlation matrix R € [—1, 1]™ *™ reduces to generating and subsequently map using
x; = Ft (db(gi)) (ie., Eq. (4.10)), a m-dimensional correlated random vector z =

(24, ) Ziy -, Zy] T With multivariate standard normal distribution and equivalent correlation
matrix R € [—1,1]™*™, Assuming that the elements of R has already been specified (e.g.,
using the algorithm of section 4.5.1), it is straightforward to generate a random vector z
through the following linear transformation,

z= Eﬂ (4.18)

of an uncorrelated standard normal vector w = [w,, ..., w;, ..., Wm]T, where Bisam X m
matrix obtained by,

=~ )

BBT = (4.19)

2 It could also be of interest the quantification of other sources of uncertainty, such as parameter, structural, etc.
Regardless of the case, Monte Carlo simulation is the most frequently employed approach for this purpose.
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In order to obtain the matrix B, it is essential to solve a decomposition problem, also expressed
as finding the square root of R. This can be achieved with the use of typical numerical
techniques, such as Cholesky or singular value decomposition [e.g., Johnson, 1987]. We remark
that when R is positive definite, it has infinite number of feasible solutions, such as the solutions
provided by the aforementioned numerical methods. On the other hand, if R is non-positive
definite the problem does not have a feasible solution, thus requiring the detection (e.g.,
through optimization [Koutsoyiannis, 1999; Higham, 2002]) of a parameter matrix B* which

. . T =i T C 1. .
results to a feasible and near-to-optimum matrix R* := B* B*  which is as closest (typically
quantified in terms of some distance measure; e.g., Euclidean norm) as possible to the original
matrix R, thereby, ensuring an approximation of the given R.

Some applications involve the derivation of the distribution function of some linear
combination of X, expressed using the column vector w = [w;, ..., wp, |7, which can be viewed
also as weight coefficients. The first two moments of the derived distribution can be easily
calculated analytically, using the equations below, however higher order moments are hard to
estimate analytically (if not impossible) and the derivation of the complete distribution requires
the resolution of the so-called convolution integral (in the case of independence).
Unconditional Monte Carlo procedures provides the means to approximate the derived
distribution by means of simulation, even in cases of non-linear combinations of x. Regarding
the case of linear combination of w”x, the mean, E[ng], and variance, Var[ng], can be
calculated by [Lindgren, 2013],

m m
E[wTx] = E [Z wi&] = w'E[x] = Z we E[x)] (4.20)
i=1 =1
m m m
Var[wTx]| = Var Z wi&] =w'Zw = Z Z w;w;j Cov[x;, x;] (4.21)
i=1 i=1 j=1

where X := Cov[x,x"] = DRD"T is the covariance matrix (m X m) of x and D :=

diag[1 /Var[x,], ...,/ Var[x,,] ] is a diagonal (m X m) matrix which contains the square root
of the variables variances (i.e., standard deviations; apparently D = DT), which are known for

all x;, since the marginal distributions are known (or specified). The inverse operation is
simply, R = D™* ZD". As a side note, it is worth mentioning that the above relationship can
be generalized for the estimation of the covariance of linear combinations of two random
vectors X = [Xy, v, Xy s X T and ¥ = [y, oo, Yiy oo, Yo T With @ = [wy, ..., w,,]T and B =

[B1, .., BnlT expressing the weight coefficients of x and ¥ respectively. The covariance

Cov [wTL ﬁTX] can be analytically estimated by,

m n m n
Cov [ng, ﬁTX] = Cov Z wi&,z Biyi| = Z Z w;pB; Cov [&,X]-] (4.22)
i=1 j=1

i=1 j=1
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4.1.4 Numerical examples

To elaborate more on the practical side of NDM, the unconditional Monte Carlo simulation
technique, as well as provide few a hands-on examples on the identification of equivalent
correlation coefficients and the mapping procedure of Eq. (4.10), let us consider the following
simple bivariate cases of generating correlated non-Gaussian RVs. Throughout these examples
the algorithms of sections 4.1.3 and 4.5.1 are employed.

4.1.4.1 Continuous-type marginal distributions

Let assume that we wish to generate two correlated variables x, and x,, both from the same
distribution (i.e., F, = F&z)’ the two-parameter Gamma distribution (Eq. (4.17)).
Additionally, let assume that the parameters of both distributionsare a :== a, = a, = 0.7, b: =
b, = b, = 10 and the target correlation among them is p,, = 0.7. After employing the
algorithm of section 4.5.1 (using pyin = 0 and Ppax = 1, N = 50 000, Q2 = 20 and p = 2) the
following polynomial relationship is established between the equivalent and target correlation
coefficients (the indices were omitted for simplicity).

p =F(p|F, F,) = 0.2694p% + 0.7234p + 0.0061 (4.23)

This relationship is depicted graphically in Figure 4.3a, which highlights its non-linearity. It is
apparent (from Figure 4.3a and Eq. (4.23)) that in order to attain the target correlation (=
0.7) between x, and x, it is suggested to generate standard normal variables (z, and z,) with
correlation equal to p,, = 0.75. Therefore, we simulated 10 ooo data (z; and z,) from a
bivariate normal distribution with correlation equal to o.75 which are first mapped to the
uniform domain, i.e., u; = ®(z,) and u, = ®(z,), and then mapped to the actual (i.e., real)
domain using their ICDF, ie., x, = F;*(u,) and x, = F_"(u,). Figure 4.3b-d graphically
depicts the previous procedure which is a step-by-step equivalent to Eq. (4.10). The simulated
data (x; and x,) in the actual domain attain the target correlation (i.e., 0.7) as well as the
specified marginal distributions. Furthermore, in order to further validate this statement, we
used the maximum likelihood estimation (MLE) method to identify the distribution
parameters of the simulated data. Their estimates were found equal to
d, = 0.697,b, = 9.960 for x, and @, = 0.701, b, = 10.060, for x,, which indicate a very
close approximation of the specified parameters.
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Figure 4.3 | Hypothetical example of generating two correlated (p, , = 0.7) identical Gamma-distributed
variables with G(0.7,10). a) The established relationship between equivalent, § and target p correlation
coefficients (i.e., Eq. (4.23)). Scatter plots with histograms in the b) Gaussian c) uniform and d) actual
domain. The estimate of correlation coefficient of the simulate variables in the Gaussian and the actual

domain is 512 = 0.7504 and p,, = 0.7073 respectively.

4.1.4.2 Discrete-continuous-type marginal distributions

Let us further extended this example by employing a zero-inflated distribution model such as
the one discussed later in section 4.4. This type of distribution is comprised by an atom of mass
at zero and a continuous part for positive values. Its CDF is given by (after some slight
notational modifications),

Pos x<o0
Fe(x) = { o+ (1—p)G(x), x>0 (4.24)

where, p, denotes the probability of observing a zero value, i.e., p, = P(g = O) and Gy (x)
stands for the continuous distribution part, that entails values greater than zero, i.e., Gy (x) =
Fyjx>0(x) = P(x < x|x > 0). Using this zero-inflated CDF model, let us consider three

scenarios with different values of p,, where in all three we assume a target correlation p,, =
0.7 and that the continuous parts of x, and x, are Gamma-distributed with G(0.7, 10). i.e.,
Gy, = Gy, = G(0.7,10). The scenarios differentiate on the specified values of p,. Specifically,

in the first scenario it is assumed that they have identical probability zero p, = po,x, = Poyx, =
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0.9. In the second that p,, = 0.9 and p,,, = 0.6, while in the third that p,, = 0.9
and p,,x, = 0. For each scenario 10 0ooo data were simulated. The results from the three
scenarios are visually summarized in Figure 4.4, Figure 4.5 and Figure 4.6 respectively. It is
interesting to observe how the required equivalent correlation coefficient increases compared
to the previous example, from p,, = 0.75 (which had the same continuous marginal; thus can
be viewed as the limiting case of p, = 0) to p,, = 0.85 (1% case), p,, = 0.88 (2" case) and
P12 = 0.94 (3™ case). It also remarkable to notice how the non-linearity of F(+) evolves as the
marginal distribution depart from Gaussianity. Finally, and in line with the continuous-type
case, it was validated, using the MLE method, that the continuous part of the zero-inflated,
mixed distribution was correctly and accurately simulated. In addition, it was empirically
confirmed (simply by estimating the portion of zero-valued data) that the realized data had the
desired atom at zero (i.e., p,).

a b

1.00 - /

0.75 -

S 10.504

1 1 !
0.00 0.25 0.50 0.75 1.00

60 -

uj

0.00 -
| 1 1 1
0.00 0.25 0.50 0.75 1.00 0 20 40 60

Figure 4.4 | Hypothetical example of generating two correlated (p,, = 0.7) zero-inflated Gamma-
distributed variables with identical continuous part G(0.7,10) and Py, = Poyx, = 0.9. @) The established

relationship between equivalent, p and target p correlation coefficients. Scatter plots with histograms in the
b) Gaussian ¢) uniform and d) actual domain. The estimate of correlation coefficient of the simulate variables

in the Gaussian and the actual domain is p,, = 0.8431 and p,, = 0.6989 respectively.
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Figure 4.5 |
Hypothetical example of
generating two
correlated (p, , = 0.7)
zero-inflated Gamma-
distributed variables
with identical
continuous part
G(0.7,10), po,x, = 0.9
and p,,, = 0.6. a) The
established relationship
between equivalent, p
and target p correlation
coefficients. Scatter plots
with histograms in the
b) Gaussian ¢) uniform
and d) actual domain.
The estimate of
correlation coefficient of
the simulate variables in
the Gaussian and the
actual domain is p,, =
0.8795 and p,, =
0.7071 respectively.

Figure 4.6 |
Hypothetical example of
generating two
correlated (p, , = 0.7)
zero-inflated Gamma-
distributed variables
with identical
continuous part
G(0.7,10), po,x, = 0.9
and py,y, = 0.2) The
established relationship
between equivalent, p
and target p correlation
coefficients. Scatter plots
with histograms in the
b) Gaussian ¢) uniform
and d) actual domain.
The estimate of
correlation coefficient of
the simulate variables in
the Gaussian and the
actual domain is p,, =
0.9422 and p,, =
0.7096 respectively.
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4.1.4.3 Discrete-type marginal distributions

As a final example, let us consider the bivariate case of correlated RVs from Poisson
distribution. The probability mass function (PMF) of the Poisson distribution is given by,

exp(—A4) A*
Pp,i(x; A) = p(x—|), X =0,1,2, .. (4.25)

where A > 0 is the distribution parameter; and has the meaning of average number of
occurrences within a time interval. Specifically, it was imposed a target correlation value equal
to 0.7 and was it assumed that the distribution of x, and x, is identical, with A, = 1, = 0.5.In
a similar vein with the previous examples, Figure 4.7 summarized the outcomes of this
demonstration and validates the ability of the scheme to generate correlated discrete-type RVs.
Also, in this case, the MLE of the simulated data closely resembled the theoretical parameters.
Specifically, it was found that its estimates for x, and x, were, ;11 = 0.498 and ;12 = 0.503
respectively.
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Figure 4.7 | Hypothetical example of generating two correlated (p, , = 0.7) identical Poisson-distributed
variables with P¢4(0.5). a) The established relationship between equivalent, § and target p correlation
coefficients. Scatter plots with histograms in the b) Gaussian ¢) uniform and d) actual domain. The estimate
of correlation coefficient of the simulate variables in the Gaussian and the actual domain is p,, = 0.8193
and p,, = 0.7054 respectively.
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4.2 A NATAF-BASED CONDITIONAL DISTRIBUTION MODEL

4.2.1 Theoretical background

This section extends the rationale of NDM for the derivation of conditional distributions, as
well as conditional simulation of RVs (and processes) with pre-specified distributions and
correlation matrix.

Similarly to the previous sections, let X = [x,, ..., X;,]T be a m-dimensional vector of RVs, with
known distributions F, ,...,F, and correlation matrix R, partitioned in a n-dimensional
—1 -m

column-vector X} = [x,, ..., X,]T and in a (m — n) X 1 column-vector x5 = [Xp41, - Xm] -
Letalso h = [x,44, ..., X;n] T denote a vector of realizations of x; on which we wish to condition
the derivation of the distribution of x] |x; = h.

As will be shown, in order to derive the conditional distribution it suffice to derive the one of
the auxiliary RVs z. This can be done by using well-known properties of the auxiliary
multivariate standard normal distribution [e.g., Eaton, 1983]. Particularly, let the auxiliary m-
dimensional vector z = [z, ..., Zy,|T with z ~ I;,(0,R) be similarly partitioned in z} =
(21, e, Zn] T and 2 = [Zp41, ) Zm ] T With sizesn X 1 and (m — n) X 1 respectively. This allow
us to partition the equivalent correlation matrix R as follows (it is also noted that, R,, = RY,),

nxn n X (m—-—n)

12] with sizes [(m W) xn (m—n) X (m—n) (4.26)

R
EUZ
AN

22

~ T
Furthermore, if z; = h = [d>‘1 (F£n+1(hn+1)), v, @71 (Fzm(hm))] then the conditional
z, = E)NNn(ﬁ'f))

where i = R,R;}h and £ = R,, — R,R;!R,, denote the conditional mean vector and

distribution of zj|z, = h is also multivariate normal, i.e., P(g“{ <z

covariance matrix. The matrix X can be easily calculated by exploiting the fact that it is Schur

complement of R,, in R. This allows the calculation of X via the inversion of the matrix R, the
subsequent removal of columns and vectors that correspond to the variables conditioned upon

(i.e., Z3), and finally 3 is obtained by the inversion of the remaining matrix.

Nevertheless, since Eq. (4.1) holds true, and similar to Eq. (4.2), the conditional CDF of
X |x; = h can be written as,

Fg”{lg‘z‘:h(xi) = P(Ej < xj

E: = h) =
(4.27)

. (q>-1 (Fﬁl(xl)), o, (Fﬁn(xn)) T f)

W,
where an;f(-) denotes the multivariate joint CDF of IV, (#, E)

i,

Furthermore, in order derive the conditional joint PDF of x] |x; = hlet us recall the following
general property regarding conditional distributions [Papoulis, 1991 p. 192],

* *=h —_— ol —
X11x; 1142 fl; (x:) sz (xn+1' v Xm)

(4.28)
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thus by substituting Eq. (4.9) in the previous equation, the following relationship is obtained,
fﬁlgzh(xilx; =h) =
o (@7 (Fﬁl(xl)), e, @1 (Fﬁm(xm)) ;R)
-I1:E, fgi(xi)
= (q)_l (ng(li))) (4.29)
P (m-n) (CI)_1 <F£n+1(xn+1)) s, @71 (Fﬁm (Xm)) ) Tezz)

(07 (5, @)

which after the cancelations of several terms reduces to the following relationship,

?in+1 fgi(xi)

fex=n(x31|x; = h) =
o (@7 (Fﬁl(xl)), vy @7 (Fﬁm(xm)) JR)TIL, fo, ()
P im—n) (q>-1 (Fﬁnﬂ(xnﬂ)), o, D (Fﬁm(xm)) ; Tezz) T, <q>-1 (Fﬁi(gi)))

(4.30)

that can be further simplified to (since the left part of the products is essentially the conditional
Gaussian PDF of z%|z; = h),

fﬁng:h(xilx; =h) =

(o (Fﬁl(xl)), e, @71 (Fﬁn(xn)) )
(e <<1>‘1 (ng(zi)))

where ¢n-ﬁ§(') denotes the PDF of V;, (T, E)

(4.31)

n

P az
[ [0 ==
i=1

Additionally, in case of n = 1 (x] is a single RV) it is also possible to derive a direct expression
for the conditional ICDF, which reads,

Xiwy = Fely=n() = F (q’ (q);%f (ui® f))) (4.32)

where db;if(-) denotes the ICDF of the conditional standard normal distribution, while u, €

I
[0,1] is a scalar that denotes probability. Using Eq. (4.32) it is possible to estimate the desired

conditional quantiles by simply plugging the target value of u, (e.g., u; = 0.5, would return the
conditional median of xj|x; = h). To the best of our knowledge, this formulation is new, and
it is argued that it can be viewed as a m-dimensional generalization of the expression given in
Kelly and Krzysztofowicz [1997], for the derivation of conditional quantiles of bivariate meta-
Gaussian distributions. Although it is important to note that the above authors did not
employed the concept of equivalent correlations and instead relied on the use of rank-based
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dependence measures for the parameter identification of the auxiliary model, i.e., the
multivariate the Gaussian distribution (see also the discussion of section 4.5.3). Finally, it is
remarked that while the discussion of the previous paragraphs was mainly focused on
conditional distributions of RVs, their extension for stochastic processes and time series
probabilistic forecasting is straightforward throughout the concepts of stationarity and
cyclostationarity. In this vein, it is also interesting to note that the literature offers techniques
for the optimal infilling of partially completed correlation matrices [e.g., Papoulis, 1991;
Georgescu et al., 2017], which may be particularly useful in time series forecasting problems
that involve large matrices and/or exogenous variables. Nowadays, hydrological forecasting is
performed using point-based (hence not probabilistic) machine learning methods, such as
neural networks [e.g., Hsu et al., 1995; Lekkas et al., 2001, 2004; Jain and Kumar, 2007; Wang
et al., 2009].

4.2.2 Conditional Monte Carlo Simulation

Based on these developments and provided that the required inputs are already specified, i.e.,
the target marginal distributions F, , ..., F, , the target correlation matrix R, as well as the
—1 -m

equivalent matrix R, it is straightforward to establish a simulation algorithm for the conditional
simulation of x7|x; = h (using the same notation and dimensions as in the previous section).
The first step consists of partitioning the matrix R as in Eq. (4.44) and estimation of the

— T —
auxiliary vector h = [d>‘1 (an " (hn+1)) , e, @71 (Fzm (hm))] . Next, the conditional mean [i

and covariance matrix X of the auxiliary conditional Gaussian distribution have to be
_ T _
determined. Given the latter, estimate a matrix B such that BB = X (see section 4.1.3) and
= 3 T, .. .
generate an auxiliary vector z] by z; = i + Bw, wherew = [m, . wn] isani.i.d. vector with
N (0,1). Finally, obtain the conditioned RVs x7|x; = h via mapping z] to the actual domain

T
using the corresponding ICDFs of F51' ..., F, . This operation reads, x] = [ﬁ, ...,&fl] =

[Fg;l (db(gf)), s Pt (db(g;;))]T. Apparently, when n = 1, the above equation reduces to

X = Fg;l (db(gf )), which in turn allows its expression it in terms of probability u,, i.e., x; =
Fx_;l (u,). This formulation is identical to Eq. (4.32) and can be used to derive the conditional
quantiles of interest.

4.2.3 Numerical examples

To elaborate on the previously described Nataf-based conditional sampling method, as well as
on the derivation of conditional quantiles (i.e., Eq. (4.32)), let us consider a bivariate example
of x,~G(2,10) and x,~LN(0.10, 4) for various values of correlation coefficient p = p,, €
{—0.90,—0.70, —0.50, 0.0, 0.50, 0.70, 0.90}. Apparently, in the bivariate case x; = x, and x; =
X,, hence for the sake of simplicity, the star notation will be hereafter omitted. Nonetheless, in
order to construct a proper conditional distribution it is required to estimate the equivalent
correlation coefficients, which for these «cases they were found, p=p,, =
{—0.974,—0.754,—0.536, 0.0, 0.522, 0.728, 0.931}. Figure 4.8 concerns the first case of
p = —0.9 and particularly panel a) depicts the 0.01, 0.5 (i.e., median) and 0.99 probability
quantiles of the auxiliary conditional Gaussian distribution of z, |z, for various values of z, =
P! (FE2 (xz)), which is also homoscedastic. Panel b) illustrates the same probability quantiles
for the actual Nataf-based conditional distribution x, |x, for x, = x,. Interestingly, this plot is
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characterized by a non-linear heteroscedastic behavior, which highlights the ability of the
model to capture a wider range of dependence forms. Moreover, the plots, depict some
randomly generated samples from the corresponding conditional distributions. Finally, panel
c) and d) visualize the complete conditional PDF and CDF of x,|x, respectively for two
arbitrary selected values of x, (i. e, X, =45and x, = 65), which emphasize on the variety of
distribution shapes (e.g., bell- or J-shaped) that can arise from the Nataf-conditional
distribution model. Similarly, to the previous analysis, Figure 4.9 to Figure 4.14 provide
further examples and illustrations of the conditional model, for different values of correlation
coefficient p.
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Figure 4.8 | Bivariate example of x;~G(2,10) and x,~LN(0.10,4) with p = —0.9. Probability
quantiles in the a) Gaussian domain b) actual domain. Conditional ¢) PDF and d) CDF for x, =
45and x, = 65.
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Figure 4.9 | Bivariate example of x,~G(2,10) and x,~LN(0.10,4) with p = —0.7. Probability
quantiles in the a) Gaussian domain b) actual domain. Conditional ¢) PDF and d) CDF for x, =
45and x, = 65.
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Figure 4.10 | Bivariate example of x;~G(2,10) and x,~LN(0.10,4) with p = —0.5. Probability
quantiles in the a) Gaussian domain b) actual domain. Conditional ¢) PDF and d) CDF for x, =
45and x, = 65.
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Figure 4.11 | Bivariate example of x,~G(2,10) and x,~LN'(0.10,4) with p = 0.0. Probability
quantiles in the a) Gaussian domain b) actual domain. Conditional ¢) PDF and d) CDF for x, =
45and x, = 65.
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Figure 4.12 | Bivariate example of x,~G(2,10) and x,~LN'(0.10,4) with p = 0.5. Probability
quantiles in the a) Gaussian domain b) actual domain. Conditional ¢) PDF and d) CDF for x, =
45and x, = 65.
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Figure 4.13 | Bivariate example of x,~G(2,10) and x,~LN'(0.10,4) with p = 0.7. Probability
quantiles in the a) Gaussian domain b) actual domain. Conditional ¢) PDF and d) CDF for x, =
45and x, = 65.
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Figure 4.14 | Bivariate example of x,~G(2,10) and x,~LN'(0.10,4) with p = 0.9. Probability
quantiles in the a) Gaussian domain b) actual domain. Conditional ¢) PDF and d) CDF for x, =
45and x, = 65.
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A final demonstration, also related with the previous example, concerns the derivation of 0.01,
0.10, 0.25, 0.50, 0.75, 0.90 and 0.99 probability quantiles for two arbitrary selected values of x,
(i. e, X, =45and x, = 65) for a sequence of values of p =p,, €{0.0, 0.10,
0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90}. Figure 4.15 depicts the effect of dependence
parameter (i.e., Pearson’s correlation) on the calculation of latter quantiles, through the
visualization of the derived quantiles as a function of p.
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Figure 4.15 | Effect of dependence parameter (i.e., Pearson’s correlation coefficient) on the derived
quantiles of x, | x,; visualized as a function of p for a) x, = 45 and b) x, = 65.

4.3 NATAF-BASED STOCHASTIC PROCESSES WITH ARBITRARY MARGINAL
DISTRIBUTIONS AND CORRELATION STRUCTURE

In a recent work, Tsoukalas et al. [2018e] highlighted the need for generalized generation
schemes, which are able to represent processes from any distribution and any correlation
structure. This has been also regarded as a shift in classical stochastic modelling, emphasizing
on the reproduction of a finite set of essential statistical characteristics [cf. Matalas and Wallis,
1976/, estimated from the historical data.

An effective and efficient handling of this requirement is offered by the so-called Nataf-based
models [Tsoukalas et al., 2017a, 2018e, 2018b, 2018d]. As the name suggests, these are built
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upon the idea by Nataf [1962] and the associated concept of NDM. Using a similar rationale,
it is possible to establish stochastic processes with any target marginal distribution and
correlation structure (expressed in terms of Pearson’s correlation coefficient) through the
mapping (similar to Eq. (4.10)) of an appropriately specified auxiliary (stationary or
cyclostationary) standard Gaussian process (Gp) with zero mean and unit variance, to which
an equivalent correlation structure is assigned (see details below). The mapping operation is
typically a non-linear function, often implemented through the inverse cumulative distribution
function (ICDF). These approaches can be viewed as Gaussian copula-based schemes (since
they rely on the mapping of a Gaussian process) or non-linear versions of the classic (i.e.,
Gaussian) linear stochastic schemes [ Tsoukalas et al., 2018d]. Nataf-based stochastic models or
approaches with common rationale, have been used within the domain of operations research
le.g., Cario and Nelson, 1996; Biller and Nelson, 2003 ] and probabilistic engineering mechanics
le.g., Grigoriu, 1998; Deodatis and Micaletti, 2001]. Their employment within hydrological
sciences was, until recently, formally unexplored, yet, post factum linked with other approaches
in hydrological domain (see section 4.6, as well as [Tsoukalas et al., 2018e, 2018d]). More
specifically, Cario and Nelson [1996] and Biller and Nelson [2003] employed this notion for the
simulation of stationary non-Gaussian univariate and multivariate autoregressive (AR)
processes respectively. In this vein, herein, by building-upon the aforementioned two
paradigms, the concept of NDM is being aligned for the description of stationary (not
necessarily AR) univariate and multivariate processes, as well as further extended for the
particularly interesting cases, from a hydrological point of view, of univariate and multivariate
cyclostationary processes | Tsoukalas et al., 2017a, 2018e].

In this section we briefly discuss the theoretical background and key implementation steps of
Nataf-based, simulation schemes, also providing guidelines for its optimal use. For
convenience, we first present the most involved modelling case of multivariate cyclostationary
processes, and next deal with the simpler case of stationary processes.

4.3.1 Multivariate and univariate cyclostationary processes

In general, cyclostationarity is regarded as a special type of non-stationarity that implies a cyclic
switching on the marginal and joint characteristics of the process over a period (e.g., year). To
elaborate, let {g sn } be a m-dimensional multivariate cyclostationary process. Each individual
process {g L n } is consisted of s = 1, ..., S sub-periods (e.g., months), while n € Z~, denotes the
time index. The sub-period (i.e., season) that corresponds to a time step n may be recovered by
s = n mod(S), while when n mod(S) = o0, s = S. Furthermore, due to cyclostationarity, each
one of them is characterized by seasonally varying (herein referred to as target) marginal
distributions F o= P(g L < x), while their correlation structure is expressed through the

Pearson’s correlation coefficient py’_ = Corr[xi, xI_,

|, where © denotes the time lag (the
index n is omitted for simplicity). Also let {g S’n} denote an auxiliary m-dimensional
cyclostationary standard Gp with zi~N(0,1). Due to cyclostationarity, the Gp is completely
defined by its correlation structure, which is expressed through the so-called equivalent
correlation coefficients ﬁ;”ﬁ_f i= Corr|Z, gj'_,]. We note that both the target and the auxiliary
Gaussian process can be expressed in sup-period/period notation, i.e., {g st } and {g S’t}, where
s=1,..,51,..5,.. denotes the season (e.g., month) andt = 1+ (n —s)/S, denotes the
period (e.g., year). Herein, for convinience, we will employ this notation. Nonetheless, by
employing the concept of NDM and by analogy to RVs case (section 4.1.2), the target process

{x 5 } can be established through the auxiliary process {z ¢, } via the mapping function,
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xip = Fit (0(zL,)) (4.33)

where F = denotes the ICDF of F, A and @ () denotes the cumulative density function (CDF)
of the standard Gaussian dlStrlbutIOI‘l This mapping, eventually relates the target correlation

coefficients ps ! _. with the equivalent correlation coefficients §;7_; of the auxiliary process
| Tsoukalas et al., 2017a, 2018e]. Specifically, since Eq. (4.33) holds true, we can write,

pst-r = Corr[xl,x]_.] = Corr [ngil (q’(zsi))'F;j_T (q’(ég-r))] (4.34)

Using the definition of Pearson’s correlation coefficient, we can also write,

el ] el el |

\/Var[xl] Var[_s .|

Lji J
Pz = Corrxf, x{_

(4.35)

where E[x!],E| _5{ -] and Var[xi], var| _5{ .| denote the mean and variance of x! and xJ_,

respectively which are known from the corresponding distributions F,; and F ; and have to
_S T

be finite. Subsequently, the first cross-product moment of x: and &_T can be expressed as,

E[xix/ ] =E [F‘ﬁ (o) Fy (¢(z§_f))]

v o (4.36)
j P (9() £ (0(2)) @b 2l ) )azkdal.,

é%s

where ¢, (z,, ZSj_T, ,5;':]5._1) is the bivariate standard normal probability density function. Thus,
finally we obtain,

ij
Pss—t =
fjooo fjooo F;gl (CD(ZSL)) F;;_T (q)(zsj—‘c)) @ (Zs' Zs—1 pss T)dzsidzsj—‘r - E[g]E[g—T] (4,37)

\/ Var|xi] var[x/_,]

Eq. (4.37) shows that pé:ﬁ_f is a function of the equivalent correlation coefficient ﬁ;g_,, and
the target (i.e., given) distributions F A and F o ie.,

Z5—T

p;’,é—‘c =F (ﬁ;]s -7 F&i' in_f) (4.38)

where F(-) denotes an abbreviation of the function defined by Eq. (4.37). Seemingly, for a
univariate cyclostationary processes Eq. (4.37) simplifies to,
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pS,S—T
_ _CX)oo o Fél(q)(Zs)) ngt(d)(zs_f)) ¢2(ZS'ZS—T' ﬁs,s—‘r)dzsdzs—‘r - E[&]E[&—T] (4.39)
\/ Var|x,] Var[x,_,]
and consequently Eq. (4.38) reads,
Pss—1 = :F(ﬁs,s—‘chgs' F&_T) (4.40)

4.3.2 Multivariate and univariate stationary processes

A similar relationship can be established between a target multivariate stationary process {x , }
and an auxiliary multivariate stationary standard Gp {gt } Particularly, let {g ¢ } be comprised
by m univariate stationary processes {x} }, indexed using t € Z>. Furthermore, let each one
described by a target CDF, F,.i = P(x' < x) and let their correlation structure be expressed by

pé{ = Corr[ﬁ, gg +T]. Similarly, the process {gt } isa m—dimensional stationary standard Gp,

. . . ~0,j ;
with equivalent correlation structure, p, { = Corr[g}, gt] +T].

Using a similar rationale to the cyclostationary case, each target process {x ; } is established via
{gt } by, x! = F;* ((D(g})) Following the same reasoning with the previous section, the

relationship between the target and equivalent correlation coefficients reads [e.g., Biller and
Nelson, 2003; Tsoukalas et al., 2018d],

Pitre
_ fjooo fjooo Fﬁ_il (CD(Z%)) Fz_fl (q)(zt]+‘r)) 2 (Zti'Zt]—‘L" ﬁ;’-i]-‘c)dztidzt]#c - E[Ki] E[zj] (4_41)

\/Var[&i] Var|x/]

Which for simplicity is abbreviated as,

pite = F (PrielFuo Fur) (4.42)

In the univariate case the previous equations simplify to,

_ fjooo fjooo Fg_l(q)(zt))F{l(q)(Ztﬂ)) ©0.(2¢) Zp 40, Pr)dzedz r — (E[KDZ

Varlx] (4.43)

P

and abbreviated as,
pr = F(p:|E) (4.44)
The relationship F(+) imply that the correlation structure of the target process depends on the

target distributions and the equivalent correlation structure of the auxiliary Gp. We underline
that the term equivalent is used to highlight the fact that the correlation coefficients of the target
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process and those of the auxiliary Gp, rarely coincide (due to the non-linear mapping
operation), since the lemmas of section 4.1.2 also hold for the case of processes.

4.3.3 Selection of the target marginal distributions and correlation structures

As already explained, Nataf-based models can be used for the simulation of processes with
arbitrary (continuous, discrete or mixed-type) marginal distributions and valid correlation
structures, provided that their combination is feasible (i.e., leads to a positive definite
correlation structure) and the variance of the distributions is finite (which is the typical
assumption when modelling hydrometeorological processes; see section 4.3.9).

Regarding the marginal distributions, and in contrast to the classical working paradigm of
stochastic hydrology, it is stressed that by design, Nataf-based models do not aim at resembling
the process’s moments; in fact, they aim to simulate processes with target, a priori specified,
distributions, in order to fully describe its marginal properties (cf. discussion by Tsoukalas et
al. [2018e]). In this respect, questions about skewness handling or how many moments should
be reproduced for approximating the distribution of a specific process? become out of interest.

For instance, within Nataf-based schemes, simulating a process following Gamma or Log-
Normal distribution requires the identification of just two parameters (shape and scale), which
can be easily determined by straightforward methods. Even the classical method of product
moments, would ensure reliable estimations, since in these specific cases it only requires
computations up to second order (a safe upper bound as argued by Lombardo et al. [2014]).

In a more general context, the assignment of a specific distribution model for each modelled
process is not a straightforward task, since the true distribution will always be unknown. For a
given data sample one can fit a plethora of distributions, combined with different parameter
estimation procedures, and use typical statistical tests to assess the optimal scheme.

The Nataf-based approach offers the flexibility to employ robust fitting methods for parameter
estimation, that rely on alternative notions, such as, probability weighted moments
[Greenwood et al., 1979], L-moments [Hosking, 1990] or maximum likelihood. In our view,
this is a major advantage, since it can avoid the data-driven estimation of high-order product
moments (e.g., kurtosis or higher), which it is well known that are prone to sample
uncertainties and bias [Matalas, 1967 p. 945; Lombardo et al., 2014].

In any case, particularly when the historical samples are short or not so much reliable, the
selection of the most suitable distribution may be supported by hydrological evidence. For
instance, one may take advantage of the statistical behavior of the underlying processes in the
broader area, as validated by large-scale regional studies [e.g., Blum et al., 2017].

The specification of the above inputs is not a straightforward decision neither it is advised to
be made automatically, especially when considering the flexibility of Nataf-based methods
regarding the selection of the distribution function and hence the fitting method. Overall, in
operation context, the modeler could (and should) account for multilateral information, based
both on historical data and expert judgment, in order to establish a realistic formulation of the
stochastic simulation model.

Moving to the correlation structures, classical stochastic modelling strategies are designed to
reproduce a limited number of low-order dependence metrics in space and time, typically
expressed in terms of Pearson’s correlation coefficients. Actually, most of them still follow the
specifications posed by Matalas and Wallis [1976], thus aiming to reproduce just two
dependencies, i.e. lag-1 autocorrelations and lag-o cross-correlations. It is remarked that
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herein, the term spatial correlation will denote any dependence between different processes,
either referring to different geographical locations or not.

More modern approaches suggest the use of theoretical models for the mathematical
description of the auto- and cross-dependence structures that span over any lag [e.g., Gneiting,
2000; Koutsoyiannis, 2000, 2016; Gneiting and Schlather, 2004]. These typically concern
stationary processes, and are based on the notions of correlation, spectrum or variance over
aggregated time scales, which are all interrelated [see, Beran, 1994; Koutsoyiannis, 2016]. The
use of theoretical dependence models instead of sample statistics is mostly implied from the
significant uncertainties and biases of data-driven estimates.

Arguably, the most popular type of theoretical dependence models are correlation-based ones.
These can be further classified to full spatio-temporal models [Chiles and Delfiner, 1999;
Gneiting et al., 2010; Genton and Kleiber, 2015], which simultaneously model the auto- and
cross-correlation structure of the process, and separable [Rodriguez-Iturbe and Mejia, 1974;
Mardia and Goodall, 1993; Genton, 2007], which describe the two correlation structures
independently, as product of two functions (i.e., one for the spatial and one for the temporal
component).

Throughout this Thesis, and without loss of generality (since alternative models can be used),
we will employ the separable approach for stationary process. Specifically, we model directly
the lag-o contemporaneous cross-correlations of the processes, while the auto-dependence
structure of each individual stationary process is modelled using the two-parameter Cauchy-
type autocorrelation structure (CAS), introduced by Koutsoyiannis [2000], i.e., pEAS (i, B) =
(1 + kB1)"F,T = 0 where B = 0and k > 0 are model parameters. By construction, CAS can
resemble a wide spectrum of processes, characterized by both short- and long-range
dependence, i.e., SRD and LRD (for more details see also, section 5.2). SRD refers to a
stochastic process with a weak autocorrelation structure (e.g., exponential) that decays rapidly,
while LRD implies the exact opposite (see section 2.2). These properties and its parsimonious
character (as the model has only two parameters), make CAS a good candidate model for
modelling hydrometeorological processes. Regarding parameter identification, the most
straightforward option is to fit CAS to the empirical estimates of autocorrelation coefficients.
However, this simple approach neglects the estimator’s biases [e.g., Marriott and Pope, 1954;
Beran, 1994; Koutsoyiannis, 2016}, which are considered to be significant in the presence of
LRD and for large time lags (due to small sample sizes). In such cases, it may be advantageous
to explicitly account for bias by using alternative robust parameter identification procedures,
such as the climacogram |e.g., Dimitriadis and Koutsoyiannis, 2015; Koutsoyiannis, 2016], or
even through empirical approaches, accounting for regional information and user expertise
[Efstratiadis et al., 2014a].

In summary, the combined use of Nataf-based models along with theoretical distribution
functions and theoretical correlation structures (e.g., CAS), offers several advantages, such as,
the easy alternative scenario exploration (by perturbing the models parameters), regional
transferability (through spatial interpolation), improved model stability (since a valid
correlation structure owes to be positive definite; a fact guaranteed by a proper theoretical
model), and the decoupling of parameter identification (involving the parameters of the
distribution model and the theoretical correlation structure) with the generation mechanism.
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4.3.4 The auxiliary Gaussian processes

In order to deploy a Nataf-based stochastic simulation scheme, it is required to employ and
simulate realizations from an auxiliary Gp. Regardless this choice, it is important to estimate
its parameters using the equivalent correlation coefficients. This way, the realizations of the
auxiliary Gp will preserve the equivalent correlation coefficients, which in turn, after the
mapping procedure, reproduces the target stochastic structure. The Gp could be modeled using
simple mechanisms, especially in the case of univariate stationary processes, such as the well-
known decomposition-based simulation scheme discussed in section 4.1.3 or by utilizing more
advanced schemes.

An apparent option, extensively discussed in the following Chapters, is the use of Gaussian
linear stochastic models (also called time series models). Characteristic examples, adapted from
operations research, are, the works of Cario and Nelson [1996] and Biller and Nelson [2003],
who used as an auxiliary Gp, univariate and multivariate stationary AutoRegressive (AR)
processes, respectively. The resulting Nataf-based models are termed AutoRegressive To
anything (ARTA) and Vector AutoRegressive To Anything (VARTA). A notable difference of
these works compared to the approach described herein, lies in the fact that the previous works
did not employ the notion of theoretical correlation structures. This implies that the order p of
the associated AR model dictates the correlation structure of the process to simulate. This may
be also the reason for the typical use of low order models. On the other hand, if the auto-
correlation structure has been a priori specified (e.g., using CAS), it is possible to employ high-
order models (e.g., AR(p)), even multivariate, without sacrificing parsimony. In this case, the
order of the Gp model solely controls the degree of resemblance of the correlation structure up
to the desired lag 7 (since a higher order model provides more flexibility), while the associated
model’s parameters can be viewed as internal coefficients (for bivariate examples using high-
order AR models, see section 5.6.2). In the water resources domain, a comprehensive treatment
of multivariate and univariate Nataf-based schemes, based on stationary and cyclostationary
Gaussian linear stochastic models, is presented in Chapters 5 and 6 respectively. A simple
simulation example using the classical decomposition scheme is given in section 4.3.7.

4.3.5 Estimation of the equivalent correlation coefficients

An important step of any Nataf-based simulation scheme, is the identification of equivalent
correlation coefficients, which in turn allows the reproduction of the target correlation
structure. It is reminded that the equivalent correlations (i.e., in the Gaussian domain) typically
differ from the target ones (in the real domain), and they are estimated on the basis of the NDM
approach. Nevertheless, regardless the case, multivariate or univariate, stationary or
cyclostationary, the identification of equivalent correlation coefficients (i.e., by inverting the
corresponding F(+) relationship - see sections 4.3.1 and 4.3.2) can be accomplished in a
pairwise basis using the methods of section 4.5. Particularly, the proposed algorithm of section
4.5.1 can significantly simplify and thus accelerate the identification procedure since it
establishes a functional relationship between the target and equivalent correlation coefficients
that can be used multiple times (it also avoids the use of integration methods). For example, in
the simple case of a univariate stationary process, this procedure has to be employed only once,
to establish the relationship p, = F (ﬁ,lFx) and then reused multiple times for different target

values of p;.

Page | 66



4.3 NATAF-BASED STOCHASTIC PROCESSES WITH ARBITRARY MARGINAL DISTRIBUTIONS AND
CORRELATION STRUCTURE

4.3.6 Mapping auxiliary processes to the actual domain

After simulating a realization of the auxiliary processes (i.e., z;, Z;, Zs ¢+ O Zs¢), the last step is
its mapping to the actual domain (i.e., X¢, X¢, X5 ¢ OF X ¢), through the ICDEF(s). It is noted that
this procedure is implemented for each individual process and season (in the case of
multivariate processes and cyclostationarity). Due to the use of the ICDF, as well as the use of
equivalent coefficients of correlation within the auxiliary Gaussian model, final realization will
preserve both the target marginal distributions (for all seasons and variables) as well as the
target correlation structure.

4.3.7 Brief overview via a step-by-step procedure

For a given stochastic process (univariate case), or a set of processes (multivariate case) to
simulate, the required methodological steps of any Nataf-based model are:

Step 1. Identify the type (i.e., stationary or cyclostationary) of the processes, accounting for
process properties and the time scale of simulation.

Step 2. Based on the available information (e.g., historical data), as well as the user expertise,
assign appropriate target marginal distributions to all processes and identify the target
correlation structure, in time and (case of multivariate simulation) space.

Step 3. Select a suitable linear stochastic model to simulate the auxiliary Gp.

Step 4. Estimate the equivalent correlation coefficients for all pairs of variables that are required
by the parameter estimation procedure of the auxiliary model, i.e. Gp.

Step 5. Estimate the parameters of the Gp model through the equivalent correlation
coefficients.

Step 6. Generate a synthetic time series by employing the Gp (i.e., ¢, Z;, Zg ¢ OT Z5¢).

Step 7. Map the auxiliary (i.e. Gaussian) time series to the actual domain in order to attain a
realization of the target process (i.e., X;, X¢, X5t OF Xg¢).

4.3.8 Numerical examples

As mentioned in the previous section, the decomposition-based simulation scheme of section
4.1.3, which is typically employed for the simulation of correlated RVs, can be easily used for
the simulation of stationary and non-stationary, non-Gaussian processes. The simulation
procedure is exactly the same, with the only difference that given an autocorrelation function
Pr> T = 0, and assuming that we wish to generate a process with T time steps, the elements of
the now T X T matrix R are being determined by Ry; j; = p|;—|. Particularly, in the case of
stationarity, the marginal distribution of the process x; is constant for any ¢t € Z, i.e., Fy, = F;.
As first example, we employ a simple theoretical autocorrelation structure, that of the first
order autoregressive model (i.e., AR(1)), which is given by, p, = alfl, where a, is a model
parameter in [—1,1]. Assuming @, = 0.6 and a zero-inflated discrete-continuous marginal
distribution (as in the previous example of section 4.1.4.2) with p, = 0.8 and G,(x) =
F;(x; 0.7,10) for the continuous distribution part (i.e., a Gamma distribution) we simulate one
realization of 5 ooo time steps. Given this information, the first step is to identify the
relationship, p, = F (ﬁ,lFx) (see Figure 4.17a), and subsequently invert it, in order to obtain
the equivalent correlation coefficients; hence the structure of the auxiliary Gaussian process
(brown dashed line Figure 4.17c). Next, a realization of the auxiliary process is generated, and
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then transformed using a mapping function similar to Eq. (4.33). Figure 4.16a depicts the
simulated sequence, as well as Figure 4.16b a comparison between the theoretical PDF and the
empirical histogram. Furthermore, Figure 4.17b-d synopsize some of the key marginal and
stochastic properties of the simulated time series, which arguably closely resemble the
theoretical ones. However, it is noted that this scheme was mainly employed for demonstration
purposes due to the fact that often suffers from numerical difficulties (as a result of large matrix
operations), thus it is often preferable to resort to alternative modelling approaches, such as
those of Chapter 4, 6 and 7.
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Figure 4.16 | Hypothetical example of a zero-inflated stationary process with p, = 0.8 and continuous
Gamma-distributed part G(0.7,10). a) Simulated time series of 5 0oo time steps. b) Comparison
between empirical histogram and theoretical PDF.
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Figure 4.17 | a) The established relationship between equivalent, § and target p correlation
coefficients. b) Theoretical and simulated CDFs (using Weibull’s plotting position). c) Theoretical,
equivalent and simulated autocorrelation functions (ACF). d) Scatter plot depicting the established lag-
1 dependence pattern among consecutive time steps.

To further explore the applicability of the method, let us consider the simulation of a non-
Gaussian, non-stationary process x;. In this case the marginal distribution of the process is
modeled using the two-parameter Log-Normal (i.e., LN (a,b)) (see section 4.5.2) with its
parameters depending on absolute time t, i.e., x;~LN (a(t),b(t)). Specifically, the shape
parameter a is related with time t by, a(t) = —0.01t + 1.1, while the scale b by, b(t) =
0.04t + 1. These parameters are also related with the mean and variance (that also depend on

absolute time) of the process by, u; = E[x,| = exp (b(t) + O.5(a(t))2) and 0?2 = Var[x,| =
exp (Zb(t) + (a(t))z) (exp ((a(t))z) — 1) respectively. The i* and j" elements of the
correlation matrix R were set as Ry; jj = 0.6/:7J1. Of course, this implies that the i® and j
Fair )
where F,i and F,; denote the distribution of the process at time ¢; and t; respectively. Using

elements of the equivalent matrix R are being determined using, Ti[i’ G=F (R[i’ il

this setup, 5 ooo realizations, each of 100 time steps, are synthesized (hereafter called ensemble)
and the results from this example are summarized in Figure 4.18 and Figure 4.19, which
illustrate that the model is capable to fulfill its promises and reproduce the time-varying, 1)
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distribution function, 2) mean, and 3) variance of the process, as well the target correlation
structure. It is remarked, that in practice, deterministic relationships, such as those employed
in this example are always unknown, hence the concept of non-stationarity should always be
used with extreme caution.
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Figure 4.18 | Hypothetical example of a non-stationary process with Log-Normal marginal
distribution. a) All 5 0oo realizations (three of which are depicted with distinct colors), each consisted
of 100 time steps. Comparison of theoretical and ensemble b) mean and c) variance as a function of
time. Comparison between empirical histogram and theoretical PDF for time d) t = 25, ¢) t = 50 and f)

t=75.
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Figure 4.19 | a) Theoretical and b) simulated correlation as a function of absolute time. c) Absolute
difference between theoretical and simulated correlation coefficients.
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4.3.9 A brief note on Nataf-based stochastic models

By now, it should be clear that the theoretical developments presented herein allow the
construction of explicit, in terms of reproducing the distribution function, stochastic
simulation methods (relieved from the limitations and constraints of such schemes; see section
2.3) that fundamentally differ from the other two typical schemes (implicit and
transformation-based; see section 2.3.1) used in hydrology, which also employ linear stochastic
models.

Compared to the implicit approaches that employ non-Gaussian white noise, Nataf-based
schemes alleviate several notable limitations. Among them, the approximation of the
distribution function, the generation of negative values, the bounded dependence patterns and
the (often) narrow type of possible correlation structures, which is attributed to the limited
number of schemes for which analytical equations can be derived to link the moments of the
process with those of the white noise.

Additionally, in contrast to transformation-based approaches, that aim to normalize the data,
Nataf-based schemes explicitly model them using target marginal distributions. Though, it has
to be noted, that in principle, the rationale of transformation-based approaches can be easily
aligned with the theoretical background of Nataf’s distribution model by using the concept of
equivalent (i.e., adjusted) correlation coefficients. This modification would mitigate their major
weakness (i.e., the introduction of bias) but still will not be equivalent with the reproduction of
a certain, pre-specified, distribution functions. On top of this, since the ICDF is employed, a
unique advantage of Nataf-based approaches, over the aforementioned schemes, is that it can
be used for the simulation of both univariate and multivariate stationary processes with
continuous, discrete, or mixed-type distributions, which implies that explicitly avoid the
generation of unwanted negative values (see Chapter 5 and 6).

Regarding parameterization, the Nataf-based approaches exhibit a parsimonious character, as
it is evident by the small number of required parameters, which are equal or lower than those
required by the aforementioned schemes (for a comparison see section 5.6.1.1, 6.5.1 and
6.5.3).

As discussed earlier, NDM and the associated methods can be used for the simulation of
correlated RVs with continuous, discrete or mixed-type marginal distributions, provided that
their combination is feasible and the variance of the distributions is finite. The latter
requirement stems for the definition of Pearson’s correlation coefficient, which implies that
that both the mean and variance of the involved distributions are finite. This assumption also
holds for Nataf-based stochastic models, and of course, for any other model that relies on
Pearson’s correlation coefficient. In such situations the use of alternative simulation methods
is required [e.g., Samoradnitsky, 2017].

Random variables with infinite moments typically arise when heavy-tailed distribution
functions with power-type tails are employed. For instance, a Pareto type-I distribution with
CDF, F(x) =1 — (x/b)~% where b > 0 (scale), a > 0 (shape) and x > b, has finite variance
only for a > 2. The literature offers a plethora of studies indicating the suitability of heavy-
tailed distributions for both precipitation [e.g., Papalexiou and Koutsoyiannis, 2013, 2016;
Papalexiou et al., 2013; Cavanaugh et al., 2015; Koutsoyiannis and Papalexiou, 2016] and
streamflow [e.g., Anderson and Meerschaert, 1998; Bowers et al., 2012; Basso et al., 2015; Blum
et al., 2017] processes, especially regarding the description of their extreme behavior. By
reviewing the outcomes of these studies, which involve the analysis of numerous worldwide
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historical records, it was found that the majority of them agree that the such variables are
characterized by distribution functions (with either exponential or power-type tails) with finite
variance [Koutsoyiannis and Papalexiou, 2016]. On top of the empirical evidence provided by
the aforementioned works, theoretical reasoning (related with entropy and energy production)
further supports the finite variance hypothesis for natural processes [Koutsoyiannis, 2016,
2017]. In this vein, it is regarded that this infinite variance assumption poses a practical barrier
of limited impact, if any, on the application of abovementioned methods for the simulation of
hydrometeorological processes.

Moreover, due to changing environmental and hydroclimatic conditions, the statistical
information contained in historical data may not be fully representative of the projected future
conditions. In this context, aiming to explore the effects of change, several researchers suggest
perturbing the values of the statistical characteristics to be reproduced within synthetic data
[e.g., Baltas, 2007; Baltas and Karaliolidou, 2008; Nazemi et al., 2013; Borgomeo et al., 2015],
which implies employing parameters different than the data-driven ones. Nevertheless,
wherever it is necessary to manually assign target input values, these have to be checked against
both physical consistency and hydrological evidence. In this vein, it is remarked that Nataf-
based models are able to synthesize data from any distribution hence allowing their
straightforward use in such studies. This can be easily accomplished by changing the
parameters of the distribution functions (even the distribution functions themselves) or the
correlation structure of the process and subsequently investigate the effects of such changes to
the system under study.

4.4 'THE CASE OF MIXED MARGINAL DISTRIBUTIONS

Herein we highlight the case of mixed-distributions (which can be used within Nataf-based
methods), often advocated within hydrological applications, either to better represent the tails
of the understudy hydrometeorological variable [e.g., Foufoula-Georgiou and Lettenmaier,
1987; Wilks, 1998; Furrer and Katz, 2008; Li et al., 2012, 2013; Evin et al., 2018], or to
simultaneously represent the dual character of intermittent processes [e.g., Williams, 1998;
Cannon, 2008; Serinaldi, 2009a; Serinaldi and Kilsby, 2014; Bdrdossy and Pegram, 2016;
Papalexiou, 2018; Tsoukalas et al., 2018d, 2018b]. Herein we briefly describe the second case,
which can be accomplished using a zero-inflated (also referred to as zero-augmented or discrete-
continuous) distribution model. This model is composed by both a discrete and a continuous
part, and its CDF is given by,

Pp, x<0
Fe(x) = { pp + (1 — pp)Gy(x), x>0 (4.45)

The discrete part is represented by p, := P(x = 0), and denotes the probability of a zero value.
The continuous part is given by Gy = Fy|x>o = P(g < xlg > O), which denotes a continuous
distribution function for the non-zero data. For instance, within the context of intermittent
hydrometeorological processes (e.g., rainfall), pp stands for the probability of a dry interval
(i.e., probability dry), and G, represents the distribution of positive amounts. In real-world
situations, the most straightforward way to specify pp and Gy is through the available data.
Specifically, pp is estimated as the ratio of dry occurrences to the total number of observations,
while G, can be identified by fitting a continuous distribution function to the positive amounts.
For con;pleteness, the ICDF of the zero-inflated model, which can be used for RVs generation,
is given by,
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0, 0o<u<spp

EHW = 6o (g - 5”3) Py < U1 (4.46)
N ~—FD

where u € [0, 1] denotes probability. In this formulation values less or equal to x, (that arise
with probability pp ) are assumed equal to zero. For real-world applications of this distribution
model within the context of hydrometeorological processes simulation see Chapter 5 and 7.

4.5 IDENTIFICATION OF EQUIVALENT CORRELATION COEFFICIENTS

Animportant part of every Nataf-based method (i.e., unconditional and conditional simulation
of RVs, as well as for stochastic processes simulation) is the identification of equivalent
correlations. As already mentioned, for the RVs case, in order to preserve the target
correlations p; ; in the actual domain, after mapping the Gaussian variables with their
prescribed distributions F i and FEJ-’ it is essential to establish a suitable relationship between

pi; and p; ;. i.e, F(-). The following discussion is centered towards the generic case of RV,

while it is easily adopted for stochastic processes by simply changing the associated RVs. For

instance, in the cyclostationary case, we just have to set x; := x! and Xj = x!_., and

approximate the required (by the auxiliary model) equivalent correlation coefficients ﬁ;i_r of

the target correlations pys_;.

The literature offers a variety of approaches to establish F(-), including empirically derived
relationships [Der Kiureghian and Liu, 1986; Liu and Der Kiureghian, 1986; Ditlevsen and
Madsen, 2007], crude search procedures [Cario and Nelson, 1996, 1997], methods based on the
Gauss-Kronrod quadrature rule [Cario, 1996], root finding methods [Li and Hammond, 1975;
Chen, 2001; Macke et al., 2009] as well as Gauss—Hermite quadrature and Monte Carlo methods
(Zhou and Nowak, 1988; Li et al., 2008; Xiao, 2014|. Herein, in contrast to most of the
aforementioned procedures, which are suitable only for continuous marginal distributions, we
present a recently developed, simple and easy to implement method, which is applicable for
any-type marginal distributions Fﬁi and sz, regardless if they are continuous, discrete, or

mixed-type (see section 4.4), since its only requirement is the target ICDFs. In a nutshell, the
proposed method is based on the evaluation of few pairs of p;; and p;; using Monte Carlo
simulation and subsequently, the establishment of the relationship of Eq. (4.15) through
polynomial interpolation [Tsoukalas et al., 2017a, 2018e, 2018d]. Throughout this Thesis,
unless stated otherwise, the relationship of Eq. (4.15) is established using the above method.
The proposed method is particularly useful when the concept of NDM is employed for the
simulation of stochastic processes, since it significantly reduces the required computational
load. See Chapter 5 and 6 for a more thorough discussion on the subject.

4.5.1 A hybrid Monte Carlo approach

In this context, the following generic procedure has been developed. Let x; and x; be two
random variables while p; ; and p; ; stand for the equivalent (in Gaussian domain) and the
target correlation coefficients respectively. Furthermore, let F, andF;, denote the
corresponding target distributions, whose variance is assumed finite. The developed procedure
is comprised by the following steps (the indices i and j are omitted for simplicity):
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Step 1: Create a Q-dimensional vector p = [p?, ..., p*, ..., p?] of equally spaced values in the
interval [Dmin, Pmax]- Here, lemma 2 can be accounted for in order to determine the boundaries
Pmin and Pray, since it provides insights regarding the sign of p; ;. For example, if the target
correlation p; ; is positive, then we set fpin = 0 and Py = 1.

Step 2: For each element of p , generate N samples from the bivariate standard normal
distribution, with correlation p*.

Step 3: Map the generated data to the actual domain through x; = F* (db(gi)), using the

associated target marginal distributions F, and F, .
x; x;

Step 4: Calculate the empirical correlations p* and store them in the vectorp =
[pY, ..., p%, ..., p?].

Step 5: Approximate the relationship between target (p; ;) and equivalent (p; ;) correlation by
establishing a polynomial function of order p, among the values of p and p i.e.,

p=F(p|Fey Fr,) =P = 0pp? +0pspP™" 4+ 0,57 + 6, (4.47)
Step 6: Evaluate the equivalent correlation p; ; by inverting the relationship between the fitted
polynomial and the target correlation p; ;.

We highlight that, according to Weierstrass approximation theorem, the formulation of the
polynomial expression of Eq. (4.47) is theoretically feasible, since F(*) is continuous and p is
by definition bounded on the interval [-1, 1]. Moreover, we remark that the constant term 6,
could be omitted, as indicated by Lemma 2.

The above procedure, which is hybrid combination of Monte Carlo simulation and numerical
interpolation through polynomial regression, uses three input arguments, i.e., the vector
dimension (2, the sample size N, and the polynomial order p. The first two influence the
accuracy and computational effort of the Monte Carlo procedure, while the third influences
the accuracy of the interpolation approach. Preliminary analysis detected that a good balance
between accuracy and computational efficiency is ensured for (2 around 10 - 20, and N around
50 000 - 100 000 trials. Regarding the polynomial order, Xiao [2014] conducted an extensive
analysis, with distributions exhibiting a wide range of skewness and kurtosis coefficients, and
concluded that F (+) can be accurately approximated by a polynomial of less than ninth degree
(p £ 9). Apparently, for p = Q - 1, the polynomial passes exactly through all simulated points,
yet, in order to ensure parsimony, it may be preferable employing a less complicated
expression. In this vein, in order to avoid over-fitting, we propose adjusting the order of the
polynomial with the use of cross-validation techniques or the Akaike information criterion
[Akaike, 1974]. We note that on the basis of systematic investigations, instead of polynomials,
alternative functions could be employed |e.g., Serinaldi and Lombardo, 2017; Papalexiou,
2018].

The key advantages of the proposed methodology, are its generality (it can be used for
continuous, discrete or mixed-type distributions) and simplicity, as well as the fact that it
doesn’t depend on specialized algorithms to solve the double integral embedded in Eq. (4.15),
in order to obtain a valid expression F(*). Despite the iterative nature of the algorithm, its
implementation in high-level programming languages, such as R or MATLAB, requires less
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than 1/2 second (assuming N = 150 000, 2 = 9 and p = 8) on a modest 3.0 GHz Intel Dual-Core
i5 processor with 4 GB RAM.

Note that, the proper and accurate identification of the relationship F(-) has a crucial role in
NDM-based schemes, since its misspecification may lead to simulation errors. Hence, to assess
the suitability of the developed algorithm, which is extensively used in this work, we employed
it and recreated the cases depicted in Figure 4.2; which concerned the identification of
equivalent correlation coefficients of two Gamma-distributed variables x, and x,, for various
values of shape parameters. The parameters of the algorithm were set as follows, N = 150 ooo,
p = 8 and Q = 9. After the specification of the relationship F(-) by the latter algorithm, the
target correlations where evaluated for values of p,, € [—1,1] sampled by o.01. To provide a
quantitative comparison, we estimated the MSE and maximum square error (Max(SE))
between the estimates of the numerical integration method (i.e., Figure 4.2) and those of the
aforementioned algorithm. A synopsis of the results is given on Table 4-1, where the panels (a)
and (b) corresponds to those of Figure 4.2. This analysis illustrates the potential of the
employed method to resemble the asymmetric and non-linear nature of F(-) with high
accuracy.

Table 4-1 | Comparison between numerical integration and the algorithm of section 4.5.1 for the
numerical example illustrated in Figure 4.2. Panels a) and b) correspond to those of Figure 4.2.

a) a:=a; =a|b:=bs=b,=1 b) a, =5|b:=b;=b,=1
Shape (a) MSE Max(SE) Shape (a,) MSE Max(SE)
0.01 8.03x107° 7.75x10* 0.01 2.12x107° 3.79x10*
0.05 5.81x10° 3.08x10* 0.05 6.46x10°¢ 2.70x107
0.1 2.44x10°¢ 9.89x10°¢ 0.1 6.26x10°¢ 4.15x107°
0.5 4.33x10°® 1.59x10°° 0.5 1.51x10° 9.37x107°
1 3.31x10°¢ 1.88x10°° 1 2.54x10°¢ 1.13x10°°
2 1.22x10°® 8.47x10°¢ 2 7.19x107 3.20x10°¢
5 3.70x10°¢ 1.80x10°° 5 5.24x107 1.77x10°®

4.5.2 The Log-Normal case

As mentioned earlier, Eq. (4.15) has a closed-form solution for the Log-Normal case, which is
of particular interest from a hydrological perspective. The PDF of the 3-parameter Log-Normal
distribution (LX) is given by,

fin (G a,b, c) =

1 1 log(x—c)—b2
G oavis exp <_E< - ) ) x>c (4.48)

where a > 0, b € R and ¢ € R denote the shape (i.e., log standard deviation), scale (i.e., log
mean) and location parameters respectively; while when ¢ = 0, the distribution reduces to the
2-parameter Log-Normal distribution. As shown in Mostafa and Mahmoud [1964], yet without
direct reference to NDM, for two random variables x; and x;that are Log-Normally
distributed, Eq. (4.13), hence Eq. (4.15) simplifies to,

exp(ﬁi,jaiaj) -1

pij =
JCexpt@) = D(exp(a}) 1)

(4.49)
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Which can be easily inverted in order to directly provide the equivalent correlation
coefficient p; j, given the target value of p; ; ie.,

Ln (1 + pi \/(eXp(a?) — 1)(exp(a?) — 1))

aiaj

(4.50)

Pij =

It is remarked that Eq. (4.50) is identical with the one employed in the celebrated multivariate
lag-1 Log-Normal model of Matalas [1967], to adjust the correlation coefficients, which
interestingly can be identified as a Nataf-based approach [cf. Tsoukalas et al., 2018d].

4.5.3 A cautionary note

A delicate point worth stating concerns the use of alternative, rank-based dependence measures
such as, Spearman’s 7 and Kendall’s # within NDM (or Gaussian copula). Under the
assumption that both marginal distributions and copula are Gaussian (or more generally
elliptical distributions) there is a one-to-one relationship between these dependence measures
and Pearson’s correlation, which can be expressed as [e.g., Esscher, 1924; Kruskal, 1958;
Embrechts et al., 1999; Lebrun and Dutfoy, 2009] (notice that the indices have been omitted for
the sake of simplicity),

p = 2sin (7%1”5) o g = (g) arcsin (g) (4.51)
p = sin (n?t) o t= (g) arcsin(p) (4.52)

Both 7 and # are measures of concordance and are invariant to non-linear monotonic
transformations, such as those imposed by x; = F* (db(gi)). Specitying NDM or Gaussian

copula with estimates of p based on the conversion of empirical estimates of 7 or £ will
inevitably preserve the target values of 7 or £ after the application of the mapping procedure
(due to the property of invariance) but it will lead to misspecification of the underlying model
(i.e., NDM or Gaussian copula) due to Eq. (4.15), and of course the target values of p won’t be
preserved. Unfortunately, the underlying assumptions of Eq. (4.51) and Eq. (4.52) are often
relaxed or not fully considered in practice since these equations have been employed in several
works (that involve an auxiliary Gaussian model) within the hydrological domain [e.g., Kelly
and Krzysztofowicz, 1997; Herr and Krzysztofowicz, 2005; Renard and Lang, 2007; Serinaldi,
20094, 2009b; Srikanthan and Pegram, 2009; Mhanna and Bauwens, 2012; Serinaldi and Kilsby,
2014], just to name a few.

4.6 BITS AND PIECES OF NDM IN HYDROLOGY

NDM-based approaches have been widely applied in industrial, financial and operations
research applications, as indicated from the popularity of the original article by Nataf [1962]
and the related publications [Liu and Der Kiureghian, 1986; Cario and Nelson, 1996, 1997;
Grigoriu, 1998; Deodatis and Micaletti, 2001; Biller and Nelson, 2003 ].

While the hydrological community does not make direct reference to NDM, the concept of
equivalent correlations (which are often neglected; see section 4.5.3) and the associated models,
such as NORTA, ARTA, VARTA, etc. it actually shares the same rationale, even from the
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geneses of hydrological stochastics [see, Tsoukalas et al., 2018¢]. Loosely speaking, the core idea
of NDM comprises the initiation from the Gaussian domain, with properly adjusted correlation
coefficients, and then a mapping to the desirable domain; an idea that can be retrospectively
associated with several well-known hydrological approaches.

In particular, Matalas [1967] has studied the effects of logarithmic transformations in the
context of synthesizing log-normally distributed processes, concluding that the so far
prevailing transformation approach failed to resemble the historical statistics. To reestablish
consistency, he developed a framework based on the generation of normal processes, and
provided a set of theoretical equations to estimate the statistical parameters (including adjusted
correlation coefficients) in the Log-Normal domain. Moran [1969] developed a bivariate
Gamma distribution using as main building block an auxiliary bivariate Gaussian distribution.
Later, Klemes and Bortivka [1974] developed a generation scheme for gamma-distributed
univariate first-order Markov chains, through a mapping procedure of Gaussian processes with
the use of adjusted correlation coefficients. Mejia and Rodriguez-Iturbe [1974] discuss the link
between Gaussian and log-Normal processes, while they also comment that as formulated, the
log-Normal model of Matalas [1967], is able to resemble only the lag-1 autocorrelation
coefficient and approximate the Markovian autocorrelation structure. A fact attributed to the
use of adjusted correlations only for the lag-1 correlations. Yet, it is noted that this deviation
from the Markovian structure is typically minimal. More recently, Kelly and Krzysztofowicz
[1997] proposed and illustrated through several hydrology-related applications, a flexible
bivariate distribution model, termed meta-Gaussian, which builds upon the bivariate standard
normal distribution and the normal quantile transformation. Wilks [1998], in the context of
his widely known rainfall generation model (which is also associated with many weather
generator schemes; see section 2.3.3), and in an effort to simulate cross-correlated random
variates, representing either the precipitation occurrence or amount process (neglecting
temporal dependence), proposed the simulation of cross-correlated Gaussian variables and
their subsequent mapping via their ICDF. Wilks empirically observed that a monotonic
relationship exists which links the correlation coefficients of the Gaussian and real domain.
Hence, the use of inflated correlation coefficients was proposed within the multivariate
Gaussian distribution, in order to attain random variates with the required cross-correlation
and distribution. This seminal work has triggered the development of improved schemes,
supporting more distributions and correlation structures (see also section 2.3.3).

Additionally, advances in stochastic hydrology are also in alignment with NDM, since it seems
that presently, Nataf-based approaches are gaining momentum. In particular, in a similar vein,
Serinaldi and Lombardo [2017] proposed a fast procedure for autocorrelated univariate binary
processes. Lee [2017] introduced a Gaussian copula, simulation-based method for cross-
correlated, yet serially independent, Gamma-distributed precipitation. Papalexiou [2018]
provided a framework for synthetic data generation using autoregressive models, also
accounting for intermittency using mixed distributions. Tsoukalas et al. [2017a, 2018e],
employed the notion of NDM and provided a cyclostationary generalization of the models
ARTA and VARTA, termed SPARTA (Stochastic Periodic AutoRegressive To Anything), for
the simulation of univariate and multivariate periodic processes with arbitrary marginal
distributions (see Chapter 6). Furthermore, Tsoukalas et al. [2018d] proposed a model termed
Symmetric Moving Average (neaRly) To Anything (SMARTA), which is capable of simulating
univariate an multivariate stationary stochastic processes with any distribution and correlation
structure (see Chapter 5, which presents also an additional model). It is noted that the
designation nearly in the model is included to emphasize that the target marginal distributions
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ought to have finite variance. Finally, Tsoukalas et al. [2018b], presented a multivariate multi-
level disaggregation-based approach, designed for the pairwise coupling of Nataf-based
stochastic models that operate independently of each other at certain key time scales. The
coupling approach, as well as the solid theoretical basis of these models, enable the development
of modular stochastic simulation schemes, that can synthesize multivariate time series with any
distribution and correlation structure that are also statistically consistent across multiple
temporal scales (see Chapter 7).

4.7 SUMMARY

This Chapter provided a comprehensive treatment on the Nataf’s joint distribution (NDM)
model, starting from its theoretical basis and the establishment of the multivariate joint
distribution of RVs. The analysis also highlighted its relationship with the Gaussian copula,
which in turn allow us to extend NDM for the derivation of the multivariate conditional
distribution. The applicability of these concepts has been demonstrated through several
examples, including continuous, discrete and mixed-type distributions.

Subsequently, the concept of NDM, has been adapted for the simulation of non-Gaussian
stochastic processes, and general guidelines that can be used for the development of Nataf-
based stochastic simulation models have been provided (see below).

An additional contribution of this Chapter is the development of a simple and versatile Monte
Carlo procedure for the identification of equivalent correlation coefficients, which have an
essential, yet often neglected, role in the establishment of NDM-based constructs.

In the following Chapters, 5 and 6, the focus is given on the development of non-Gaussian
Nataf-based models for stationary and cyclostationary processes respectively, while Chapter 7
provides a fusion of these new developments, into integrated stochastic simulation schemes,
capable of simultaneously accounting for the peculiar characteristics of hydrometeorological
processes at multiple time scales.
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SIMULATION OF STATIONARY STOCHASTIC PROCESSES EXHIBITING
ANY-RANGE DEPENDENCE AND ARBITRARY MARGINAL DISTRIBUTIONS

L

PREAMBLE

This Chapter presents a novel approach for synthetic time series generation. In particular it
presents two models, termed Symmetric Moving Average (neaRly) To Anything (SMARTA)
and Contemporaneous Multivariate Autoregressive (neaRly) to Anything (CMARTA), able to
simulate stationary univariate and multivariate contemporaneously cross-correlated processes
with any-range dependence and arbitrary marginal distributions; provided that the former is
feasible and the latter have finite variance. This is accomplished by utilizing a mapping
procedure in combination with the relationship that exists between the correlation coefficients
of an auxiliary Gaussian process and a non-Gaussian one, formalized through the Nataf’s joint
distribution model. The generality of the two models is validated through several hypothetical
simulation studies (univariate and multivariate), characterized by different dependencies and
distributions. We demonstrate the practical aspects of the proposed approach through two real-
world cases, one that concerns the generation of annual non-Gaussian streamflow time series
at four stations and another that involves the synthesis of intermittent, non-Gaussian, daily
rainfall series at a single location.

The structure of the Chapter is as follows: Section 5.1 introduces the problem. Section 5.2
presents some key concepts regarding modelling of auto-dependence structure in general.
Section 5.3 provides the theoretical background of the proposed models; next, section 5.4
describes the auxiliary SMA and CMAR models and, section 5.5 summarizes the overall
approach and provides the generation mechanism of the two models in an algorithmic step-
by-step manner. The generality of SMARTA and CMARTA models is illustrated through a
series of numerical examples, hypothetical (section 5.6) and real-world (section 5.7), including
the simulation of both univariate and multivariate time series. Finally, in section 5.8 we
summarize and discuss the proposed modelling approach.

* Based on:

Tsoukalas, I., C. Makropoulos, and D. Koutsoyiannis (2018d), Simulation of stochastic processes exhibiting any-
range dependence and arbitrary marginal distributions, Water Resour. Res., d0i:10.1029/2017WR022462.
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5.1 INTRODUCTION

A typical characteristic encountered in hydrometeorological processes is auto-dependence
(persistence), either short or long-range. The former, short-range dependence (SRD), has been
extensively discussed in literature [e.g., Box and Jenkins, 1970] and implies an exponential
autocorrelation structure that diminishes after few time lags. On the contrary, the second, long-
range dependence (LRD), also known as long-term persistence (sometimes referred to as long-
memory), implies an auto-dependence structure that strongly extends for large lags. This
behavior is also related to the so-called Hurst phenomenon, also known as Joseph effect,
fractional Gaussian noise (fGn), scaling in time or Hurst-Kolmogorov dynamics [HK;
Koutsoyiannis and Montanari, 2007; Koutsoyiannis, 2011al; see also the review work of Molz
et al. [1997]. Its discovery is usually credited to Hurst [1951] who while studying long records
of streamflow and other data noticed that extreme events tend to exhibit a clustering behavior
in terms of temporal occurrence. However, as pointed out by Koufsoyiannis [2011a], it was
Kolmogorov [1940] who first proposed its mathematical description. Eventually, after the
seminal work of Hurst and the extensive documentation of Mandelbrot and Wallis [1969a,
1969b, 1969c] it is now acknowledged that LRD (and HK) processes are omnipresent in
geophysics, hydrology, climate and other scientific disciplines [Beran, 1994; Koutsoyiannis,
2002; O’Connellet al., 2016]. These publications provide further examples and details regarding
the interpretation and identification of such behavior.

As far as it concerns modelling and application of SRD or LRD in hydrological studies, the
former type (SRD) has been systematically studied and employed in numerous cases for the
simulation of a variety of hydrometeorological processes [Matalas, 1967; Srikanthan and
McMahon, 2001; Brissette et al., 2007; Thompson et al., 2007; Khalili et al., 2009; Srikanthan
and Pegram, 2009; Mhanna and Bauwens, 2012; Breinl et al., 2013; Mehrotra et al., 2015]. On
the other hand, it is well recognized that proper representation of LRD is of high importance,
especially in reservoir-related studies, since their operation and regulation is performed in
over-annual scale, where LRD is mostly encountered [Bras and Rodriguez-Iturbe, 198s;
Koutsoyiannis, 2002; Iliopoulou et al., 2016]. Other notable hydrology-related applications of
LRD include the stochastic simulation of precipitation or streamflow at finer time-scales, from
monthlyand daily [Montanariet al., 1997, 2000; Maftei et al., 2016; e.g., Detzel and Mine, 2017
to 10-second interval [Papalexiou et al., 2011; e.g., Lombardo et al., 2012], as well as the
generation of synthetic storm hyetographs [e.g., Koutsoyiannis and Foufoula-Georgiou, 1993].

In general, SRD can be easily captured with the so-called AutoRegressive Moving Average
(ARMA) family of models, while we note, that even though such models have a long history
and are still popular, today the literature offers other powerful and flexible options [cf.
Koutsoyiannis, 2016]. On the other hand, LRD, hence HK behavior, requires the use of
alternative generation schemes [see, Bras and Rodriguez-Iturbe, 1985; O’Connell et al., 2016],
such as, fractional Gaussian noise models [Mandelbrot and Wallis, 1969a, 1969b, 1969c¢], fast
fractional Gaussian noise (ffGn) models [Mandelbrot, 1971], broken line models | Ditlevsen,
1971; Mejia et al, 1972] and Fractional AutoRegressive Integrated Moving-Average
(FARIMA) models [Granger and Joyeux, 1980; Hosking, 1984]. In contrast to the
abovementioned specialized simulation schemes, a notable exception, that can simulate any
type of autocorrelation function of a process, is the symmetric moving average (SMA) model
of Koutsoyiannis [2000, 2002, 2016], coupled with theoretical autocorrelation (or
autocovariance) structures. This flexibility is achieved by decoupling the parameter
identification of the autocorrelation structure and the generation mechanism (i.e., the model).
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In addition to temporal dependence, hydrometeorological processes are often characterized by
non-Gaussian and skewed distribution functions (see the discussion in section 2.2), especially
in fine time scales (e.g., daily or finer), where intermittency is omnipresent. Regarding
stochastic hydrology and simulation through linear stochastic models, many efforts have been
made towards that direction (i.e., simulating non-Gaussian processes) which can be broadly
classified in three main categories | Tsoukalas et al., 2018e]: a) Explicit methods that are able to
generate data from specific marginal distributions [e.g., Matalas, 1967; Klemes and Boriivka,
1974; Lawrance and Lewis, 1981a; Lombardo et al,, 2012, 2017] b) Implicit approaches,
pioneered by Thomas and Fiering [1963], that treat skewness via employing non-Gaussian
white noise (typically from Pearson type-1II distribution) for the innovation term [e.g.,
Matalas, 1967; Matalas and Wallis, 1971, 1976; Lettenmaier and Burges, 1977; Todini, 1980;
Koutsoyiannis, 1999, 2000; Efstratiadis et al., 2014a; Detzel and Mine, 2017]. c)
Transformation-based approaches that employ appropriate functions (e.g., Box-Cox) in order
to normalize the observed data; next simulate realizations using typical Gaussian stochastic
models and finally de-normalize the generated data in order to attain the process of interest
[e.g., Salas et al., 1980].

However, as discussed in Tsoukalas et al. [2018¢], as well as in section 2.2, most of these
schemes exhibit a number of limitations that still remain unresolved. Particularly, approaches
of category (a) are limited to a narrow type of autocorrelation functions and non-Gaussian
distributions (e.g., Gamma or Log-Normal), while they are typically able to simulate only
univariate processes. On the other hand, approaches of category (b) are prone to the generation
of negative values, provide an approximation of the marginal distributions, while encounter
difficulties when modelling highly skewed (univariate or multivariate) processes [ 7odini, 1980;
Koutsoyiannis, 1999]. It is noted thought, that some recent schemes are able to capture
moments higher than skewness (e.g., kurtosis), by the inclusion of additional model parameters
[Koutsoyiannis et al., 2018 and references therein]. On top of these issues, only few schemes
(e.g., SMA) are able to simultaneously model a variety of temporal correlation structures, while
it is also possible to establish bounded dependence patterns which are far from natural ones
(see Tsoukalas et al. [2018e, 2018a], Chapter 3 and section 6.5). Finally, regarding the schemes
of category (c), they require the specification of a non-trivial normalization function (due to
the inadequacy of simple transformations; such as, Box-Cox) that often entail several
parameters (usually determined through optimization techniques). Further to this, even if the
transformation function is properly identified, it is acknowledged that it introduces bias in the
simulated marginal and joint characteristics [Salas et al., 1980 p. 73; Bras and Rodriguez-Iturbe,
1985].

In this Chapter, in an effort to simultaneously address these challenges and provide flexible
tools for the generation of hydrometeorological synthetic time series, we build upon the
concept of Nataf-based processes (see section 4.3) and develop two particularly flexible models.
The models follow rationale employed within the scientific field of operations research and
particularly by Cario and Nelson [1996], as well as, Biller and Nelson [2003] who proposed the
AutoRegressive To Anything (ARTA) and the Vector AutoRegressive To Anything (VARTA)
methods respectively for the explicit simulation of stationary autoregressive (AR) processes
with arbitrary marginal distributions. It is remarked that (to the extent of our knowledge)
despite their wide acceptance, the aforementioned approaches (and their variants) have been
unknown to the hydrological community and have never been used for the simulation of
hydrometeorological processes until very recently (see section 4.6).
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Herein we move beyond the simulation low-order AR autocorrelation structures, and
introduce two generic, yet simple and theoretically justified, models for the simulation of
univariate and multivariate contemporaneously cross-correlated stationary processes
exhibiting any-range dependence and arbitrary marginal distributions (continuous, discrete or
mixed-type). More specifically, the first model uses as an auxiliary model the SMA scheme of
Koutsoyiannis [2000], hence termed Symmetric Moving Average (neaRly) To Anything
(SMARTA). The second employs a Contemporaneous Multivariate AutoRegressive model
(CMAR), hence termed Contemporaneous Multivariate AutoRegressive (neaRly) To Anything
(CMARTA). Both SMARTA and CMARTA can explicitly model the autocorrelation structure
and distribution of each individual process, provided that the former is feasible and the latter
have finite variance, while simultaneously they can preserve the lag-o cross-correlation
structure. This assumption, which significantly simplifies the parameter estimation procedure,
is often regarded adequate within hydrological domain, and can be found in several other
(stationary and cyclostationary; typically Gaussian) stochastic simulation schemes [e.g.,
Pegram and James, 1972; e.g., Camacho et al., 1985, 1987; Koutsoyiannis and Manetas, 1996;
Rasmussen et al., 1996; Efstratiadis et al., 2014a; Tsoukalas et al., 2018e].

The main components of the models are, 1) a theoretical autocorrelation structure, 2) an
auxiliary model for simulating Gaussian processes, and 3) the pivotal concept of Nataf’s joint
distribution model [NDM, Nataf, 1962]. The key idea of our approach lies in mathematically
describing the (target) autocorrelation structure of the process to simulate using a theoretical
model and subsequently, employing an auxiliary Gaussian stochastic process, with such
parameters that reproduce the target auto- (i.e., temporal; SRD or LRD) and lag-o cross-
correlation (i.e., spatial) coefficients of the target process after its subsequent mapping to the
actual domain via the target inverse cumulative density functions (ICDFs).

5.2 MODELLING THE AUTO-DEPENDENCE STRUCTURE OF STATIONARY PROCESSES

Prior to describing the proposed models it is considered useful to provide a brief introduction
to the tools that allow the mathematical description of the auto-dependence structure of a
stochastic process. To elaborate, let x;, t € Z be a discrete-time stationary process, indexed
using t, with finite variance o%: = Var[gt] and autocorrelation function p;: = Corr[&t, £t+r])
where T denotes the time lag. The autocovariance function (ACVF) of the process can be
obtained by, c;: = COV[&, £t+r] = 0?p,. Note that a valid autocorrelation structure has to be
positive definite [e.g., Lindgren, 2013}, which can be readily checked by formulating, and
testing for positive definiteness, the so-called (n X m) autocorrelation matrix R, whose ih, jth
elements are being determined by, Ry; j; = pji—j|-

Besides the ACF and ACVF, particularly useful stochastic tool, is the climacogram [CG,
Koutsoyiannis, 2010, 2016], which is typically depicted using a log-log plot, and expresses the

variance of the aggregated (&(k)) or time averaged (gl(k)) process at scale k € Z*. We remark

that the notation employed herein slightly differs from the typical one, since we restrict our
attention to discrete-time processes. Assuming that x; denotes a discrete-time stationary
process at the basic time scale k = 1, the discrete-time aggregated process at scale k > 1 can
be obtained by,

kl
k
xP= > x (5.1)
t=(l-1)k+1
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while the averaged discrete-time process is obtained by, x; x = &(k) /k. Hence the
corresponding climacograms of the discrete-time aggregated and averaged process can be

defined as I'® := Var [&(k)] and y®) = Var[&(k)] respectively. Moreover, as shown by Beran

(1994 p. 3], as well as by Koutsoyiannis [2010, 2016], the variance over scales (i.e., the CG) and
the ACVF (and therefore ACF) are interrelated. Specifically, if the theoretical ACVF (or ACF),
c; at the basic time scale (k=1) is known, the corresponding theoretical discrete-time
climacogram of the aggregated process can be calculated through the following equation,

re = cok+22(k—r) o (5.2)
T

while the averaged one can be obtained by, y®) = I'® /k2 The recursive application of the
following equation facilitates the calculation of the climacogram I"®),

r® =ark=-0 _rk=2 4 5¢, (5.3)

Itis noted that, ' = y() = ¢, = g2, while I'(®) = 0. The inverse relationship that calculates
the ACVF of the aggregated discrete-time process (&(k)), denoted CT(k) = Cov [&(k), &(412
time scale k given the theoretical climacogram is given by [Koutsoyiannis, 2017,

rdz+ilk) 4 pdr-1lk)

c® = - _rid, yrexz (5.4)

Furthermore, the ACVF, CT(k) at scale k is linked with the ACVF, ¢, of the basic time scale
k = 1, through the following relationship,

k (@+Dk k (+D)k
¢ = Z Z Cov|x,, x| = Z Z Cle—r|, T=0 (5.5)
=1 r=tk+1 =1 r=tk+1

Analogously, the ACVF of the time averaged discrete-time process (gl(k)) at scale k, denoted

(k) = COV[ ), k)] is obtained by C(k) T(k) /k?. Hence, the ACF of the aggregated

discrete-time process at time scale k can be obtained by, pik) CT(k) /T while the ACF of the

time averaged discrete-time process by, pik) = cﬁ") /¥ ™. Note that the ACF of the aggregated
and time averaged process are identical, due to standardization of the corresponding ACVF

with the variance. It is also noted that C, () — ) and C; W — ¢, while similarly, ¢, ) = =y

(1) _

and ¢;’ = c¢;. Itis also noted that a similar relationship to Eq. (5.5), can be derived for the case

of two processes. Particularly let xfand x; be two discrete time processes, at the basic time scale

k =1,and Ci’j = Cov[ﬁ, gg +t] denote the lag-7 cross-covariance function at scale k = 1. The
x i X/ (k)

X4, | of the aggregated processes

lag-7 (for T = 0,1,2, ...) cross-covariance C,” = COV[

Xl(k) X] (k)

2 (= (I-1k+1 xt and il (- 1)k+1xt at scale k is given by,
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k (1+7)k Kk (1+Dk
¢ = Z Z Cov[xix!] —Z Z e (5.6)
=1 r=tk+1 =1 r=1

For instance, for T = 0, the equation simplifies to,

k k
cH — COV[ x i) X1<k>] Z Z Cov[xix!] = ZZ ., (5.7)
=1r=1 t=171=1

Undoubtedly, the most commonly-employed tool to characterize the auto-dependence
structure is the autocorrelation function (ACF). The literature offers a plethora of theoretical
models in both continuous and discrete time [Gneiting, 2000; Koutsoyiannis, 2000, 2016;
Gneiting and Schlather, 2004; Papalexiou et al., 2011; Dimitriadis and Koutsoyiannis, 2015;
Papalexiou, 2018], that can be easily combined with the proposed approach (see next section).
In this Chapter we focus our attention to the discrete-time Cauchy-type autocorrelation
structure (CAS) of Koutsoyiannis [2000] due to its simple and parsimonious form (a desired
property of stochastic modelling), which however does not hinder its ability to model a wide
range of short (ARMA-type) and long-range dependence structures (including HK behavior).
CAS is a two-parameter power-type autocorrelation structure which in its simplest form, if the
ACF has constant and positive sign, (as in the case of geophysical and hydrometeorological
processes) is given by,

pAS = (1 +kBr)"YE, T>=0 (5.8)

where § > 0 and k > 0 are parameters that control the degree of dependence (or persistence)
of the process. It is remarked that the autocorrelation function of an HK (i.e., fGn) process
consists a special case (or a very good approximation) of the CAS model (i.e., Eq. (5.8)). The
theoretical ACF of an HK process is given by,

1
P?K=E(IT—1|2H—2|T|2H+IT+ 1]2H) (5.9)

where H is the Hurst coefficient (o < H < 1), which loosely speaking, controls the degree of
long-term dependence (or persistency) of the process. It has been shown that for large time lags
and H > 0.5, the parameter 3 of CAS is related to the H coefficient of an HK ACF through the
relationship f = 1/(2 — 2H) > 1, thus asymptotically resembling the right tail of the HK
theoretical model. More specifically, for § > 1 and when k is set equal to k,, see Eq. (5.10), CAS
closely approximates the theoretical ACF of an HK process, even from small time lags.

1

-6 o

In addition, the ACF of an SRD process (ARMA-type) can be obtained through CAS, by setting
f = o0 and applying the L’ Hopital’s rule. The resulting SRD ACF is given by,

=K, =

SRD

p3RD = exp(—kT) (5.11)
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Furthermore, when k¥ = —In(p,),and 0 < p, < 1, Eq. (5.10) reduces to the classic Markovian
ACEF of an AR(1) process, given by, pf RO = plfl. For other parameter values, CAS resembles
a plethora of alternative autocorrelation structures, that differ from the aforementioned classic
models [see, Koutsoyiannis, 2000]. The flexibility of CAS is illustrated in Figure 5.1a where we
depict (in a log-log scale) the theoretical ACF of various HK processes, characterized by
different values of Hurst coefficient, H, as well as, their approximation with CAS. The close
agreement of the two theoretical models is further validated in Figure 5.1b where we plot (also
in log-log scale) their climacograms (assumingo? =c, = 1), which are practically
indistinguishable. It is noted that for an HK process, which exhibits simple and constant scaling
laws, the slope, s, of the climacogram y®), ie, the log-log derivative s :=
d(ln( y(k))) /d(In(k)), is related with H parameter by s = 2H — 2. The resemblance of the
HK and CAS is confirmed by estimating the average mean square error (MSE) of the depicted
processes by means of both ACF and climacogram. In terms of ACF, the average MSE value is
o0.01 and the corresponding value in terms of climacogram is 0.66.

a b
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Figure 5.1 | a) Autocorrelation functions and b) climacograms of HK processes exhibiting different
Hurst coefficients (dashed lines) and their approximation with the CAS (continuous line).

Considering the practical aspects of the identification procedure of the auto-dependence
structure (e.g., estimation of the parameters of CAS or any other theoretical structure, given a
sample time series), it is remarked that it is a challenging task due the fact that the sample
estimates of variance and autocorrelation coefficients (i.e., empirical variance and ACF -
calculated from the historical time series) are negatively biased [e.g., Marriott and Pope, 1954;
Beran, 1994; Koutsoyiannis, 2003, 2016, 2017], especially in the presence of LRD (e.g., HK
behavior). A thorough treatment on the subject lies beyond the scope of this study, as it has
been extensively documented by the aforementioned authors, as well as by Dimitriadis and
Koutsoyiannis [2015] who highlighted the advantages of using the climacogram, in comparison
with the ACF and power spectrum, for the identification of the auto-dependence structure. The
authors via an extended analysis of a wide range of SRD and LRD processes showed that the
climacogram exhibits less uncertainty and bias in its estimation, while bias can be easily
estimated a priori, thus providing an attractive alternative to the latter classic approaches.
Further to this, the climacogram can be used as a basis for LRD identification algorithms [e.g.,
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Tyralis and Koutsoyiannis, 2011], as well as for the development additional tools (e.g., the
climacospectrum) that provide further insights regarding the asymptotic behavior of the
process [Koutsoyiannis, 2016, 2017]. It is noted that in this work, the above mentioned
stochastic tools (i.e., ACF and CG) are mainly employed for diagnostic, and not for
identification purposes, i.e., to verify that the simulated processes exhibit the desired
dependence properties.

5.3 THEORETICAL BACKGROUND OF THE MODELS

The central idea of the proposed approach is based on the Nataf’s joint distribution model
[INDM, Nataf, 1962] which has been originally implemented for the generation of cross-
correlated, yet serially independent, random vectors with arbitrary distributions. One of its key
assumptions, which consequently holds for SMARTA and CMARTA or any other Nataf-based
method, is that the employed distributions owe to have finite variance. This assumption is
implied throughout this work.

In this work, we employ the concept of NDM, but in a different context, i.e., for the simulation
of stationary any-range-dependent stochastic processes. Particularly, the rationale of NDM is
combined with an auxiliary Gaussian process in order to capture the stochastic structure (in
terms of autocorrelation and cross-correlation coefficients) of the target process and
simultaneously preserve the desired marginal distributions after the use of the ICDF.

Suppose that the goal is to generate a m-dimensional discrete-time stationary process x; =
. T PR
[&1, iy Xy e &{”] , where t is the time index and the indices i,j = 1, ..., m are used to refer to

. . . T
individual process x{ and x] respectively. Also let, x; = [x{,...,x}, ..., x*| denote a
realization of it. Furthermore, let us assign a target cumulative distribution function (CDEF),

denoted by, F =P (gi < x) to each individual process x/, and let pé{ b= Corr[x}, gg w7

denote the target Pearson’s correlation coefficient between x} and gg for time lag .

Likewise, and using the same notation as above, let z, = [gtl, s Zy e g{”] be an auxiliary m-
dimensional stationary standard Gaussian process with zero mean and unit variance. Also,

let ﬁ;{ = Corr[z}, z], ] denote the Pearson’s correlation coefficient of the auxiliary process

between z! and gtj for time lag 7, hereafter, referred to as equivalent correlation coefficient. It
is noted that throughout the Chapter the superscripts or subscripts of pé{ +7 OF ﬁ;{ +7 May be
omitted when possible. For example, the target autocorrelation of the process x/ will be denoted
pL and its lag-7 cross-correlation with gg as pi’j .

As mentioned earlier, the idea behind SMARTA and CMARTA models (and any other Nataf-
based stochastic model; see section 4.3) lies in simulating an auxiliary standard Gaussian
process z, using the auxiliary model (i.e., SMA or CMAR) with such parameters that after
applying the inverse of their distribution function, results in a process x; with the desired
correlation structure and marginal distributions. This mapping operation can be written as
follows,

xi =Pt (o(2)) (5.12)

where @ (+) denotes the standard normal CDF and Fx_il (+) stands for the ICDF of process x/.

An advantage of the above scheme is that since the ICDFs of the target distributions are
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employed (given that they can be analytically or numerically evaluated), the process x} will
inevitably have the desired marginal properties. Although, the Pearson’s correlation coefficient
is not invariant under such non-linear monotonic transformations [Embrechts et al.,, 1999],

hence péi + will differ from ﬁ;i -

Therefore, the main challenge of such approaches, lies in identifying the equivalent correlations
coefficients that should be used within the generation procedure (Gaussian domain) in order
to attain the target correlation structure in the actual (i.e., real) domain. The relationship
between equivalent and target correlations can be expressed theoretically through the following
double infinite integral (see [Nataf, 1962; Liu and Der Kiureghian, 1986; Biller and Nelson,
2003 ], as well as section 4.3.2),

pé:{w =
f—oooo f—oooo Fﬁ_il (q)(zti))'F;fl (q)(ztj+‘r)) P2 (Zti'th—‘L" ﬁi’-i]-.‘c)dztidztj#c - E[Ki] E[zj] (5.13)

\/Var[&i] Var|x/]

where E[&i], E[&j ] and Var [&i], Var[&j ] denote the mean and variance of x!and x’
respectively; which are known from the corresponding distributions F i and F,; and have to

be finite. Furthermore, ¢, (Zf Zt] o ﬁ;{ +T) denotes the bivariate standard normal probability

density function.

Inspection of Eq. (5.13) indicates that pé{ +7 isa function of ﬁ;{ +p> since all other quantities are
already known from the target (i.e., given) distributions F,: and F_;. Therefore, it can be

compactly written as,

pi:iﬂ' =F (ﬁ;:iﬂ' ng' Fgf) (5.14)

where F (+) is an abbreviation of the function defined by Eq. (5.13), which can be approximated
with the use of numerical techniques such as the one employed herein (see section 4.5.1).

This relationship implies that prior to the estimation of the auxiliary Gaussian model’s
parameters it is essential to identify, and next use within parameter estimation, the equivalent
correlations, ﬁ;{ +p> that result to the target correlations, pé{ +» after the subsequent mapping
of the auxiliary process to the actual domain. This can be achieved through inversion of Eq.

(5.14),ie., ﬁ;iﬂ =F (P;:iw Fyi Fﬁj)'

5.4 THE AUXILIARY GAUSSIAN MODELS

Having described the theoretical background of the proposed Nataf-based models, this section
provides a brief introduction a) to the univariate and multivariate symmetric moving average
(SMA) model of Koutsoyiannis [2000], which is used within SMARTA as an auxiliary standard
Gaussian process model, as well as b) to the univariate and contemporaneous multivariate
autoregressive (CMAR) model, which is employed within CMARTA model.

It is also remarked that instead of SMA or CMAR, any other linear stochastic model (e.g.,
ARMA-type) could be employed in order to mathematically describe the auxiliary Gaussian
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process, yet, it is anticipated that the resulting simulation scheme will inherit its properties
regarding the simulation of univariate and multivariate processes. For instance, since cross-
correlation coefficients other than lag-o are not directly modeled by these models, in the case
of hydrometeorological processes characterized by strongly lagged cross-correlations (e.g.,
rainfall-runoff at fine time scales), it may be advantageous to employ the full MAR model
(preferably, for parsimony and stability, in combination with suitable theoretical auto- and
cross-correlation structures; e.g., similar to CAS), which apart from the lag-o cross-
correlations, is capable to directly model the lagged cross-correlation coefficients.

Note that the notation slightly differs from the typical one (we use the tilde representation) in
order to highlight the fact the models are employed in the Gaussian domain using the
equivalent correlation coefficients p, instead of the target correlation coefficients, p.

5.4.1 The univariate SMA model

SMA model is a special case of the Backward-Forward Moving Average (BFMA) model, whose
key idea is that a stochastic process z; can be described as a weighted sum of infinite backward
and forward random variables. In practice, the model slightly relaxes the assumptions of BFMA
model and assumes that a stochastic process z; can be described as a weighted sum of a finite
number of backward and forward random variables. Particularly, the generating mechanism of
the SMA model is given by the following equation,

q

Zt = Z d|(|2t+§ = a,qgt_q + oo + a’lgt—l + dogt + d12t+1 + oo + dq2t+q (515)
{=-q

where v, are standard normal i.i.d. variables and @, are internal model parameters (i.e., weight
coefficients) that are assumed to be symmetric, i.e., d; = d_¢ (for { = 1,2,...) and approach
zero after some value [{| > g, where g denotes a large positive integer value. The selection of q
depends on the degree of auto-dependence imposed by the target process (e.g., through CAS;
Eq. (5.8)) and the desired level of accuracy. Furthermore, g cannot be greater than the length
of the time series to simulate. Particularly, the parameters d, are related to the autocorrelation
coefficients p_via a 2g + 1 equation system of the following form,

q-T
ﬁ‘c = Z &|(|d|r+(|, 7=0,12,..,q (5_16)
{=—q
~ a ~ (5.17)
Pr = Z azaz_g, T=q+1,..,2q
{=T1—q

If Eq. (5.16) is honored, the model resembles the theoretical ACF up to ,b’q, while it decays to

zero after 2g (see Eq. (5.17)). In order to estimate the parameters d., Koutsoyiannis [2000]
proposed two solutions, one closed-form and one based on a formulation of an optimization
problem. The interested reader is referred to the above publication for a thorough and in-depth
description of the two methods. In this work we restrict our attention in briefly describing only
the first one since it is a fast and direct method. The aforementioned author showed that the
discrete Fourier transformation (DFT) of dg, i.e., S5(w), is related to the power spectrum of

the autocorrelation function, i.e., S5(w), by, S5(w) = /255 (w) .
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If the autocorrelation structure p_ is known (or specified), its power spectrum can be calculated
using the DFT, hence estimate S;(w). Then, by applying the inverse Fourier transformation
one can obtain the parameters d;. It is remarked that algorithms that facilitate these
calculations are nowadays built-in in most high-level programming languages (e.g., R or
MATLAB) which in turn allow the straightforward implementation of SMA and SMARTA
models in most computational environments. At this point we note that Koutsoyiannis [2002,
2016| proposed an even simpler and straightforward procedure for the estimation of d,
coefficients, which however is applicable only for HK (i.e., fGn) type autocorrelation structures.

5.4.2 The multivariate SMA model

Furthermore, the SMA model can be extended for the multivariate simulation of
contemporaneously cross-correlated processes via the explicit preservation of the lag-o cross-
correlation coefficients. Particularly, let z, = [Ztl, . gi Z{”]T be a m-dimensional vector of
m processes and ﬁi’j = Corr[zt, z; +T] denote the equivalent lag-7 cross-correlation between

process z{ and z; for time lag 7. Similar to the univariate case, each process z/ is represented
by a weighted sum of random variables v, i.e.,

q
zt = Z j¢\Ve+g (5.18)

In this case, the random variables v} are considered serially independent but
contemporaneously cross-correlated. Therefore, the problem lies in generating such variables

in a way that they reproduce the equivalent lag-o cross-correlation coefficients (7,”).

It has been shown that it suffices to generate random variables v with correlation g/ :=
Corr[vt,_t] equal to,

~1,]

vy Po

3 = (5.19)
¢=—q 4e1%g|

Hence, the (m x m) correlation matrix G is formulated, with ones in the diagonal and its i*" =

j™ elements determined by, E[i, = g% . Furthermore, the theoretical lag-T cross-correlation

structure of the model is given by,

q-T i a a-T

~i,j ~i,j H¢=—q "IT+{I7C] ~i ~i ~J

P =Po g =g" Qfr1q)Gig) (5.20)
{=—q al(lal(l {=q

. . . . i T
Regarding simulation, a vector of correlated random variables v, = [v}, ..., v}, ..., vI*] canbe

= ] T. -
generated by, v, = Bw,, where w; = [Wl, o Wi wtm] is a vector of standard normal i.i.d.

variables, and B is a m x m matrix obtained by finding the so-called square root of matrix G,
i.e., Eq. (5.21). For its computation see section 5.4.5.

BBT =G (5.21)
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At this point it is noted that an incidental contribution of SMARTA is the alleviation of a
burden related to preservation of the skewness coefficient. As mentioned in the introduction,
a broad class of linear stochastic models in an attempt to preserve the coefficients of skewness
of the target process, x;, employ non-Gaussian white noise for the innovation term, v,, typically
from Pearson type-III distribution. However, this practice may lead to very high coefficients of
skewness for the innovation term which are hardly attainable [Todini, 1980; Koutsoyiannis,
1999]. This practice was also adopted by Koutsoyiannis [2000] in the original SMA scheme
where the abovementioned distribution has been employed for the generation of skewed white
noise. More specifically, as far as it concerns the univariate formulation of the SMA model
(assuming g =2%), in Figure s5.2a-b we depict (from two distinct points of view) the

relationship between the skewness coefficient (C 51;) of innovation term, v, that is required in

order to attain the target coefficient of skewness (Csx) of the variable, x; for several

hypothetical HK process with characterized by different values of H coefficient. See also Eq.
(29) in Koutsoyiannis [2000]. It is apparent from in Figure 5.2a-b that the higher the value of
H, the higher the required skewness of the innovation term, v,. For example, in an HK process
with H = 0.8, the skewness coefficient of innovation term v, has to be set twice as high as than
the one of x;. We remark that this issue is further amplified (not shown herein) when the
underlying model is used in multivariate mode [Koutsoyiannis, 1999]. On the other hand,
SMARTA completely alleviates these difficulties since the SMA scheme is used as an auxiliary
model in the standard Normal (i.e., Gaussian) domain and the generated data are subsequently
mapped to the actual domain using the target ICDFs. Therefore, the target marginal statistics
are attained without making no attempts to generate skewed innovation terms, neither in
univariate nor multivariate mode. Moreover, an additional contribution of SMARTA regards
the optimization problem that arises when the matrix G is non-positive. Particularly, the
problem is simplified in a nearest correlation matrix problem, since the 3 term of Eq. (28) in
Koutsoyiannis [1999], that accounts for skewness, is no longer needed.
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Figure 5.2 | Graphical illustration of the relationship between the required skewness coefficient (C Sv)

of innovation term v, and a) the skewness (C Sx) of an fGn process x; for various values of H and b) the

value of H of an fGn process x; for various values of skewness of C; (using the SMA model with g = 2*°).
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5.4.3 The univariate AR model

An alternative, and particularly popular model for stationary processes, is the autoregressive
model of order p (i.e., AR(p)), which has been the basis of the AutoRegressive To Anything
model (ARTA; [Cario and Nelson, 1996]). A standard Gaussian AR(p) process with zero mean
and unit variance can be simulated by,

p
Zr = Z ajze_; + & (5.22)
=1

where p denotes the order of the model, and @, are the model’s parameters, while &,~N'(0, 6).
The parameters &@; can be obtained by solving the Yule-Walker system. Specifically, given a p-

. . . . ~ ~ ~ 17 ~
dimensional vector of correlation coefficients, p,, = [pl, s pp] the parameter vector @, =

[&1, . &p]T, can be obtained by,

ap = ﬁz_)lﬁp (5.23)
where, 135 1 denotes the inverse of (p X p) matrix 131, whose i and j® element are [ﬁp]i’ =
Pi—j|- After the specification of @;, o¢ is obtained by, 0 = 1 — YP_ @ip,. A stationary AR(p)
process reproduces the autocorrelation structure of the process up to lag p, while fort > p +
1 its correlation structure is given by, p; = @,p;— + @zPr—, + -+ &,Pr_p, Or more
~ _ YD A~ ~
compactly, by, p, = X|_, &pr_;.
As a side note let us provide an additional relationship that will be subsequently used within
the parameter estimation procedure of the auxiliary Gaussian CMAR model. According to
Wold’s representation theorem any covariance stationary causal process can be written as a
general linear process, i.e., as a weighted linear combination of past and present i.i.d. random
variables w;.

zZe = YW + YW + YWy, + e = Z Yewe ¢ (5.24)
{=o0

where 1, are weight coefficients. This representation is also known as infinite moving average
representation, i.e., MA(e0). It can be shown that 1), are related with the coefficients d; of
AR(p) model by [e.g., Cryer and Chan, 2008; Shumway and Stoffer, 2017],

Yo =1
Y, = ad,

Y, =a, +ay, (5.25)
¢§ = dplp(—p + dp—l¢(—p+1 + -t d17~p(—1
or more compactly,

4
l/)( = Z a, lpg_l, for{ =1,2,.. (5.26)

=1
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where ¥, =1 and d; = o for { > p. It is also noted that a similar relationship exists for
ARMA-type models. Nevertheless, since y; decay with increasing ¢ and approach zero after
some large value of it is possible to truncate Eq. (5.24) at some large value q to read,

q
z = lez We—¢ (5.27)

5.4.4 The multivariate AR model

The univariate AR(p) model can been extended for multivariate processes [e.g., Pegram and
James, 1972; Kottegoda, 1980; Bras and Rodriguez-Iturbe, 1985; Cryer and Chan, 2008;
Shumway and Stoffer, 2017], and it is often referred to as multivariate or vector autoregressive
(MAR(p) or VAR(p)) model. Assuming that we wish to model a m-dimension vector of
Gaussian processes z; = [gtl, . ,g{”]T with zero and unit variance, its generating equation is
given by,

P
z,=A,z, ,+A,z, ,+ -+ ZpZt—p +& = Z Az, | +¢& (5.28)
=1
where p denotes the order of the model, 4; are (m X m) parameter matrices and &, =

[81, . em]T is a vector of m Gaussian variates with zero mean and covariance matrix G =
Cov[gt, gt] (whose i j* element is denoted by g“/). The correlation (since we assume a
standard Gaussian model) matrix of time lag 7, is denoted by R; := Corr[gt, gt_f], and is
related with the parameter matrices 4, by,

B _APp Aan (G ift=o0
R,-AR,_,——-4,R,_, = {0 P (5.29)
Specifically, for T = 0, the system reads,
P
G=R,— AR ——A,R=R, - Zﬁlﬁ? (5.30)
=1

Furthermore, Eq. (5.29) can be written in a matrix notation as follows (for t = 1, ..., p),

R, R, - ﬁp_l
~ o~ ~ RT R .. R
[R,R,,...R,| = [A, A, .. A,]| Bt R " Rps (5.31)
R, R, - R,

where R_, = RI. Eq. (5.31) is also known as the multivariate Yule-Walker system of MAR(p)
model. Provided that the matrices R, R,, ..., Ti’p are known, the Yule-Walker system of

MAR(p) can be solved for A4, .. A, ie,

p)
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R, R, R,_,
~ o~ ~ RT R R
4,4, .., 4] = [R,R,, ..R,|| B Rfo Ry (5.32)
R)_, T’\’g R,

Arguably, this is a complex system of equations that requires the specification of p matrices Ti’p.
The overall parameter estimation procedure can be significantly simplified if we assume that
the parameter matrices A4, .., ﬁp are diagonal, i.e.,

A, =| o - o |= [Zl]i,j (5.33)

Thereby formulating the so-called contemporaneous multivariate autoregressive model of
order p (i.e., CMAR(p); [see, Pegram and James, 1972]). This simplification apart from the
reproduction of the autocorrelation structure of the process up to time lag p (as in the case of
full matrices 4,), implies the direct reproduction of the lag-o cross-correlation structure, i.e.,
correlation matrix R,. Using the contemporaneous formulation, the model can be decomposed
into m univariate AR(p) models, which are contemporaneously cross-correlated at lag o, i.e.,

IN
R

1t a, 1[1,1]Z 1t 1t d2[1,1]th—2 + -+ dl[1,1]th—l + -+ dp[1,1]zlt—p + &

(5.34)

zy = d1[m,m]Zrtn—1 + &z[m,m]zrtn—z + -+ &l[m,m]zrtn—l + -t &p[m,m]zrtn—p + et
Alternatively, and assuming that BBT = G, where B is a m X m matrix that denotes the square
root matrix of G (for its computation see section 5.4.5.), Eq. (5.34) can be rewritten as,

p m
Zﬁzu zl ZE[i,j]m] (5.35)
j=1

=1

where wt] are i.i.d. standard Gaussian variates (i.e., wt] ~N(0,1)).

In this form, and assuming that the autocorrelation structure of each process is known (e.g.,
specified by a theoretical model such as CAS), the parameters a; (I = 1,..,p), as well as the
variance (07 ) of &, can be easily computed through the univariate Yule-Walker system. Hence
it is possible to fully estimate the matrices A4, .., Ap as well as the diagonal elements of G,
which are, g = Var[glt,glt] = agzi.

According to Pegram and James [1972], in order to estimate the off-diagonal elements of G one
canresort either to iterative methods or solve a complicated system of equations. Both solutions
experience difficulties, especially when implemented in a computer software. Herein, we
propose an alternative technique, which to the best of our knowledge is new. It is reminded
that according to Eq. (5.24) each individual process z% can be represented in terms of a MA (o)
process, which can be truncated in some high value of g, i.e.,
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q
zh = Z W whog (5.36)
=0

The elements ng' can be easily computed for each process git using Eq. (5.25) or (5.26).
Provided that the {; quantities are estimated, the off-diagonal i j* elements (for i,j = 1,...,m
and i # j; since the diagonal elements are known) of matrix G are identified as follows,

[R,]:; _ By’
q i d T va i 1)
g=oWeWs LWV

(5.37)

It is also noted that the elements ng' can be used for the estimation of any cross-correlation

value for lag T = 0,1,2 ... through,
q—T¢ﬂ J q-T 40 .1.J q-T
=0 {+t _ é] =0 {+t _ g l/)é l/)g” (5.38)

COV[Zit' Z]t+r] = [R,];; R lpj
{=07T{T¢ {=0

Loya i 1)
(zolpélp(

5.4.5 A note on the computation of the square root matrix

Both of the aforementioned models, when employed in multivariate mode, involve the problem
of find the square root of a matrix, i.e., BBT = G. This can obtained by standard decomposition
(e.g., Cholesky or singular value decomposition) or optimization-based methods
[Koutsoyiannis, 1999; Higham, 2002]. Specifically, if G is positive definite (which indicates that
the multivariate process is admissible), the problem has infinite solutions hence, both
decomposition and optimization-based methods can be employed. On the other hand, when G
is non-positive definite (implying that the multivariate process is inadmissible), the former
methods cannot offer a solution. In this case, optimization-based techniques can provide a
potential remedy, by formulating an optimization problem, where the objective is to identify a

matrix B* which results to a feasible and near-to-optimum matrix G* :== B* B*" which is as
closest (typically quantified in terms of some distance measure; e.g., Euclidean norm) as
possible to the original matrix G. Of course, in such cases, the target process will not be exactly
resembled, while, the difference between G and G* can be regarded as a proxy for the magnitude
of approximation introduced to the simulation. Bras and Rodriguez-Iturbe [1985 p. 98], as well
as Koutsoyiannis [1999] discuss several situations which may lead to a non-positive definite
matrix G. Almost all of these situations are related with the estimates of correlation coefficients
from the empirical data. In the case of SMARTA and CMARTA, and provided that a feasible
autocorrelation structure has been identified for each individual process, a non-positive
definite matrix G may arise due to, data-based estimates of lag-o cross-correlation coefficients,
imprecise approximation of equivalent correlation coefficients or incompatible combinations
of marginal distributions, autocorrelation structures and target cross-correlations (see section
4.1.2). For instance, since the proposed scheme (in multivariate mode) treats each individual
process separately of the cross-correlations, the simulation of highly cross-correlated processes
with particularly different distributions and autocorrelation structures (e.g., very fast-decaying
and very slow-decaying) may be infeasible (see section 5.6.1.2 for a simulation example using
SMARTA, involving both positively and negative cross-correlated LRD and SRD processes),
even if the employed autocorrelation structures are individually valid.
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5.5 GENERATION PROCEDURE

Having described in detail all the key components of SMARTA and CMARTA models in the
previous sections, we useful to provide the complete generation procedure in a step-by-step
manner. The procedure is similar for the two models (it differs only on step 4), and can be
decomposed into the following six steps:

Step 1. Define a target distribution F,i for each process ﬁ; i = 1,..,m. SMARTA and

CMARTA, as well as all Nataf-based methods, are flexible in terms of distribution fitting
method; hence one can select a fitting method of their preference.

Step 2. Define a target auto-correlation structure (pL) for each process ﬁ' ;1 = 1,..,musing
a theoretical ACF model. For instance, for each process x} identify the parameters of CAS that
better fit the observed data.

Step 3. Identify the equivalent correlation coefficients (pL) of each theoretical ACF, up to the
maximum specified lag (which depends on the type of the process; LRD or SRD), for each
process x5 i = 1,..,m. Furthermore, in the multivariate case, the lag-o equivalent cross-
correlation coefficient ﬁé’j between processes, x.and gg ; 1# J = 1,..,m should be also
determined. Assuming that the algorithm of section 4.5.1 is employed for the identification of
equivalent correlations, and given the fact that it allows the direct estimation of the equivalent
ACEF up to any lag, the algorithm has to be employed m times, one for each process x}; i =
1, ...,m. Furthermore, in order to estimate the lag-o equivalent cross-correlation coefficient
ﬁé’j , the same procedure should be employed m(m — 1) /2 additional times. For instance, in a
4-dimensional problem (m = 4), the algorithm of section 4.5.1 is executed in total, m(m +
1)/2 times (=10).

Step 4. (SMARTA) Calculate the parameters of the univariate auxiliary SMA model (section
5.4.1), i.e., the weight coefficients (dé) of each auxiliary process gti ; I = 1,..,m. Additionally,
in the multivariate case (section 5.4.2), calculate the elements of matrices G and B (see also,
Eq. (5.20) and (5.21)).

Step 4. (CMARTA) Calculate the parameters of the auxiliary AR model (section 5.4.3), i.e., the
autoregressive coefficients (@}) of each auxiliary process z; i = 1, ..., m. Additionally, in the
multivariate case (section 5.4.4), establish the MA(eo) representation (by truncating it to some
large value g; see Eq. (5.25), Eq. (5.26) and Eq. (5.37)) of each process and obtain the quantities
lpé. Subsequently estimate the elements of matrices G (see Eq. (5.37)) and B (see also, Eq.

(5.35)).

It is noted that the weight coefficients (dé) of each auxiliary SMA model and the autoregressive

coefficients (d@}) of each auxiliary AR model, are not essentially model parameters, since the
correlation structure to simulate has already specified by a theoretical model (e.g., CAS; Step
2). Thereby, high order model specifications are parameter-parsimonious and the order of the
model solely controls the degree of resemblance of the target correlation structure.

Step 5. Employ the auxiliary Gaussian SMA or CMAR model and generate a realization of the
auxiliary univariate (z;) or multivariate process (z;).

Page | 94



5.6 HYPOTHETICAL SIMULATION STUDIES

Step 6. Attain the actual process x; (or x;), by mapping the auxiliary Gaussian process z; (or
z,) to the actual domain using the ICDF, Fx_il, of each process x}; i = 1,...,m,via Eq. (5.12).

5.6 HYPOTHETICAL SIMULATION STUDIES

Prior employing real-world datasets to demonstrate the developed approaches we decided to
setup a series of hypothetical simulation studies (univariate and multivariate) of processes
characterized by a variety of target distribution functions (continuous, discrete or mixed-type).
The motivation regarding this choice was based on conducting experiments where all the
assumptions are a priori known, hence allowing the comprehensive evaluation and assessment
of the models without the effect of exogenous factors, such as, erroneous or short length
historical data. However, it is remarked that the proposed models (SMARTA and CMARTA)
are generic, and can be directly applied for the simulation of univariate and multivariate
stationary processes (e.g., geophysical, hydrometeorological and beyond). In this vein, in
section 5.7 we focus on SMARTA model whose applicability is demonstrated using two real-
world datasets, one that concerns the simulation of annual non-Gaussian streamflow at four
stations and another that involves the simulation of intermittent, non-Gaussian, daily rainfall
at a single location

5.6.1 SMARTA model

5.6.1.1 Simulation of univariate processes

The first simulation study constitutes a comparison between the original SMA and the
proposed SMARTA models (with g = 2** for both) for the simulation oflong (i.e., 2*° time steps)
univariate HK processes (i.e., {Gn), exhibiting different Hurst coefficients, i.e., H € {0.6, 0.7,
0.8, 0.9} and Pearson type-III marginal distribution (PIII). Towards this, we identified a total
of 4 scenarios each one characterized by PIII and different H coefficients. It is reminded that
the original SMA model, in order to approximate the marginal statistics employes PIII variates
for the innovation term (hence hereafter reffered to as SMA-PIII), while SMARTA uses the
ICDF of the target ditribution; in this case PIII. The rationale regarding the selection of this
distribution intended at conducting a fair and meaningfull comparison among the two models,
which in this formulation have exactly the same number of parameters. i.e., three for the
marginal distribution (see, Eq. (5.39)) and one (i.e., H) for the autocorrelation structure. It is
pointed out, that the comparison does not intends to infer which model is the best, rather is
used as a benchmark to highlight the merits of the proposed approach. PIII is essentially a
Gamma distribution (G; see, Eq. (4.17)) with an additional location (else known as threshold
or shift) parameter, whose PDF is given by,

frm(x; a, b, c)

— a—1 _ .
~ ol ll“(a) S b =) e (- b C){iﬁz e _COOS<XX<S°°C (5.39)

where I'(-) denotes the gamma function, while, a > 0, b # 0 and ¢ € R are shape, scale and
location parameters, respectively; and they are interconnected with the mean (), variance

(0% ), skewness (Cs,) and kurtosis (Cy, ) coefficients of random variable x by,

2b 6
Uy = C + ab, oy = ab?, Cs C, = P +3 (5.40)

* = ba’
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More specifically, in all scenarios, we employed a PIII distribution with parameters a =
0.75614,b = 11.5 and ¢ = 1.30434 whose theoretical moments are given in Table 5-1.

Table 5-1 | Summary of theoretical and simulated statistics as reproduced by SMA and SMARTA
models.

Theoretical Simulated (SMA-PIII) Simulated (SMARTA)
Scenario All H=06 H=0.7 H=0.8 H=09|H=06 H=0.7 H=0.8 H=0.9
Mean (u) 10 9.99 10.08 9.85 10.23 | 10.00 9.99 9.99 10.00
Variance (¢%) 100 100.61 100.78 100.04 99.79 |100.03 99.86 100.07 101.65
Skewness coeff. (C;) 2.30 2.35 2.34 2.32 2.35 2.30 2.29 2.30 2.35
Kurtosis coeff. (Cy) 10.93 1143 11.80 1262 1597 | 1094 10.85 11.00 11.53

0.60, 0.70,
Hurst coeff. (H) 0.80, 0.90 0.61 0.70 0.80 0.89 0.60 0.71 0.80 0.90

*The theoretical moments correspond to PIII distribution (a = 0.75614, b = 11.5 and ¢ = 1.30434).

Regarding SMARTA and the given marginal distribution, Figure 5.3a illustrates the
relationship between the equivalent correlation coefficients p and the target ones p (the
superscripts are omitted for simplicity), while Figure 5.3b depicts the equivalent
autocorrelation coefficients p, employed by SMARTA in order to capture the target
autocorrelation structure p; of the target HK processes.
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Figure 5.3 | a) The established relationship between equivalent, § and target p correlation coefficients.
b) Comparison between the target and equivalent autocorrelation coefficients employed within the
SMARTA model for HK processes with the various values of H.

Table 5-1 presents the simulated (by the two approaches) first four moments; which are
apparently well-captured by both models. It is noted that while SMA does not explicitly
accounts for the kurtosis coefficient it is able to reproduce it in a satisfactory degree; especially
when one considers the high uncertainty associated with its estimation [cf., Lombardo et al.,
2014]. Nevertheless, it is reminded that the resemblance of the moments does not imply the
reproduction of the marginal distribution [Matalas and Wallis, 1976]. This is depicted in
Figure 5.4a-d where we compare the target theoretical cumulative distribution (CDF) with the
empirically derived cumulative density functions (ECDFs) of the two models. In this case, only
SMARTA was able to reproduce the target distribution, regardless of the value of H coeftficient
(its ECDF is almost indistinguishable with the theoretical one). On the other hand, the ECDF
of SMA-PIII departs from the theoretical one for high values of H (e.g., see Figure 5.4d).
Furthermore, SMARTA explicitly avoids the generation of negative values; since the target
distribution (PIII) is positively bounded at ¢ = 1.30434. A property of high importance in
hydrology due to the (often) non-negative nature of such variables (e.g., streamflow and
precipitation). Regarding the resemblance of the auto-dependence structure of the processes,
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it is apparent from Figure 5.4e-h and Figure 5.4i-1 that both models were able to reproduce
the theoretical HK ACFs as well as the corresponding climacograms, even for high values of H.
These graphs also provide an empirical evidence of the theoretical consistency of both
approaches. In addition, the Hurst coefficient of the synthetic realizations (see Table 5-1) was
estimated using the climacogram-based, least squares variance (LSV) method [Tyralis and
Koutsoyiannis, 2011] and are in agreement with the theoretical values. Finally, in order to
visually assess the form of the established dependencies, for both models and each HK process
(i.e., scenario), we employ scatter plots of the lagged synthetic data for 7 =1 (Figure 5.4m-p)
and 7 = 10 (Figure 5.4q-t). It is observed that despite the fact that both models reproduced the
same autocorrelation coefficient for 7=1 and 7 =10 they establish particularly different
dependence patterns. This is attributed to the underlying assumption of SMARTA regarding
the joint behavior of the process which is related to the Gaussian copula (expressed through
the auxiliary Gaussian model; see also [ Tsoukalas et al., 2018a], as well as section 3.2.4).
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Figure 5.4 | Comparison between theoretical and simulated CDFs (using the Weibull’s plotting
position) of SMA-PIIl and SMARTA models for HK processes with a) H=0.6,b) H= 0.7, ¢) H=10.8,
d) H=o0.9. Comparison between theoretical (HK) and empirical ACF of SMA-PIIl and SMARTA
models for HK processes with e) H= 0.6, f{) H=0.7, g) H=0.8, h) H=0.9. Comparison between
theoretical and empirical climacograms of SMA-PIII and SMARTA models models for HK processes
with i) H=0.6,j) H=0.7,k) H=0.8,1) H=0.9. Scatter plots of SMA-PIIl and SMARTA models for
time lag 7= 1 for simulated HK processes with m) H= 0.6, n) H=0.7, 0) H=0.8, p) H =0.9. Scatter
plots of SMA-PIIl and SMARTA models for time lag 7 = 10 for simulated HK processes with q) H = 0.6,
r)H=o0.7,8) H=0.8,t) H=0.9.
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5.6 HYPOTHETICAL SIMULATION STUDIES

5.6.1.2 Simulation of multivariate processes

To further elaborate on the SMARTA approach, we setup a multivariate problem that concerns
the simultaneous generation of four contemporaneously cross-correlated SRD and LRD
processes. These may be seen as four (4) different processes at the same site or processes of the
same variable at 4 different sites. Hereinafter, we consider the latter for convenience and refer
to them as sites A-D, as well as model them in that order, ie., as 4-dimensional stationary

process X; = [&l, xZ, gg’, gf]T, where for instance, i = 3 refers to site C. In this demonstration,
the target auto-dependence structure of each process is described by the two-parameter CAS
(i.e., Eq. (5.8)). More specifically, sites A and B are characterized by LRD behavior (particularly
HK, since we set 8 > 1 and « = «,) and slowly-decaying ACF, while sites C and D by SRD (since
we set =0 and H =o0.5) and fast-decaying ACF. In addition, we assigned different target
distributions to the sites A-D, i.e., Burr type-XII (B#XIl; [ Burr, 1942; Singh and Maddala, 1976;
Tadikamalla, 1980]; Eq. (5.41)), Pearson Type-III (PIII; Eq. (5.39)), two-parameter Log-
Normal (LNV; Eq. (4.48)) and Weibull (WEJ; Eq. (5.42)). The PDF of the Burr type-XII
distribution is given by,

farxu(x; a, a,,b) = (albaz) (%)al_1 (1 + (%)al)_az_l, x>0 (5.41)

where a,, a, > 0 are shape parameters and b > 0 is a scale parameter. It is noted that B#XIl is
a power-type distribution and its 7" moment exist if and only if a,a, > r. Furthermore, the
PDF of the Weibull reads as follows,

a—1

exp (— (%)a) x>0 (5.42)

where a > 0 and b > 0 are shape and scale parameters respectively. Table 5-2a provides a
synopsis of all assumptions, as well as contains the parameters of CAS and the theoretical
moments of the corresponding distributions. Note that the Kurtosis coefficient of site A is
infinite, since a,a, < 4. Further to this, the target and equivalent lag-o cross-correlation
coefficients (involving both positive and negative ones) are given in Table 5-2b. It is apparent
that this is a peculiar simulation scenario, which was devised in order stress-test the SMARTA
method.

fwesab) = (3) (3)

In order to provide further insights regarding the consistency of the model, we generated 100
independent realizations with length 2" time steps and set the number of SMARTA model’s
internal weight coefficients equal to, g = 2'°. Figure 5.5 provides a synopsis of some basic
dependence statistics in terms of box-plots. SMARTA resembled with high precision the lag-1
autocorrelation and lag-o cross-correlation coefficients (including the negative ones) despite
the fact that the target processes are characterized by very different auto-dependence structures
and distribution functions. Additionally, as far as the Hurst coefficient of the simulated series
is concerned, it was once again estimated with the LSV method. A small discrepancy that
concern site D, which is an SRD process (i.e., H = 0.5) is observed. This may be attributed to
the associated estimation method and the high lag-1 autocorrelation (~0.8) of site D.
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Table 5-2 | a) Synopsis of theoretical distribution models and their moments, as well as, of CAS
parameters for each variable of the multivariate simulation study. b) The upper triangle (grey cells)

contains the target lag-o cross-correlation coefficients ( p(i,‘j ) between sites A-D, while the lower triangle

depicts the corresponding estimated equivalent correlation coefficients (ﬁ(i,‘j ).

a) Theoretical b) Lag-0 cross-correlation

Distribution/ Parameters| Site A Site B Site C Site D Site A Site B Site C Site D
BrXll PIHI LN  WET Site A 1 -0.700 0.750 0.600

a 25(a) 3 0.5 1.5 Site B -0.940 1 -0.600 -0.700

b 1 1 2 10 Site C 0.862 -0.749 1 0.650

c 1.5(@) 10 - - Site D 0.811 -0.923 0.707 1

Statistic Theoretical

Mean (1) 4.76 13 837 9.02

Variance (0”) 11.42 3 1991 37.56

Skewness coeff. (Cs) 5,01  1.15 1.75 1.07

Kurtosis coeff. (Ci) - 8 8.89 4.39

CAS parameter, 8 1.25 1.66 0 0

CAS parameter, x 11.32 5 0.5 0.2

Hurst coeff. (H) 0.6 0.7 0.5 0.5

*Distribution abbreviations: B#XIl: Burr type-XII (a: = shape, a2 = shape, b = scale), PIII: Pearson type-III
(a =shape, b=scale, c=1location), LN: Log-Normal (a =shape, b= scale), WEJ: Weibull (a = shape,
b = scale).

1.0-

Lag-1 autocorrelation Hurst coef. =]
g-1 autocorrelati } uj 5 .
08- — ::: 5 05- ==
0.6 - — e “'(‘)_ % Tt‘).
04- 0= | g 00-
(]1 - $ U*\L’ : !}) c
l i | ' 0.3- : : ] 4 -0.5- o I
Site A Site B Site C Site D Site A Site B Site C Site D 5
-1.0-
A-B A-C A-D B-C B-D C-D
Sites

Figure 5.5 | Comparison between theoretical (red dots, «) and simulated lag-1 autocorrelation and
Hurst coefficient for sites A-D. Target (red dots, «) and simulated lag-o cross-correlation coefficients
for all pairs of sites A-D.

Furthermore, in Figure 5.6a-d we compared the empirical distribution of each realization of
each site A-D with the corresponding theoretical distribution in terms of the survival function

(SF), also known as complementary CDF or tail function. It is denoted by F, and expresses the
probability of exceedance, i.e., F, == P(x > x) = 1 — F,. Figure 5.6a-d highlights the ability
of the model to preserve the target distribution functions even in multivariate mode, since the
median SF of all 100 realizations for the 4 sites is virtually identical to the associated theoretical
model. Furthermore, in Figure 5.6e-h we depict the relationship between the equivalent, p and
target p correlation coefficients for each site A-D, while the preservation of the theoretical auto-
dependence structure can be verified by the simulated ACFs (Figure 5.6i-1) and climacograms
(Figure 5.6m-p) of the four variables that closely resemble the corresponding theoretical ones.
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Figure 5.6 | (a-d) Theoretical and simulated (SMARTA) distribution functions (using the Weibull’s
plotting position) for sites A-D. (e-h) The established relationships between equivalent, p and target p
correlation coefficients given the marginal distribution of sites A-D. (i-1) Theoretical and simulated
ACFs for sites A-D. (m-p) Theoretical and simulated climacograms (CGs) for sites A-D. In all cases, the
simulation intervals have been established using all 100 realizations.

Finally, to further explore the joint behavior of the model and the established dependence
patterns we employ scatter plots. Figure B.1 of Appendix B depicts the established dependence
patterns among the variables for time lag o (Figure B.1e, i, j, m, n, 0), as well as for each variable

for time lag 1 (Figure B.1a, f, k, p). Finally, the relationship between equivalent, p*/ and target

p"J correlation coefficients is provided for every combination of sites A-D (Figure B.1b, c, d,

g h,

1).
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5.6.2 CMARTA model

To demonstrate the capabilities of CMARTA model, we setup three bivariate case studies
(hereafter termed case study A, B and C) that regard the simulation of two contemporaneously
cross-correlated processes, x; and x7, with continuous or discrete marginal distributions.

For convenience, the three cases share some common assumptions which are: 1) the order of
the auxiliary Gaussian CMAR model (set to 100), 2) the length of the synthetic time series to
simulate (set 100 000), 3) the target lag-o cross-correlation coefficient, that is, py”* = 0.7, and
4) the target auto-dependence structure of each process, which is provided by CAS (i.e., Eq.
(5.8)); thatis, xi~pS4* (B = 0,k = 0.67) and x2~pS***(B = 1.2,k = 1).Itis noted that the
first process is modeled using an SRD auto-dependence structure, while the second using an
LRD one. As briefly mentioned earlier (see also section 4.3.3), and since the autocorrelation
structure of the processes is already specified, the use of high-order models does not introduces
additional parameters, but solely controls the degree of resemblance of the target correlation
structure. Particularly, by setting p = 100, the model will resemble the target CAS up to time
lag 100, while for T > 100 it will reduce according to its theoretical properties. Similarly, if we
employed a higher-order model, e.g., p = 1000, we would resemble the target CAS up to time
lag T = 1000, without needing more parameters for the description of the autocorrelation
structure. The case studies, differ in terms of the target marginal distribution of the individual
processes. More specifically, in case A it is assumed that the marginals of x} and x; are
continoous and are, x} ~G(a = 0.2,b = 0.15) and x?~LN (a = 1,b = 1).In case B the target
distributions are regarded to be discrete, and given by the Poisson distribution. Particularly, we
assume that, x; ~Poi(A = 1) and x}~Poi(A = 2). Finally, in case C the target distribution
of each process was assumed to be the discrete-type Bernoulli distribution (Bern).
Specifically, x} ~Bern(p = 0.8) and x?~Bern(p = 0.75).

It is noted that from a hydrometeorological processes simulation perspective, case study A can
be considered as the most common simulation scenario, since it involves the simulation of
processes with non-Gaussian (and skewed) continuous marginal distributions. On the other
hand, cases B and C, can naturally arise when aiming to model counting (e.g., number of flood
or drought events in a given year) or occurrence (i.e., binary; e.g., sequences of wet and dry
transitions) processes respectively. As noted by Serinaldi and Lombardo [2017], within the
context of a univariate binary process generator, any sequence of observations can be
dichotomized to a binary one (i.e., occurrence of an event or not) by imposing appropriate
rules. In a similar vein, an observed time series can also provide information regarding the
frequency of certain events (e.g., times exceeding, or not, a given threshold during a certain
period), hence transformed to a counting process.

Regarding CMARTA evaluation for case studies A-C, its performance was assessed through a
series of comparisons among a variety of simulated and theoretical characteristics. Figure 5.7,
Figure 5.8, and Figure 5.9 summarize the simulation results for cases A-C respectively and
illustrate that the CMARTA is able to and accurately reproduce the probabilistic and stochastic
structure of the target processes, regardless if its marginals are continuous or discrete. It is
noted that similar results can be obtained using the SMARTA model.
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5.7 REAL-WORLD SIMULATION STUDIES

This section focuses on SMARTA model, since CMARTA is extensively used in the next
Chapter within the context of a disaggregation-based simulation scheme. Of course, similar
results could be obtained using either of the models.

5.7.1 Simulation of multivariate annual streamflow processes

The first real-world simulation study concerns the application of the proposed model for the
stochastic simulation of annual streamflow at 4 stations in New South Wales region, Australia
[Australian Government Bureau of Meteorology, 2015]. Particularly, we employed historical
data (depicted in Figure 5.10a-d) from the following stations: Maragle Creek at Maragle (ID1:
401009), Goobarragandra River at Lacmalac (ID2: 410057), Adelong Creek at Batlow Road
(ID3: 410061), Cotter River at Gingera (ID4: 410730). Hereinafter, we refer to them using their
station ID, as well as model them in that order, as 4-dimensional stationary process x; =

[&3,&2,&9’, gf]T; (i.e., i = 3 refers to station Adelong Creek at Batlow Road with ID3: 410061).
The distribution of historical data does not exhibits the typical bell shape that is often
encountered in annual data, hence we use the Gamma and Weibull distributions to model
them. Specifically, using the maximum likelihood estimation method we identified the
following  distributions, x;{~G(a = 2.13,b = 16.95), x?~WEIJ(a = 2.30,b = 302.11),
§2~W87(a = 2.40,b = 15.75) and x/ ~G(a = 1.95,b = 48.48). Furthermore, they are
characterized by moderate-to-high temporal dependence and high lag-o cross-correlation
coefficients, that range from 0.83 (p,"*) to 0.93 (p§’3). Following Koutsoyiannis [2000], the
parameters of CAS (i.e., Eq. (5.8) - given in vector format), § = [0.99,0.75,1.13,0.72] and
K = [2.57,4.41,6.01,5.07] were identified for each process by minimizing the mean square
error (MSE) among the sample and theoretical autocorrelation coefficients. In this case study,
we simulated one realization of 1 ooo years using the SMARTA model (with g = 2?). Figure
5.10e-h provides, for each station, a visual comparison among the empirical, theoretical and
simulated distribution. Furthermore, Figure 5.10i-1 depicts, for each process, the relationship
between the equivalent and target autocorrelation coefficients. The ability of the model to
establish the target auto-dependence structures is verified by comparing, the theoretical and
simulated ACF (Figure 5.10m-p) and corresponding climacogram (Figure 5.10q-t) of each
process. Similarly to the previous simulation study, the model reproduced the target lag-o
cross-coefficients with high accuracy (Figure B.2e, i, j, m, n, 0).
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Figure 5.10 | Synopsis of annual streamflow simulation study at 4 stations in New South Wales region.
(a-d) Historical time series. (e-h) Empirical, simulated and theoretical distribution functions (using the
Weibull’s plotting position) for stations ID1-4 (i-1) The established relationships between equivalent, p
and target p correlation coefficients given the marginal distribution of stations ID1-4. (m-p) Empirical,
simulated and theoretical ACFs for stations ID1-4. (q-t) Empirical, simulated and theoretical
climacograms (CGs) for stations ID1-4.
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5.7.2 Simulation of univariate daily rainfall process

In the final case study, we employ the model for the stochastic simulation of a univariate daily
rainfall process characterized by intermittency. The available data concern an observation
period spanning from 1/1/1964 to 31/12/2006 (43 years) from Pavlos rain gauge located at
Boeticos Kephisos river basin, Greece (Figure 5.11a). See also, Efstratiadis et al. [2014a] for
further details regarding the dataset. In general, apart from ad-hoc techniques to handle
intermittency (e.g., truncation to zero of values below a threshold), typical stochastic
simulation schemes [e.g., Serinaldi, 2009a; Serinaldi and Kilsby, 2014; Papalexiou, 2018] rely
on the use of mixed-distributions or employ two-part models, which, in a nutshell, describe
precipitation processes as the product of two different processes, particularly, that of
occurrence (rain or no-rain) and that of intensity [e.g., Wilks, 1998; Wilks and Wilby, 1999;
Brissette et al., 2007; Thompson et al., 2007; Khalili et al., 2009; Mhanna and Bauwens, 2012;
Breinletal., 2013; Ailliot et al., 2015; Lee, 2016, 2017; Lombardo et al., 2017]. Herein, we employ
the former approach, that is, mixed-distributions, as it seems a convenient option [Papalexiou,
2018] given the characteristics of SMARTA and particularly its flexibility regarding the
selection of the marginal distribution. An alternative option, naturally compatible with the
proposed method (and Nataf-based schemes in general), would be the use of distribution
functions that by construction, exhibit an atom of probability mass at zero. A characteristic
example, which in the past has been used for this purpose [Dunn, 2004; Hasan and Dunn,
2011], is the Tweedie distribution [Tweedie, 1984; Jorgensen, 1987]. Nevertheless, in this
simulation study, in order to simultaneously account for the effect of seasonality and the
stationarity assumption of the model we treat each month as separate stochastic process, by
varying the distribution function and autocorrelation structure on a monthly basis. Specifically,
regarding the marginal distribution, we employ a discrete-continuous (i.e., mixed or zero-
inflated) model (see section 4.4) whose CDF is given by,

Pp, x<0
Fe(x) = { pp + (1 — pp)Gy (%), x>0 (5-43)

where, pp denotes the probability of a dry interval (abbreviated as probability dry), i.e., pp =
P(g < xD) and G, stands for the distribution of amounts greater than the threshold xp, i.e.,
Gy = Fyxsxp = P(g < xlg > xD). We remind the reader that the solely requirement of the
algorithm of section 4.5.1, that is used to establish the relationship between equivalent (p) and
target (p) correlation coefficients, is the ICDF (see Eq. (4.46) in section 4.4). Nevertheless, after
the specification of the threshold xp, the empirical probability dry, pp, can be directly obtained
from the available data by counting the number of dry occurrences and dividing it with the
total number of observed data. Regarding, G, it is obtained by selecting and fitting a theoretical
distribution to the amount data above xp. In this demonstration, we set xj := 0, and for the
description of the positive daily precipitation amounts of all months, we employ the generalized
gamma (GG) distribution [Stacy, 1962], which has been proved particularly capable for the task
at hand [Papalexiou and Koutsoyiannis, 2016; Chen et al., 2017; Papalexiou, 2018]. Of course,
depending on the case, the GG could be replaced with other distribution functions. Back in our
case, the parameters of the GG distribution were identified using a fitting approach based on L-
moments [Hosking, 1990]; specifically the one proposed by Papalexiou and Koutsoyiannis
[2016]. The PDF of GG distribution is given by,
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a;—1

a, x
fog(x;a1,a,,b) = m (E)

X\ %2

exp (— (E) ) x>0 (5.44)
where I'(-) denotes the gamma function, while, a, > 0,a, > 0are parameters that control the
shape of the distribution and b > 0 is a scale parameter. The interested reader is referred to the
above works for further details regarding the GG distribution and the associated fitting method.
For instance, for the marginal characteristics of October’s daily rainfall, we estimated, pp =
0.84, while the parameters of GG were found b = 3.96, a, = 0.851 and a, = 0.588. Furthermore,
regarding the description of the auto-dependence structure of the process we employed CAS
and estimated its parameters on a monthly basis (e.g., for October it we identified, 8 = 0 and
k=1.36) by minimizing the MSE among the sample and theoretical autocorrelation
coefficients. Finally, we generated 1 ooo years (i.e., 365 0ooo days) of synthetic data (Figure
5.11b depicts a random window of 60 years) and performed a similar analysis with the previous
cases studies; which is summarized in Figure 5.11, where we depict the results of three
characteristic months, i.e., February, June and October (the results are similar for the other
months - see Appendix B, Figure B.3 - Figure B.6). Particularly, panels (c)-(e) illustrate the
capability of the model to reproduce the target distributions (in terms of the SF) of positive
precipitation amounts (pp, is explicitly preserved since it is embedded in the employed mixed-
distribution model), while, panels (f)-(h) depicts the relationship of equivalent, p and target p
correlation coefficients for both GG and mixed-distribution models. It is observed that the non-
linearity of this relationship increases from GG to mixed distribution due to the fact that the
latter is zero-inflated. Furthermore, panels (i)-(k) depict the accurate resemblance of the target
autocorrelation structure (i.e., CAS), while, panels (1)-(n) provide a comparison of empirical
and simulated scatter for time lag 1, which seems to be in agreement with the historical pattern.
Finally, preliminary analysis (not shown herein) indicated that the model has the potential to
approximate some of the empirical statistics (in terms of L-moments) across coarser time
scales, even though they are not explicitly modelled by it. This observation should not be
interpreted as a general conclusion, rather as a direction for further investigation. We remark
that the literature offers several well-established techniques with proven results, specifically
designed for this purpose, i.e., to address scaling and intermittency, such as disaggregation [e.g.,
Kossieris et al., 2016; Lombardo et al., 2017] and multi-fractal methods, based on cascade
models [ Tessier et al., 1996; e.g., Deidda et al., 1999; Kantelhardt et al., 2006]. These methods,
by design, aim to simultaneously resemble the process at multiple aggregation levels,
employing scaling relationships for high order moments (often greater than second). In our
view, an interesting topic of future research would be a comparison among these simulation
techniques with Nataf-based methods for the reproduction of the multi-scale behavior that
characterizes hydrometeorological processes. Similar works, yet involving alternative
simulation schemes, are those of Lombardo et al. [2012] and Pui et al. [2012].
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Figure 5.11 | Synopsis of daily rainfall simulation at Pavlos’ station. a) Historical time series. b)
Synthetic time series; randomly selected window of 60 years. Empirical, simulated and theoretical
distribution function of positive precipitation amounts for c¢) February, d) June and e) October (using
the Weibull’s plotting position); the title of each plot provides the parameters of the GG distribution, as
well as the historical (pp) and simulated (pp) values of probability dry. The established relationship
between equivalent, p and target p correlation coefficients for the mixed and GG distribution for f)
February, g) June and h) October. Empirical, simulated and theoretical ACF for i) February, j) June and
k) October; the title of each plot depicts the parameters of CAS. Empirical and simulated dependence
pattern for time lag 1 for 1) February, m) June and n) October; the title of each plot depicts the lag-1,
target (p45), simulated (p, ), and equivalent (,) autocorrelation coefficients.
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5.8 SUMMARY

This Chapter introduces two novel versatile stochastic models, termed SMARTA and
CMARTA, with solid theoretical background and proven capability of addressing important
hydrometeorological simulation problems. A prominent characteristic of the models is their
ability to simulate univariate and multivariate stationary processes with any autocorrelation
structure and marginal distribution, provided that the former is feasible and the latter have
finite variance. Their central idea relies on the use of an appropriately parameterized (expressed
through equivalent correlation coefficients) auxiliary Gaussian process which after its mapping
to the actual domain results in a process with the desired stochastic structure and marginal
distribution.

Briefly, the proposed approach is built upon three major elements, that is, a) auxiliary linear
stochastic models (i.e., the SMA scheme of Koutsoyiannis [2000] and the CMAR model) in the
Gaussian domain, b) theoretical autocorrelation structures (e.g., CAS), that allows the
parsimonious description of both SRD and LRD processes, and c) the rationale of NDM [Nataf,
1962/, and the associated mapping procedure, that provide the theoretical basis of the method
and in turn allows the identification of the equivalent correlation coefficients; hence determine
the parameters of the auxiliary model.

Opverall, the proposed methodology is parameter parsimonious and exhibits a series of virtues,
as demonstrated through several hypothetical and two real-world simulation studies. Among
them:

a) The unambiguous advantage of explicitly simulating any-range dependent (SRD or LRD)
stationary processes with arbitrary distributions (that may be continuous, discrete or
mixed-type), using a single simulation scheme.

b) Its ability to simulate univariate and multivariate processes that exhibit contemporaneous
cross-correlations. The generation of time series at multiple locations, or of individual
correlated processes, is often the case in hydrological studies, making SMARTA and
CMARTA particularly useful methods for such tasks.

c) The possible incorporation of novel advances in statistical science in stochastic simulation;
such as new distributions and robust fitting methods (e.g., L-moments). In addition,
regarding distributions of hydrometeorological processes, both models (as any Nataf-based
model; see section 4.3.1, as well as Chapter 6 and 7) can take advantage of years of research
in statistical analysis of hydrometeorological variables, since it can incorporate any
distribution function whose variance exists.

d) The ability of the model to explicitly avoid the generation of negative values, which is a
shortcoming of many linear stochastic models. This is due to the direct use of the
distribution function(s) within the generation mechanism of the model. If the used
distribution is defined in the positive real line, then all the generated values will be within
those bounds (i.e., positive).

Typical, but not limited, applications of the proposed models entail the simulation of stationary
processes at time scales not affected by cyclostationary correlation structures (e.g., monthly
scale). For instance, given the wide range of admissible correlation structures and distributions,
the models could be applied for the generation of synthetic time series of various
hydrometeorological processes, such as, precipitation, streamflow and temperature, at annual
and fine time scales (e.g., daily), which are characterized by stationarity.
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Next, in Chapter 6, the particularly interesting case of cyclostationarity is discussed, and a novel
non-Gaussian Nataf-based stochastic model is being proposed [ Tsoukalas et al., 2017a, 2018e].
Ongoing research aims in an enhanced stochastic simulation scheme that will combine (using
disaggregation techniques) both stationary (e.g., SMARTA and CMARTA) and cyclostationary
Nataf-based models (next chapter); thus providing an even more flexible and versatile
simulation method for synthetic time series generation (see Chapter 7).
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SIMULATION OF CYCLOSTATIONARY STOCHASTIC PROCESSES WITH
ARBITRARY MARGINAL DISTRIBUTIONS *

PREAMBLE

This Chapter presents a novel model, termed Stochastic Periodic AutoRegressive To Anything
(SPARTA), for the simulation of cyclostationary processes (univariate and multivariate) with
arbitrary marginal distributions. SPARTA offers an alternative and novel approach which
allows the explicit representation of each process and season of interest with any distribution
model, while simultaneously establishes dependence patterns that cannot be fully captured by
the typical linear stochastic schemes. Cornerstone of the proposed approach is the Nataf joint-
distribution model, which is related with the Gaussian copula, combined with Gaussian
periodic autoregressive (PAR) processes. Theoretical and practical benefits of the proposed
method, contrasted to outcomes from widely-used stochastic models, are demonstrated by
means of real-world as well as hypothetical monthly simulation examples involving both
univariate and multivariate time series.

The organization of this Chapter is as follows: Section 6.1 introduces the problem of generating
cyclostationary process with emphasis on the reproduction of marginal distributions. The
rationale and computational procedure of SPARTA are described in the next three sections,
where section 6.2 summarizes the overall methodology, section 6.3 describes auxiliary
Gaussian PAR model, while section 6.4 described the generation procedure of SPARTA in a
step-by-step manner. In section 6.5 we evaluate the proposed method by means of three case
studies, involving real-world and hypothetical simulations. The case studies also involve a
comparison with the widely used implicit Periodic AutoRegressive (PAR) scheme. Finally, the
key conclusions and perspectives of this research are outlined in section 6.6.

* Based on:

Tsoukalas, I, A. Efstratiadis, and C. Makropoulos (2018e), Stochastic Periodic Autoregressive to Anything
(SPARTA): Modeling and simulation of cyclostationary processes with arbitrary marginal distributions, Water
Resour. Res., 54(1), 161-185, d0i:10.1002/2017WR021394.

Tsoukalas, 1., A. Efstratiadis, and C. Makropoulos (2017a), Stochastic simulation of periodic processes with
arbitrary marginal distributions, in 15th International Conference on Environmental Science and Technology.
CEST 2017., Rhodes, Greece.
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6.1 INTRODUCTION

The generation of synthetic time series following specific, typically skewed, distribution
functions becomes even more challenging when aiming to simulate hydrometeorological
processes at time scales finer than annual, that are dominated by periodicity. Characteristic
examples are the monthly processes of precipitation and river flow discharge, which exhibit
strong seasonal variations in both their marginal and joint properties. In that case, the
stochastic model should account for all facets of cyclostationarity, involving not only, the
stochastic structure of the underlying processes but also their distribution, which may be
seasonally-varying and non-Gaussian (see section 2.2). As detailed in section 2.3, typical
stochastic models in hydrology (e.g., implicit linear stochastic schemes, point-process models,
resampling schemes, and disaggregation models) traditionally aim at reproducing the
empirically-derived statistical characteristics of the observed data rather than any specitfic
distribution model that attempts to describe the usually non-Gaussian behavior of the
associated processes. Notable exceptions are copula-based methods, which however are subject
to high-computational requirements and complex generation mechanisms (see section 2.3).
Further to this, some of the available schemes are not designed, hence capable, for the
simulation of such processes (e.g., point-process models and two-part models).

In order to address the aforementioned shortcomings, this Chapter presents an explicit
method, called Stochastic Periodic AutoRegressive To Anything (SPARTA) model, which
offers a generalized procedure with solid theoretical background for the generation of
cyclostationary processes from a priori defined distribution functions that are seasonally-
varying. The proposed method builds upon the so-called Nataf joint-distribution model
[INDM; Nataf, 1962], which is generic mapping procedure, and extends the AutoRegressive To
Anything (ARTA) model, introduced by Cario and Nelson [1996] that represents stationary
processes with arbitrary marginal distributions and autocorrelation structure. Initially, ARTA
was formulated as univariate and later extended for multivariate simulations [Biller and Nelson,
2003]. Both versions involve the simulation of stationary processes, but they have not been
extended to account for cyclostationarity, which is a sine qua non for hydrological processes.
Beyond this, it noted that SPARTA is able to establish dependence patterns that cannot be fully
captured by the typical linear stochastic schemes (see Chapter 3, as well as section 6.5.1 and
6.5.3). Briefly, the proposed approach involves the simulation of an auxiliary process from the
Periodic AutoRegressive (PAR) family, in the normal domain (i.e., Gaussian), which allows
accounting for cyclostationarity, and then its mapping to the real domain, via the desired
inverse cumulative distribution functions (ICDFs).

6.2 SPARTA AT A GLANCE

SPARTA aims at simulating periodic processes from any given marginal distribution and a
given stochastic structure, typically (but not exclusively) expressed in terms of first order
autocorrelations and lag zero cross-correlations. Its fundamental advantage is the explicit
preservation of the theoretical marginal distributions of the processes, in contrast to existing
linear stochastic approaches that preserve the marginal statistics (not the distributions
themselves) up to a specific order, typically the third one (i.e., mean, standard deviation,
skewness).

T
More specifically: Let x5, = [gsl,t, ,gs"é] be a m-dimensional vector of cyclostationary
stochastic processes to simulate, where s = 1, ..., §,1,...,S,... denotes the season (e.g.,
month), S the total number of seasons,and t = 1, ..., T denotes the aggregated time scale (e.g.,
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year). This process can also be written as X, where n € Z>, denotes the time index. In this
form, the season s is recovered by, s = n mod(S), while when n mod(S) = 0, s = S. The
period t is obtained by, t = 1 + (n — 5)/S. For convenience, the first formulation will be
employed in the following paragraphs. Each element of x;, is symbolized x’,, where i =
1, ..., m denotes an individual random process, and xé,t denotes its realization. Herein, index
i will be also referred to as location or site, without necessarily implying spatial reference. Let
also pg?_, := Corr[x},x]_, ] be the Pearson coefficient of correlation among processes i and
J, for season s and time lag 7. For instance, when j = iand T # 0, the quantity p represents
the season-to-season correlation of the process for lag 7, while for j # i and T = 0, p
represents the cross-correlation between i and j, for zero time lag. Furthermore, when the
superscripts or subscripts of p are identical (i.e., whenj = iort = 0)we may omit repeating

: i : ; ij ij
them for convenience (e.g., ps's_; may be written as p¢ _, and ps’]s as p;”).

For each process at each season s and each location i, we assign a specific distribution function,

Fyi= P(x! < x), and also assign target coefficients of correlation, py}_;, to preserve within

the proposed generation scheme.

The key idea of SPARTA employs the concept of NDM and the associated methods, and
establishes the process X;; through an auxiliary Gaussian cyclostationary process zg, =

T . i ; . . ~1,j
[gsl’t,...,gs”’;] with  zg,~N(0,1) and equivalent correlation coefficients p;:é_f =

Corr[zi,z!_,]. The Z, ¢ process is generated from a standard Normal (i.e., Gaussian) Periodic
AutoRegressive process (symbolized PAR-N), with such parameters that their mapping via the
corresponding inverse marginal distributions (ICDFs) results into processes with the target

marginal distributions and the target correlation structure, i.e.,
D .
X5t = Fy (q)(Zslt)) (6.1)

where ®(+) is the CDF of the standard Gaussian distribution and F;; (+) denotes the ICDFs of

the target distributions of process i at season s. This mapping function, ensures the
representation of any distribution across seasons and processes.

However, as thoroughly discussed in section 4.3, the main challenge, encountered in all Nataf-
based models (including SPARTA), is the identification of proper parameters for the auxiliary
process in the normal domain that reproduce the desired stochastic structure, after applying
the mapping procedure. This arises from the fact that the Pearson correlation coefficient, which
is used to describe all kinds of dependencies within linear stochastic models (including PAR),
cannot be preserved when applying a non-linear monotonic transformation, such as the ICDF.
In particular, Eq. (6.1) results into underestimation of target correlations, py%_,, when they are
directly applied to the auxiliary processes. The origin of this shortcoming is the fact that the
Pearsons’ correlation coefficient (in contrast to rank correlation statistics) is invariant only
under linear transformations [Embrechts et al., 1999 p. 7], while for any other transformation,
the correlation coefficients should be properly adjusted. Section 4.6 mentions some early works
in stochastic hydrology that were aware of this issue and attempted to provide analytical or
empirical solutions to this problem, for specific distributions (e.g., Log-Normal).

Therefore it is essential to identify the equivalent (ﬁé: ;_T) correlation coefficients which should
be used within the parameters estimation procedure of the auxiliary PAR model, that result

Page | 115



CYCLOSTATIONARY PROCESSES

into the desired target (pé:ﬁ_,) correlations. By building upon the theoretical background of
NDM, and assuming that the marginal distributions F X foralli=1,..,mands =1,..,S,

have been specified, the relationship between the equivalent (ﬁ;':]S._T) ant target (pé:ﬁ_,)
correlations is given by (see section 4.3.1; [ Tsoukalas et al., 2017a, 2018¢]),
Lj
Ps;s—t =

[0 Fg (2(2) Pt (0(2L) a(dhzl o pit ) dzidz . — E[x]E[xL o

\[ Var|xi] var[x/_,]

where ¢, (Zsi,ZSj_.L., ,5;':]5._1) is the bivariate standard normal probability density function and
E[xi] E[x]_;] and Var[xi] Var[x]_,] denote the mean and variance of x!andzx!_,

respectively which are known from the corresponding distributions F,; and F ; and have to
ZSs—=T

be finite. For convenience, the above equation is abbreviated as,

pitr = F (Pedo|Fa F oy ) (63)

The relationship of Eq. (6.3) can be established (in a pair-wise basis) through the hybrid

method of section 4.5.1, and subsequently should be inverted, i.e., ,5;':]5._1 =

F (pyhoe
within the PAR-N generation procedure.

Fyi, F &g_f)' in order to identify the equivalent coefficients, jg%_;, to be used

6.3 THE AUXILIARY GAUSSIAN PAR MODEL

As mentioned above, the generation procedure of SPARTA requires the synthesis of an
auxiliary process Zg ;, which is then mapped to the actual one, i.e., X5 ;. This process has to be
cyclostationary (since the target process is also cyclostationary) and normal. These premises
are fulfilled by standard periodic autoregressive models with normally-distributed noise (PAR-
N) of any order [e.g., Salas and Pegram, 1977; Salas et al., 1985; Salas, 1993].

Although any stochastic scheme from the PAR-N family may be applicable, we pay attention
to the PAR(1) process, in order to keep things simple and parsimonious, thus providing an easy
to follow narrative. In addition, it is argued that the assumption of a first-order model is well-
justified for most of practical applications in hydrology [ Efstratiadis et al., 201 4a]. Nevertheless,
higher-order models may be cumbersome, because the empirical estimation of joint statistics
from historical samples is subject to major uncertainty, usually resulting to ill-posed conditions
(e.g., due to inconsistent autocorrelation structures), which in turn leads to substantial defects
within parameter estimation.

With respect to cross-correlations, the multivariate PAR(1) model, in its full formulation,
preserves both the lag zero and lag one dependencies. However, as Koutsoyiannis and Manetas
[1996] have shown, for reasons of parsimony it is sufficient using the contemporaneous PAR(1)
[Salas, 1993 p. 19.31], which does not explicitly accounts for lag-one cross-correlations within
parameter estimation. This is also advocated by an older study of Pegram and James [1972].
For instance, in a four-variable problem with 12 seasons, the full PAR(1) model requires the
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specification of 264 parameters to describe the dependencies among the variables, while the
contemporaneous one entails 120.

It is reminded that in order to employ the multivariate contemporaneous PAR(1)-N within
SPARTA, it is essential to provide the equivalent lag-1 month-to-month correlations (i.e.,
autocorrelations), pi¢_,, for each process i and season s, as well as the equivalent zero-lag
cross-correlations, p;’, for each pair of processes i and j and season s. Hence in order to
emphasize on the use of equivalent correlation coefficients within the parameter estimation
procedure of the PAR model the tilde notation will be employed.

6.3.1 Multivariate contemporaneous PAR(1) model

Keeping the same notation for the auxiliary and actual processes, the multivariate PAR(1) reads
(for convenience, the index of the period t is omitted):

Zs = ZsZs—1 + Esws (6.4)

1 mT

where z; = [gs, .., Z3"| is a vector of m stochastic processes in season s, Ag, Bg arem X m

T
parameter matrices that depend on season s, and w, = [v_vsl, ., W| is a vector of mutually
independent random variables. By definition, the random process z; is Gaussian, provided that

w, is generated from the standard normal distribution, i.e., wi~N (0, 1).

For each season s, the parameter matrix A is diagonal and contains the equivalent lag-1
month-to-month correlations, % ¢_,, i.e.,

A, = diag(pte_y, -, PT%_y) (6.5)

On the other hand, parameter matrices B are calculated by, B;BT; = G, where G4:= C; —
A C,_,AT and C is a symmetric m X m matrix that contains the equivalent lag-zero cross-

. ~U,) .
correlations, p,”, i.e.,

~1,m

_ 1 cee pS

C.=|: -~
ﬁm'l 1

Furthermore, as discussed in Koutsoyiannis [2001], the lagged correlation matrices Cg, =
Corr[gs,gr] of the PAR(1)-N model can be estimated, on the basis of the parameter matrices
A, and the lag-zero cross-correlation matrices Cj, for any time lag (s — 7), by,

C,, = Corr|z,,z.| = 4,A,_, .. 4, ,,C,, s>r (6.6)

As mentioned earlier (e.g., section 4.1.3), the estimation of the parameter matrix B, (which is
often assumed to be lower triangular) requires the formulation of a decomposition problem
(i.e., finding the square root of G,), typically resolved using standard matrix decomposition
techniques (e.g., Cholesky or singular value decomposition [e.g., Johnson, 1987]), when Gy is
positive definite, or otherwise, approximated via optimization techniques [e.g., Koutsoyiannis,
1999; Higham, 2002]. In particular, Koutsoyiannis [1999] has developed an optimization-based
approach, paying attention on the preservation of skewness, which is a well-known trouble of
multivariate stochastic models, asking for generating skewed white noise [e.g., Todini, 1980].
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A great advantage of SPARTA approach is the assumption of normality within the auxiliary
process, which substantially simplifies the optimization problem within decomposing non-
positive definite matrices. More precisely, the empirical penalty term considered by
Koutsoyiannis [1999], in order to prohibit the generation of highly-skewed white noise, which
introduces significant complexity to the optimization procedure |Efstratiadis et al., 2014a], is
neglected, thus resulting to a reduced objective function that only contains a distance term to
minimize. Even in case of non-positive definite correlation matrices, where the desired
stochastic characteristics are not explicitly preserved by the auxiliary model, the reduced
optimization approach ensures a very good approximation, with minimal computational
burden.

6.3.2 Univariate PAR(1) model
The univariate model can easily be derived from the above equations. Since m = 1, A; = Ps s—1

and C; = 1, thus B;BT, =1 — pl,_,pi; ., which leads to B, = ’1 — pis_,%. Hence, by

substituting in Eq. (6.4) and removing the redundant indices we read:

Zs = Ps 51251 T /1 - ﬁs,s—12 Wg (6.7)

where w; are i.i.d. white noise with V'(0, 1). We remark that since i = 1 the superscript of p
has been omitted for simplicity.

6.4 GENERATION PROCEDURE OF SPARTA MODEL

Summarizing, the implementation of SPARTA comprises five steps:

Step 1. For each variable i and each season s, specity a suitable target marginal distribution,
Fiyi and also identify the dependencies to be preserved in time and space, as well as the target

. . . ij
values of the associated coefficients of correlation, pg3_;.

Step 2. On the basis of the desirable dependencies to preserve (in terms of auto- and cross-
correlations), identify the suitable auxiliary model from the PAR-N family.

Step 3. Determine the equivalent coefficients of correlation, ,5;':]5._1, for all pairs of variables that
are required by the auxiliary model (e.g., using the algorithm of section 4.5).

Step 4. Estimate the parameters of the auxiliary PAR-N model, on the basis of equivalent
correlations, and run the model to generate the auxiliary Gaussian synthetic time series of z; ;.

Step 5. Map the auxiliary process Z; ; to the actual domain using their ICDFs, i.e., through Eq.
(6.1), to obtain X ;.

It is noted that, in contrast to classical stochastic approaches (see section 2.3.1 and 4.3.7),
which imply the use of a specific statistical model for the noise, Nataf-based methods allow to
employ pre-specified distribution models, in order to describe the probabilistic and stochastic
structure of the modelled processes themselves and not of the noise.
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6.5 CASE STUDIES

6.5.1 Univariate simulation with common distribution models

The first case study involves the simulation of monthly flow of Nile River at Aswan dam, based
on a historical dataset from March 1870 to December 1945 [Hipel and McLeod, 1994]. The
flows are characterized by strong seasonality and high correlations across all subsequent
months (Figure 6.1). In order to demonstrate the performance of SPARTA against the classic
implicit PAR model, we compare the outcomes of a stochastic simulation scenario of 2 0oo
years length, which has been used several times in the past for providing synthetic flows [e.g.,
Koutsoyiannis et al., 2008]. The implicit PAR(1) model is typically coupled with Pearson type-
III distribution for white noise generation (referred to as PAR-PIII model). Hence, in order to
conduct a fair and meaningful evaluation, within SPARTA we also set this distribution as target
one for all months (referred to as SPARTA-PIII model). We remind that SPARTA explicitly
accounts for the marginal distribution of each season, while PAR-PIII, similarly to most linear
stochastic models (see section 2.3.1), attempts to resemble the statistical characteristics (e.g.,
mean, variance and skewness) via implicitly representing the marginal distributions into the
innovation term. The multivariate formulation of PAR-PIII of order 1 is given in Appendix
C.1.

It is remarked that due to the use of Pearson type-III distribution, which allows for negative
location parameters, the two models can produce negative values that would not be acceptable
in a real-world hydrological study. A typical way to address this inconsistency within both
models is the artificial truncation of all synthetic values to zero, which would yet introduce bias
to the stochastic structure of the synthetic processes. However, among the two models,
SPARTA also offers a much more rigorous alternative, since the data are generated via the
corresponding ICDFs. This property enables fitting another positively bounded distribution
model (e.g., Gamma, Log-Normal, etc.) to the observed data that explicitly prohibits the
generation of negative values.

The two models are evaluated through visual inspection of simulated against observed values
of their monthly statistical characteristics, in terms of calculated values of mean, y, standard
deviation, o, skewness coefficient, C;, and lag-1 month-to-month correlation, p, (Figure 6.1),
as well as in terms of their monthly marginal distributions (Figure 6.2). It is noted that these
statistics were calculated after truncation of negative values. Except for the trivial case of means
and standard deviations, which are perfectly reproduced by both models, for the skewness and
month-to-month correlations, only SPARTA-PIII ensures full consistency with the target
values across all seasons. In addition, SPARTA-PIII fits perfectly the target theoretical
distribution models, which is a direct outcome of employing the inverse mapping, while PAR-
PIII occasionally deviates from the target distributions, and particularly their tails (e.g., in
February, March, April and May).
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Figure 6.1 | Comparison of key statistics (4, o, C; and p.) between historical and simulated flow data
of Nile River (PAR and SPARTA).
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Figure 6.2 | Comparison between simulated flow data (10° m?), through PAR-PIII and SPARTA-PIII,
empirical and theoretical cumulative distribution functions (Weibull’s plotting position). Simulated
negative values are also included to avoid the distortion of the established CDFs.

To further highlight the advantages of SPARTA over PAR-PIII, we also investigate the derived
dependence forms, by focusing on the scatter plots of the 12 pairs of adjacent monthly data sets
(Figure 6.3). Interestingly, PAR-PIII, although it preserves quite satisfactory the key statistical
characteristics, including the observed coefficients of correlation, it fails to capture the full
extent of the observed patterns, in contrast to SPARTA-PIII, which generates well-spread data
pairs which are in compliance with the observations. In particular, in the scatter plots of pairs
December - January, January — February, February - March and March - April, it is shown
that PAR-PIII not only fails to capture the dependence patterns of the historical data, but also
seems fails to produce synthetic pairs out of a lower boundary. Therefore, the synthetic
dependencies are not in good agreement with the observed ones, although the correlation
coefficients themselves are reproduced with high accuracy. For further details regarding this
behavior, as well as its origin, see Chapter 3.
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Figure 6.3 | Month-to-month scatter plots of historical and simulated flow data (10° m?), through
PAR-PIIl and SPARTA-PIII. Simulated negative values are also included to avoid the distortion of the
established dependence patterns.

6.5.2 Toy simulation with seasonally-varying distribution models

The second case study involves the simulation of a hypothetical seasonal process {x; .}, with
different marginal distribution per season (for convenience, 12 seasons are considered). The
target distribution models and the associated parameters across seasons are given in Table 6-1.
In addition, we assume the target lag-1 (i.e., season-to-season) correlation coefficients equal to
p= [Plz,y P1,25 =+ Ps,;s—1 =+ P10,117 p11,12] = [0.93, 0.90, 0.76, 0.84, 0.32, 0.67, 0.80, 0.88, 0.83,
0.74, 0.94, 0.93]. Using SPARTA we generated 1 000 x 12 = 12 0oo synthetic values of x ; and
compared their statistical characteristics against the target ones. We remark that in contrast to
the previous case study, we do not compare against another linear stochastic model (e.g., PAR-
PIII), given that we have specified different statistical distributions across seasons, which
cannot be represented by such models.
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Table 6-1 | Theoretical distributions and associated parameters of hypothetical process across
seasons, as well as MLE estimation of simulated data.

Season 1 2 3 4 5 6 7 8 9 10 11 12

Distribution/ PIII EXP g N LN WEI WEJ LN EXP PII  WET g
Parameters

Theoretical Values
a 1.7 0.015 10 85 0.3 4.5 6 0.25 0.003 11 3 9
b 10 - 0.15 30 5 680 820 6 - 19 155 0.2
c 40 - - - - - - - - -50 - -
Simulated Values
a 1.72  0.015 10.01 85 0.29 4.47 599 0.25 0.003 9.12 2.97 9.09
b 9.88 - 0.15 2998 5 680.03 819.91 6 - 2098 154.90 0.20
c 39.94 - - - - - - - - -51.39 - -

*Distribution abbreviations: PII1: Pearson type-III (a = shape, b = scale, ¢ = location), EXP: Exponential (a =
1/scale),

G: Gamma (a = shape, b = 1/scale), N': Normal (a = mean, b = st. dev.), LN: Log-Normal (a = shape (log mean),
b = scale (log st. dev.)), WET: Weibull (a = shape, b = scale)

The theoretical and simulated values of the key statistical characteristics of the modelled
process are illustrated in Table 6-2. The former were calculated through the corresponding
theoretical equations of each distribution. As shown, SPARTA is very efficient, since it
reproduces all key statistics, including the kurtosis coefficient, Ci. Furthermore, SPARTA
preserves the parameters of the target marginal distributions (Table 6-1, upper part), which
are estimated through the MLE method. Actually, as shown in Table 6-1 (lower part), there is
close agreement between the target and simulated parameter values for all seasons. This is also
visually confirmed by plotting the associated CDFs (Figure 6.5), as the disparencies between
the theoretical and empirical distributions are almost indistinguishable. It is noted that the
distributions employed for season 4 and 10 allowed the generation of negative values since we
assigned to the former a Gaussian one (which is unbounded) and in the latter a Pearson Type-
IIT with location parameter ¢ = -50 which coincides with its theoretical lower bound (given that
b > o). All other distributions are defined in the positive real axis, hence they don’t allow the
generation of negative values.

Furthermore, the stochastic structure of the hypothetical process, by means of season-to-season
correlations, p,, is reproduced, despite the fact that it exhibits significant variability, also
comprising some very high p, values. In order to shed further light on the seasonal dependence
patterns, we provide scatter plots combined with histograms for four adjacent seasons, from
which it becomes clear that SPARTA can reproduce a plethora of marginal distributions and
simultaneously account for dependence patterns of different complexity (Figure 6.4).
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Table 6-2 | Simulated and theoretical values of key statistical characteristics of hypothetical process.

Season/ Statistic 1 2 3 4 5 6 7 8 9 10 11 12

y (Theor.) 57.00 66.67 66.67 85.00 155.24 620.55 760.72 416.23 333.33 159.00 138.41 45.00
p (Sim.) 56.99 66.56 66.67 85.00 155.27 620.53 760.81 416.34 333.23 159.01 138.37 45.00
o (Theor.) 13.03 66.67 21.08 30.00 47.64 156.45 147.40 105.70 333.33 63.02 50.30 15.00
o (Sim.) 13.26 66.96 21.20 30.00 48.18 156.02 147.18 107.38 335.69 63.80 50.24 15.14
C; (Theor.) 1.53 2.00 0.63 0.00 0.97 -0.17 -0.37 0.88 2.00 0.60 0.16 0.66
C, (Sim.) 1.75 1.98 0.72 -0.04 1.09 -0.13 -0.39 0.94 1.89 0.75 0.27 0.82
Cx (Theor.) 6.53 9.00 3.60 3.00 4.99 2.80 3.03 4.06 9.00 3.54 272 3.66
Cx (Sim.) 762 8.01 3.84 298 520 288 320 446 732 385 3.05 4.20
p: (Theor.) 0.93 090 0.76 0.84 0.32 067 080 088 0.83 074 094 0.93

p: (Sim.) 0.94 090 076 0.82 0.31 066 080 087 0.85 077 095 0.93

P, (Equiv.) 0.95 0.91 0.80 085 0.32 070 080 090 088 0.78 0.96 0.94

*Table abbreviations: Theor: Theoretical value, Sim: Simulated value, Equiv: Equivalent value.
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Figure 6.4 | Scatter plots with histograms for a) season 12 vs. 1 b) season 1 vs. 2, ) season 5 vs. 6, and

d) season 10 vs. 11.
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Figure 6.5 | Comparison between simulated (SPARTA) and theoretical cumulative distribution
functions (Weibull plotting position) of hypothetical process. Simulated negative values (season 5 and
10) are also included to avoid the distortion of the established CDFs.

6.5.3 Multivariate simulation

The third case study involves the simultaneous generation of monthly runoff and rainfall data
at two major reservoirs of the water supply system of Athens, i.e., Evinos and Mornos (details
about the system are provided by Koutsoyiannis et al. [2003a]). The historical data cover a 29-
year period (Oct/1979 — Sep/2008), which is marginally adequate for estimating up to third
moment statistics with acceptable accuracy. For convenience, herein we will refer to Evinos
runoff and rainfall as sites A and B, respectively, and to Mornos runoff and rainfall as sites C
and D, respectively (here term site denotes a specific hydrological process at a specific location).

In this problem we employed the multivariate version of SPARTA and compared against the
contemporaneous PAR(1) model with Pearson type-III white noise, again, referred as PAR-
PIII model (Appendix C.1). Similarly to the case study of section 6.5.1, in the context of
specifying the underlying marginal distributions of SPARTA, and in order to ensure fair
comparisons, we decided fitting the Pearson type-III model at all sites and for all months, and
estimating its parameters via the method of moments. Under this premise, the generating
scheme will be next referred to as SPARTA-PIII. Although we remark, that in an operational,
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real-world study one could take advantage of SPARTA model flexibility and select appropriate
distributions models that are positively bounded, thus directly surpass the problem of negative
values generation (see also the previous sections).

The performance of both models was assessed in a monthly basis, by contrasting the statistical
characteristics of historical data that should be theoretically preserved by the corresponding
generating schemes (i.e., monthly means, standard deviations, and skewness coefficients, lag-1
correlations across months, and zero-lag cross-correlations between all sites) against the
simulated ones.

It is well-known that while the theoretical equations of any stochastic model are built in order
to explicitly reproduce a specific set of statistical characteristics, this preservation is only
ensured for very long (theoretically infinite) simulation horizons [Efstratiadis et al., 2014a]. If
we consider relatively small horizons and repeat the simulation many times, the smaller the
length of the synthetic sample, the larger is expected to be the variability of the simulated
against the theoretical values of these characteristics. In this context, the stochastic model that
ensures the minimum variability will be recognized as the most robust, since its performance
will be the less sensitive against the simulation length. In this context, we employed two
experiments, the first one by employing a single simulation of 500 ooo years length, and the
second one by running each model 500 times, to obtain independent synthetic samples of 1 0oo
years length. This Monte Carlo approach allowed for evaluating the uncertainty of the
simulated statistical characteristics (after truncation of negative values to zero), which is
depicted by means of box-plots (Figure 6.6 to Figure 6.10).

As shown in Appendix C (Figure C.1 to Figure C.5), the estimated statistical characteristics
from the large (i.e., 500 000 years) synthetic sample perfectly agree with the historical ones,
thus confirming the solid theoretical background of SPARTA-PIII. As expected, PAR-PIII also
ensures perfect fitting of the simulated to the observed statistics, expect for skewness, which are
slightly underestimated. Probably, this systematic deviation is due to the simplified method
employed for covariance matrix decompositions (namely, the Cholesky technique). The
superiority of SPARTA-PIII against PAR-PIII is further revealed when evaluating the fitting
of synthetic data to the theoretical distribution that has been adopted in this simulation
experiment, i.e., Pearson type III. The PIII distribution is mathematically defined through Eq.
(3.5) comprising three parameters, i.e., shape, a, scale, b, and location, ¢, which have been
estimated for each site and each month with the method of moments (Table C.1). It is shown
that the estimated parameter values originated by SPARTA-PIII are very close to the
theoretical ones, thus the desirable distributions are accurately reproduced. On the other hand,
there are several cases where the PAR-derived parameters, and consequently the derived
distributions, oscillate significantly form the theoretical model. This becomes even more
evident when expressing these deviations in terms of root mean square error, per site and
parameter. As shown in Table C.2, this error is up to three times larger than the error induced
by SPARTA-PIIL.

With respect to the second (i.e., Monte Carlo) experiment, from Figure 6.6 and Figure 6.7 it
is shown that both SPARTA-PIII and PAR-PIII are able to reproduce the observed monthly
means and standard deviations, respectively, since their variability is generally low across all
sites and seasons.

Regarding the reproduction of monthly coefficients of skewness (Figure 6.8), it seems that
SPARTA-PIII slightly outperforms PAR-PIII in terms of statistical uncertainty, as indicated
by the narrower box-plots that are provided is several cases (e.g., October, March, August and
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September for site A, October, November and March for site B, November, December and
March for site C, and March, August and September for site D). Finally, in terms of lag-1
month-to-month and lag-o cross-correlations, both schemes ensure robustness, as illustrated
in Figure 6.9 and Figure 6.10, respectively.

As already highlighted, a great advantage of SPARTA over linear stochastic schemes, such as
PAR-PIII, is its ability to reproduce realistic dependence patterns, in compliance to the
observed ones (see also Chapter 3). This is also empirically confirmed in the current case study,
which aims to reproduce both temporal and spatial dependencies (i.e., dependencies between
different processes). A characteristic example is given in Figure 6.11, illustrating the scatter
plots of historical and simulated runoff values of at Evinos (site A) and Mornos (site C), for
months January and February, from the long-term experiment (i.e., 500 0o0o years). It becomes
now even more clear that the SPARTA-PIII generation scheme provides reasonably-
distributed data, while the synthetic data by PAR-PIII are again bounded within a specitfic
range, which is far from truthful and does not capture the full extent of the observed scatter
(notice the incompatibility between the synthetic series of PAR-PIII and the historical data in
Figure 6.11).
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Figure 6.6 | Comparison of monthly mean values, y, of historical and synthetic data.
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Figure 6.7 | Comparison of monthly standard deviation values, g, of historical and synthetic data.
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Figure 6.8 | Comparison of monthly skewness coefficients, C;, of historical and synthetic data.
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Figure 6.9 | Comparison of month-to-month lag-1 correlations, p,, of historical and synthetic data.
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Figure 6.11 | Scatter plots of 500 0oo synthetic data for sites A and C, representing monthly runoff
(mm) processes at Evinos and Mornos reservoirs, respectively, for (a) January and (b) February.
Simulated negative values are also included to avoid the distortion of the established dependence
patterns.

6.6 SUMMARY

This Chapter presents a novel approach, termed SPARTA, for the explicit stochastic simulation
of univariate and multivariate cyclostationary (i.e., periodic) processes with arbitrary marginal
distributions. SPARTA uses an auxiliary Gaussian PAR process with properly identified
parameters, such as after its mapping to the actual domain through the ICDFs, it results to a
process with the target correlation structure and a priori specified marginal distributions. Since
the temporal and spatial dependencies are typically expressed by means of Pearson correlation
coefficients, we focus on the identification of equivalent correlation coefficients of the auxiliary
processes to be used in the Gaussian domain, in order to attain the target correlations in the
actual domain. In this context, we use the Nataf joint distribution model, originated from
statistical sciences for the generation of correlated random variables with prescribed
distributions (see also Chapter 4).

Further to the advantage of simulating cyclostationary processes with arbitrary marginal
distributions, the proposed approach is also flexible in implementing any distribution fitting
method, offered by recent advances in statistical sciences. This flexibility also offers the
capability of explicitly ensuring the generation of non-negative values within simulations,
through selecting appropriate distributions that are positively bounded. This important
property, which is not offered by most of known stochastic schemes used in hydrology, is
attributed to the use of the ICDF; if the employed distributions are positively bounded, the
generated values will be by definition non-negative.

The advantages of SPARTA in practice, i.e., in the context of generating monthly synthetic
data, have been illustrated through three stochastic simulation studies, emphasizing different
aspects of the proposed methodology. Furthermore, in two out of three studies, SPARTA has
been contrasted to the well-established linear stochastic model PAR-PIII, i.e., PAR(1) with
Pearson type-III white noise. The major outcomes of our analyses are:
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e Both models reproduced almost perfectly the essential statistical characteristics of the
simulated processes up to second order (means, standard deviations, lag-1 month-to-
month correlations (i.e., autocorrelations), zero-lag cross-correlations).

e SPARTA was also able to preserve with high accuracy the third order statistics, expressed
in terms of skewness coefficients, while in several cases PAR-PIII provided quite
underestimated skewness, which varied significantly across independently generated
synthetic samples.

e SPARTA was able not only to preserve the theoretical statistical characteristics of the
observed data but also the parameters of the prescribed marginal distributions, which is in
fact the primary goal of simulation.

e SPARTA produced dependence structures in time and space that are in agreement with the
observed patterns, while, in some cases, PAR-PIII provided rather irregular scatter patterns
that were fragmented out of the observed ranges.

To this end, it is argued, that SPARTA is a convenient way to simulate cyclostationary
processes, either univariate or multivariate, yet it should not be regarded as a panacea for all
kind of simulation problems, since it inherits the characteristics of the auxiliary process from
the periodic autoregressive family. In this context, it cannot preserve the statistical
characteristics at aggregated time scales, e.g., annual, including long-range dependence (Hurst
phenomenon).

For this reason, the Chapter 7 regards the integration of SPARTA within a multi-scale
stochastic simulation framework (by coupling multiple Nataf-based models; see Chapter 5),
allowing us to reproduce the desirable distribution and desirable correlation structures at
multiple time scales, and also reproduce the peculiarities of different scales. As shown in the
literature, an effective and efficient way to address this is through disaggregation techniques.
For instance, the coupling procedures formalized by Koutsoyiannis and Manetas [1996] and
Koutsoyiannis [2001], which has been successfully implemented within advanced simulation
schemes [e.g., Efstratiadis et al., 2014a; Kossieris et al., 2016; Tsoukalas et al., 2018c], can be
easily aligned with SPARTA and other Nataf-based models to ensure statistical consistency
across scales.
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L

PREAMBLE

The generation of hydrometeorological time series that exhibit a given probabilistic and
stochastic behavior across multiple temporal levels, traditionally expressed in terms of specific
statistical characteristics of the observed data, is a crucial task for risk-based water resources
studies, and simultaneously a puzzle for the community of stochastics. The main challenge
stems from the fact that the reproduction of a specific behavior at a certain temporal level does
not imply the reproduction of the desirable behavior at any other level of aggregation. In this
respect, we first introduce a pairwise coupling of Nataf-based stochastic models within a
disaggregation scheme, and next we propose their puzzle-type configuration to provide a
generic stochastic simulation framework for multivariate processes exhibiting any distribution
and any correlation structure. Within case studies we demonstrate two characteristic
configurations, i.e., a three-level one, operating at daily, monthly and annual basis, and a two-
level one to disaggregate daily to hourly data. The first configuration is applied to generate
correlated daily rainfall and runoff data at the river basin of Achelous, Western Greece, which
preserves the stochastic behavior of the two processes at the three temporal levels. The second
configuration disaggregates daily rainfall, obtained from a meteorological station at Germany,
to hourly. The two studies reveal the ability of the proposed framework to represent the peculiar
behavior of hydrometeorological processes at multiple temporal resolutions, as well as its
flexibility on formulating generic simulation schemes.

This Chapter is organized as follows: Section 7.1 reviews the literature and presents the
objectives of this chapter. Section 7.2 describes the disaggregation-based coupling approach,
designed to maintain consistency across pairwise scales. Section 7.3 presents a generic and
modular stochastic simulation framework that enables the development of various multi-scale
schemes (i.e., configurations). Section 7.4 demonstrates a three-level configuration through
two case studies, which highlight the capabilities of the framework to simulate a wide range of
processes (multivariate) exhibiting intermittency, different distribution functions and
correlation structures across multiple time scales. Section 7.5 entails a simpler configuration
and aims at synthesizing hourly rainfall data from a given (i.e., observed) daily record, thus
illustrating the efficiency of the method against challenging disaggregation problems. Finally,
section 7.6 summarizes the overall modelling framework and discusses potential applications.

* Tsoukalas, I., A. Efstratiadis, and C. Makropoulos (2018b), Building a puzzle to solve a riddle: a new approach
to multi-temporal stochastic simulation, J. Hydrol., doi:(in review).
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7.1 INTRODUCTION

Today, most of water recourses studies employ Monte Carlo simulations, by running
deterministic models that are driven by synthetic inputs, which are typically generated by
stochastic models. In this context, key requirement for extracting statistically consistent
outcomes is the concise representation of the probabilistic behavior and stochastic structure of
the input hydrometeorological processes (e.g., rainfall, runoff, temperature). It is well-known
that these exhibit a significantly complex regime, the most prominent aspects of which are non-
Gaussianity, intermittency, auto- and cross-dependence, as well as periodicity [Moran, 1970;
Salas et al., 1980; Koutsoyiannis, 2005b]. All above peculiarities dictate the specifications of a
good simulation model (see also of section 2.2).

During more than a half century, the need for good synthetic data generators, to be used within
risk-aware decision-making frameworks for design, assessment and operation of water
resource systems (see section 1.2) has triggered numerous researchers for developing a plethora
of stochastic approaches and associated modelling tools. These can be primarily classified into
two broad categories, i.e., single-scale and multi-scale. The former ensure the reproduction of
a set of statistical and stochastic properties at a unique time scale of interest, i.e., the time
interval of simulation, while the latter attempt to simultaneously represent the desirable
properties of the simulated data, as well as the properties of the aggregated data at coarser
temporal scales.

The numerous single-scale simulation schemes that have been developed so far can be further
distinguished into (see the review of section 2.3): 1) linear stochastic models, also known as
time series generators [e.g., Thomas and Fiering, 1962; Matalas, 1967; Matalas and Wallis,
1976; Salas et al., 1980; Bras and Rodriguez-Iturbe, 1985; Koutsoyiannis, 1999, 2000]; 2) point
process models [e.g., Bo et al., 1994; Onof et al., 2000; Kilsby et al., 2007; Burton et al., 2008;
Evin and Favre, 2008; Kaczmarska et al., 2014]; 3) two-part models, i.e. product models of
occurrence and amount that are represented as discrete and continuous processes, respectively
[e.g., Todorovic and Woolhiser, 1975; Katz, 1977; Richardson and Wright, 1984; Wilks, 1998;
Khalili et al., 2009; Srikanthan and Pegram, 2009; Baigorria and Jones, 2010; Breinl et al., 2013,
2015; Ailliot et al., 2015; Lee, 2016]; 4) resampling methods [e.g., Lall and Sharma, 1996;
Rajagopalan and Lall, 1999; Buishand and Brandsma, 2001; Wéjcik and Buishand, 2003; Clark
et al., 2004; Mehrotra et al., 2006; Mehrotra and Sharma, 2007; Salas and Lee, 2010]; and 5)
copula-based models [e.g., Bardossy and Pegram, 2009; Serinaldi, 2009a; Hao and Singh, 2011,
2013; Lee and Salas, 2011; Chen et al., 2015; Jeong and Lee, 2015; Lee, 2017].

By design, single-scale simulation models attempt to reproduce the desirable statistical and
stochastic behavior within the synthetic data at the scale of simulation, yet they provide limited
control to the properties of the same process, when aggregated at higher (coarser) time scales.
It is well-known that the reproduction of the probabilistic and stochastic behavior of a process,
expressed either in terms of a distribution function or a set of statistical properties, at a certain
time scale does not ensure the reproduction of the associated characteristics of the aggregated
process at any other time scale.

The necessity for the hereto referred to as multi-scale consistency has been early recognized by
the hydrological community, through the pioneering work by Harms and Campbell [1967].
Actually, from the first steps of Monte Carlo approaches in water resources it has been accepted
that that the outcomes of stochastic analyses are associated with the overall statistical and
stochastic behavior of the input hydrometeorological processes, which may extend far beyond
the time interval of the underlying (deterministic) simulation model [see, Klemes, 1981;
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Koutsoyiannis, 2005b]. For instance, the design and operation of large reservoir systems that
employ overyear regulation, which are typically modelled in monthly intervals, is strongly
dictated by the probabilistic and stochastic properties of the aggregated inflows, at the annual
and even over-annual scales. Similarly, the outputs of continuous flood simulation models,
driven by fine-time (e.g., hourly) rainfall series, are substantially affected by the sequence of
accumulated rainfall, as the runoff production strongly depends on the antecedent soil
moisture conditions. In this respect, multi-scale consistency in stochastic simulation can be
regarded as an operational sine qua non.

Furthermore, multi-scale consistency is directly linked with the so-called issue of low-
frequency variability or over-depression (i.e., the deficiency to reproduce the process’ variance
at higher time scales), which is encountered in many popular daily weather-generation models
[e.g., Wilks, 1998; Katz and Parlange, 1998; Wilks and Wilby, 1999; Mehrotra et al., 2006;
Brissette et al., 2007; Srikanthan and Pegram, 2009; Khalili et al., 2009; Serinaldi, 2009a;
Baigorria and Jones, 2010; Mhanna and Bauwens, 2012; Breinl et al., 2013, 2015; Lee, 2017].

Multi-scale simulation schemes, with the exception of few specifically designed models [e.g.,
Rodriguez-Iturbe et al., 1987; Langousis and Koutsoyiannis, 2006, is typically build upon the
disaggregation paradigm. Essential element of disaggregation is the additive property, which
enables the generation of multi-scale consistent time series via the transfer of information
among different temporal scales. This implies that the sum of the generated variables at the
lower level (e.g., monthly) at any period should add to the corresponding value at the higher
level (e.g., annual), which is assumed known, either from observed or synthetic (simulated)
data. This property distinguishes disaggregation from downscaling [e.g., Wilks and Wilby,
1999; Cannon, 2008; Lombardo et al., 2012], which focus on generating lower level time series
that statistically resemble the properties of higher level ones, and not necessarily honor the
additive constraint.

As already mentioned, the beginning of the quest (at least in hydrological domain) for multi-
scale simulation models can be attributed to Harms and Campbell [1967], who developed a
two-level version of the classical stochastic model by Thomas and Fiering [1962] that preserves
some key statistical properties of the observed data at both the annual and monthly scale. Little
later, the interest on such methods reinforced with the theoretical research on disaggregation
by Valencia and Schakke [1973] and Mejia and Rousselle [1976]. However, the proposed
methods were fully general only for normally distributed variables, thus limiting their
applicability to a relatively narrow range of processes and scales.

Next generation approaches offered multi-scale schemes that utilized the notion of the so-
called adjusting procedures [Harms and Campbell, 1967; Stedinger and Vogel, 1984; Grygier and
Stedinger, 1988; Koutsoyiannis and Manetas, 1996; Koutsoyiannis, 2001]. These aimed in
coupling single-scale simulation models of any type, operating independently at different time
scales. The rationale is generating low-level synthetic data as auxiliary information, and next
adjusted them to the known higher-level values, by using relatively simple algebraic
transformations, such as the partial sums at the low level equal the values of the higher level.
Koutsoyiannis and Manetas [1996] and Koutsoyiannis [2001] investigated several adjusting
procedures, and also standardized the concept of repetitive sampling (kind of Monte Carlo
approach), to ensure that the partial sums are close to the given values. This can be regarded as
an informal method of conditional sampling, that can significantly improve the efficiency of
such schemes [see also, Glasbey et al., 1995].
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Adjusting procedures of varying complexity have been implemented within a number of
disaggregation-based schemes, in order to couple single-scale simulation models (such as the
ones described above) across various time scales. In particular, they were used within linear
stochastic models [e.g., Koutsoyiannis et al., 2003b; Segond et al., 2006; Lombardo et al., 2012;
Efstratiadis et al., 2014a; Allard and Bourotte, 2015; Tsoukalas et al., 2018c], point processes
[e.g., Glasbey et al., 1995; Koutsoyiannis and Onof, 2001; Onof et al., 2005; Kossieris et al., 2016],
two-part models [e.g., Shao et al., 2016; Evin et al., 2018], resampling methods [e.g., Lee ef al,
2010] and copula-based models [e.g., Gyasi-Agyei, 2011; Gyasi-Agyei and Melching, 2012]. It is
highlighted that the overall simulation capabilities of adjusting-based schemes are determined
by the underlying simulation models, which consist the core data generation mechanism.

In addition, several modern schemes for establishing multi-scale consistency are built upon the
concepts of scaling and multifractality [e.g., Tessier et al., 1996; Kantelhardt et al., 2006;
Veneziano et al., 2006]. Typically, these employ multiplicative random cascade models [Gupta
and Waymire, 1990, 1993] to generate multi-scale consistent (in terms of typically high-order
moments) realizations [e.g., Menabde et al., 1997; Olsson, 1998; Deidda et al., 1999; Molnar and
Burlando, 2005; Rupp et al., 2009; Miiller and Haberlandt, 2015, 2018]. Recent works by,
Licznar et al. [2011], Lombardo et al. [2012] and Pui et al. [2012] provide comparative studies
involving such models, as well as alternative downscaling or disaggregation methods.

Besides the vast effort made so far, the quest for full generality and full consistency across
multiple temporal scales still remains a puzzle. Recently, Tsoukalas et al. [2018e] highlighted
that many of widespread schemes, including linear stochastic models with non-Gaussian
innovations, point-process models and resampling techniques, emphasize on the reproduction
of a specific set of summary statistical characteristics, which arguably cannot capture the full
behavior of a random process. As also shown, under some common conditions these may lead
to bounded dependence patterns, which are not realistic (see Chapter 3; [Tsoukalas et al.,
2018a]). On the other hand, two-part and copula-based models are actually able to explicitly
account for the distributional properties of simulated processes, yet they are mainly designed
to represent specific correlation structures. For instance, two-part models often neglect
temporal dependencies, while copula-based schemes typically account for temporal
dependencies spanning over only few time lags.

In this Chapter, our focus is not on disaggregation per se, rather than we employ the flexibility
provided by the concepts of repetitive sampling and adjusting procedures to link individual
stochastic models, in order to represent the varying regime of hydrometeorological processes
across multiple temporal scales. Our emphasis is to shift from the classical paradigm of
resembling a process in terms of few summary statistics (in particular, moments up to third
order and low order correlation coefficients), to the explicit representation of its marginal and
stochastic properties, in terms of distribution functions and theoretical correlation structures,
respectively. This is accomplished by building upon a recently introduced (in hydrology) class
of stochastic models, the so-called Nataf-based [ Tsoukalas et al., 2017a, 2018e, 2018d]. These,
through the mapping of an auxiliary Gaussian process (Gp) (Chapter 4-6), are able to simulate
multivariate, stationary and cyclostationary processes with any marginal distributions and any
correlation structures. These properties allow for characterizing Nataf-based models as good
single-scale stochastic simulators, and thus appropriate data generators within multi-scale
adjusting-based schemes. Taking advantage of the above concepts, we propose a scale-free
disaggregation approach for pairwise coupling of Nataf-based models, next referred to as
Nataf-based Disaggregation to Anything (NDA). Eventually, a chain configuration NDA allows
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for developing puzzle-type, i.e., modular, simulation schemes that ensure consistent
simulations across any sequence of temporal scales.

7.2 ADDRESSING MULTI-SCALE CONSISTENCY

Provided that the theoretical background of Nataf-based stochastic models has been extensively
discussed (Chapter 4-6), and in order to avoid repetition, this section focuses on addressing
the problem of multi-scale consistency. Nataf-based models, although fulfill the requirements
of a good stochastic model, i.e., the explicit reproduction of any distribution and any correlation
structure, do not account for multi-scale consistencySince the problem is independent of the
generation procedure and the time scale of simulation, we first provide a global overview and
then propose a generic solution for Nataf-based models, herein referred to as Nataf-based
Disaggregation To Anything (NDA).

7.2.1 Problem description

Let us begin from the univariate case, denoting by {%}nez> a discrete-time, stationary or
cyclostationary (the season indicator s is omitted for simplicity), stochastic process at time scale

k = 1,where n is a time index. Let also define the aggregated process Ql(k) ata higher time scale
k € Z=*, obtained by:

kl
k
w® = Z @, (7.1)

n=(l-1)k+1

where [ is the time index of the aggregated process. Alternatively (e.g., if w, refers to an
instantaneous quantity), we can define the averaged process, also denoted by Ql(k), by, Ql(k ) =
fo:(l_l) k+1 @n /K. Apparently, the properties of {w), } at scale k = 1 are related with those of

the aggregated (or averaged) process at a higher time scale k € Z=2.

Herein, withoutloss of generality, we focus on the aggregated case. To simplify, we first remark
that the operations implied by Eq. (7.1), can be viewed as a sum of k RVs. Thus, if we were

interested on the distribution of {Q l(k)}, it would be identical to solve an aggregated distribution

problem. If the process {w, } is stationary at k = 1, then at any higher scale k we would have
the sum of k identical RVs. On the other hand, if {w,, } is cyclostationary at the lower scale k =
1, at any higher scale k we would have the sum of k non-identical RVs (their marginal and
dependence properties depend on the season s = 1,..,S, implied by the time index n; see
section 4.3.1).

Arguably, the problem of identifying the distribution of Ql(k) at k > 1 is particularly
challenging, since there is not a general method (without resorting to simulation) to identify
the distribution of the sum of k RV, especially, in the presence of dependence, which is typical
for hydrometeorological processes. Furthermore, apart from some low order moments (i.e.,
mean, variance, autocovariance and autocorrelation), higher order moments of the aggregated
process are also particularly difficult to estimate, either analytically or theoretically.
Analogously, it is also challenging to specify a process {w, } that has the desirable (for this time
scale) marginal and stochastic properties, when it is aggregated at a higher scale k > 1.
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The problem becomes even harder when multiple processes are involved, in the context of

multivariate simulation problems. Let §; = [itl, ...,gn]Tand W, = [Q,ll, s Q,T]T be two m-
dimensional vectors of two discrete-time processes § and w},, indexed using t € Z> and n €
7>, respectively. Furthermore, let assume that & and w}, represent the same process at two
different temporal scales, higher and lower, respe_ctively, with time units denoted by &¢ and &,

respectively (i.e., ¢ > §,,).

Similarly to Eq. (7.1), when k* :== k = 65/(3‘& (e.g., 1 year/1 month = 12, or 1 month/1 hour =
28 X 24, 30 X 24, 31X 24; depending on the number of days of the month), we obtain an
aggregated process at the same temporal level of g, ie.,

lk*
&= o) = Wi, (=1t (7.2)
n=(l-1)k*+1

Evidently, when w}, is simulated without reference to the higher-level process &/, then &} # &,
Hence, for each process i = 1,..,m, our target is to generate a k*—dimer_lsional ;ando_m
sequence, Qi;(k*) = [Qét_l)k*ﬂ, e, L], of the low-level process (k = 1), with the desirable
properties, which honors the equality, § = g@, when aggregated to the time scale k*. The

multivariate formulation of the problem is written as:

1 1
T WDit-k*+1 7 Wigr
0 _ 1 T m T _ : . : d
2L6(k™) — Qt;(k*) ’ ""Qt;(k*) - »an
wm cee wm
2t-1)k*+1 Xtkr*
tk* tk*
Fa &1 &m T 1
§t=[§t""'§t] = Z Wn, o) Z wn'
n=(t-1)k*+1 n=(t-1)k*+1

7.2.2 The NDA approach: Step-by-step implementation

In order to address the problem, we develop the Nataf-based Disaggregation To Anything
(NDA) approach, which combines Nataf-based models, considered as data generation
mechanisms, with a coupling procedure that encompasses the notions of repetitive sampling
and adjusting procedures. These two key notions are thoroughly discussed by Koutsoyiannis
and Manetas [1996].

The NDA procedure starts from a given realization, &;, of a process §;, at a specific time scale,

aiming to produce a consistent realization, w,,, at a lower scale. The given realization &, is
known either from observations or already generated by another model (deterministic or
stochastic). In the second case, if a Nataf-based model is employed, the synthesized higher-level
realization would have the desirable marginal distributions and correlation structure, hence the
problem would reduce to generating a lower-level realization with the target properties, which
when aggregated to the higher-level honors the additive property. Fulfilling both conditions
allows preserving the properties of the process at both temporal levels, given that the realization
at the higher level is kept as is.
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Therefore, given the realization ;, and assuming a temporary Nataf-based lower-level process,

denoted by @,,, with properties identical to those of the target process w,, (i.e., @, = w,), the

following steps are applied for all time indices ¢.

1) Using a Nataf-based model (Chapter 4-6), generate N/, temporary realizations @, of the
lower level process @y, of length k*, thus obtaining N, sets of matrices {Qt;(k*) (v);v=

1, ..., N{/w}

2) For each of the N¢,, matrices Qt;(k*), estimate the corresponding vector &, and obtain a set
of vectors {E’t(v); v=1,.., N{/w}

3) Calculate the difference between &, (v) and the known &, using a distance metric, e,(v) =
D(ft ), ft). See also Eq. (7.4).

4) Formulate the set {e,(v);v =1, ..., N /w} and select the realization Qt;(k*) (v) with the
minimum value of e;(v), hereafter denoted .(l't;(k*) (the breve notation has been omitted
for simplicity). Under this premise, by aggregating £, to time scale k*, thus obtaining
the corresponding sum &}, its difference with the target values of &, will be the minimum
over the simulated set.

5) Produce the final values of £,y by adjusting the remaining difference between & and &,,
by employing a specific adjusting procedure. Herein we employ the proportional adjusting
procedure of Eq. (7.5).

We remark that since we employ Nataf-based models, in order to ensure a proper sequential
generation procedure, it is essential to maintain an archive of the realizations generated by the
auxiliary Gaussian process (Gp) model. These are needed to condition the generation
mechanism on the required number of previous values. For instance, if we employ
CMARTA(p) for generating the temporary realizations @,,, p previous values of the auxiliary
Gaussian realization are needed to condition the generation of @,, .

7.2.3 Computational details

For convenience, within repetitive sampling (step 3), we employ as distance metric the
following quantity, also used by Koutsoyiannis and Manetas [1996]:

ec =D §0) =1 ) [¢i =&l /var[gi] G4

On the other hand, all available adjusting procedures (APs) that are found in the literature [see,
Harms and Campbell, 1967; Grygier and Stedinger, 1988; Koutsoyiannis, 2001] are compatible
with the proposed approach. Here we employ the so-called proportional AP that can be
implemented independently for each @'t~y and reads as follows:

. y o |
Wiy = Oty §E/8 (7.5)
Apart from its simplicity, key advantage of this AP is the preservation of the sign of each

realization w’i;(k*). For instance, in case of rainfall, where the underlying Nataf-based model is
combined with a mixed-type distribution to represent intermittency, the proportional
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adjustment not only prohibits the generation of negative rainfall values but also preserves the
sequence of zero and non-zero values, as explicitly foreseen by the auxiliary Nataf model.

A final technical issue involves the termination criteria for repetitive sampling. Here, we
consider that the iterative procedure terminates when reaching a maximum number of
allowable iterations, Ng/,. An alternative option would imply the use of a convergence

criterion, by means of a similarity metric between &, and &,. Nevertheless, the stopping criteria
should be carefully assigned, since they control both the accuracy and computational efficiency
of NDA, which are inherently conflicting. In our examples, we set N¢/,, = 250 to 350, which
was heuristically identified as a fair conciliation, even for multivariate problems involving up
to five individual processes.

We remark that in contrast to other disaggregation schemes, where repetitive sampling had an
optional role [cf. Koutsoyiannis and Manetas, 1996, in our approach its role is pivotal, since it
allows the preservation of the advantages of Nataf-based models, and hence generate lower-
level realizations with the target probabilistic and stochastic properties.

7.3 MODULAR FRAMEWORK FOR DEVELOPING MULTI-TEMPORAL SIMULATION
SCHEMES

7.3.1 Multi-temporal stochastic simulation as a puzzle

Asalready discussed, there does not exist a general, botfom-up solution to the problem of multi-
scale consistency, by means of a generation procedure that provides consistent synthetic data
at a time scale of interest, and simultaneously captures the scale-varying stochastic-
probabilistic behavior of the aggregated process at higher time scales. In a practical context, the
generally accepted requirement for a good stochastic model is to reproduce the desirable
probabilistic and dependence properties across specific temporal scales that have operational
interest. Typically, these follow the standard resolutions of hydrometeorological time series,
i.e., annual, monthly, daily, hourly, etc.

In this context, we propose a puzzle-type implementation of NDA, to address multi-scale
simulation problems of any complexity. Essentially, this can be done by coupling, in a pairwise
manner, multiple Nataf-based models, which operate independently of each other. Thereby,
one can establish a modular, top-down approach, starting from the first level, which
corresponds to the highest time scale of interest, and subsequently moving to next levels, until
reaching the lowest scale, which is dictated by the simulation problem at hand. As shown in
Figure 7.1, each individual coupling of subsequent scales through NDA can be considered as
the pieces of a puzzle. The generic design of NDA ensures flexibility regarding the combination
of temporal scales, while at the same time, the robustness of the underlying Nataf-based
approach ensures the preservation of the desirable process properties.

Level 1 Level 2 Level 3 Leveln-1 Level n

Figure 7.1 | The stochastic simulation framework as a puzzle, involving a chain implementation of
individual NDA pieces.

Page | 139



THE PUZZLE OF MULTI-TEMPORAL STOCHASTIC SIMULATION

For demonstration, we next present a typical configuration of this puzzle, by means of a three-
level scheme for annual to daily simulation, which is of significant interest for a wide range of
operational hydrological problems. In section 7.4, we explore the capacities of this
configuration, in the context of a real-world case study (an additional one is presented in
Appendix D), involving the generation of synthetic daily rainfall and runoff series. Moreover,
in section 7.5, we present another useful configuration, this time for handling a classical
disaggregation problem, i.e., the generation of hourly rainfall from a given daily time series.

7.3.2 Three-level configuration for annual to daily simulations

In this configuration we couple three Nataf-based models, shown in Table 7-1, to provide a
multivariate three-level simulation scheme. This modular scheme (i.e., puzzle) aims to preserve
the probabilistic and dependence properties of typical hydrometeorological processes at the
annual, monthly, and daily scales. From the models of Table 7-1, SMARTA and CMARTA are
designed for stationary processes, while SPARTA for cyclostationary ones (i.e., accounting for
the season-to-season correlations). A common characteristic of the three models is the direct
reproduction of lag-o cross-correlations coefficient among multiple contemporaneous
processes. It is stressed that, regardless the choice of the auxiliary Gp model, in order to
generate realizations with the equivalent correlation structure, the model parameters have to
be estimated using the equivalent correlation coefficients.

Table 7-1 | Summary of employed Nataf-based models (p and g, denote the order of the model).

Auxiliary Gp model  Associated Nataf-based model  Type References
SMA(q) SMARTA(q) Stationary Chapter 5
CMAR(p) CMARTA(p) Stationary Chapter 5
PAR(p) SPARTA(p) Cyclostationary Chapter 6

Abbreviations: SMA (Symmetric Moving Average), CMAR (Contemporaneous Multivariate AutoRegressive), PAR (Periodic
AutoRegressive), SMARTA (Symmetric Moving Average neaRly To Anything), CMARTA (Contemporaneous Multivariate AutoRegressive
neaRly To Anything), SPARTA (Stochastic Periodic AutoRegressive To Anything).

To elaborate on the devised configuration, let us first introduce some notation regarding the

T
main assumptions and specifications. Let y, = [ytl, s ytm] be a vector of m stationary
stochastic process at the annual time scale (where t € T,, denotes the time index, i.e., year, over
the set 7). In the context of this configuration we model the annual processes using SMARTA,

in order to preserve:

e the distribution function of y}, i.e., F yi(y);
e its autocorrelation structure, in,;T = Corr [yti, yti+T];

e thelag-o cross-correlations among processes y; and Xt] ,i.e., py] = Corr [th, Xt] ]

On the other hand, the standard hypothesis for the monthly time scale is cyclostationarity. Let

T
the monthly process be represented by a m dimensional vector X, = [&s{n, s &”ﬁl] , where
s(=1,..,12,1..,12,...) denotes the month and n € T, is the time index. The index t of the

annual process (i.e., the year) may be recovered t_)y t =1+ (n—s)/12. For monthly
simulation we employ SPARTA in order to resemble:

o the seasonally-varying marginal distribution of x£,, i.e., F_(x) = F_, , (x);
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e thelag-1 month-to-month correlation coefficients pL. s, = Corr[g', g_l];
e the lag-o cross-correlations among processes x! and x! J for each season s, ie., p

Corr[_;',&{

Finally, the hydrometeorological processes at sub-monthly time scales (e.g., daily) are typically
regarded to be cyclically stationary within in each month s. In this respect, let wg.4 =

[wsl.d, e W d] be a m-dimensional vector of statlonary processes at month s, where d € TW ,
denotes the time index. We remark that in this case, k™ = §,,/6,,,, where 6,  and 6, denote
the time units of x{ ,, and w,; respectively. For instance, if w’,, represents the process of month
s, at the daily temporal level, k* = Dy, where Dy stands for the days of a month s (i.e., 28, 30 or
31, excluding leap years; similarly, if w;.; denotes an hourly process, then k* = D X 24).

Nonetheless, for the simulation of dally temporal level, we employ CMARTA model, and aim
to reproduce:

o the seasonally varying marginal distribution of wiy, i.e., §, (W) = E, _ (W);

¢ the within-month autocorrelation structure piws T = Corr[wsl;d, wsl;dﬁ];

e the lag—o cross-correlation coefficients among processes wi and w! for each season s,

ie., p‘i’, = Corr[wi,w/].

Provided that the parameters of the individual models have been identified (see Chapter 4 for
a general overview, as well as Chapter 5 and 6 for a model-specific description), the simulation
procedure starts with generating a realization of the annual process, using the SMARTA model,
and subsequently, moves to the monthly and daily level, through the NDA approach. The
overall procedure can be organized as follows:

Generation of annual synthetic time series

Using SMARTA synthesize a m-dimensional realization of the annual process y, with ¢t =

., T, where T denotes the desired length of the time series. The synthesized realization is
represented by am X T matrix ¥, i.e.,

yioot Yr
Y=]|": “ :

ZA

Generation and adjustment of monthly synthetic time series

By construction, the realization y,, fulfils the specifications of the annual level, hence the next
step is to generate T realizations of the monthly process X ,, each of length 12 (i.e., equal to
the number of months) in a way that they reproduce the specifications implied for the monthly
time scale, and additionally when aggregated to the annual temporal level they honor the
additive property, i.e., each y} = ;ft(t D12 +1 Xt . Therefore, for each year t = 1,...T, we
employ NDA with SPARTA model as generation mechanism (by setting &, = y; and w, =
Xsn), and obtain T matrices X,,...,X;,...,.Xr, which contain the final adjusted monthly
realizations. Each matrix has the form:

1 1
x1,(t—1)12+1 x12,t12
Xt — . . .

m see m
x1,(t—1)12+1 x12,t12

Page | 141



THE PUZZLE OF MULTI-TEMPORAL STOCHASTIC SIMULATION

Finally, the matrices are concatenated in X = [X,,.., X, ..., X7].
Generation and adjustment of daily synthetic time series

For the disaggregation of monthly to the daily temporal level, and given the previous matrix
organization, it is convenient to refer to the obtained, adjusted, monthly realization with
reference in season s and year t (not time indexn), i.e., x5, wheres = 1, ...,12andt = 1, ..., T.
For instance, in this notation, x; ,, refers to the third month of the second year. At this point
we have at our disposal, a realization at the monthly level of length 12 X T, and seek to generate
an equal number of realizations of the daily time scale, each one with length D;. Similarly, to
the previous level and for the same reasons, we wish the realizations of wg.4 to resemble the
specifications of the sub-monthly time scale, and fulfil the additive property, i.e., xé,t =

ZZS:t(t—l)DS+1 w!. 4. In this vein, for each month s = 1,...,12 and year t = 1, ...T, employ NDA

using CMARTA for data generation (by setting {; = x5 and w,, = W,,4), and obtain 12 X T
matrices W ¢, which contain the final adjusted daily realizations, i.e.,

1 1
We,(t-1)Dg+1 Ws;tDg
WS,t = H H
m see m
W, (t-1)Dg+1 Ws; tD

Finally, the matrices are concatenated in W = [Wm, oWt Wer, oo, le’T], which
contains the complete sequence of the daily realization.

7.4 CASE STUDY A: MULTI-TEMPORAL SIMULATION OF DAILY PROCESSES

To assess the performance of the aforementioned three-level configuration scheme, we
employed two case studies, one that regards the synthesis of contemporaneous daily rainfall-
runoff series at a single location, and another that that concerns the generation of intermittent
daily rainfall at four locations (presented in Appendix D). In both cases, the evaluation of the
model is performed at multiple time scales, by aggregating the generated time series and
comparing the empirical, simulated and theoretical (i.e., target) marginal and joint
characteristics. Herein we shall describe only the first case study, since the results are similar in
both cases.

This case study regards the contemporaneous synthesis of daily rainfall and runoft data, at the
river basin of Achelous, Western Greece, upstream of Kremasta dam (Figure 7.2a-b). We note
that the runoft series of this dataset has been employed in Tsoukalas et al. [2018a] (section 3.3),
to demonstrate the so-called envelope behavior of the AR(1) model when combined white noise
from Pearson type-III distribution (i.e., Thomas-Fiering approach). Herein the same dataset is
employed to demonstrate the three-level configuration scheme, for the synthesis of long daily
rainfall-runoff time series (2 ooo years; Figure 7.2c-d). It is noted that the units have been
converted to mm (from m?/s) for convenience in aggregation/disaggregation operations.

Regarding the model parameterization, we employed a theoretical autocorrelation model, i.e.,
Cauchy-type (CAS; Eq. (5.8)) for describing the auto-dependence structure of the processes, at
the annual and daily time scales. It is noted that at daily scale, the parameters of CAS were
varied on a monthly basis. Furthermore, the target distribution functions were varied according
to the time scale of simulation, the season and the type of processes (i.e., runoff or rainfall). In
all cases, the parameters of the distribution functions have been identified on the basis of
historical data, using the L-moments method. Particularly, in the case of runoff, we modeled
the data using either the three-parameter Log-Normal (LN'; Eq. (4.48)), the Generalized
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Gamma (GG; Eq. (5.44)) or the Burr type-XII (B#XIl; Eq. (5.41)) distribution. On the hand,
for the daily rainfall process, which is characterized by intermittent behavior, we employed the

zero-inflated distribution model of Eq. (4.45), using for the continuous component one of the
above distributions.

o
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Figure 7.2 | a-b) Historical daily rainfall-runoff time series (1 January 1970 to 31 December 2008). c-
d) Synthetically generated time series (randomly selected window of 40 years).

Starting from the annual temporal level, Figure 7.3, summarizes the ability of the highest-level
model to preserve both the target distribution function and the autocorrelation structure of
each process. Furthermore, the model resembled the lag-o cross-correlation among the two
processes with high accuracy (the historical and simulated values are 0.813 and 0.815
respectively). It is noted that the parameters of CAS have been manually fine-tuned in order to

increase the degree of annual long-range dependence and stress-test the capabilities of the
associated simulation scheme.

Figure 7.4-Figure 7.5 provides a quick outlook of the results obtained at the monthly time
scale, preserving with high accuracy, the empirical L-moments, the seasonality, expressed by
means of month-to-month correlation coefficients, as well as the lag-o cross-correlations.

Beyond summary statistics, a more challenging test is the reproduction of the monthly target
marginal distributions. Figure 7.6-Figure 7.7, compare the empirical distribution of the
historical and synthetic data with the target theoretical model (the fitted distribution, as well as

its parameters are shown in the title of each sub-plot). In all cases, the model resembled the
target distribution with notable accuracy.
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Figure 7.3 | Rainfall-runoff series: (a-b) Historical annual time series. (c-d) Empirical, simulated and
theoretical distribution functions (using the Weibull’s plotting position). (e-f) Empirical, simulated and
theoretical ACFs. (g-h) Synthetic annual time series (randomly selected window of 1 ooo years).

The previous figures, illustrate the ability of the integrated model, to generate cyclostationary
realizations that are also consistent with the specifications of the annual temporal level. As an
additional diagnostic, and to test the model for envelope behavior we employed scatter plots,
and depicted the established dependence patterns. An example is given in Figure 7.8, which
depicts the lag-1 month-to-month dependence patterns of runoff series. The scheme is relieved
from the aforementioned behavior, yet more interestingly, it was found capable of creating a
variety of dependence forms, which are also in accordance with the historical ones. The results
obtained for other time scales (or rainfall) are similar, hence not shown herein.
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Figure 7.4 | Comparison of monthly empirical and simulated L-Mean, L-Scale and L-Skewness, as well

as historical and simulated lag-1 month-to-month correlations.
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Figure 7.6 | Monthly rainfall - monthly-based comparison of empirical, simulated and theoretical
distribution functions (using the Weibull’s plotting position). The title of each subplot provides the

selected distribution and its parameters, as well as the historical (pp) and simulated (pp) values of
probability dry.
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Figure 7.7 | Monthly runoff - monthly-based comparison of empirical, simulated and theoretical
distribution functions (using the Weibull’s plotting position). The title of each subplot provides the

selected distribution and its parameters, as well as the historical (pp) and simulated (pp) values of
probability dry.
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Figure 7.8 | Monthly runoff (mm) - month-to-month scatter plots of historical and simulated series.
The title of each subplot provides the lag-1 month-to-month target (ps,s—1) and simulated (ﬁs,s—1)
correlation coefficients.

Regarding the lowest level of simulation, that is the daily time scale, the comparison among
summary statistics of Figure 7.9 and Figure 7.10 and, as well as the empirical, simulated and
theoretical distribution functions depicted in Figure 7.11-Figure 7.12, underline the ability of
the model to generate consistent realizations with the higher levels, and also preserve the target
distribution functions of the daily process, which at this time scale, are characterized by
considerably heavier tails. Notice that for daily runoff, and for the months, February to May,
we selected the B#XII model, which is a heavy-tailed distribution with power-type tail. Recall,
that the 7" -moment of the B#XII exist only if a,a, < r. Remarkably, the scheme accurately
simulated even February’s daily runoff, which is characterized by a,a, < 2.90; implying that
it only has finite mean and variance.

Furthermore to this, Figure 7.13-Figure 7.14 depict a monthly-based comparison of the
empirical, simulated and theoretical autocorrelation function (ACF) of the daily process, which
in most cases deviates from the typical AR(1) ACF, that most daily stochastic models are
capable of simulating. Inspection of this figure, reveals that the integrated model can resemble
the theoretical auto-dependence structure with high precision. This result stems from the
combination, within NDA, of two modelling components; the CMARTA and the use of
theoretical autocorrelation structures (i.e., CAS).

Further the above analysis, which concerned the three characteristic time scales of simulation,
in order to investigate the performance of the model at the intermediate time scales between
daily and monthly, we aggregated, on a monthly basis, the generated daily series at several scales

k € {2,..,Ds} and estimated the L-scale (L(Zk)), L-Skewness (L(Cks)) coefficients, as well as

probability dry (Plgk)) at scale k. The latter analysis is presented in Appendix D.1. It is

remarked that the intermediate time scales (i.e.,k # {1,D}) are not explicitly modelled
neither by the three-level scheme or NDA, hence the arguably good results can be attributed to
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the accurate simulation of the process at daily and monthly time scales. Similar results were
obtained for the case studies of Appendix D.2 and section 7.5.
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Figure 7.9 | Comparison of daily empirical and simulated L-Mean, L-Scale, L-Skewness, as well as
probability dry.
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Figure 7.10 | Comparison of daily historical and simulated lag-o cross-correlations.
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Figure 7.11 | Daily non-zero rainfall - monthly-based comparison of empirical, simulated and
theoretical distribution functions (using the Weibull’s plotting position). The title of each subplot
provides the selected distribution and its parameters, as well as the historical (pp) and simulated (pp)
values of probability dry.
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Figure 7.12 | Daily non-zero runoff - monthly-based comparison of empirical, simulated and
theoretical distribution functions (using the Weibull’s plotting position). The title of each subplot
provides the selected distribution and its parameters, as well as the historical (pp) and simulated (pp)
values of probability dry.
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Figure 7.13 | Daily rainfall - monthly-based comparison of empirical, simulated and theoretical
autocorrelation function (ACF); the parameters of CAS are given on the title of each subplot.
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Figure 7.14 | Daily runoff - monthly-based comparison of empirical, simulated and theoretical
autocorrelation function (ACF); the parameters of CAS are given on the title of each subplot.

A final assessment of model’s performance concerns its capabilities regarding the reproduction
of the daily extremes. It is reminded that the distribution of the extremes is not explicitly
modelled by the method. Figure 7.15 depicts the empirical and simulated daily annual
maxima, as well as the fitted (using the L-moments method), to the historical data, Generalized
Extreme Value (GEV) distribution.The CDF of GEV is given by,
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exp<—(1 + ax ; C)_é>, a+o
RS L)

where a,c € R and b > 0 are shape, location and scale parameters respectively. GEV
encompasses three distributions, the Fréchet (a > o with x € [c — b/a, +°°)), the Gumbel
(a = o with x € (=90, +0)) and the reversed Weibull (a < o with x € (—°,c — b/a]); the
latter case is not considered herein, since it regards upper bounded random variables.

Fgev (x;¢,b,a) = (7.6)

Inspection of Figure 7.15, shows that, in both cases, the model managed to resemble the
distributional form of the identified GEV distribution, which in both cases, is characterized by
an arguably heavy-tailed behavior, expressed through the Fréchet distribution (since a > 0).
In our opinion, this behavior can be attributed to the concise reproduction of the distributions
at the daily time scale, which in several instances was modelled using either, the power-type
BrXIl or the LNV distribution.

a Rainfall | Fit: GEV with L-moments b Runoff | Fit: GEV with L-moments
Parameters: c=43.61 | b=9.892 | a=0.14 Parameters: ¢ =22.217 | b=9.663 | a=0.127
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Figure 7.15 | Empirical (+) and simulated (o) daily annual rainfall-runoff maxima, as a function of the
return period. The solid red line (—) depicts the fitted to historical data Generalized Extreme Value
(GEV) distribution (parameters: location (c), scale (b) and shape (a)). The dashed blue line (- — —)
represents the 95% confidence intervals (estimated using the parametric bootstrap method).

7.5 CASE STUDY B: DISAGGREGATION OF DAILY RAINFALL TO HOURLY SCALE

To demonstrate the flexibility provided by NDA, as well the potential to extend the three-level
scheme of the previous section to even lower temporal levels, we now provide a two-level
configuration for disaggregating a univariate daily sequence to the hourly scale.

Particularly, we employ an hourly rainfall dataset from the German Weather Service
(Deutscher Wetterdienst; DWD). The historical hourly time series (Figure 7.16b), extend over
the period 01/09/1995 — 31/12/2017 and concern data at Oberstdorf (station ID: 3730).

In this example, we do not aim to generate synthetic data that represents the actual process
across multiple time scales of interest (such as in case study A). In contrast, our goal is to
provide a synthetic hourly realization, under the following requirements:

e the synthetic data at the hourly scale reproduces the probabilistic and stochastic
properties of the historical sample;
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o theadditive property is preserved between the aggregated hourly (k = 1) synthetic data
and the corresponding historical ones (i.e., k* = 24; Figure 7.16a).

By definition, in disaggregation problems, the synthetic sequence has the same length with the
given data.

To cope with the effect of seasonality, we employ the typical assumption for fine-time scale
rainfall processes (e.g., daily, hourly or finer), that of cyclical stationarity with annual period
and monthly sub-period (see also section ). Assuming that the sequence {Ws;d} denotes the

observed daily records for month s, we wish to simulate an hourly process, say, {ns;h} o
—""Jhez

which is also considered stationary within the month s. This implies that the distribution
function (i.e., Fns) of the process, as well as its auto-correlation structure, i.e., Pygr =

Corr [ns;h, ns;h+T] remain invariant within the month s. Furthermore, to account for temporal

consistency we impose the requirement of generating realizations of the process {ns;h}

(24) _ 2124

constrained by, wg,q = Wg,q, where Wy,4 = 1, he(l-1)24+1 Ts;h (analogous to Eq. (7.2)).

In order to simulate the hourly rainfall, we employ as generation mechanism the univariate
version of CMARTA, which is known as ARTA [Cario and Nelson, 1996]. We remind that this
model uses as an auxiliary Gp a Gaussian AR process (see section 5.4.3). The generation
scheme is employed on a monthly basis, since the hourly process properties are reasonably
considered seasonally varying.

Regarding the parameterization of ARTA, the marginal distribution of hourly rainfall of each
month is modelled using the zero-inflated model of Eq. (4.45). In this case, for the continuous
part we fitted (using L-moments) the GG distribution (the parameters of the model are shown
in Figure 7.16d-e). For the autocorrelation structure of the hourly rainfall, we fitted monthly-
varying CAS models (i.e., Eq. (7.1)) to the corresponding empirical autocorrelation coefficients
(red line in Figure 7.16g-i; including the identified parameters). Eventually, each individual
hourly process is modeled using five parameters (three for the marginal distribution and two
for the autocorrelation structure).

We note that, since our main purpose is demonstration, both the discrete and continuous part
are estimated from historical data, yet it is noted that, in alternative situations, one could
employ, regional information and/or rainfall’s scaling properties.

The results from this study are essentially identical for each month (the complete synthesized
series is shown in Figure 7.16c), hence herein we shall present the results obtained from
disaggregating daily rainfall to hourly for three months (i.e., February, June and October). As
shown by Figure 7.16d-e, and Figure 7.16g-i, the model resembled the target distributions and
autocorrelation structures respectively, with high precision. Similarly good performance is
achieved for the rest of months (see Appendix D.3).
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Figure 7.16 | Historical a) daily and b) hourly rainfall series. c) Synthetic (disaggregated) hourly
rainfall realization. d-f) Comparison of distribution function of non-zero amounts for hourly historical
and disaggregated series for February, June and October respectively (the fitted theoretical model is
shown with red line). g-i) Comparison of autocorrelation function (ACF) for hourly historical and

disaggregated series for February, June and October respectively (the fitted theoretical model is shown
with red line).

Furthermore, to investigate the behavior of the model at the intermediate time scales (i.e., 1 <
k < 24), in Figure 7.17, we depict for both the historical and synthetic series, the L-mean
(L(lk)), L-scale (L(zk)), L-skewness (L(Cks)), probability dry (p[(,k)) and lag-1 autocorrelation
coefficient (pgk)), as a function of aggregation level k (estimated by aggregating the hourly
sequences at the corresponding scale k). Inspection of these plots reveals the potential of the

approach to preserve the empirical scaling properties of rainfall, without requiring the use
cascading techniques and direct simulation of rainfall at the intermediate temporal levels.

In our view, apart from the arguably good results of this study, the most important finding is
the validation of the modular and scale-free character of NDA, which make it suitable for a
wide range of hydrological stochastic simulation problems. Depending on the problem’s needs,
NDA can be easily applied, by making minimum adjustments or interventions on the algorithm
of section 7.2.2.
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Figure 7.17 | Comparison of empirical and disaggregated, a-c) L-mean (L(lk)), d-f) L-scale (L(zk)), g-i)

L-skewness (L(C’;)), j-1) probability dry (p((,k)) and m-o) lag-1 autocorrelation coefficient (pfk)), as a
function of aggregation scale k, for February, June and October.

7.6 SUMMARY

In order to address the puzzle of multi-temporal simulation of hydrometeorological processes,
we developed a puzzle-type approach, employing chain implementation of a novel generation
procedure, called Nataf-based Disaggregation to Anything (NDA). This is built upon recent
advances in stochastics by means of Nataf-based models (Chapter 4-6), coupled with the
concepts of repetitive sampling and adjusting [e.g., Harms and Campbell, 1967; Koutsoyiannis
and Manetas, 1996; Koutsoyiannis, 2001].

This coupling allows taking advantage of the primary ability of Nataf-based models to represent
stationary processes that exhibit any distribution and any correlation structure. The recent
extension of Nataf-based models to simulate cyclostationary as well as multivariate processes,
offered the essential generality to handle challenging single-scale hydrometeorological
simulation problems.

However, as widely discussed, the reproduction of a target probabilistic and stochastic behavior
at a single temporal scale does not guarantee similarly consistent performance at higher
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temporal scales. In this Chapter, the issue of consistency across any pair of scales is handled via
the NDA approach (section 7.2), while the general puzzle-type framework (section 7.3) enables
the transition to multi-scale simulations. We remind that NDA uses Nataf-based models at two
independent scales as underlying data generators, and coupling mechanisms to adjust the
lower-level data to the higher one.

The above approach ensures significant flexibility, since it allows establishing any configuration
of scale-consistent simulators, through pairwise link of NDAs. This flexibility and the
advantages of NDA itself have been mainly revealed by configuring a multivariate simulation
scheme (section and 7.3.1) that reproduces the probabilistic and stochastic properties of the
processes of interest at three characteristic temporal scales (i.e., annual, monthly and daily). In
this configuration, we integrated different Nataf-based models for each scale, i.e., SMARTA
[Tsoukalas et al., 2018d] for the annual, SPARTA |[Tsoukalas et al., 2017a, 2018¢| for the
monthly, and CMARTA (Chapter 5) for the daily one.

The multi-temporal simulation capabilities of the integrated scheme were evaluated on basis of
two simulation studies, one that regarded the generation of rainfall and runoff synthetic time
series at a single location (section 7.4), and another that involves the synthesis of daily rainfall
at four locations (Appendix D). As showed, the model reproduced with accuracy the
characteristics of the underlying hydrometeorological processes, which exhibit substantial
differences among processes and across scales and seasons. Key requirements in these studies
were:

the reproduction of a wide range of target distribution functions, varying across
processes, scales and seasons;

e the simultaneous simulation of intermittent and/or continuous processes (e.g., daily
rainfall and runoft), exhibiting significant correlations;

o the preservation of target short-term and long-term auto-dependence structures, at the
annual scale, as well as the daily scale, on seasonal basis;

o the preservation of target season-to-season correlations at the monthly scale;
o the preservation of target lag-o cross-correlations at all scales.

One can observe that in the above bucket list we make repeated use of term target, in order to
highlight the multidimensional role of the user. Actually, before employing simulations, there
are several critical modelling decisions to make, regarding the assignment of suitable
distribution functions and correlation structures to the processes of interest (this also involves
the selection of time scales to represent, thus the configuration of the puzzle). This flexibility
may offer significant advantages. For instance, in this specific study, the careful selection of the
daily distribution models resulted to resembling the heavy-tailed behavior of the observed daily
extremes. We remind that the reproduction of extremes was not set as explicit requirement by
the model, thus making this surprisingly outcome a promising topic for further research.

The model performance at even finer temporal scales (i.e., hourly) was demonstrated through
a disaggregation example (section 7.5), where we employed NDA for the synthesis of hourly
rainfall realizations that are consistent with the observed daily data. Similarly to the first study,
the model faithfully reproduced the target behavior of the hourly process, simultaneously
ensuring consistency with the daily scale. Moreover, it reproduced with accuracy important
statistical properties of rainfall (expressed in terms of L-moments) at intermediate scales.
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Above all, this study highlighted the scale-free character of NDA, as well as its ability to handle
hydrological disaggregation problems.

Arguably, the potential applications of our puzzle-type approach extend beyond the realm of
hydrometeorological time series generation (or disaggregation). Essentially, it is a general-
purpose stochastic simulation scheme. Depending on the synthesis of the puzzle pieces (i.e.,
chain of NDAs), as well as the underlying decisions of each NDA (in terms of target marginal
distributions and correlation structures), it is possible to apply the method for the simulation
of a widely extended range of processes, geophysical and socioeconomic.

Beyond simulation, other applications of NDA may concern downscaling or disaggregation
problems, which requires a) replacing the corresponding higher-level simulation model with
the realizations provided by global or regional climate models, and b) identifying the marginal
and stochastic properties of the lower-level model, using, e.g., in-situ gauging stations, regional
information, and/or scaling laws.

Eventually, the proposed approach can be employed within broader Monte Carlo experiments,
to provide long synthetic input data to deterministic simulation models. Given that the type
and number of processes to simulate, as well as their temporal resolution, is dictated by the
deterministic model, a major computational challenge arises. In particular, the repetitive
sampling within NDA imposes a bottleneck, when applied to high-dimensional multivariate
problems and/or long-term simulations at fine time scales. Potential remediation to this
technical problem may be the use of parallel computing or the model implementation in low-
level programming languages.

Regarding the modelling framework per se, potential future research may focus on two
interesting aspects that have been revealed in the two case studies. The first involves the
reproduction of extremes within synthetic data, while the second is the validation of the model
behavior at intermediate time scales, on the basis of additional simulation studies, using
multiple configurations at several time scales.

As a closure, this Chapter, by building-upon, as well as by merging the new developments of
Chapter 4-6, into an integrated scheme, concludes the contributions of this Thesis to the
stochastic modelling and simulation of hydrometeorological processes. The developed models
and simulation schemes (Chapter 4-7) can overcome many of the limitations encountered in
other state-of-the-art methods (see the review of section 2.3 and Chapter 3), and provide the
means for a more accurate and realistic representation of hydrometeorological processes
(hence input uncertainty).

Interesting research topics for future research regard, a) the investigation of NDA performance,
in even lower (than hourly) temporal levels (e.g., disaggregation of hourly rainfall to 1-minute
series), b) the exploration of the effect of employing different adjusting procedures, and c) the
handling of the computational challenge (imposed by repetitive sampling) that arises in high-
dimensional multivariate problems (e.g., using parallel computing or implementation in low-
level programming languages).

As mentioned earlier, and often due to the typical size of historical data, which is not (neither
will ever be) sufficient to extract safe conclusions about the long-term performance of a system,
these time series can (and should) be used as input in a variety of risk-related water-system
studies to represent the input (hydrometeorological) uncertainty, and it is anticipated to
improve the quality of their outcomes, due to more accurate representation of the input
processes. However, as discussed in section 1.3, the use of long stochastic inputs (regardless
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the data generation model) in combination with simulation models and/or optimization
techniques unwillingly pose a barrier in the practical application in simulation-optimization
frameworks, since the required computational effort is increased by orders of magnitude. The
following two Chapters, aim to address this important issue by developoning suitable
methodologies and algorithms, that can address challenging optimization problems at a
fraction of time that is required by other state-of-the-art methods (e.g., evolutionary
algorithms).
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8

MULTI-OB]ECTIVE OPTIMIZATION ON A BUDGET: EXPLORING

SURROGATE MODELLING FOR ROBUST MULTI-RESERVOIR RULES
GENERATION UNDER HYDROLOGICAL UNCERTAINTY *

PREAMBLE

Next research steps (Chapter 8 and 9) regard the practical implementation of the new
developments in modelling and simulation of hydrometeorological processes (Chapter 4-7), in
uncertainty-aware water-system optimization problems (i.e., simulation-optimization
frameworks driven by stochastic inputs). This challenge is related to the excessive
computational budget imposed by both the use of long synthetic time series to represent the
input uncertainty, and the use of objective functions that entail time expensive simulation
models; which become the norm since the requirements for more detailed (hence expensive)
models are increasing. Particularly, this Chapter considers the problem of handling time
expensive multi-objective problems on a budget, under the prism of developing long term
operation rules for multi-reservoir systems. This is a complicated task due to the number of
decision variables, the non-linearity of system dynamics, and the computational effort
required, which imposes barriers to the exploration of the solution space. These challenges are
addressed by (a) employing a parsimonious multi-objective parameterization-simulation-
optimization (PSO) framework, which incorporates hydrological uncertainty through
stochastic simulation and allows the use of probabilistic objective functions and (b) by
investigating the potential of multi-objective surrogate-based optimization (MOSBO) to
significantly reduce the resulting computational effort. Three MOSBO algorithms are
compared against two multi-objective evolutionary algorithms. Results suggest that MOSBOs
are indeed able to provide robust, uncertainty-aware operation rules much faster, without
significant loss of neither the generality of evolutionary algorithms nor of the knowledge
embedded in domain-specific models.

This Chapter is structured as follows: section 8.1 introduces the problem, while section 8.2 and
8.3 present the overall methodology and the study area respectively. Next, section 8.4 and 8.5
regard the benchmarking and the experimental setup of the algorithms’ performance
respectively. Section 8.6 present the key results and findings, and finally section 8.7 concludes
the Chapter.

* Based on:

Tsoukalas, I., and C. Makropoulos (2015b), Multiobjective optimisation on a budget: Exploring surrogate
modelling for robust multi-reservoir rules generation under hydrological uncertainty, Environ. Model. Softw., 69,
396-413, doi:10.1016/j.envsoft.2014.09.023.
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8.1 INTRODUCTION

Water reservoirs and the associated hydrosystems often serve multiple purposes including,
inter alia, flood control, irrigation, water supply, restoration, navigation, recreation,
hydropower generation, etc. The operation of a reservoir system involves a complex decision
making process that strives to balance many variables and (often conflicting) objectives, aiming
mostly at the quantification (and if possible minimization) of risk and uncertainty [Oliveira
and Loucks, 1997]. The conflicting nature of the different objectives makes this decision process
a classic multiobjective optimization problem as demonstrated in Haimes, [1977], seeking to
derive optimal management strategies against various performance measures such as reliability
of supply, cost minimization and environmental protection. Optimizing this decision process
is complicated due to the existence of non-linear and interdependent parameters and processes,
[Vink and Schot, 2002].

A common way to address this is the coupling of simulation models and multiobjective
evolutionary optimization (MOEA) algorithms [Nicklow et al., 2010}, typically yielding a set of
efficient (Pareto-optimal) solutions. The solutions can then be used as a negotiation tool for
decision makers, through the explicit representation of the objectives’ tradeoft [ Makropoulos
and Butler, 2005] without having to embed a priori preferences in the decision process.
Extensive reviews of MOEA schemes and their applications in water resources are available in
the literature [e.g., Savic and Walters, 1997; Efstratiadis and Koutsoyiannis, 2010; Nicklow et
al.,2010; Reed et al., 2013]. The ubiquity of MOEA approaches is justified by the generic nature
and global search capabilities of these algorithms [ Coello Coello et al., 2007; Zhou et al., 2011],
but this choice results in a significant number of iterations needed to reach an adequate
approximation of the Pareto front [Brockhoff and Zitzler, 2009]. The number of iterations, the
large decision space, the complexity of the fitness landscape and the long simulation time
required by the physical models to evaluate each instance of the objective function are major
drawbacks when dealing with real-world applications, where computational time is necessarily
limited [Maier et al., 2014]. This is especially true in cases, such as hydrosystem optimization,
where performance (and hence optimal operation) is significantly affected by long-term
hydrological uncertainties, primarily hydrological variability, which can adequately be
addressed by using stochastic simulation (see Chapters 4-7, as well as [ Koutsoyiannis, 2005b]),
i.e., the generation and use of synthetic time series (typically 500-1000 years) whose statistical
properties are consistent with historical data, to drive the simulation-optimization process and
hence generate risk-based, robust operation rules. As discussed earlier in section 1.1 and 1.3,
driving the simulation-optimization process with very long time series affects the computation
burden of each and every evaluation of the objective function and drastically increases
computation burden.

The current Chapter, builds on a parameterization-simulation-optimization (PSO) framework
initially proposed by Koutsoyiannis and Economou [2003 ] to derive optimal reservoir operation
rules. Although the PSO approach has already been implemented in single objective problem
formulations [e.g., Nalbantis and Koutsoyiannis, 1997; Koutsoyiannis et al., 2002; Momtahen
and Dariane, 2007; Celeste and Billib, 2009], little work has been done up to date on using the
PSO with multiple objectives. Here we extend the capabilities of the PSO method towards
multi-objective optimization, while incorporating hydrological uncertainty (also advocated in
Maier et al. [2014]) into the optimizer using probabilistic objective functions, through
stochastic simulation to improve the robustness of the resulting rules. To address the issue of
computational practicability that ensues from the adopted stochastic simulation approach, we
investigate the use of surrogate-based optimization (SBO) techniques (see section 1.3, as well
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as Chapter 9), and specifically we explore the applicability of three multi-objective surrogate-
based optimization (MOSBO) algorithms, and compare them against the well-known and
extensively used algorithm NSGAII [Deb et al., 2002] as well as the more recently proposed
SMS-EMOA [Beume et al., 2007]. An extensive benchmarking exercise is then undertaken to
derive conclusions about the effectiveness and the efficiency of the MOSBO algorithms [Razavi
et al., 2012a] as well as the robustness of the overall methodology. The proposed methodology
is tested in the optimization of the multi-reservoir hydrosystem of Nestos in Northern Greece.

8.2 METHODOLOGY

8.2.1 Overall conceptual approach

This Chapter introduces a multi-objective extension of the PSO framework for the efficient (in
terms of both time and Pareto front generation) optimization of multiple reservoirs’ operation
maximizing two conflicting objectives related to hydropower generation. The main advantage
of the PSO [Koutsoyiannis and Economou, 2003] compared to other similar methods, based on
implicit stochastic optimization (ISO) and explicit stochastic optimization (ESO), is on the one
hand its parameter-parsimonious character and its ability to incorporate the hydrological
uncertainty and on the other hand, the simple operation rules that it provides, which are well
suited for real world operators [Celeste and Billib, 2009], thus bridging a gap between
theoretical developments and real world applications [Yel, 1985; Simonovic, 1992; Labadie,
2004; Celeste and Billib, 2009].

The methodological steps of our approach are presented in Figure 8.1 and summarized below:

1) Representation of the main hydrological components (precipitation, evapotranspiration,
inflow) through stochastic simulation, using stochastic simulation models that generate long
synthetic time series able to capture and reproduce the statistical properties of the historical
sample. The synthetic time series are used in step 3 to simulate the hydrosystem.

2) Parameterization of the management policy (operation rules) of the reservoirs system via a
small number of parameters 8,  (decision variables).

3) Simulation of the hydrosystem (in this case with WEAP21) using the stochastically generated
synthetic time series to drive the simulation and implementing the parameters that define
management policy.

4) Definition of appropriate objective function(s) that express the desired performance
metric(s). In this case, two objective functions related to hydro-energy characteristics have been
employed and used in the optimization process (step 5).

5) Optimization to derive the best management policies (in view of the two objective functions)
using 3 MOSBO and 2 MOEA algorithms (in Matlab and R environment).

6) Algorithms’ performance benchmarking using appropriate performance indicators and
methods.
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Figure 8.1 | Schematic representation of the conceptual approach.

The parameterization of the management policy (operation rules) of the reservoirs system (step
2) requires determining the appropriate decision variables that describe the hydrosystem’s
function. Typically, these variables express the release from the reservoirs and must be in a
simple enough form to be understood by the system operators. Following an Occam’s razor
approach, we assign for each hydropower reservoir i a single variable 8; referring to a constant
monthly hydropower production target (GWh). During the simulation this target 6; is
translated into a minimum required discharge flow that has to pass through the turbines to
produce the energy target 8;. The upper bound of variables 6; is set to the maximum theoretical
hydropower capacity of the turbines. The lower bound of variables 6; is zero, to account for a
null hydropower production target. A second variable, termed the reduction variable f3, is
applied uniformly to all reservoirs to simulate periods with low hydropower demands such as
the period October-April. In order to simulate this demand variability, the constant monthly
hydropower production targets 8; are multiplied by S for low hydropower demand periods.
The lower bound of § is zero, which when multiplied the constant hydropower target 8; results
in zero hydropower target for certain months. The upper bound is one, meaning that
hydropower target is constant and equal to ;. The purpose of £ is to reduce the hydropower
production targets during specific months (here October-April) and thus increase the
hydropower potential available during the rest of the year (here May-Sept) when the demand
is higher. Hence, for a hydrosystem consisting of n hydropower reservoirs, the total number of
decision variables equals to n + 1 (n values for the 8 parameter plus the uniformly applied
variable ). At every time-step, the energy target is translated to volume of water that passes
through the turbines to achieve the specified hydropower target. Since hydropower generation
is related to the current volume of the reservoir and the turbine efficiency, the release volume
varies every month. This parsimonious parameterization can be easily implemented at most
reservoir simulation models (here using WEAP21).

Two probabilistic performance metrics were introduced to shape the objective functions (step
4). The first is the maximization of the monthly guaranteed energy produced from the multi-
reservoir system for a given reliability (e.g., reliability a = 99%), for the whole simulation
period (i.e., Eq. (8.1)). This measure is also known as firm energy [Hamlet et al., 2002; Larson
and Larson, 2007; Efstratiadis et al., 2012]. The second metric is the maximization of the

Page | 161



MULTI-OBJECTIVE OPTIMIZATION UNDER UNCERTAINTY

monthly firm power for a certain period (i.e., Eq. (8.2)) (in our case the period of May-
September, where demands for hydropower are higher in Greece). The objective functions are
non-linear, non-continuous and non-differentiable due to the probabilistic approach. These
two performance metrics define two different operational policies. The first one ensures the
stability of energy production for a given reliability level. The second performance metric
describes a policy where the guaranteed energy production is maximized only in a period of
interest, such as the summer period. The overall probabilistic approach (probabilistic
constraints) used to calculate the objective functions accounts for the hydrological uncertainty
of the inflows to the reservoirs (which is the main uncertainty in such cases) and thus, we
argued, provides more robust, uncertainty-aware operation rules.

Objective 1: max{E¢}

s (8.1)

t:a=P(E >E) = —— = g%
Ss.t.:.a = t _ntot_ggo

where, E; = Z?zlEtl, E; is the hydropower energy time series for given 8; and f3, fort =
1,...,n°%, where n'" is the total number of time-steps for all months and all years in
simulation. While, i = 1, ..., h, h denotes the number of hydropower reservoirs. E€ denotes the
firm energy of the system for the whole year, and a the desired reliability (=99%), calculated
simply by dividing n* and n‘°t, where n® is the number of time-steps that exceed E; > E€ and

ntt is the total number of time-steps in Ej.
Objective 2: max{EP}
. (8.2)
s.t.ia = P(E] > EP) = —20 = 99%
where, EY = Y EF * E} is the hydropower energy time series for given 6; and f3, for t =

1, ..., nPL where nP" is the total number of time-steps only for high demand months (here
May-Sept) during the entire simulation, while i = 1, ..., h, where h denotes the number of
hydropower reservoirs. E? denotes the firm energy of the system for the high demand period
(here May-Sept), and a is the desired reliability (=99%), calculated simply by dividing n? and
nPtt, defined as the number of the time-steps that exceed Ef > EP and the total number of
time-steps in E! respectively. Note, that parameters 6; and f enter the equation indirectly,
through E; and E} .

8.2.2 Models and tools

For the simulation of the hydrosystem (in step 3) a widely used water management model, the
Water Evaluation and Planning System (WEAP21°) was used. To enable a two-way
communication between the simulation and optimization models (step 5) a coupling was
established through the COM-API* function of WEAP21 as discussed in Tsoukalas and
Makropoulos [2013, 2015a].

3 http://www.weap21.org

* Component Object Model Application Programming Interface
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For the stochastic simulation of key hydrological variables (in step 1) synthetic time series of
500 years were generated using the Castalia software |Efstratiadis et al., 2014b]°. Castalia is a
multivariate stochastic simulation tool developed for the study of monthly hydrological
variables such as rainfall, evapotranspiration and inflow. It generates synthetic time series on
the basis of historical data, that reproduce the statistical properties (mean value, standard
deviation, skewness, lag-1 autocorrelation and lag-o cross-correlation coefficients) of the
observed data sets. Furthermore, Castalia reproduces the long-term persistence of hydrological
processes, also known as Hurst-Kolmogorov dynamics [Koutsoyiannis, 2011b], in both annual
and inter-annual scale, as well as the periodicity in infra-annual scale and intermittent behavior
on daily scales. In this work, 500 years of monthly synthetic rainfall, evapotranspiration and
inflow time series were generated, based on historical time series available for the periods 1968-
1982 and 1991-1995. Unfortunately, longer historical time series that would result to more
representative statistics were not available for this hydrosystem. We note that the use of Castalia
in this Chapter is supported by the fact that the focus is in the investigation of surrogate
modelling techniques (i.e., MOSBO algorithms in particular) to handle computationally
expensive simulation-optimization problems. In an operational context, it could be preferable
to employ the stochastic modelling and simulation approach of Chapter 4-7, since it overcomes
many of limitations of the current synthetic data generation schemes.

Nonetheless, the synthetic datasets generated were used as inputs to WEAP21 to drive each
simulation. Although, the use of synthetic time series leads to more robust solutions that
incorporate hydrological uncertainty into the operational policy design it also results in much
longer simulation times and hence significantly increases computational effort. For instance,
for synthetic monthly time series of 500 years the model needs approximately 9o sec for a single
simulation run on a 3.0 GHz Intel Core i5 processor with 4 GB of RAM, running on Windows
8 Operating System. By contrast, a typical multiobjective evolutionary algorithm requires an
order of 10 0oo iterations to adequately approximate the Pareto front. Consequently, the whole
process would last 250 hours, which makes it unrealistic.

To address this issue, we replaced the typical multiobjective evolutionary algorithms with
MOSBO algorithms and their performance was assessed. Specifically, we used the following
surrogate-based (MOSBO) algorithms (see section 8.2.4): ParEGO [Knowles, 2005], SUMO
[Gorissen et al., 2010] and SMS-EGO [Ponweiser et al., 2008]. Their performance has been
evaluated for various configurations related to the maximum number of function evaluations
allowed. That is because the computational time needed by the MOSBO to construct and search
(optimize) the metamodel is minimal. e.g., the total computational time needed to construct a
metamodel of 400 samples and then search (optimize) it is less than 2 sec. This effort compared
to 9o sec required by the simulation model (WEAP21) is negligible and thus can be ignored.
The performance of the 3 MOSBOs has been benchmarked against the well-known NSGAII
algorithm [Deb et al., 2002] and the recently proposed SMS-EMOA algorithm [Beume et al.,
2007/, using performance indicators and methods proposed by Razavi et al. [2012a],
Asadzadeh and Tolson [2013] and Matott et al. [2012] (see section 8.4).

8.2.3 Fundamentals of SBO algorithms

The basic concept of SBO methods is to replace most of the expensive simulations with much
less expensive surrogate models within the optimization cycle. Examples can be found in

> See also the R language implementation, i.e., CastaliaR package [ Tsoukalas et al., 2018c].
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literature [e.g., Queipo et al., 2005; Yan and Minsker, 2006, 2011; Forrester et al., 2008; Knowles
and Nakayama, 2008; Kleijnen, 2009; Gorissen et al., 2010; Keating et al., 2010; Santana-
Quintero et al., 2010; Jin, 2011]. In SBO, most evaluations are performed with the surrogate
model, while the expensive model is used periodically within the optimization process to
improve the accuracy of the results. The nature of the true function is not known a priori.
Therefore, the selection of the most appropriate surrogate model is a challenging and critical
task for the optimization process [Santana-Quintero et al., 2010]. The basic stages of SBO are
described in Figure 8.2 below and briefly discussed in the following paragraphs.

Sampling plan Evaluate with < Search infill criterion

(initial designs) simulation model and add new sample
Construct No T
fupdate Optimize/ |

search = v
ination es
surrogate ermina

Surrogate model(s) model condition P End

Figure 8.2 | Flowchart of the surrogate-based optimization process.

8.2.3.1 Initial sampling plan

SBO attempts to develop a (surrogate/inexpensive) model approximator able to capture the
response of the expensive model for a limited number of optimally selected data points. The
tirst step of the SBO procedure is therefore to select these points, using a sampling plan (also
termed initial design) and evaluate them with the expensive model. The sampling plan is
usually implemented with Design of Experiments (DoE) methods, which aim to maximize the
amount of information gained from a limited number of sample points. Typically, the samples
need to spread across the design space in order to capture global trends. DoE methods include
Latin Hypercube Sampling (LHS), Orthogonal Array Design (OAD) and Uniform Design
(UD) [Giunta et al., 2003].

8.2.3.2 Surrogate models

With the initial points selected, the next step is to construct the appropriate surrogate model to
approximate the expensive simulator. Typical surrogate models include polynomials [Sudret,
2008; Crestaux et al., 2009], Radial Basis Functions (RBFs) [Mugunthan et al., 2005; Regis and
Shoemaker, 2007a; Shoemaker et al., 2007], Artificial Neural Networks (ANNs), Support Vector
Machines [SVMs - Dibike et al., 2001; Zhanget al., 2009] and Kriging [Sacks et al., 1989; Santner
et al., 2003]. ANN, in particular, have been used extensively in water resources research [e.g.,
Broad et al., 2005; May et al., 2008; Behzadian et al., 2009; Fu et al., 2010, 2012]. Khu et al.
[2007], examined various applications of evolutionary computation based surrogate models to
augment or replace the conventional use of numerical simulation and optimization within the
context of hydro-informatics. Key issues of surrogate models for multiobjective optimization
are presented and discussed in Razavi et al. [2012b]. They also reported that surrogate models
are not suitable for optimization problems with many decision variables, mainly due to the
large search space and the number of samples required to adequately sample the objective space
[Razavi et al., 2012b]. Techniques that are able to handle high dimension problems are
presented in Shan and Wang [2010].
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In our work, this issue was addressed using the PSO parsimonious approach to keep the
number of decision variables fairly small. In the work presented here Kriging is used as the
surrogate model of choice. Kriging is based on the idea that a value of a random field at an
unobserved location can be statistically interpolated using observations at nearby locations.
The method was originally proposed by Krige [1951] and applied by Sacks et al. [1989] to
approximate computer experiments. Kriging is a widespread surrogate model capable of
approximating deterministic noise-free data, in our case deterministic computer experiments
(simulations), and has adequately performed in challenging tasks [Jones et al., 1998]. The
mathematical background of Kriging is presented in [Santner et al., 2003; Forrester et al., 2008].
Kriging consists of two terms:

Y(x) = f(x) + Z(x) (8.3)

where f(x) is a regression function and Z(x) is a Gaussian process with a mean of zero and
nonzero covariance. There exists a variety of Kriging techniques, including simple Kriging,
ordinary Kriging, universal Kriging, etc. The difference of the various methods is the form of
the regression function. Jones et al. [1998] suggested the use of ordinary Kriging whenever there
is no rationalization to indicate a suitable trend function, and this suggestion is adopted in our
work. This implies that f(x) is not a function, but a constant term.

D,

Given n samples of x(® = [ .,xt(;)] € R, each with dimension d and a response y =

[y(l), - y(”)]T the following pairs exist, (x(i), y(i)) for i = 1, ...,n. The covariance of Z(x) is
given by, COV[Z(x(i)), Z(x(j))] = GZW(x(i), x(j)) where, ¥ (+,") is a correlation function. The
choice of correlation function is vital to create an accurate Kriging model regardless of the
Kriging method. A commonly used correlation class, known as generalized exponential
correlation function, is defined by:

d

o : NP
P (x®,xN) = exp (—Z 9h|x,(ll) —x h), 6, = 0,p, € [1,2] (8.4)
h=1

where @ = [0,, ...,0;] and p = [p,, ..., pa] are the hyperparameters of correlation function. It
is noted that this type of correlation class depends only on the Euclidian distance, with the
correlation being inversely proportional to the distance. These parameters guide the rate and
the shape of this relationship: Particularly, parameters p determine the initial drop in
correlation as distance increases. When p is equal to 2 we have the popular Gaussian
correlation function, which considers that the data follow a continuous and smooth surface.
Lower values of p are more suitable for rough response surfaces as they permit a more
significant variance in function values for closer points (Figure 8.3b). Figure 8.3a depicts the
influence of parameters @ (or width), showing how far a sample point's impact extends. These
parameters are convenient as they describe the amount of variation in each dimension h. High
values of 8, represent a non-linear behavior in dimension h, with similar points having
significantly diverse responses. On the other hand low values of 8 indicate a more linear
behavior in dimension h.
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(a) —6=01 —6=1.0 —6=50 —8=10.0 (b} ——p=05 —p=1.0 —p=1.5 —p=2.0
- 1.0

exp(-|x-x|P)
exp(-|x'-x[°)
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25 45 0.5 05 15 25 25 15 05 05 15 25
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Figure 8.3 | Behavior of generalized exponential correlation function (univariate case; for simplicity
the index 7 is ommited) with, (a) varying 6 and fixed p = 2 and (b) with varying p and fixed 6 = 1.

This study focuses on the use of Gauss correlation function (i.e., p = 2 in Eq. (8.4)). The
correlation function ¥ (+,") is parameterized by a set of hyperparameters 8 = [0, .., 6], whose
identification is achieved using a Maximum Likelihood Estimation (MLE) method, in which
the negative concentrated log-likelihood needs to be minimized [Forrester et al., 2008;
Couckuyt et al., 2012].

8.2.3.3 Infill criteria

Once the surrogate model(s) has been constructed, the next design samples need to be
evaluated. Infill criteria (also known as sample selection techniques or update strategies) aim
to extract as much information as possible from the (cheap) surrogate and thus determine the
next sample site (locating potential points) to be evaluated by the expensive simulator. These
samples can be used to improve the accuracy and validate the performance of the surrogate.
The iterative process of using infill criteria is known as adaptive sampling or active learning.
There is a variety of strategies to design this process, including inter alia random, density, error
based, and balanced exploration-exploitation strategies [e.g., Sasena et al., 2002; Forrester and
Keane, 2009; Wagner et al., 2010; Zaefferer et al., 2013]. In this work we focus on balanced
exploration-exploitation strategies, and some of them are described below.

8.2.3.3.1 Infill strategies for single objective optimization

Two popular criteria which ensure a balance between exploitation and exploration are
Probability of Improvement (Pol) and Expected Improvement (EI). Both of them became
popular by the work of Jones et al. [1998] where they were implemented in a single objective
SBO algorithm (EGO). Pol denotes the probability of a sample x to lead to an improvement
over the current minimum observed value y,,;, (calculated with the expensive function). By
considering y(x), the prediction of Kriging, as a realization of a Gaussian random variable with
variance §%(x), the variance of kriging prediction, the probability of improvement I = y,;, —
¥(x) upon yp,in is calculated as:

P = exp (~(1 = 9(0)") /28*(x) i (8.5)

Therefore P[I(x)] is the cumulative density function of x and can be calculated using the error
function as:
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PlI(x)] = ® (ym%x)y(x)) — %I1 +erf (%)l (8.6)

The EI extends the definition of Pol and calculates the amount of improvement expected for a
given x and not only the Pol. The calculation of EI is shown below, where ®(+), ¢(-)and §(x)
denote the Gaussian cumulative distribution function and probability density function, as well
as Kriging error, respectively:

E[1(x)]
Ymin — y(x)) + §(X)§D (ymin - y(x)

o o ),if§(x) >0 (8.7)

0,ifS(x) =0

Gmin = 9D

The ParEGO algorithm, used in this work, uses this single objective EI of an augmented
Tchebycheff aggregation. Further details about this approach are given in a next section.

8.2.3.3.2 Infill strategies for multi-objective optimization

When dealing with multi-objective optimization problems a common practice is to aggregate
the objective functions and use a single objective version of Pol or EI [Knowles, 2005]. Multi-
objective versions of Pol and EI based on Euclidian distance have also been proposed [Keare,
2006; Forrester and Keane, 2009]. Emmerich et al. [2011] recently proposed a hypervolume-
based EI criterion.

In our work we applied the strategy proposed by Couckuyt et al. [2013] implemented in the
SUMO toolbox [Gorissen et al., 2010] which is based on an efficient method of calculation of
hypervolume-based Pol and EI criteria. Here we adopt the hypervolume-based Pol criterion as
described by [Couckuyt et al., 2013].

In order to define the concept of the hypervolume-based Pol criterion the multiobjective
version of Pol needs to be defined. For notation reasons the output of each of m Kriging models
(and thus objectives) can viewed as independent Gaussian variables, ¥;(x) where j = 1, ...,m.
Hence:

V) = N (1), 8 @) forj = 1,...,m (8.8)

Considering that given n points X = [x,, ..., x,]T exist in d dimensions, a Pareto set P can be
derived, consisting of v <= n non-dominated solutions.

P=[f(xD), .., f(x))] (8.9)

where f(x7) is a vector that contains the objective function values for the corresponding input
X;, i = 1,...,v. Generally, the Probability of Improvement over the Pareto set that a point x
can yield is calculated as [Couckuyt et al., 2013]:

m

) [ Jeiylay (8.10)

j=1

P = |
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The basic concept of multiobjective Pol is to evaluate the probability of point x to yield an
objective function value located in a region A. Thus, A can be the non-dominated area of the
objective space. In order to evaluate the multiobjective Pol, one has to decompose the area A
in g rectangular cells; this yields a finite summation of contributing terms (Figure 8.4b). Thus
P[I(x)] is transformed to:

q m
PG = ) ] [(oluf] - 0[4]) (8.11)

k=1 j

where [I¥, u*] are the lower and upper bounds of each q cells. There are numerous approaches
to calculate the hypervolume (i.e. the space within the aforementioned bounds) [e.g., Fleischer,
2003; Beume, 2009; Beume et al., 2009; Bringmann and Friedrich, 2009; Bader et al., 2010]. The
SUMO toolbox implements the Walking Fish Group (WFG) algorithm [While et al., 2012]
which was originally introduced by Fleischer [2003] which is deemed faster for practical
optimization problems.

So far we have defined the concept of multiobjective Pol, yet in order to derive a hypervolume-
based Pol criterion the hypervolume-based improvement function needs to be defined. Here
we adopt the Hypervolume metric (HV) [Zitzler and Thiele, 1999; Zitzler et al., 2003]. The
hypervolume HV(P) of a given Pareto set P essentially measures how much volume the non-
dominated set P dominates relative to a reference point r (termed anti-ideal). The reference
point r should be dominated by every point of the Pareto set. The HV value is proportional to
the quality of the Pareto set P. Another essential and interesting notion is hypervolume
contribution (HV.on), which measures the contribution of a point p to the overall Pareto set P.
Therefore, HV . can be used to define an improvement function. It should be noted that HV .o,
does not require normalization of the objective space [Knowles, 2002]. Figure 8.4 depicts the
concepts of HV and HV..,, as well as the integration area A of the hypervolume-based Pol
which is decomposed into smaller cells by a binary partitioning procedure [Couckuyt et al.,
2013].

HPU — H(P), if p is not dominated by P
0, otherwise
— Nén-do‘minatéd reglion‘ I . - Nén—do‘minatéd reglior;J I ;r 1
Dominated region r BB Exclusive hypervolum

'1

Y2
Y2

Figure 8.4 | Graphical representation of hypervolume and hypervolume contribution. a) The light grey
depicts the hypervolume of the Pareto set (non-dominated region) b) The dark grey depicts the
exclusive (contribution) hypervolume of a point p (adopted from: [ Couckuyt et al., 2013]).
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Having defined an improvement function we are able to specify a hypervolume-based Pol
criterion which is derived by multiplying I(g, P) and P[I(x)]. It should be noted that the
integration area A of P[I(x)] corresponds to the non-dominated region, and thus
the Pyy [I(x)] can be calculated in closed-form. Area A can be derived from the same set of
cells used to evaluate P[I(x)] [Couckuyt et al., 2013] (see Figure 8.4b). These observations are
formulated in Eq. (8.13) and (8.14), where u = [,ul (X)), oes (x)] is a vector that contains the
surrogate model’s (Kriging) mean predictions:

q
Pyy[1(x)] = (Z +Vol(y, 1%, u")) P[I(x)] (8.13)

k=1

where,

m
Vol(y, L, u) = H(u]‘_maxal'ﬂj(x)))' oy >y forf =m0

0, otherwise

8.2.3.4 Model assessment and validation

In order to assess the quality of the surrogate model, and hence its prediction capabilities, an
error estimation method needs to be specified. The most common method is cross-validation
(CV), according to which training data are divided into g equally sized subsets. An iterative
procedure of g iterations then begins. In each iteration one subset is removed and the model is
fitted to the remaining data. For every iteration the excluded subset has the role of the
validation set and hence it is used to calculate a selected error measure. The general model error
is computed using the g error measures obtained (e.g., is the average error of ¢ models). The
parameters that yield the minimum general model error are then selected. In CV, most if not
all of the available data are used. If the mean square error (MSE) is selected as the error measure
the following equation is used:

q
1
errey’° = EZ(}G —¥1)? (8.15)
i=1

where, y; is the real function values and J; is the predicted value of sample x* of the surrogate
model constructed without the use of (xi, yi). Cross-validation is a reliable method particularly
when the use of a separate validation set is computationally expensive.

8.2.4 The deployed MOSBO algorithms
The ParEGO algorithm

The ParEGO algorithm was introduced by Knowles [2005] and is an global optimization
algorithm for expensive multi-objective optimization problems. ParEGO is essentially a multi-
objective conversion of EGO [Jones ef al., 1998], making use of scalarizing weight vectors at
each step. The algorithm is based on the Design and Analysis of Computer Experiments
(DACE) model [Sacks et al., 1989]. ParEGO uses DACE (i.e., Kriging) to fit previously
evaluated points and uses the fitted model to locate interesting (i.e. potentially better) new
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points to visit subsequently. One of the advantages of DACE, which is used in both EGO and
ParEGO, is that a confidence interval of prediction is available and used to guide the search.
The iterative process of ParEGO is shown in the flow chart of Figure 8.5. An initial set of
solutions is generated using the Latin Hypercube design [Press et al., 1992] and evaluated with
the expensive simulation function (in our case WEAP21). Then the objectives are aggregated
using Tchebycheff function (see below) and the initial DACE model is generated by fitting these
solutions. The algorithm then tries to predict a trial solution which is most likely to improve
the best fit found so far. An internal genetic algorithm (GA) is used to find the solution that
maximizes Expected Improvement (EI) and to update the solution set of points evaluated by
the expensive function. The DACE model is then updated and the next iteration begins.

Initial population
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evaluation with
simulation model

(WEAP21) _ _ _InternalGA
. N |
. Initial GA
.| Aggregation population
(Tchebycheff)

Fit surrogate
model (Kriging)

|
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(Maximize EI)

Stopping
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Figure 8.5 | ParEGO algorithm flowchart.

In order to solve multi-objective problems, the algorithm updates the weighting between the
objectives using the non-linear Tchebycheff function (i.e., Eq. (8.16)) as suggested by Knowles
[2005] which combines m objectives to a single objective, thus gradually building up the whole
Pareto front. The Tchebycheff function is described below:

flx) = max;jL, (/1ij- (x)) + ’DZ Aif; (%) (8.16)
j=1

where f;(x) and A; (j = 1,2,..,m) are the j” normalized objective values with respect to the
known (or estimated) limits of the cost space, so that each cost function and its weight lie in
the range [0,1], and p is typically set equal to 0.05 [Knowles, 2005]. In order to gradually build
the whole Pareto front a weight vector A is drawn uniformly at random from the set of evenly
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distributed vectors defined by, A=

{/1 = (A Ay, A)| BT 4y = 1V, 4 € 0,2 1}} with |4 = (° 7 f; 1), so the choice

of s determines the total number of the weight vectors [Knowles, 2005].
The SUrrogate MOdeling Toolbox

The SUrrogate MOdeling (SUMO) Toolbox® [ Gorissen et al., 2010] is capable of building global
surrogate models of a given data source (data set, external code, script). The toolbox supports
avariety of DoE techniques (Latin Hypercube, etc.), surrogate model types (e.g. Kriging, SVMs,
RBF, ANN, etc.) and also includes several optimization algorithms (particle swarm
optimization, simulated annealing, genetic algorithm, etc.) to optimize surrogate model
parameters (hyperparameters), such as the parameters of the Gauss correlation function.
Moreover, it includes model selection (cross validation, leave-out set, etc.) and sample (infill
criteria) selection methods (including random, error based, density based, expected
improvement and hypervolume Pol, etc.). Each component of SUMO is configured through
an XML file. The basic workflow of SUMO used in this work is as follows: 1) initial sampling
with DoE (Latin Hypercube design) and evaluation with expensive function; 2) building of
models for each objective (with ordinary Kriging in our case); 3) determination of the next
design sample using appropriate infill criteria (in our case the hypervolume-based Pol criterion
has been chosen as described in section 8.2.3.3.2); 4) evaluating of the design sample and
updating the non-dominated set of points, 5) iteration between steps 2-4 until the stopping
criteria are satisfied (in our case when a maximum number of function evaluations is reached).

The SMS-EGO algorithm

SMS-EGO is a surrogate based multiobjective algorithm originally proposed by [Ponweiser et
al., 2008]. The key idea of the algorithm is to utilize a hypervolume-based criterion termed
hypervolume contribution HV.n. In order to evaluate potential solutions, the algorithm uses
the lower conditional bound (LCB) criterion as suggested by [Emmerich et al., 2006]:

Yot (%) = ¥(x) — as(x) (8.17)

where, y(x), §(x) and a are the Kriging prediction, error and a weight factor respectively. The
value of a can be derived by a user defined confidence probability given by P, =
(1 - 2<D(a))m as suggested by Emmerich et al. [2006] and Ponweiser et al. [2008].
Furthermore, SMS-EGO applies additive e-dominance [Zitzler et al., 2003] in order to ensure
good distribution of the Pareto set. Therefore, if a potential point y;,,; is dominated or e-
dominated, a penalty value p is assigned. If it is non-dominated, the hypervolume contribution
will be calculated and the point with the higher HV.., value will be chosen for evaluation with
the expensive function (simulator).

m

_ 5 . —p® if o@D < §
p=z 1+1:1[(1+(yp°t" %) )) B = Fpor (8.18)

NG) .
yep 0, otherwise

¢ http://www.sumowiki.intec.ugent.be
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The use of LCB allows the algorithm to explore unvisited areas (high variance) without
requiring integration over the objective space as opposed to other strategies [Couckuyt et al.,
2012, 2013].

8.3 THE STUDY AREA: THE HYDRO-SYSTEM OF NESTOS, GREECE

The Nestos basin, with a total area of 6,219 km?, is a trans-boundary basin which extends
between Bulgaria (60% share) and Greece [Paraskevopoulos — Pangaea, 1994|. Nestos is the
second largest river in Thrace River Basin District and one the major rivers in Greece (Figure
8.7). It flows from Mount Rila in Bulgaria (a region with the highest altitude of the Balkans,
about 2.925 m) and has a total length of 234 km of which 130 are in Greek territory. Nestos
flows into Greece

Figure 8.6

from the plateau of Nevrokopi of Drama. The river forms a natural boundary between Bulgaria
and Greece for a few kilometers. The river flows into the Sea of Thrace, forming a large delta
area about 50 km®. It is worth mentioning that the Nestos estuary is an area protected by the
Ramsar Convention and is part of the NATURA 2000 network.
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Figure 8.7 | Geographical representation of the river basin Mesta / Nestos [Skoulikaris et al., 2008].

The first dam constructed in the region was Toxotes (1960-1966). It is an irrigation dam with
a length of 280 meters located in the neck of the estuary and diverts the quantities of water to
the east (city of Xanthi) and western bank (city of Kavala) of the main stream of the river. The
tirst feasibility study of the Toxotes dam was undertaken in 1954 [YDE, 1954]. Later on, during
1971-1972 a feasibility study was undertaken for the construction of three more upstream
dams. Construction began ten years later (mid-1980’s) based on an interim agreement with
Bulgaria on minimum incoming water quantities in Greece. In 1995 an agreement was signed
with Bulgaria to allow at least 29% of the total river flow to reach Greece. The initial plan of the
teasibility study was to build 3 hydroelectric power stations (serially) with the first two of them
reversible (pump-storage). These stations are the Thysavros (381 MW), the Platanovryssi (116
MW) and the Temenos station (19 MW). These projects are multi-purpose, providing water
for irrigation and potable water to small towns and industrial areas, and for energy production.
The hydroelectric plant of the Thysavros reservoir is at the head of the system and provides
scaling, while controlling the annual runoff of the river. However, the overall project has not
been completed yet due to lack of funds: two reservoirs have been constructed so far (Thysavros
and Platanovryssi). The third dam, Temenos, remains unconstructed [Skoulikaris et al., 2008]
but privatization policies have recently revived interest in its completion. In our study we
include Temenos and explore the performance of the complete hydrosystem.
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The hydrosystem was modeled (Figure 8.8 using WEAP21. The calibration of the hydrosystem
was successfully undertaken during a previous study [Tsoukalas and Makropoulos, 2013,
2015a] yielding a Nash-Sutcliffe coefficient equal to 0.87. WEAP21 doesn’t have a built-in
module to simulate pump-storage processes; As this is an important functionality for the
Nestos hydrosystem, pump storage was simulated using dummy demand nodes (D1 and D2)
with the appropriate connectivity (Figure 8.8, inside the circle). In order to define the
maximum monthly turbine/pump discharge of the reservoirs it was assumed that the
hydroelectric plants operate 18 hours a day as turbines (energy production) and 6 hours as
pumps (consumption). Parameters in D1 and D2 that control the volume of water used in the
pump-storage process were assumed to equal their maximum discharge capacity. The reason
behind that is the fact that the pump-storage contributes significantly to the produced
hydropower energy and the (monthly) simulation time-step is not able to depict clearly the
variations in the storage volume of the reservoirs due to pump-storage. Irrigation water
demand is significant downstream the Toxotes reservoir (Table 8-1) and a constant
environmental flow requirement is set to 6 m?*/s by legislation. The demand priorities of
environmental flow, irrigation and hydropower production were set to 1, 2 and 3, respectively.

WEAP21 uses a linear programming solver to allocate the available water resources across the
hydrosystem. The objective of the LP solver is to maximize satisfaction of demands, subject to
demand priorities, mass balances and other constraints. This routine ensures a physically-
consistent description of the hydrosystem and the satisfaction of all constraints.

Table 8-1 | Present and future irrigation demand below Toxotes reservoir.

Month/Demand (m?*/s) Apr  May Jun Jul Aug Sept
Delta 11.5 15.7 18.5 20.9 20.0 13.0
Xanthi (future) 5.7 7.8 9.2 10.4 10.0 6.5

The parametric rule discussed earlier tries to identify optimal 6; and [ (where i is the number
of hydroelectric reservoirs). To implement this parameterization within WEAP21 the build-in
model parameter “Energy Demand” that can be specified at each reservoir was used. Therefore,
in this case study we had four (4) decision variables. More specifically for low energy demand
months (October-April), “Energy Demand” was set to 8; multiplied by the reduction coefficient
p and for remaining year (May-Sept) it was set to 8; without any reduction coefficient applied.
For example, to implement 0, = 40 and f§ = 0.5 for Reservoir 1, the reservoir’s “Energy Demand”
parameter was set to 20 GWh for October-April and to 40 GWh for May-Sept. This yields a
workable and simple operation rule, provided of course that 8; and f are selected after an
optimization process accounting for the hydrological variability of inflows over the longer run.
It should be noted that the current operation of the reservoirs does not follow specific rules and
is based mostly on ad hoc expert judgment. Hence, unfortunately, no meaningful comparison
of current practice versus optimization results can take place.
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Platanovryssi C.

Papades C. Mpousda C.
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Figure 8.8 | Hydrosystem modelled in WEAP21 and detail (inside the circle) of simulation of pump-
storage. Symbol (@) represents the catchments, (®) represents the demand nodes, (&) represents in-
stream flow requirements, (—) represents the river, (®) represents river nodes or junctions and (A)
represents the reservoirs.

8.4 BENCHMARKING THE ALGORITHMS’ PERFORMANCE

Contrary to single-objective optimization, comparing multi-objective optimization algorithms
is more complicated due to the fact that the outcome is an approximation of the Pareto front
consisting of many different solutions. A possible way to address this problem is to condense
performance into scalar metrics — also known as performance indicators. A comprehensive
review of performance indicators was recently presented by Zitzler et al. [2008]. In earlier work,
Zitzler et al. [2003] argue that some of the most typical features that performance indicators
have to assess are: a) the precision of the solutions in the set, i.e. how well they approximate the
ideal Pareto front; b) the number of solutions contained in the final Pareto-optimal set and c)
the spread and distribution of the solutions. Following this rationale, we chose two indicators
to compare the optimization algorithms in this work: the hypervolume indicator and the unary
e-indicator. Both of them are briefly described in the following paragraphs.

Furthermore, in order to accurately benchmark the performance of MOSBO and MOEA, some
basic concepts of the methodology proposed by Razavi et al. [2012a], Asadzadeh and Tolson
[2013] and Matott et al. [2012] were adopted: Due to the stochastic nature of MOSBO and
MOEA, multiple independent runs of each algorithm are utilized. The performance indicators
are then calculated for each run. For each performance indicator the empirical cumulative
distribution function (CDF) is calculated to depict the probability of obtaining an equivalent
or better solution. The concept of stochastic dominance [Levy, 1992] is then utilized.
Specifically, the first degree of stochastic dominance (SD) is used to compare the CDFs of the
algorithms [Matott et al., 2012; Razavi et al., 2012a; Asadzadeh and Tolson, 2013]. To explain
this, consider the comparison of two algorithms A and B, with CDFs ®, and @5 based on a
performance metric m, such that smaller values of m are preferred. SD of A over B applies only

if ® (m)2®,(m) for all m. The SD does not apply when the CDFs are crossed. In order to
statistically assess the differences between the CDFs, the non-parametric Mann-Whitney U
test (MWU) is used. The null hypothesis of the MWU test is that data in ®, and @ are samples
from continuous distributions with equal medians. The confidence level of the MWU test was
set to 90%. Finally, to visualize results from multiple runs, the empirical attainment function
(EAF) proposed by da Fonseca et al. [2001] is employed which describes the probabilistic
distribution of the outcomes obtained by a MOOA. The functionality and the properties of the
EAF are also briefly described next.
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8.4.1 Hypervolume indicator

The hypervolume indicator (HV) was first proposed by Zitzler and Thiele [1999], who called it
S-metric. The HV essentially measures how much volume a non-dominated set P dominates
relative to a reference point r (anti-ideal). The reference point r should be dominated by every
point of the Pareto set. This indicator has become popular due to its ability to depict the
accuracy and the spread of the approximation set. The choice of the reference point r is crucial
due to the fact that the contribution of extreme points essentially depends on it [Knowles and
Corne, 2003].

In this work we consider the normalized hypervolume ratio indicator (NHVR) which is the HV
in the normalized objective space [0,1], divided by the HV of the true (optimal or reference)
Pareto front. In our work the true Pareto front was not available and thus a reference (ideal)
Pareto front was created compiling data from all optimization runs. The reference point
selected is the maximum of the j" objective shifted by a = 10%. In other words, for m objectives,
we defined a vector f=[f,f;,..., fm] with f; = max; + a(maxj - minj), je{1,..,m},
where max; and min;represent the maximum and minimum of the j** objective respectively.

8.4.2 Unary e-indicator (epsilon indicator)

This indicator (Ie) was first proposed by Zitzler et al. [2003], aiming to identify the minimum
distance between a given approximation of the Pareto set and the true or a benchmark Pareto
front. In this case the objectives are also normalized in [0,1] space before calculating the
indicator. Lower values of the Ieindicate that the approximation set is closer to the reference
front (our case it is the same as in NHVR). A detailed description of Ie is also included in
[Fonseca et al., 2005].

8.4.3 Empirical attainment function

The Empirical Attainment Function (EAF) was originally proposed by da Fonseca et al. [2001].
Later on, Zitzler et al. [2008] investigated in depth the properties of the EAF, while Fonseca et
al.[2011] formalized the problem of its computation and proposed efficient algorithms for two
and three dimensional computation. The key concept of the EAF is to calculate the probability
that an algorithm will dominate an arbitrary point in the objective space at one run. Because of
the stochastic nature of evolutionary algorithms there is no guarantee that the algorithm will
achieve the same Pareto front at each run. A key advantage of the EAF is that the whole Pareto
can be observed, therefore strong and weak areas of the front can be easily identified. Using
color gradients, the EAF depicts the relative number of times that each region of the objective
space is dominated. In our work we used an R package tool” [Lopez-Ibdnez et al., 2010] which
also provides the ability to compare two algorithms in a single plot using the differential
empirical attainment function (Diff-EAF), which was particularly useful for our purposes. Dift-
EAF expresses the probability that a point in the solution space is dominated by only one of the
compared algorithms. Therefore, Diff-EAF depicts the difference of two EAFs in a single graph.
Thus, one can visually distinguish which algorithm performs better in certain regions of the
objective space.

7 available from http://iridia.ulb.ac.be/~manuel/eaftools
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8.5 EXPERIMENTAL SETUP

In order to evaluate and compare the performance of ParEGO, SMS-EGO and SUMO, each
algorithm was run multiple times. The configuration of the ParEGO, SMS-EGO and SUMO
parameters was based on Knowles [2005], Ponweiser et al. [2008] and Couckuyt et al. [2013]
respectively, and it was attempted to keep them as similar as possible for comparison purposes.
Experimental setup similarities include the initial population sample (set to 54), the DoE
method (Latin hypercube), and finally the surrogate models (ordinary Kriging). The
hyperparameters of the models were optimized in all cases using GAs. The main difference
between the algorithms regards the infill criteria strategy. ParEGO uses the Tchebycheff
function, aggregates the objectives into a single objective, and then uses the EI criterion. SMS-
EGO uses the hypervolume contribution in combination with LCB and a penalty function for
dominated solutions. SUMO uses the hypervolume-based Pol criterion to locate promising
samples. All MOSBO algorithms were tested with Gauss correlation functions for the Kriging
models, and for 200 and 400 function evaluations (FE).

The NSGAII and SMS-EMOA were used as benchmark algorithms. For that purpose, 10
independent optimization runs were performed for both algorithms for 200, 400 and 1 ooo FE.
An additional 5 independent optimization runs were performed for 2 ooo FE and another 2 for
5 0oo FE in order to evaluate the performance of MOEAs for larger numbers of FE (in these
last cases 10 runs were impractical due to the excessive computational time required). The
parameter settings used for NSGAII are similar to those proposed by Deb’s KANGAL web page.
The population size was set to 50 and the maximum generation number was set accordingly to
the maximum FE allowed. The same setup was used for SMS-EMOA. A summary of the
optimization runs and configurations applied in this work is presented in Table 8-2.

Table 8-2 | Summary of optimization runs and configurations.

Algorithm C;)rrelgtlon Initial population size Function Evaluations (Optimization runs)
unction

ParEGO Gauss 54 200(10), 400(10)

SMS-EGO Gauss 54 200(10), 400(10

SUMO Gauss 54 200(10), 400(10)

NSGAII - 50 200(10), 400(10),1000(10), 2000(5), 5 000(2)

SMS-EMOA - 50 200(10), 400(10),1000(10), 2000(5), 5 000(2)

8.6 RESULTS AND DISCUSSION

8.6.1 Comparison and benchmarking results

The average performance of the applied MOSBO and MOEA algorithms in our case based on
the selected performance indicators is presented in Figure 8.9 for each investigated
configuration (computational budget). This figure depicts the superiority of MOSBO
algorithms over MOEAs in few FE (200, 400). In both cases, all MOSBOs manage to attain
larger values of NHVR compared to MOEAs, and simultaneously achieve lower values of Ie. It
seems that beyond the 400 FE the performance of the MOEAs improves substantially and
finally reaches the MOSBOs’ performance (at around 1 ooo to 2 ooo FE). Further FE (2 ooo-
5 000) have the potential to lead to MOEAs to outperform MOSBOs. This is further discussed
in a following paragraph where MOSBO algorithms with 200 and 400 FE are compared with
MOEAs with larger computational budget.
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Figure 8.9 | Average performance of algorithms for various computational budgets.

Furthermore, Figure 8.10 presents the empirical CDFs of all MOSBOs and MOEAs for 200
and 400 FE, as well as the CDFs of MOEAs for 1 ooo FE. It is observed that for 200 and 400 FE
all MOSBOs stochastically dominate MOEAs in both NHVR and Ie.
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Figure 8.10 | Empirical CDF of all MOSBO and MOEA for 200 and 400 function evaluations; also
the CDFs of MOEA for 1000 function evaluation are depicted.

Comparison between equal budgets

Table 8-3 summarizes the results of all algorithms for 200 and 400 FE and presents some key
statistics. In Table 8-4 the algorithms are ranked according to their performance, with regards
to the NHVR and Ie. As anticipate the top three ranks are occupied by the MOSBO algorithms.
The CDFs of the MOSBOs intersect, hence stochastic dominance (SD) does not apply. In order
to rank the algorithms, the following procedure was applied: the preferred algorithm is the one
with the highest median in the case of NHVR and the one with the lowest median in the case
of Ie. The alternative algorithm is the one with the highest P-value in the Mann-Whitney U
test (MWU) when compared with the preferred algorithm.

Furthermore, Diff-EAF plots depict the best (upper line) and the worst (lower line) EAF of a
pair of algorithms. The median EAF (dotted line in the middle) of each algorithm is plotted.
For example, the worst empirical attainment function (EAF) represents the smallest objective
space that was captured from all runs and for each pair of algorithms. Table 8-4 also presents
the P-values from the MWU test for all pairs. The high P-values indicate the acceptance of the
null hypothesis (i.e. that data are samples from continuous distributions with equal medians).
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In most of the cases the P-values are above 0.1 (confidence level 90%). The MWU test illustrates
that the medians of the algorithms do not differ significantly. In the case of 200 FE there is a tie
between SUMO and ParEGO, with Ie indicating that the preferred algorithm is ParEGO and
NHVR indicating SUMO. However, the high P-values (in both cases) suggest that there is no
significant difference between the medians. Therefore, the performance of all MOSBO in 200
FE could be assumed equivalent with very small differences. In the case of 400 FE both NHVR
and Ie agree that the preferred algorithm is SUMO. Also in this case the P-values are high,
except when comparing SUMO and ParEGO, where the P-value is less than o.1. This warrants

further exploration as discussed below.

Table 8-3 | Results summary for 200 and 400 function evaluations.

Hypervolume indicator

Budget Statistic ParEGO  SMS-EGO SUMO SMS-EMOA NSGAII
Average 0.902 0.904 0.906 0.836 0.830
Median 0.901 0.899 0.912 0.837 0.843
200 St. dev. 0.014 0.025 0.034 0.037 0.038
Max 0.931 0.937 0.957 0913 0.879
Min 0.878 0.859 0.850 0.785 0.774
Average 0.920 0.926 0.938 0.844 0.843
Median 0.917 0.927 0.941 0.848 0.852
400 St. dev. 0.012 0.016 0.025 0.039 0.036
Max 0.945 0.951 0.966 0.901 0.887
Min 0.902 0.897 0.882 0.788 0.790
Epsilon indicator
Budget Statistic ParEGO  SMS-EGO SUMO SMS-EMOA NSGAII
Average 0.111 0.130 0.134 0.194 0.184
Median 0.120 0.130 0.126 0.198 0.160
200 Std 0.023 0.037 0.068 0.068 0.076
Max 0.133 0.186 0.251 0.306 0.306
Min 0.060 0.065 0.042 0.069 0.101
Average 0.104 0.121 0.106 0.191 0.179
Median 0.111 0.116 0.094 0.177 0.160
400 St. dev. 0.026 0.039 0.062 0.070 0.070
Max 0.133 0.187 0.251 0.355 0.282
Min 0.059 0.053 0.042 0.119 0.101
Table 8-4 | Comparison of MOSBO and MOEA under equal budget.
Ie NHVR
Alg/Budget 200 400 200 400
Preferred' ParEGO SUMO SUMO SUMO
Alternative’ SUMO ParEGO SMS-EGO SMS-EGO
Third? SMS-EGO SMS-EGO ParEGO ParEGO
P-value, 0.571 0.623 0.910 0.104
P-value;; 0.186 0.345 0.623 0.031
P-value,s 0.791 0.427 0.999 0.308
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As mentioned before the differential empirical attainment function (Diff-EAF) was used to
provide a comprehensive visualization of the results and identify areas where an algorithm
outperforms another. For the sake of limited space Diff-EAF plots are presented only for
configurations with 400 FE. Diff-EAF uses color gradients to express the probability that a
point in the solution space is dominated by only one of the compared algorithms. We used gray
scale to distinguish the areas in the objective space where each algorithm performs better. Dark
grey areas indicate high probability that this algorithm dominates that area and respectively
light grey to white areas indicate the opposite. Furthermore, Diff-EAF plots depict the best
(upper line) and the worst (lower line) EAF of a pair of algorithms. The median EAF (dotted
line in the middle) of each algorithm is plotted. For example, the worst empirical attainment
function (EAF) represents the smallest objective space that was captured from all runs and for
each pair of algorithms. Figure 8.11 depicts the Diff-EAF of the ParEGO algorithm as
compared to SMS-EGO for 400 FE. The only difference between these two algorithms is the
infill criteria used. SMS-EGO outperforms ParEGO in all of the objective space (dark areas in
Figure 8.11, right plot) except in a small region in the upper left side and in the lower right side
(dark areasin Figure 8.11, left plot). This probably occurs due to the weights in the Tchebycheft
aggregation function used by ParEGO which provide a greater exploration power at the edges
of the design space. The median EAF of both algorithms provide good approximation sets. The
worst EAF can be also seen as the guaranteed approximation set. However, the spread between
median and best surface in the case of ParEGO could be considered large as compared to other
configurations examined in this work. Figure 8.12 represents the Diff-EAF of ParEGO and
SUMO algorithms. The plots depict a superiority of the SUMO algorithm in almost all of the
objective space (dark areas in Figure 8.12, right plot). Once again, the ParEGO is dominating
larger areas towards the edges (as in Figure 8.11). In this case the median EAF of SUMO
exhibits better performance than ParEGO, dominating a larger space, especially in the middle
of the front (where the more balanced, realistic solutions tend to lie). It is interesting to note
that all algorithms, exhibit a small weakness to capture the left and right extremes as compared
to their best EAF. Figure 8.13 compares the SMS-EGO and SUMO algorithms. Also, in this
configuration both median EAF seems to perform well in the central area of objective space. A
minor superiority (grey area values) of SUMO can be observed throughout the objective space.
This is also depicted in the performance statistics presented in Table 8-3. Nevertheless, both
algorithms provide good results considering the small spread between best and median EAF
and the small number of FE.
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Figure 8.11 | EAF difference plot for ParEGO and SMS-EGO for 400 function evaluations.
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It seems clear that all MOSBO algorithms examined in this work manage to yield better results
than MOEAs in the case of 200 and 400 FE as underpinned by the statistics (Table 8-3) and
the CDF plots (all MOSBOs stochastically dominate the MOEAs) of the performance indicators
NHVR and Ie.

Comparison between unequal budgets

Subsequently, we compare the performance of MOSBOs for 200 and 400 FE against the
MOEAs for 1 ooo FE. A comparison among the MOEAs is initially performed to indicate the
preferred algorithm. Then, both MOEAs (1 ooo FE) are compared with all MOSBO algorithms
(200 and 400 FE) in terms of NHVR and Ie. Furthermore, auxiliary Diff-EAF plots are used to
infer the performance of the algorithms. Table 8-5 compares the performance of MOEAs with
1 ooo FE budget. In the case of NHVR, SMS-EMOA stochastically dominates NSGAII but has
a P-value around o.1 (which is very close to the preferred confidence level), and its median and
the average values (Table 8-6) are higher than those of the NSGAII. Hence, in terms of the
NHVR indicator the preferred algorithm is the SMS-EMOA. In the case of I¢, the CDFs of the
algorithms cross and hence stochastically domination does not apply. The median and the
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average (Table 8-6) of the SMS-EMOA are lower (better) than NSGAII. Therefore, the SMS-
EMOA should also be considered the preferred algorithm for Ie. It has to be noted that the P-
value in this case is significantly large and indicates high probability of null hypothesis
acceptance. This comparison is also visually validated using the Diff-EAF plot (Figure 8.14)
where no areas in the objective space exist clearly showing an algorithm extremely
outperforming the other.

Table 8-5 | Comparison of MOEAs for 1 0oo function evaluations.

Ie NHVR
Preferred SMS-EMOA  SMS-EMOA
Stoch. Dom.  No Yes
P-value 0.623 0.104

Table 8-6 | Results summary for 1 0oo function evaluations.

- Hypervolume indicator Epsilon indicator
Budget  Statistic
SMS-EMOA NSGAII SMS-EMOA NSGAII
Average 0.887 0.875 0.147 0.155
Median 0.894 0.885 0.144 0.148
1000 St. dev. 0.025 0.024 0.043 0.044
Max 0.912 0.904 0.225 0.247
Min 0.850 0.831 0.098 0.100
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Figure 8.14 | EAF difference plot for SMS-EMOA and NSGAII for 1 ooo function evaluations.

Subsequently, in order to compare the performance of MOSBOs (with 200 and 400) and
MOEAs with 1 ooo FE the following procedure was used: firstly, we check for stochastic
dominance (SD) across pairs. If SD applies then the preferred algorithm is the one that
dominates the other, and the P-value of the MWU test is calculated to infer significance. If the
CDFs of the algorithms cross, then the preferred algorithm is determined by the median, and
the P-value of the MWU test is also calculated. Table 8-7 summarizes the results of those
comparisons.

When comparing the ParEGO and SMS-EGO with 400 evaluation functions against the
NSGAII with 1 ooo FE, the former stochastically dominate the NSGAII with compatible P-
values with regards to Ie. Interestingly, SUMO does not stochastically dominate NSGAII, yet it
demonstrates a lower median and a compatible P-value. This can be explained by the fact that
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the CDFs of the algorithms cross at probability 90%, hence this could be an outlier. In the case
of the NHVR metric, all MOSBOs stochastically dominate NSGAII and achieve P-values lower
than o0.001, outlining their superiority. When comparing the MOSBOs with 400 evaluation
functions against the SMS-EMOA with 1 ooo FE, the former stochastically dominate, yet with
large (incompatible) P-values with regards to the Ie metric. The higher P-values indicate also
the advantage of SMS-EMOA over NSGALII. Finally, when the NHVR metric is examined all
MOSBOs stochastically dominate SMS-EMOA and achieve low P-values (<0.001).

Table 8-7 | Comparison of MOSBO and best MOEA under different budgets.

Indicator Ie NHVR

MOSBO/MOEA budget 200/1000 400/1000 200/1000 400/1000

MOSBO/ MOEA Algorithm NSGAII Isil\l\//lli) A NSGAII SMS-EMOA NSGAII SMS-EMOA NSGAII Isill\\/l/li) A
Preferred SUMO SUMO SUMO SUMO SUMO SUMO SUMO SUMO

SUMO Stoch. Dom. No No No No Yes Yes Yes Yes
P-value 0.212 0.427 0.021 0.045 0.045 0.121 <0.001 <0.001
Preferred ISEIE/I(S) ISEIE/I(S) SMS-EGO SMS-EGO SMS-EGO SMS-EGO ISEIE/I(S) ISEIE/I(S)

SMS-EGO Stoch. Dom. Yes Yes Yes Yes Yes Yes Yes Yes
P-value 0.307 0.520 0.090 0.273 0.014 0.185 <0.001 <0.001
Preferred ParEGO ParEGO ParEGO ParEGO ParEGO ParEGO ParEGO ParEGO

ParEGO Stoch. Dom. Yes Yes Yes Yes Yes No Yes Yes
P-value 0.007 0.053 0.004 0.038 0.006 0.345 <0.001 <0.001

For the sake of limited space differential empirical attainment function (Diff-EAF) plots are
going to be presented only for SUMO with 400 FE compared to SMS-EMOA with 1 ooo FE
(Figure 8.15) since SUMO was the preferred algorithm for 400 FE (Table 8-4) and SMS-
EMOA the preferred MOEA for 1 ooo FE (see Table 8-5). Figure 8.15) depicts that SUMO is
able to dominate SMS-EMOA in all the objective space and with high probability values (dark
grey areas). This inference is also validated by the results shown in Table 8-3, Table 8-6 and
Table 8-7.
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Figure 8.15 | EAF difference plot for SMS-EMOA and SUMO for different computational budget:
1 000 and 400 function evaluations respectively.
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To sum up, the performance of MOSBOs for 400 FE yielded better results in terms of
performance indicators when compared with MOEAs for much higher FE (1 ooo). For
example, SUMO achieves better results in both NHVR and Ie than SMS-EMOA using 60%
lower computational budget (as visually confirmed in the Diff-EAF plot). It has to be noted
that even when comparing the performance of MOSBOs and MOEAs with 200 and 1 ooo FE
budget respectively (a significant difference in terms of computational burden) the MOSBOs
again yield better results (Table 8-3, Table 8-6 and Table 8-7). Yet, it should be clear that the
selection of the benchmarking algorithm is critical [Razavi ef al., 2012b] to any discussion on
issues of superiority or not of an algorithm due to impact on relative performance.

Finally, as discussed before, MOEAs were also run for computational budgets of 2 ooo and
5 ooo FE. For those budgets 5 and 2 replicates has been generated respectively. More replicates
would be preferable, but this was not possible due to the high computational time needed for
the simulation: one simulation (function evaluation) in WEAP21 required 9o sec. Therefore,
in these cases the stochastic dominance and statistical test cannot be used. The performance
assessment is only based on statistics presented in Table 8-3 and Table 8-8.

When comparing MOSBOs (with 200 FE) against the MOEAs (with 2 ooo and 5 ooo FE), the
latter outperformed the former in terms of the median value. In the case of the NSGAII the
differences are small: MOSBOs NHVR median values range from 0.899-0.911 as compared to
the 0.920 and 0.922 NSGAII values (for the 2 0ooo and 5 ooo respectively); MOSBOs Ie median
values range from 0.12-0.13 as compared to the 0.117 and 0.083 NSGALII values (for the 2 ooo
and 5 ooo respectively). When comparing MOSBOs with the SMS-EMOA these differences are
larger (SMS-EMOA achieves median NHVR 0.941/0.958, and median I& 0.063/0.047, for 2 ooo
and 5 ooo FE respectively).

Finally, when comparing MOSBOs (with 400 FE) against the MOEAs (with 2 0oo and 5 ooo
FE). ParEGO, SMS-EGO and SUMO yield median NHVR 0.916, 0.926, 0.941 and median Ie
0.111, 0.115, 0.093 respectively. In this case the performance of median NHVR of NSGAII for
2 000 and 5 ooo FE is outperformed by SMS-EGO and SUMO, though ParEGO is close behind.
When comparing the Ie the MOSBOs manage to outperform NSGAII only for 2 ooo FE with
very small differences. As compared to SMS-EMOA however, only SUMO manages to compete
and only in terms of NHVR. In the case of median NHVR, SMS-EMOA achieves better results
than ParEGO and SMS-EGO and equal to SUMO. This is, however, not the case when
comparing the median of Ie. In this case the differences are larger and all MOSBO are
outperformed by SMS-EMOA. Figure 8.16 summarizes the results and depicts the
performance of SUMO with a budget of 400 FE relative to MOEAs with larger budgets.

From these results it is inferred that MOSBOs with 400 FE depict similar performance to
MOEAs with 2000 FE. Thus, the efficiency of MOSBOs presents an upper limit of
approximately 80% (=2 000-400/2 000).
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Figure 8.16 | Comparison of SUMO with MOEA for 2 000 and 5 0oo function evaluations. Blue
diamond represents the median of each column. In left panel (NHVR) higher values are preferred. In
the right panel (Ie) lower values are preferred.

Table 8-8 | Results summary for 2 000 and 5 0oo function evaluations.

Budget  Statistic Hypervolume indicator Epsilon indicator

SMS-EMOA NSGAIl  SMS-EMOA NSGAII

Average 0.943 0.911 0.079 0.140

Median 0.941 0.920 0.063 0.117

2000 std 0.010 0.028 0.026 0.066
Max 0.960 0.930 0.122 0.251

Min 0.932 0.863 0.059 0.092

Average 0.958 0.922 0.047 0.083

Median 0.958 0.922 0.047 0.083

5000 Std 0.009 0.012 0.011 0.015
Max 0.964 0.931 0.055 0.094

Min 0.952 0.914 0.040 0.072

8.6.2 Results for the case study

The MOSBO algorithms, after demonstrating their adequate performance through the
benchmarking exercise discussed above, where applied for the optimization of the Nestos
hydrosystem. Figure 8.17 illustrates the results in terms of the optimization of the energy-
related operation rules. The figure presents results from the upper left (Ulp) and the lower right
points (Lrp) of the best Pareto front. Table 8-9 presents the variables and objective function
values from these operation rules. The operation rules are in simple form and can be easily
translated to real decisions and thus applied by the reservoir system operators. For instance, 0,
in Lrp is translated to 52.42 GWh set as a target of energy production for the period May-Sept
and 52.42 x 0.94=49.29 GWh for Oct-Apr.

Table 8-9 | Operation rules Ulp and Lrp.

Operational rule | 6, 6, 6 S | Obj. 1| Obj.2
Ulp 28.43 | 10.80 | 8.27 | 0.00 | 37.24 | 123.59
Lrp 5242 | 11.57 | 2.74 |1 094 | 72.85 | 77.84

Figure 8.17 depicts the rationale behind the objective functions used in this work. The average
monthly energy is distinguished between firm and secondary energy. Firm energy is the
guaranteed energy and secondary is the excess of energy generated each month. The simulation
of Lrp illustrates constant firm energy each month, as well as some excess of secondary energy.
This is also depicted in the energy-duration curve of Lrp where the energy exceeds 72 GWh for
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99% of time. In the case of Ulp the firm energy for the selected time period (99% reliability) is
considerably greater, close to 123 GWh with 37 GWh guaranteed energy for the remaining
months. This is also shown in the corresponding energy-duration curve where there is a leap
for about 50% of the time. Such behavior was anticipated because Lrp and Ulp favor objective
functions 1 and 2, respectively; therefore, they advocate two contradictory operation policies.

Energy-duration curves and Monthly energy characteristics
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Figure 8.17 | Energy-duration curves and monthly energy characteristics of the case study for the
upper left point (Ulp) and Lower right point (Lrp) of the best Pareto front.

8.7 SUMMARY

This Chapter presented a multi-objective version of the parameterization-simulation-
optimization (PSO) framework which is able to incorporate hydrological uncertainty (through
stochastic simulation) and thus develop uncertainty-aware reservoir operation rules. The
multi-objective version of PSO is able to handle multiple and conflicting criteria. Hence, it
represents different and conflicting operational policies without the need for decision makers
to a priori express their preferences. Visualizing the objectives’ tradeofts is particularly useful
and can be used as a negotiation tool for further decision making between different
stakeholders in reservoir management (e.g., energy and water companies, farmers and
municipalities).

Furthermore, we presented a comparative study of the potential for using multi-objective
surrogate-based optimization methods (MOSBOs) in multi-reservoir management, by
benchmarking three MOSBOs against two well-known MOEAs. Different experiments with
regards to computational budget were investigated yielding very promising results for the
MOSBOs. Results suggest that MOSBOs are able to adequately reproduce Pareto fronts,
without significant damage to the problem detail or their ability to identify robust,
(uncertainty-aware in the context described earlier) operational policies. Furthermore, we have
demonstrated the potential of MOSBO algorithms to perform well even under significant
computational budget restrictions (of as few as 200-400 function evaluations) comparing
favorably to more standard MOEAs with higher computational budget (e.g. 1 000-2 000
function evaluations), achieving efficiencies of 60-80% in terms of computational time for the
same (or even better) results. This indicates their usefulness in addressing realistic problems
where, as in the case of multi-reservoir operation management, a key barrier to properly
incorporating uncertainty is the excessive computational burden. If MOSBOs are indeed able
to alleviate much of this burden, as suggested in this Chapter, they have a significant role to
play in guaranteeing reliability in real-world applications within a highly uncertain climatic
and socio-economic context. An input uncertainty, that, in an arguably non-Gaussian world,
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can potentially be better captured using the novel models and schemes of Chapter 4-7. In this
vein, and motivated by these encouraging findings, in Chapter 9 we step forward, and conclude
the research developments of this Thesis, by introducing a novel surrogate-enhanced global
optimization algorithm, that combines both, surrogate-based modelling approaches, as well as
different, global and local, optimization approaches (evolutionary search, simulated annealing,
downhill simplex), into a single algorithm.
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SURROGATE-ENHANCED EVOLUTIONARY ANNEALING SIMPLEX

ALGORITHM FOR EFFECTIVE OPTIMIZATION OF WATER RECOURCES
PROBLEMS ON A BUDGET*

PREAMBLE

This Chapter is motivated by the promising findings of Chapter 8 and the fact that typical water
resources optimization problems involve an objective function that presumes the use of a
simulation model and the subsequent evaluation of its outputs. Long simulation times, which
may arise due to uncertainty incorporation or time expensive simulation models, may pose
significant barriers to the procedure. Often, to obtain a solution within a reasonable time, the
user has to substantially restrict the allowable number of function evaluations, thus terminating
the search much earlier than required. As shown earlier, a promising strategy to address these
shortcomings is the use of surrogate modelling techniques. Here we introduce the Surrogate-
Enhanced Evolutionary Annealing-Simplex (SEEAS) algorithm that couples the strengths of
surrogate modelling with the effectiveness of the evolutionary annealing-simplex method.
SEEAS combines three different optimization approaches (evolutionary search, simulated
annealing, downhill simplex). Its performance is benchmarked against other surrogate-based
algorithms in several test functions and two water resources applications (model calibration,
reservoir management). Results reveal the significant potential of using SEEAS in challenging
optimization problems on a budget.

This Chapter is structured as follows: section 9.1, through a literature, provides an introduction
to the problem of time expensive optimization methods. Section 9.2 describes the prosed
algorithm. Section 9.3 concerns the established benchmarking protocol, devised to assess the
performance of the algorithms. Section 9.4 to 9.6, describe and present the benchmarking
results based on three distinct problems, i.e., mathematical test functions (section 9.4), a
hydrological calibration problem (section 9.5), and a multi-reservoir management problem
(section 9.6). Finally, section 9.7 summarizes the key findings of this Chapter.

* Based on:

Tsoukalas, I., P. Kossieris, A. Efstratiadis, and C. Makropoulos (2016), Surrogate-enhanced evolutionary
annealing simplex algorithm for effective and efficient optimization of water resources problems on a budget,
Environ. Model. Softw., 77, 122142, doi:10.1016/j.envsoft.2015.12.008.
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9.1 INTRODUCTION

This Chapter introduces the Surrogate-Enhanced Evolutionary Annealing-Simplex algorithm
(SEEAS), which is a novel global surrogate-based optimization (SBO) method, focused on
time-expensive functions. Our motivation arises from challenging simulation-optimization
problems that are commonly found in water resources problems (see section 1.1 and 1.3), and
they impose, in the everyday practice, very limited computational budgets, e.g., of few hundred
function evaluations. SEEAS has been designed for typical hydrological optimization problems,
i.e., decision-making and calibration, suffering from different peculiarities and complexities,
which are in turn reflected in the different geometry of the associated response surfaces.

For convenience, we consider that all criteria are aggregated in a single objective function
representing a global performance measure of the system (an alternative approach would
require the formulation of a multiobjective function and the identification of acceptable
tradeoffs among conflicting criteria, which is not the case here). We also assume that all internal
constraints (i.e., constraints associated with the system dynamics) are handled through the
simulation model [e.g., Koutsoyiannis and Economou, 2003, while any additional external
constraints, which are usually associated with decision-making problems, are embedded in the
objective function, typically as penalty terms. Under this premise, the combined simulation-
optimization problem is formalized as the determination of the global optimum (for
convenience, minimum) of a nonlinear objective function f(x), where f(-) represents the
simulation model and x is the vector of control variables. The search space is a hypervolume,
since the unique constraints of the problem are the lower and upper bounds of parameters. As
f (x) is a black-box function, its analytical expression as well as its derivatives are not available,
which prohibits the use of gradient-based optimization. Given also that, due to uncertainties
and complexities of the system, f(x) is non-convex, and thus multimodal (i.e., it contains
multiple local optima), derivative-free methods [e.g., Rios and Sahinidis, 2013] combined with
stochastic search approaches are essential to solve this so-called global optimization problem.

Surrogate-based optimization (SBO) methods, often termed response surface approaches go
back to 70’s [Blanning, 1975], have been popularized since the pioneering work by Jones et al.
[1998], who developed the Efficient Global Optimization (EGO) algorithm. EGO uses Kriging
as surrogate model and an acquisition function (named Expected Improvement), in order to
locate potential good samples that should be evaluated through expensive simulation functions
[Sacks et al., 1989; Jones et al., 1998]. Later, Sasena et al. [2002] implemented and investigated
various acquisition functions for EGO. Literature also reports multi-objective versions of EGO
[e.g., Knowles, 2005; Ponweiser et al., 2008; Couckuyt et al., 2013].

Beyond Kriging, other commonly used surrogate models are Radial Basis Functions [RBFs -
Powell, 1992; Buhmann, 2003, polynomials [Myers and Montgomery, 1995, artificial neural
networks, and support vector machines [Cortes and Vapnik, 1995; Dibike et al., 2001]. The use
RBFs within the context of evolutionary algorithms was popularized after the publication Regis
and Shoemaker [2004]. Other typical examples of RBFs are the Multistart Local Metric
Stochastic RBF (MLMSRBF) and the ConstrLMSRBF, which handles inequality constraints
[Regis and Shoemaker, 2007a; Regis, 2011]. Additionally, Regis [2014] and Tang et al. [2012]
proposed hybridizations of the particle swarm optimization algorithm [Kennedy and Eberhart,
1995] that use RBFs to assist the search. Shoemaker et al. [2007] developed an evolutionary
algorithm that uses an RBF approximation and benchmarked its performance against several
test problems, with dimensions ranging from 8-D to 14-D. Finally, Regis and Shoemaker [2013]
developed the DYnamic COordinate Search (DYCORS) that uses Response Surface models to
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handle high-dimensional expensive optimization problems. DYCORS was benchmarked
against other RBF-based algorithms in a variety of test problems, ranging from 14-D to 200-D.

Comprehensive reviews of surrogate-based optimization methods can be found in the broader
optimization literature [e.g., Jin, 2005, 2011; Forrester and Keane, 2009], while Razavi et al.
[2012b] summarize the use of surrogate modelling techniques in water resource systems, also
classifying the existing meta-modelling frameworks. The literature reports several successful
applications in time-demanding hydrological problems [e.g., Broad et al., 2005; Mugunthan et
al., 2005; Mugunthan and Shoemaker, 2006; Zou et al., 2007; Regis and Shoemaker, 2007b;
Kourakos and Mantoglou, 2009; Drosou et al., 2015; Tsoukalas et al., 2015a, 2015b; Kossieris et
al., 2015; Tsoukalas and Makropoulos, 2015b, 2015a; Tegos et al., 2017], highlighting their
potential to alleviate the computational burden that accompanies simulation-optimization
problems.

SEEAS is built upon the Evolutionary Annealing-Simplex (EAS) method [Efstratiadis and
Koutsoyiannis, 2002], which is a hybrid scheme combining global and local search strategies
and assisted by a RBF surrogate model. SEEAS uses an external archive to maintain all visited
solutions in order to formulate, update and exploit the surrogate model during search. There
are also some improvements in the key core of EAS, regarding the simplex transitions and the
mutation operator. SEEAS is compared and benchmarked against the original version of EAS
and three state-of-the-art optimization algorithms (see section 9.3.3). Namely, the Dynamic
Dimension Search (DDS) [ Tolson and Shoemaker, 2007, the MLMSRBEF [Regis and Shoemalker,
2007b], and DYCORS [Regis and Shoemaker, 2013]. Evaluations are made on the basis of 12
mathematical problems (i.e., six test functions for two alternative dimensions, 15-D and 30-D),
a hydrological calibration problem with 11 parameters, configured with both real and synthetic
data, and a multi-reservoir management problem with 20 decision variables, using synthetic
inflows of 500 years length. The use of synthetic data is one of the novelties of our testing
framework. Moreover, most of the known surrogate-based schemes have been only evaluated
in calibration problems and not in time-demanding water management applications, with few
exceptions [e.g., Razavi et al., 2012b; Tsoukalas and Makropoulos, 2015a, 2015b]. The results
of this extended analysis are very encouraging, since the proposed method is effective and
efficient, in terms of locating a satisfactory solution as close as possible to the global optimum,
within reasonable computational time, and outperforms the other examined approaches, in
almost all tests.

9.2 OPTIMIZATION METHODOLOGY

9.2.1 Evolutionary Annealing-Simplex

EAS?® is a heuristic, population-based global optimization technique, originally developed by
Efstratiadis and Koutsoyiannis [2002], that couples the strength of simulated annealing in
rough search spaces along with the efficiency of the downhill simplex method [Nelder and
Mead, 1965] in smoother spaces. Its key idea is the introduction of an external variable T, which
plays a role similar to temperature in a real-world annealing process and determines the degree
of randomness of the search procedure. This is expressed through a stochastic term that is
relative to temperature and is added to the initial objective function f(x), thus getting a modified
function g(x) = f(x) + uT (where u is a vector of uniformly distributed random numbers).

8 EAS and SEEAS are available online at: http://www.itia.ntua.gr/en/softinfo/29/
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Search is based on an evolving population of feasible points, where critical decisions are driven
by the modified function. The genetic operators are either quasi-stochastic geometric
transformations, inspired by the downhill simplex method, or fully-probabilistic transitions
(mutations). As search proceeds, the system temperature reduces according to an adaptive
annealing cooling schedule, and all transitions become more deterministic.

EAS has been successfully employed in several hydrological applications [e.g., Rozos et al., 2004;
Nalbantis et al., 2011; Kossieris et al., 2013; Efstratiadis et al., 2014b]. It has been also
incorporated within advanced modelling tools, i.e., Hydronomeas [Lfstratiadis et al., 2004],
Hydrogeios [Efstratiadis et al., 2008] and HyetosR [Kossieris et al., 2016] to solve challenging
simulation-optimization problems. The original algorithm has been also adapted to handle
multiobjective problems |Efstratiadis and Koutsoyiannis, 2008] and stochastic (i.e., noisy)
objective functions [Kossieris et al., 2013]. Here we introduce an improved verison of EAS,
called Surrogate-Enhanced Evolutionary Annealing-Simplex (SEEAS) algorithm, which is
presented in detail herein.

9.2.2 Surrogate-Enhanced Evolutionary Annealing-Simplex

9.2.2.1 Overview of SEEAS algorithm

The algorithm is a surrogate-enhanced extension of EAS in a way that builds, maintains and
exploits surrogate modelling (SM) techniques that generate approximated response surfaces,
which allow effectively guiding search towards promising areas of the real response surface.
The model used is the RBF, which is a well-known interpolation technique (Figure 9.1, left).
During the iterative procedure, the algorithm maintains an external archive of all visited points,
already evaluated through the (expensive) objective function. This archive is used to update the
SM, in an attempt to progressively provide more accurate approximations of the current region
of interest (i.e. the area around the current best point). In SEEAS, the surrogate model has a
double role. The first is providing new points that are added to the current population, and the
second is assisting the genetic operators of the downhill simplex scheme to identify suitable
directions across the search space (e.g., favorable slopes and new areas of attraction).

In order to balance exploration (i.e., detailed sampling) and exploitation (i.e., blind use of SM),
SEEAS uses a weighted metric, termed acquisition function (AF), which accounts for the
predictions provided by the SM as well as the spread of all previously evaluated points (by
means of a distance quantity). In opposite to common practices that use a standard expression
of the AF with constant weights, in our approach the weights are dynamically adjusted, thus
improving the efficiency of the algorithm. Details about the acquisition function (AF) are given
in Section 9.2.2.3.

SEEAS follows an iterative search procedure. At the end of each iteration cycle (or generation,
according to the terminology of evolutionary theory), we obtain at least one new point that
enters the population and replaces one of its existing members. A typical iteration cycle of
SEEAS starts by fitting the surrogate model to the current population (initially, this population
is randomly generated through Latin Hypercube Sampling, LHS). Next, we run an internal
global optimization algorithm (particularly, the original version of EAS) across the surrogate
response surface, using as objective the acquisition function (AF), in order to locate a candidate
solution to enter the population (provided that this solution outperforms the current worst
point). Thereafter, we follow a search procedure that is mostly based on the genetic operators
of EAS, enhanced by surrogate-assisted steps in simplex-based transformations.
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The general idea is to utilize the information gained by the SM, in order to enhance the current
knowledge in the selection of simplex transitions. A characteristic example involving the
reflection step is illustrated in Figure 9.1, right (for simplicity, we demonstrate the predictions
of the surrogate model and not the AF). In the original version of EAS, after specifying the
direction of reflection (defined by the difference between the worst vertex of the simplex and
the centroid of all rest vertices), the algorithm employs a blind trial-and-error procedure, i.e.,
it generates subsequent random points along this direction and evolves according to their
values. In this scheme, the original objective function is called whenever a new trial point is
generated. Since the expansion continues as long as the function value improves, this procedure
may be quite expensive, in terms of function evaluations. In opposite, in SEEAS we employ a
candidate screening procedure using the SM, which allows making multiple trials with
negligible computational cost and guiding search using all prior information. Similar screening
is employed within all simplex transformations (except shrinkage), thus providing significant
aid to the associated decisions.
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Figure 9.1 | Approximated surface (RBF) in a 2-D example (Ackley function) using all available sample
points (left panel). The right panel demonstrates a randomly selected simplex and the modified
surrogate-enhanced reflection movement using candidate points on the line formed from the simplex
centroid and the maximum reflection point. The simplex is reflected at the candidate point with the
minimum function value.

9.2.2.2 Surrogate model (RBF)

SEEAS implements the Radial Basis Function (RBF) interpolation method [Powell, 1992;
Buhmann, 2003], and more specifically the RBF with cubic basis functions and linear
polynomial tail. This is a commonly used surrogate model of proven effectiveness, as reported
in numerous studies [e.g., Mugunthan et al, 2005; Regis and Shoemaker, 2007b, 2007a;
Shoemaker et al., 2007; Miiller and Shoemaker, 2014].

The computational procedure of RBF is the following. Given N; samples x € R" with response
¥, we get the pairs (x;, y;). The prediction s(x) of RBF model at sample point x is given by:

s =) A o(llx—xill) +p@ (91)

where A; € R, ¢ is a basis function of the form ¢(r) = 73, ||.|| is the Euclidean distance (norm)
and p(x) is a polynomial tail of the form p(x) = b’x + a, where b= (b,, ..., b,)" and a € R. The
model parameters A, b, and a are determined by solving the linear system:
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[ ol 2[5l (92

where @ is an N, x N, matrix with elements ¢;= ¢(||x: - x||), P is a Nyx (n + 1) matrix, the i"
row of which is (1, x"), A = (A, ..., Axs)', € = (by, ..., bw, @), and y = (s, ..., yxs)'. We mention
that the matrix of Eq. (9.2) is invertible if and only if Rank(P) = n + 1 [Powell, 1992].

9.2.2.3 Acquisition function

Acquisition functions (AF) are well-established techniques, aiming to balance exploration-
exploitation in surrogate-based optimization algorithms [e.g., Sasena et al., 2002; Forrester and
Keane, 2009]. SEEAS implements a novel scheme, in which the weights are automatically
adjusted during the iterative process, according to the current number of function evaluations
and the maximum allowed number of evaluations.

Consider a set of N; points, x., with known response value, f(x?), and another set of N, points
xL, with approximated response values s(x’). These are conventionally called candidate points,
in the sense that they are used within infilling or internal search procedures, e.g., selection of
the most appropriate reflection point in the graphical example of Figure 9.1. The acquisition
function is estimated as follows:

Step A. Standardize the approximated response values of all candidate solutions by setting
s(xy) = [s(xt) - s™n]/[sm— s™n], where s™" and s™ are the corresponding minimum and
maximum values.

Step B. Calculate the minimum Euclidean distance of each candidate point x% from all
previously evaluated points, x2, i.e., di = d'(x%) = min, <; < xs||x. - x7||, and standardize them by
setting d;" = (d; — d™)/(d™ - d™"), where d™" and d™ are the corresponding minimum and
maximum distances.

Step C. Calculate the weighted value of AF for every candidate point using the formula:
AF; = ws*(xl) + (1 — w)d* () (9.3)

where wis a dimensionless weighting coefficient, ensuring balance between exploitation and
exploration. To finalize the infilling routine, the candidate with the minimum AF value will be
selected and assessed through the objective function. As mentioned before, the minimization
of the AF across the surrogate search space is carried out through the original EAS algorithm.

9.2.2.4 Detailed description of SEEAS

Let f(x) be a nonlinear objective function in the feasible space x.< x < xy, where x is an n-
dimensional vector of continuous control variables (in practice, f(x) represents the
performance measure of a simulation model). For convenience, we search for the global
minimum of f(x), allowing a budget of MFE function evaluations. The algorithm uses two
archives. The first is the population P, which is evolved during the search procedure (where ¢
denotes the iteration cycle or generation), and the second is the so-called external archive A,
which contains all visited points from the beginning of the optimization (¢ = o), including the
members of the current population. Whenever a new point x is evaluated through the objective
function f(x), it enters the archive A (the archive may be updated several times within a
generation). At the beginning of each new generation ¢, the surrogate model is re-evaluated by
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considering the current elements of A”. The size of the population is m>n+ 1 (i.e., the
minimum number of points required to fit a RBF with linear polynomial as well as to formulate
a simplex in the n-dimensional space), and remains constant, while the size of the external
archive progressively increases, thus ensuring more accurate approximations of the response
surface and, consequently, more reliable predictions. The initial population P! is generated via
the Latin Hypercube Sampling (LHS) technique, which ensures satisfactory spread across the
feasible space [Giunta et al., 2003]. Apparently, the initial archive A is identical to Pl°l.

Generation of m random - .
points through LHS 4: Random selection of n+1 Surrogate-assisted
1 points from population P genetic operators
of EAS
1: Fitting of surrogate - v -
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Figure 9.2 | Outline of SEEAS algorithm following the steps explained in section 9.2.2.4 (* denotes
the use of the surrogate model within the associated simplex transformations).

Similarly to EAS, the surrogate-enhanced algorithm also uses an auxiliary parameter, T, called
temperature. The concept originates from simulated annealing, where the key role of
temperature is ensuring balance between randomness and determinism. In SEEAS,
temperature is dynamically adjusted (i.e., reduced) using empirical rules, considering the

extreme values, f 1]

i and fn[gx, of the current population P, and a dimensionless progress
index, defined as,

PI = log(FE) /log (MFE) (9.4)
where FE is the current number of function evaluations and MFE is the maximum allowable
number of FE, which is a user-specified termination criterion.

A typical iteration cycle of SEEAS, an outline of which is illustrated in Figure 9.2, comprises
the following steps (generation index t is omitted for simplicity):

Step 1. The interpolation surface s(x) is updated using the current information stored in the
external archive A (i.e., all points evaluated so far through the original objective function).

Step 2. The weighting coefficient of the AF is updated using the empirical formula:

w = max (0.75.min (P, 0.95)) (9.5)
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The above formula ensures that at the early stages of optimization, more weight is given to
exploration (up to 0.25), but gradually its contribution diminishes thus not exceeding o0.05.

Step 3. A new point x, is generated by minimizing AF, using the original version of EAS for
internal optimization. The new point is evaluated through f(x) and replaces the worst point of
the current population, if the latter is worse (higher) than f(x;).

Step 4. A set of n + 1 points is randomly selected from the current population, in order to
formulate the vertices of a simplex in the n-dimensional search space, symbolized S = [x,, x.,
...»Xn+1). The elements of S are sorted such as f(x.) corresponds to the best (lowest) and f(x. 1)
to the worst value of the objective function.

Step 5. From the subset [x,, ..., x...] we select a candidate point x., to be replaced in the
population, based on the modified, quasi-stochastic objective function:

g(x) = f(x) +uT (9.6)

where u is a uniform random number in the interval [o, 1]. By adding the stochastic component
u T to the objective function f(x), the algorithm behaves as in between random and downbhill
search. At the early stages of optimization, when temperature is still high, any point except for
the best one can be replaced. On the other hand, in the limiting case T > o, the actually worst
point, i.e., X, 1, is replaced, as considered in the original downhill simplex method.

Step 6. A set of N, trial points x¥. are generated by reflecting the simplex according the formula:
xlgr =g + (0.5 + 6k) (g - xw) (9.7)

where g is the centroid of the subset [x., ..., x,+.] and J is a scale coefficient equally spread in
the interval [o, 1], thus & = (k - 1)/(N: - 1), for k = 1, ..., N.. Among all candidates, we select
the one that minimizes AF, which we will next call the reflection point, x.. The reflection point
is evaluated on the basis of the objective function and enters the external archive.

Step 7. If f(x:) < f(xw), we replace x, by x: in the population and move to steps 8a or 8b,
according to the outcome of its comparison with the current best vertex, i.e., flx:) < fx.).
Otherwise, we move to step 9, to decide whether x. should be accepted or withdrawn, thus
seeking another candidate.

Step 8a. If f(x:) < f(x.), the vector x: — x, defines a direction of minimization. We remark that
the detection of downhill slopes in high-dimensional spaces of complex geometry is not an
often case. This makes essential to take advantage in order to accelerate the search procedure,
by employing a sequence of N. trial expansion steps through the recursive formula:

xlge =g+ 6(x,—9) (9.8)

where 6 is a scale coefficient given by dx = 8-, + (k - 1)/(Ne. - 1), for k=1, ..., Ne. The expansion
continues as long as the AF value is improved (or until reaching the bounds of the feasible
space). The optimal (in terms of AF) trial point, x., is kept in the external archive and replaces
x: in the current population, provided that f(x.) < f(x:). In that case, the algorithm moves to step
12 to finalize the cycle.

Step 8b. If f(x:) > f(x.), we attempt detecting a promising solution in the neighborhood of x,,
by employing N. trial contractions of the simplex in the interval between the centroid and the
reflection point, according to the formula:
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xk. =g + (025 + 0.56,) (2, - 9) (9.9)

where 6 = (k- 1)/(N. - 1), for k =1, ..., N.. The optimal (in terms of AF) trial point, x., is kept
in the external archive and replaces x: in the current population, provided that f(x.) < f(x:). In
that case, the algorithm moves to step 12 to finalize the generation cycle.

Step 9. If f(x:) > f(x.), we use the modified objective function (Eq. (9.7)) to decide whether
employing inside contraction of the simplex, thus seeking for a potential local optimum, or
expanding towards a non-optimal (i.e., uphill) direction, in an attempt to escape from the
current area of attraction. In this respect, if g(x:) > g(x..) we move to step 10a, otherwise we
move to step 10b.

Step 10a. We reject x; and implement N. trial inside contractions of the simplex in the interval
between the centroid and the worst point, according to the formula:

xk. =g - (0.25 + 0.58) (g - x;) (9.10)

where 6 = (k- 1)/(N. - 1), for k =1, ..., N.. The optimal (in terms of AF) trial point, x., is kept
in the external archive and replaces x,, in the current population, provided that f(x.) < f(xw).
Otherwise, the simplex shrinks towards the best vertex x,, such as:

Xs; = 0.5(x; + x)fori = 2,...,n + 1 (9.11)

We remark that the above transformation is the sole evolving mechanism of the algorithm
allowing the simultaneous generation of multiple points; particularly, n new points are
generated that replace all previous vertices in the current population. This can be considered
as milestone of the search procedure, in the sense that a local minimum, lying in the
neighborhood of x,, has been surrounded. This is the time to reduce the temperature of the
optimization system by a reduction factor y. In contrast to EAS, where v is a constant
parameter of the annealing cooling schedule, usually taking values into the interval 0.90-0.99,
in its surrogate-enhanced version v is automatically adjusted to also account for the progress
index PI, using the following expression:

1 = max (1 - Pl 0.50) (9.12)

The threshold of 0.50 prohibits a fast reduction of temperature and therefore maintains enough
randomness within decisions, which in turn prohibits early convergence to local optima. After
reducing T, the iteration cycle is finalized (step 12).

Step 10b. The reflection point x; is accepted although being worse than x,.. Next, N, uphill (i.e.,
maximization) movements are performed using the same formula with multiple expansion
(Eq. (9.9)), in an attempt to pass the hill and discover adjacent regions of attraction. This
geometrical transformation was introduced by Pan and Wu [1998], to facilitate the simplex
escaping from local minima. Similarly to previous steps, we use the AF to determine the
optimum uphill point, x.. If f(x.) < f(x:), this point is kept in the external archive and replaces
x: in the current population, while the algorithm moves to step 12 to finalize the generation
cycle. Otherwise, none of the simplex transformations results to a better solution than the worst
vertex X, thus the last option is to attempt a pure stochastic generator, referred to as mutation
(step 11).
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Step 11. We seek a random point out of the typical range of the current population, defined on
the basis of the mean, pp, and standard deviation, o», of all members of P. In this respect, we
generate a normally-distributed point x., out of the interval [up— o», gr+ 0»], which is accepted
if flxm) < flx:). Otherwise, we account for a user-specified mutation probability p., in order to
accept or not the randomly generated point, xm, and replacing x: in the current population.
Anyway, since x., is evaluated through the objective function, it enters the external archive.

Step 12. Considering the new member (or members, in the particular case of simplex
shrinkage) of the population, we re-evaluate the current minimum, Xmin, and maximum, Xmax
and their function values, fuin and fm.. We also re-evaluate the current number of function
evaluations, FE, and check whether this hasn’t exceeded the termination criterion, MFE.
Finally, we re-evaluate the temperature so that T < &(fmax — fmin), Where > 1 is a user-specified
parameter of the annealing schedule, usually set between 2 to 5. This restriction prevents T
taking extremely high values, which would deteriorate the efficiency of SEEAS, as far as search
would become too random.

To run the algorithm, it is essential providing values for all input arguments, which are the
number of desirables steps within different simplex transitions (N, Ne, N, Ny), the mutation
probability pm, and the adjusting factor & of the annealing cooling schedule. Recommended
values, also used in all next benchmarking tests, are Nr= N = N. = Ny = 20, pm=0.10 and £ = 2.
These values were determined on the basis of extended investigations within the development
of SEEAS, and they have been also validated through the sensitivity analysis of section 9.4.4.

9.3 BENCHMARKING METHODOLOGY

9.3.1 Benchmarking protocol

To assess the performance of SEEAS we compared it with the original version of EAS as well as
three state-of-the-art optimization algorithms, which are synoptically presented in section
9.3.3. Two of the benchmark algorithms, i.e., DYCORS (DYnamic COordinate Search) and
MLMSRBF (Multistart Local Metric Stochastic RBF), are surrogate-assisted, while EAS and
DDS (Dynamic Dimension Search) do not employ surrogate models through search.

A variety of test problems were examined, theoretical as well as real-world. Briefly, the hereafter
called benchmarking suite includes six mathematical test functions, formulated with 15 and 30
control variables, a hydrological calibration problem with real and synthetic data, and a time-
expensive multi-reservoir management problem (6x2 + 1x2 + 1 = 15 problems, in total).

To ensure fair comparison and safely infer about the performance of the algorithms we
attempted to ensure as much as similar configurations, as summarized in Table 9-1. In all
problems we employed multiple independent runs, using the same population size and the
same random generation technique, i.e., LHS. The population size was set equal to
m = 2(n + 1), as recommended by Regis and Shoemaker [2007b], [2013], where n is the problem
dimension (i.e., the number of control variables). We remark that other researchers relate the
initial population size (also referred to as design of experiment, DoE) to the available
computational budget, quantified in terms of MFE, in order to design a more detailed
metamodel; for instance, Razavi et al. [2012b] suggest that m = max[2(n + 1), 0.1 MFE].
However, in our tests we avoided associating m with MFE, in order to investigate the impacts
of the problem dimension to the performance of the examined algorithms. Furthermore, we
preferred saving resources for the evolutionary procedure, instead of spending a non-negligible
part of our budget to the initial DoE.
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Each problem but the last was solved considering two alternative computational budgets, MFE
(500 and 1000). We run all tests with two different budgets (instead of the maximum of them)
since all examined algorithms (except EAS) involve parameters depending on MFE (in
particular, SEEAS uses the progress index PI, defined in eq. (4), within the annealing cooling
schedule). Finally, for the three surrogate-based methods (SEEAS, DYCORS, MLMSRBEF) we
employed the same metamodel (RBF with cubic basis functions and linear polynomial tail),
thus ensuring similar computational effort for building, updating and exploiting the RBF
[Razavi et al., 2012a]. We remark that in real-world problems the effort of the optimization
routines (including metamodel fitting) is much less than the effort of simulation, and therefore
the runtime of the overall search procedure is practically relative to MFE.

All computations were implemented in MATLAB mathematical environment using a 3.0 GHz
Intel Core i5 processor with 4 GB of RAM, running on Windows 8 OS. For the SEEAS method
we employed the typical input arguments given in section 9.2.2.4, while for the other
algorithms, i.e., EAS, DDS, MLMSRBF and DYCORS, we used the default values suggested in
the associated articles [Efstratiadis and Koutsoyiannis, 2002; Regis and Shoemaker, 2007a, 2013;
Tolson and Shoemaker, 2007].

Table 9-1 | Configuration of benchmarking suite.

Number Max. Independent

. of control  function Runs with Population Surrogate

Problem Algorithms . . e . model
variables, evaluations random initial size
n (MFE) populations (metamodel)

Test functions All 15 500, 1000 30 32
Test functions All 30 500, 1000 30 62
Model RBF with
calibration with All 11 500, 1000 30 24 cubic
real data basis
Toy calibration functions
with synthetic All 11 500, 1000 30 24 and linear
data polynomial
Multireservoir SEEAS, tail
management DYCORS, 20 500 10 42
problem MLMSRBF

9.3.2 Performance evaluation approach

Following the ideas of Razavi et al. [2012a] and Matott et al. [2012], after implementing all runs
for each specific optimization problem solved with a specific algorithm, we plotted the
cumulative distribution function (CDF) of the optimal values of f(x) obtained within the
specific budget. In order to quantify the probability of attaining an equal or better solution, we
used the concept of stochastic dominance (SD), introduced by Levy [1992], to compare the
CDFs of the algorithms. Let @4 and @g be the CDFs of algorithms A and B, respectively.
Assuming the minimization of a random quantity g, we assume that A dominates B if
Da(q)> Ds(q) for all g, and vice versa. On the contrary, if the two CDFs are intersected at some
point g, then SD is not applicable. In this case, we evaluated the median point, i.e., the one
with 50% probability of exceedance, and considered as better the algorithm with the best
performance at this point. In fact, to ensure that the difference of the two algorithms at the
point of interest is statistically significant, we employed the non-parametric Mann-Whitney
U-test [MWU - Mann and Whitney, 1947]. The null hypothesis of the MWU test is that data
in @4 and @g are samples from continuous distributions with equal medians. The confidence
level of the MWU test was set to 95%.
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9.3.3 Brief description of benchmarking optimization algorithms

9.3.3.1 Dynamically Dimensioned Search (DDS)

Dynamically Dimension Search’ (DDS), is a stochastic, single-solution based algorithm,
developed by Tolson and Shoemaker [2007] to locate near-optimal solutions with few function
evaluations. DSS is designed to search globally at the early stages and more locally when
approaching a user-specified number of maximum function evaluations (MFE). It evolves by
perturbing the current best solution in randomly selected dimensions, using an evolutionary
operator based on the normal distribution. The probability of selecting a dimension to perturb
is proportional to the current number of function evaluations and MFE. The transition from
global to local search is employed by dynamically reducing the number of perturbed
dimensions. In the literature are reported several successful applications of DDS [e.g., Tolson
et al., 2009; Razavi et al., 2010, 2012a; Matott et al., 2012; Regis and Shoemaker, 2013].

9.3.3.2 Multistart Local Metric Stochastic RBF algorithm (MLMSRBF)

Regis and Shoemaker [2007a] developed the Multistart Local Metric Stochastic RBF'
(MLMSRBF), which is surrogate-assisted optimization algorithm that can be considered as
extension of DDS. The first step is the implementation of the initial DoE to fit the surrogate
model (particularly, RBF), which evolves by perturbing the current best point (similar to DDS),
using normal distribution with zero mean and a specified covariance matrix. Additionally, in
order to locate promising candidates, the algorithm uses a metric that balances the RBF
prediction and the minimum distance from previously evaluated points (this is similar to the
acquisition function introduced in 2.2.3, but with constant weights). The global character of
the algorithm is further enhanced by implementing multiple DoEs. This multistart strategy is
enabled only if the algorithm appears to have been trapped to a local minimum. The authors,
demonstrated the efficiency of MLMSRBF in several benchmark problems, including 17
multimodal test functions and a 12-dimensional groundwater bioremediation problem. We
note that, groundwater problems are particularly demanding, due to the numerous constraints
and the typical non-linear nature of the employed objective functions [e.g., Karatzas and
Pinder, 1993, 1996]. The literature are also reported other successful applications of the
MLMSRBF method [e.g., Mugunthan et al., 2005; Mugunthan and Shoemaker, 2006; Regis and
Shoemaker, 2013].

9.3.3.3 DYnamic COordinate Search-Multistart Local Metric Stochastic RBF (DYCORS-
LMSRBF)

The DYCORS framework was recently proposed by Regis and Shoemaker [2013] for surrogate-
based optimization of high-dimensional expensive functions. The authors presented two
versions, DYCORS-LMSRBF and DYCORS-DDSRBF'. The former is extension of LMSRBF
and the latter is a surrogate-assisted DDS (here we use DYCORS-LMSRBF that performed
slightly better than DYCORS-DDSRBF). DYCORS employs a strategy similar to DDS by
dynamically and probabilistically reducing the number of perturbed dimensions until reaching
the MFE. In order to generate trial candidate points (on the selected/perturbed dimensions)

? https://github.com/akameloo1/Dynamic-Dimension-Search

10 https://courses.cit.cornell.edu/imueller/ or http://people.sju.edu/~rregis/pages/software.html

" https://courses.cit.cornell.edu/jmueller/
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the algorithm uses a normal distribution with zero mean and standard deviation o, but this
does not remain constant, since o, is dynamically adjusted to control the range of perturbation.
Moreover, DYCORS-LMSRBF is cycling through a set of weights in order to balance
exploration and exploitation of the surrogate model. The authors assessed the performance of
the two algorithms against several optimization schemes in a variety of test problems, among
which a 14-D hydrological calibration problem.

9.4 TEST FUNCTIONS

9.4.1 Setup of optimization problems

The first suite of benchmark problems involves the optimization of six well-known
mathematical problems (test functions), combining two alternative formulations in terms of
number of variables (n = 15 and 30), and two algorithmic configurations in terms of MFE (500
and 1000). This setting allowed for assessing the performance of the algorithms against
increasing levels of dimensionality and increasing computational budget. Considering two
alternative dimensions and two computational budgets, we configured four different problems
for each test function, i.e., 24 optimization problems in total. According to the benchmarking
protocol explained in section 9.3.1, for all problems, we employed 30 independent runs, thus
randomly changing the initial population of each search experiment. The population size of all
algorithms we set equal to 32 and 62, for the 15-D and 30-D formulations, respectively.

Table 9-2 summarizes the main characteristics of the examined test functions, which represent
search spaces of different complexity. Two of them (Sphere and Zakharov) are unimodal, while
the rest are multimodal (Ackley, Griewank, Rastrigin, Levy). In all cases the global minimum
is known and equal to zero. The analytical expression of the test functions and the bounds of
their variables are given in the Appendix of Tsoukalas et al. [2016].

Table 9-2 | Summary characteristics of test functions (see also the Appendix of Tsoukalas et al.
[2016]).

Problem | Test function | Response surface properties

OF1 Sphere Unimodal and convex

OF2 Ackley Multimodal with many local minima

OF3 Griewank Multimodal with many regularly distributed local minima
OF4 Zakharov Unimodal with a plate-shaped valley

OF5 Rastrigin Multimodal with many local minima

OF6 Levy Multimodal with many local minima and parabolic valleys

9.4.2 Statistical evaluation of optimal solutions

An initial assessment of the performance of the five examined algorithms was made on the
grounds of mean and standard deviation of the best function values obtained from each
optimization set (i.e., 30 independent runs of the algorithm). The closest to zero is the mean
and the lowest the standard deviation indicates that the algorithm reaches the theoretical
optimum with high accuracy and reliability.

The statistical superiority of SEEAS is exhibited in all problem configurations, as shown in
Table 9-3 and Table 9-4, for problem dimensions # = 15 and 30, respectively. Specifically, for
the 15-D formulation (Table 9-3), SEEAS achieves the best performance (i.e., the lowest mean)
in three out of six (OF1, OF3, OF6) and four out of six problems (OF1, OF2, OF3, OF6), for
MEFE = 500 and 1000, respectively. By doubling the dimensionality of the test functions to
n = 30, thus significantly increasing the complexity of the associated optimization problems,
SEEAS outperforms the other algorithms in four out of six (OF1, OF2, OF3, OF6) and three
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out of six problems (OF1, OF3, OF6), for MFE = 500 and 1000, respectively (Table 9-4).
Considering all alternative configurations, SEEAS is optimal for 14 out of 24 problems,
DYCORS and EAS are optimal for 4 out of 24, and DDS is optimal for 3 out of 24. MLMSRBF
does not outperform in none of the 24 test problems.

As expected, the increase of computational budget from 500 to 1000 improves the performance
of all algorithms. In general, the most significant improvement is achieved by EAS and DDS,
which is reasonable since these algorithms are not surrogate-assisted, thus they are by
definition designed to proceed slower than the other schemes. The convergence behavior of the
algorithms is further investigated in next section.

It is also worth mentioning that all algorithms exhibit poor performance against functions OF4
(Zakharov) and OFs5 (Rastrigin), since they fail locating satisfactory solutions for the given
budgets. In particular, the plate-shaped valley of Zakharov function makes extremely difficult
fitting metamodels, which degenerates to hyperplane with practically zero slopes. It is not
surprising that EAS ensures the best solutions, although these are still far from the theoretical
optimum. EAS has been designed to also handle flat response surfaces, which are often met in
water management optimization problems. On the other hand, DDS is the algorithm that
generally ensures the best solution of the Rastrigin problem. Again, this is not surprising, since
the search space of this function is extremely rough, with multiple local minima, thus the most
stochastic of all schemes is expected to be the most efficient.

Table 9-3 | Mean and standard deviation of best solutions in 15-D test problems (optimal results are
highlighted).

MEE | Test functi EAS DDS SEEAS DYCORS MLMSRBEF
est ction Mean  StDev Mean StDev | Mean  StDev Mean StDev Mean StDev
OF1 1.938 0.978 0.852 0.479 | 0.002 0.001 0.002 0.001 0.019 0.014
OF2 7.159 1.723 6.025 1.314 | 0.812 0.233 0.809 0.372 2.231 0.658
500 OF3 7.682 2.997 2.626 1.269 | 0.538 0.118 0.885 0.084 1.085 0.052
OF4 39.434 14.894 | 137.447 52.366 | 59.144 28.023 | 158.669 47.788 | 150.411 49.875
OF5 86.245 14.148 | 24.887 7.081 | 46.268 15.359 | 38.958 12.340 | 45.920 18.803
QOF6 1.905 0.877 0.681 0.314 | 0.203 0.105 1.208 1.406 1.344 2.129
OF1 0.378 0.177 0.150 0.079 | 0.001 0.001 0.001 0.000 0.011 0.007
OF2 3.523 0.936 3.847 0.528 | 0.437 0.208 0.607 0.092 1.862 0.556
1000 OF3 2.444 1.061 1.505 0.299 | 0.368 0.140 0.809 0.082 1.040 0.037
OF4 26.828 17.895 | 97.541  38.226 | 41.290 26.639 | 121.266 36.925 | 121.359 37.730
OF5 59.735 17.012 | 11.233  3.136 | 29.733 12.838 | 33.585 13.490 | 35.784 11.031
OF6 0.767 0.292 0.234 0.104 | 0.124  0.060 0.536 0.860 0.524 0.863

Table 9-4 | Mean and standard deviation of best solutions in 30-D test problems (optimal results are
highlighted).

Test
MEE | function EAS DDS SEEAS DYCORS MLMSRBEF
Mean StDev Mean StDev Mean StDev Mean StDev Mean StDev
OF1 4.305 1.163 9.516 2.737 0.019 0.006 0.083 0.034 0.739 0.708
OF2 9.923 1.160 12.872 1.329 1.878 0.301 4.297 3.721 6.193 4.362
500 OF3 17.866 3.455 38.398 12.050 0.782 0.118 1.265 0.079 3.459 1.927
OF4 117.821 28.757 | 562.145 113.230 | 173.240 44.185 | 472.815 90.897 | 575.424 174.073
OF5 228.693 18.442 | 132.149 24.567 | 122.658 19.427 | 112.046 23.076 | 165.437 46.846
OF6 6.338 2.652 15.823 5.481 0.659 0.184 3.407 2.540 7.326 10.944
OF1 2.529 0.933 2.112 0.791 0.006 0.004 0.011 0.004 0.358 0.177
OF2 6.516 0.845 7.670 0.924 1.206 0.297 1.085 0.168 3.643 1.103
1000 OF3 8.836 2.617 8.273 2.679 0.549 0.093 1.020 0.026 2.420 0.713
OF4 94,598 20.317 | 412.238 118.573 | 151.472 54.097 | 403.812 93.081 | 491.425 146.097
OF5 198.335 16.587 | 71.598 15.028 98.371  19.505 | 85.267  22.956 | 134.864  39.193
OF6 2.683 0.736 3.921 2.215 0.443 0.126 4.213 5.440 2.865 4.583
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9.4.3 Evaluation of convergence behavior

In order to further investigate the convergence behavior of the algorithms, we plotted the
average (out of 30 trials) value of the best point found so far against the number of function
evaluations (Figure 9.3-Figure 9.8). Each figure refers to a specific test function and comprises
four charts, for the alternative configurations (two dimensions x two MFE).

In most cases, SEEAS exhibits the faster convergence, evidently because the expansion
mechanisms supported by the metamodel (which provides enhanced overview of the surface
geometry), allow implementing steep downbhill transitions. In general, the great advantage of
the simplex-based transitions is the indirect use of the concept of gradient, which favors quick
location of regions of attraction of local optima. This is of particular importance in
computational expensive problems, where the algorithm should quickly detect promising
descent directions. In fact, SEEAS is found superior to the other two surrogate-assisted
algorithms (DYCORS and MLMSRBF) in all problems, except for Rastrigin. The most
impressive case is the Levy problem, where SEEAS locates a very good solution after the first
one hundred of function evaluations (Figure 9.9a), while the mean best value found by other
algorithms so far is even two orders of magnitude higher. Similar are the results for the
Griewank function (Figure 9.9b), which could be interpreted as a rough, multimodal version
of sphere. A plausible explanation for this is the combined effect of the knowledge gained by
the metamodel, which easily recognizes the spherical structure of Griewank, and the simplex-
based operators, using approximations of the gradient of the function.

An interesting conclusion is that, regarding SEEAS, the increase of the computation budget has
mild effects in the improvement of the mean best solution. This is another evidence of the
suitability of SEEAS for extremely time-demanding optimization problems, in which the
desirable number of function evaluations should be minimal.
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Figure 9.3 | Convergence curves for test function OF1 (Sphere) with 15 (a, b) and 30 variables (c, d),
with MFE=500 (a, ¢) and MFE=1000 (b, d).
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Figure 9.4 | Convergence curves for test function OF2 (Ackley) with 15 (a, b) and 30 variables (c, d),
with MFE=500 (a, ¢) and MFE=1000 (b, d).
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Figure 9.5 | Convergence curves for test function OF3 (Griewank) with 15 (a, b) and 30 variables (c,
d), with MFE=500 (a, ¢) and MFE=1000 (b, d).
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Figure 9.9 | Initial part of convergence curves up to 100 function evaluations, for test functions Levy
(a) and Griewank (b), for the case of MFE=500 and 15 variables.

9.4.4 Sensitivity analysis against input parameters of SEEAS

As mentioned in section 9.2.2.4, SEEAS requires determining several input arguments, in
terms of step parameters N;, N, Nc and N,, mutation probability p., and adjusting factor & of
the annealing cooling schedule. In order to investigate the sensitivity of SEEAS against the
default values adopted so far (i.e., Nr= Ne = Nc = Ny = 20, pm = 0.10 and £ = 2), we employed 30
independent runs of the tests functions (for n = 15 variables and MFE = 500), assigning
different values to its input parameters. The configurations and summary statistics, in terms of
means and standard deviation of the optimal solution of each set of optimizations, are given in
to Table 9-5-Table 9-7.

The analysis justifies our recommendations for the input parameters of SEEAS. As shown in
Table 9-5, the performance of the algorithm is significantly improved by increasing the
common value of the step parameters from 5 to 20, while it is slightly improved by further
increasing this value to 50. Actually, the simplex transitions are considerably assisted by using
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the outcomes of the surrogate model within local search; however, it does not make sense
calling the SM too many times, which introduces unnecessary computations with marginally
only benefit. Regarding the mutation probability (Table 9-6), the algorithm provides almost
identical results for pn values as low as 0.05 or o.10, yet its performance is deteriorated by
increasing this probability up to o.30. This is also a non-surprising conclusion, since it is well-
known that in evolutionary algorithms the mutation operator should be occasionally called in
order to avoid making search too random. Finally, the setup with & = 2 provides systematically
better results compared to & = 1, while it exhibits either better or similar performance when the
annealing cooling parameter increases up to & = 4 (Table 9-7). Nevertheless, a common
outcome form the above investigations is the relatively low sensitivity of SEEAS against the
examined configurations, for most of test problems.

Table 9-5 | Mean and standard deviation of best solutions in 15-D test problems for MFE = 500, for
different values of the four step parameters of SEEAS (for p,, = 0.10 and £ = 2).

Test function Ni=Ne=Nc=Ny=5 | Ne=Ne=Nc=Nu=20 | Nr=Ne=Nc=Nu=50

Mean StDev Mean StDev Mean StDev
OF1 0.002 0.001 0.002 0.001 0.001 0.001
OF2 1.724 0.641 0.812 0.233 0.806 0.258
OF3 0.714 0.15 0.538 0.118 0.504 0.133
OF4 87.043 32.027 59.144 28.023 58.030 28911
OF5 51.299 21.579 46.268 15.359 45.101 13.634
OF6 0.266 0.228 0.203 0.105 0.192 0.114

Table 9-6 | Mean and standard deviation of best solutions in 15-D test problems for MFE = 500, for
different values of mutation probability pm (for N, = N, = N.= N, = 20 and £ = 2).

. Pm=0.05 pm=010 |  pm=0.30
Test function Mean StDev | Mean StDev  Mean StDev
OF1 0.002 0.001 0.002 0.001 0.002 0.001
OF2 0.895 0.345 0.812 0.233 0.994 0.480
OF3 0.534 0.125 0.538 0.118 0.654 0.149
OF4 61.071 21.639 | 59.144 28.023 61.876 29.762
OF5 46.176  15.088 | 46.268 15.359 49.930 15.636
OF6 0.226 0.088 0.203 0.105 0.277 0.095

Table 9-7 | Mean and standard deviation of best solutions in 15-D test problems for MFE = 500, for
different values of mutation probability pm and cooling parameter £ (for N, = N. = N. = N, = 20 and py,
=0.10).

. E=1 E=2 E=4
Test function Mean StDev | Mean StDev | Mean StDev
OF1 0.003 0.002 0.002 0.001 0.002 0.002
OF2 0.978 0.349 0.812 0.233 0.896 0.381
OF3 0.759 0.141 0.538 0.118 0.894 0.172
OF4 69.603  29.140 | 59.144 28.023 | 62.896  35.297
OF5 66.730 15.871 | 46.268 15.359 | 45.403 17.132
OF6 0.423 0.113 0.203 0.105 0.206 0.151

9.4.5 Suitability assessment based on stochastic dominance

For each problem and each algorithm, we illustrate the empirical CDFs, using the sample of 30
best solutions found after the termination of the corresponding search procedures. Based on
them, we calculated the medians of the CDFs (Table 9-8), and next employed the MWU test
between the algorithms providing the best (lower) medians, to assess whether the obtained
differences are significant. The results of all tests are summarized in Table 9-9.

The outcomes of the MWU test are in full accordance with previous conclusions, and prove
the statistical suitability of SEEAS. Considering the full set of problems, SEEAS is evaluated as
preferred or equally good in 18 out of 24 cases. Next best method is DYCORS, which is preferred
or equally good in 6 out of 24 cases. If we isolate the less beneficial subset, i.e., the formulation
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with 30 decision variables under the lower computational budget (lower left panel of Table
9-9), the superiority of SEEAS is even more evident.

Table 9-8 | Median of best function values obtained from all algorithms.

+ | Problem MEE = 500 MEE = 1000
EAS DDS | SEEAS DYCORS | MLMSRBE | EAS | DDS  SEEAS | DYCORS MLMSRBE
OF1 1457  0.684  0.002 0.002 0.012 0380  0.131  0.001 0.001 0.008
OF2 7367 5942 0.838 0.745 2.353 3519 3.877 0410 0.574 1.629
15| OF3 7.446 2312 0513 0.921 1.088 2211 1400 0360 0.819 1.027
OF4 34.205 133.574 53.874  154.151 147.998 | 25224  98.089 34413  127.557 110313
OF5 85223 24714 45061  37.912 37.696 58.926  10.813  31.808  32.644 34.522
OF6 1592 0616  0.198 0.681 0.488 0765 0216  0.114 0.069 0.191
OF1 4391 9.828  0.018 0.073 0.590 2516  1.860  0.005 0.009 0.270
OF2 9.844 13110 1918 3.144 4.725 6579  7.831 1.170 1.108 3.438
5 | OF 17.758 36453  0.807 1.249 2.974 8741  7.920  0.554 1.025 2.507
OF4 | 114.878 540.070 168.695  456.956 570.266 | 95.274 386.140 147.120  409.986  465.057
OF5 | 232766 130.090 121.973  112.009  156.834 | 200.952 71.160  97.994  85.728 127.299
OF6 5264 15496 0.630 2.075 2302 2458 2918 0431 2.762 1.412

Table 9-9 | Summary results of MWU test to infer about the preferred algorithm. H-value indicates
the rejection or not of the null hypothesis, i.e., if H = o, the null hypothesis is not rejected.

Probl MEE = 500 MEE = 1000
" TODIM 7 referred  Alternative p-Value  H | Preferred  Alternative  p-Value H
OF1 SEEAS DYCORS 5298E-01 0 SEEAS MLMSRBF  3.020E-11 1
OF2 DYCORS SEEAS 3.478E-01 0 SEEAS DYCORS 1.492E-06 1
15 OF3 SEEAS DYCORS 9.919E-11 1 SEEAS DYCORS 1.206E-10 1
OF4 EAS SEEAS 3.034E-03 1 EAS SEEAS 9.883E-03 1
OF5 DDS DYCORS 9.514E-06 1 SEEAS DYCORS 2.028E-07 1
OF6 SEEAS MLMSRBF  3.644E-02 1 | DYCORS SEEAS 6.952E-01 0
OF1 SEEAS DYCORS 3.020E-11 1 SEEAS DYCORS 2.154E-06 1
OF2 SEEAS DYCORS 3.474E-10 1 | DYCORS SEEAS 9.926E-02 0
OF3 SEEAS DYCORS 3.020E-11 1 SEEAS DYCORS 3.020E-11 1
30 OF4 EAS SEEAS 6.526E-07 1 EAS SEEAS 3.157E-05 1
OF5 DYCORS SEEAS 5.746E-02 0 | DYCORS DDS 1.988E-02 1
OF6 SEEAS DYCORS 1.094E-10 1 SEEAS MLMSRBF  2.572E-07 1

9.5 HYDROLOGICAL CALIBRATION

9.5.1 Study area, simulation model and calibration setup

Hydrological calibration is probably the most typical global optimization problem in water
resources. Numerous studies have been published dealing with calibration and its
shortcomings, arising from the multiple sources of uncertainty that govern all aspects of the
parameter estimation procedure [Efstratiadis and Koutsoyiannis, 2010]. Here we investigated
the calibration of a lumped simulation model, applied to Boeoticos Kephisos river basin, in
Eastern Greece (1850 km?). The basin extends over a heavily-modified karst system with
multiple peculiarities, as result of complex interactions between surface and groundwater
processes as well as human interventions, by means of surface and groundwater abstractions.
This hydrosystem has been subject of comprehensive research, through alternative [Rozos et
al., 2004; Efstratiadis et al., 2008; Nalbantis et al., 2011]. Monthly precipitation, potential
evapotranspiration, runoff and groundwater abstraction data are available for a 77-year period
(Oct. 1907 to Sep. 1984), to be used as inputs in simulations.

For the representation of the basin processes we applied a lumped version of Hydrogeios model
|Efstratiadis et al., 2008]. The basin is vertically subdivided into three storage elements that
represent interception, soil moisture and groundwater. The model estimates the main
responses of the basin, i.e., actual evapotranspiration, surface and groundwater runoff and
groundwater losses, using nine parameters and two initial conditions, i.e., the water levels of
soil and groundwater tanks at the beginning of simulation. A brief description of the model
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parameters and their feasible bounds assigned is given in Table 9-10. Based on the above data
and tools, we formulated two optimization problems, using as objective function the well-
known Nash-Sutcliffe efficiency metric (NSE). The first one follows the typical calibration
paradigm (i.e., inverse modelling), in which the model parameters are unknown and the model
is fitted to the observed runoff of the basin. In the second formulation, also referred to as toy
calibration, we considered the (arbitrary) parameter set shown in Table 9-10, which ensures a
relatively high NSE value. Next, we run the model forward to obtain synthetic runoff time
series, for the given parameters and the same hydrological inputs, and finally we used these
synthetic runoff data to infer the model parameters. The key difference of the second approach
is that since the theoretical values of model parameters are a priori known, the theoretical
optimum is by definition one. On the contrary, in real-data calibrations both the value and the
location of the global optimum are unknown. A plausible (but not certain) approximation of
the maximum NSE is 0.775, which was estimated by running EAS for multiple initial
populations, allowing a reasonably large number of function evaluations (MFE = 5000). The
key advantage of toy calibration is that the search procedure is not affected by structural and
observation errors (i.e., both the model and the data are considered perfect), which allows fairly
evaluating the performance of the optimization methods. In addition, since the value of the
global optimum is by definition higher than is the case of real data, the optimization problem
itself becomes harder to solve. Similarly to test functions, we assessed the performance of
SEEAS against the other four algorithms assuming 30 independent runs and the typical
computational budgets of 500 and 1000 function evaluations (each evaluation involves the
implementation of a full simulation, for given parameters). We underline that the current suite
of problems is only regarded as a computational exercise, aiming to test the algorithms against
challenging problems of real-world type. In an operational context, hydrological calibration is
far from a blind optimization game, since it should also account for issues such as the model
predictive capacity and the physical interpretation of the optimized parameters [Efstratiadis
and Koutsoyiannis, 2010].

Table 9-10 | Model parameters, feasible bounds and values assigned for toy calibrations.

Parameter | Description and units Lower value | Upper value | Toy value
r Interception capacity (mm) 0.010 100.0 13.0
c Recession coefficient for direct runoff (-) 0.010 1.000 0.098
k Soil capacity (mm) 5.0 600.0 506.7
I Recession coefficient for interflow (-) 0.010 1.000 0.922
K Interflow threshold, as ratio of soil capacity (-) 0.010 1.000 0.945
m Recession coefficient for percolation (-) 0.010 1.000 0.064
%) Recession coefficient for baseflow (-) 0.010 1.000 0.031
¥B Threshold for baseflow generation (mm) 5.0 300.0 35.9
I3 Recession coefficient for underground losses (-) 0.010 1.000 0.068
S0 Initial soil moisture storage (mm) 0.0 600.0 5.1
Yo Initial groundwater storage (mm) 5.0 300.0 111.2

9.5.2 Model calibration with unknown parameters

Table 9-11 summarizes the statistical characteristics of the set of 30 optimal solutions found
under the two budgets. SEEAS outperforms all other algorithms in terms of mean and median
values of NSE. In particular, the mean optimal efficiency is 0.632 and 0.727, for MFE = 500 and
1000, respectively, while the medians are even higher (0.714 and o0.747, respectively). In
addition, the variability of NSE values is the lowest among all algorithms. For comparison, EAS
reaches a median efficiency of only 0.448, for MFE = 500, but it is considerably increased up to
0.719, for MFE = 1000. In this last case, the mean NSE is only 0.572, due to the existence of
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some quite low values in the sample of 30 optimal solutions, which converge to a local optimum
far from the global one. Finally, the statistical performance of the other three schemes (DDS,
DYCORS, and MLMSRBF) is much less satisfactory, particularly under the restricted budget
of 500 simulations.

Table 9-11 | Statistical characteristics of NSE values obtained from all algorithms.

Budget / MEE = 500 MEE = 1000

Statistics EAS DDS SEEAS DYCORS MLMSRBF | EAS DDS SEEAS DYCORS MLMSRBF
Min 0.331 0.329 0.279 0.204 0.141 0.331 0.330 0.331 0.246 0.268
Average 0.513 0.426 0.632 0.389 0.447 0.572  0.467 0.727 0.525 0.537
StDev 0.176 0.174 0.172 0.171 0.205 0.200 0.193  0.078 0.185 0.190
Median 0.448 0.331 0.714 0.306 0.369 0.719 0.331 0.747 0.505 0.651
Max 0.753 0.766  0.763 0.753 0.752 0.764 0.762  0.769 0.755 0.752

The above conclusions are further justified when comparing the convergence curves (Figure
9.10 and the CDFs (Figure 9.11) of the five algorithms. It is shown that after 300 (for MFE =
500) or 400 (for MFE = 1000) simulations, SEEAS evolves much faster, thus locating much
higher NSE values than other algorithms. The performance of EAS is also very satisfactory,
given that it outperforms the other three state-of-the-art algorithms, two of which are also
surrogate-assisted. Similarly, in terms of CDFs, in the low-budget scenario, SEEAS ensures NSE
values greater than 0.65 in 23 out of 30 calibrations (Figure 9.11a). At the same problem, EAS
performs better than other algorithms, particularly DDS, which is usually trapped to a remote
local optimum. By increasing the computational budget to MFE = 1000, SEEAS systematically
dominates all other schemes, ensuring NSE values greater than o.70 in 28/30 independent
calibrations (Figure 9.11b).
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Figure 9.10 | Convergence curves for MFE = 500 (a) and MFE = 1000 (b).
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9.5.3 Toy calibration with synthetic runoff

As explained above, toy calibrations are more challenging, in the sense that the theoretical
values of the model parameters are known, thus corresponding to unit efficiency. The
outcomes of all associated tests, in terms of statistical characteristics of the best NSE value
found so far, convergence curves and CDFs are shown in Table 9-12, Figure 9.12 and Figure
9.13, respectively.

Table 9-12 | Statistical characteristics of NSE values obtained from all algorithms.

Budeet | Statist MFE = 500 MEE = 1000

udget / Statistics | e 56 SEEAS DYCORS SRBF | EAS DDS SEEAS DYCORS SRBF
Min 0527 0525 0400 0376 0343 | 0527 0526 0662 0438 0462
Average 0.688 0694 0.787  0.641  0.640 | 0.793 0742 0963  0.679  0.735
StDev 0172 0206 0207 0186 0213 | 0215 0211 0058 0202  0.204
Median 0.620 0528 0910 0529 0517 | 0.947 0737 0981 0551  0.832
Max 0981 0987 0978 0961 0970 | 0.989 098 0987 0975  0.980

The configuration of the calibration problem with synthetic runoft data further highlights the
superiority of SEEAS against other algorithms. Specifically, the median NSE value found after
only 500 simulations is 0.910, while the next best value is only 0.620, which is obtained through
EAS. The increased computational budget ensures almost perfect calibrations (mean NSE =
0.963, median = 0.981), with minimal variability (standard deviation 0.058). For this budget,
the median of EAS is also remarkably high (NSE = 0.947). Furthermore, SEEAS outperforms
all other algorithms from the early search steps. Actually, for MFE = 500, until the first ~200
simulations DDS is competent, but then its improvement rate is significantly restricted. For the
increased budget of 1000 simulations, SEEAS is arguably the best option, while EAS remains
very competent. At the 2/3 of the budget, SEEAS achieves efficiency values up to 0.90, while
EAS reaches values around o.75. Even more exciting are the CDF charts, particularly for MFE
= 1000; in this case, SEEAS achieves NSE values greater than 0.95 in 29 out of 30 calibration
trials, and the original EAS approach also provides NSE values greater than 0.95 in 27 out of 30
trials. This indicates the remarkable reliability and robustness of the two algorithms, in contrast
to other methods that generally fail to reach the known optimum in reasonable time, thus
requiring multiple independent runs to ensure statistically good calibrations.
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9.6 OPTIMIZATION OF MULTI-RESERVOIR SYSTEM PERFORMANCE

9.6.1 Problem statement

The second real-world test application involves the optimization of the operation of a multi-
reservoir system in North-Eastern Greece. The objective was the development of uncertainty-
aware operational rules that maximize the mean annual economic benefit of the system from
energy production. The operation model of the hydrosystem is driven by synthetic hydrological
data of 500 years length, thus drastically encumbering the computational time of simulation.
In contrast to previous benchmarking tests, this problem is fully representative of real-world
optimizations on a budget, given that a single function evaluation (i.e., a 500-year simulation)
required ~90 s. Due to time limitations, we compared SEEAS only against the two other
surrogate-assisted algorithms, i.e., DYCORS and MLMSRBF. For each algorithm, we employed
10 independent optimizations, allowing 500 function evaluations (thus each optimization run
required about 12.5 hours).

9.6.2 The parameterization-simulation-optimization scheme

The reservoir system extends along the downstream branch of Nestos, a transboundary river
shared by Bulgaria and Greece. It comprises three serially-connected hydroelectric reservoirs
(Thysavros 381 MW; Platanovryssi 116 MW; Temenos 19 MW) and a small irrigation reservoir
at the outlet. The first two power plants are reversible, thus employing pumped-storage to
maximize energy efficiency. The river flows are mostly regulated in the most upstream reservoir
(Thysavros), while the rest of projects have limited storage capacity.

The monthly operation of the system is represented by the well-known modelling tool
WEAP21 [Yates et al., 2005]. Hydrological inputs are inflows to Thysavros, as well as rainfall
and evapotranspiration over all reservoir areas. The configuration of the simulation problem is
explained in the recent articles by Tsoukalas and Makropoulos [2015a, 2015b], where are also
provided further details about the study area and associated data.

Since the size of historical hydrological data (1968-1982; 1991-1995) is not sufficient to extract
safe conclusions about the long-term performance of the system, we used instead synthetic time
series of 500 years length that were generated through Castalia software [Efstratiadis et al.,
2014al'". Castalia employs a multivariate stochastic simulation scheme to generate synthetic

12 See also the R language implementation, i.e., CastaliaR package | Tsoukalas et al., 2018c].
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time series that reproduce the statistical properties of the parent historical data, at multiple
temporal scales. In the specific study, in which the time step of simulation is monthly, the model
preserves the observed means, standard deviations, skewness coefficients, first order
autocorrelations and cross-correlations at the monthly and annual scales; it also reproduces the
long-term persistence (Hurst-Kolmogorov dynamics) at the annual and over-annual scales,
thus accounting for the changing behavior of hydroclimatic processes [Koutsoyiannis, 2011b].
We note that the use of Castalia in this case study is supported by the fact that the focus is in
the investigation of SEEAS (and two other algorithms) performance to handle computationally
expensive simulation-optimization problems. In an operational context, it could be preferable
to employ the stochastic modelling and simulation approach of Chapter 4-7, since it overcomes
many of limitations of the current synthetic data generation schemes.

The model decision variables were expressed in terms of energy targets, which are assigned to
the associated system components, i.e., the three power plants (the two reversible). The targets
refer to power production (forward operation of turbines) and consumption (backward
operation, i.e., pumping). All targets were seasonally varying, considering four seasons per year,
but they did not change over time (steady-state simulation). In this context, we parameterized
the operation of the reservoir system through (3 + 2) X 4 = 20 energy targets. The upper bound
of target values was set equal to the installed capacity of the corresponding machine (turbine
or pump), while all lower bounds were set zero. At each simulation step, for given (i.e., provided
by the stochastic model) inflows and known initial conditions (reservoir storages), the model
transforms energy targets to equivalent minimum flow constraints, thus forcing the model to
pass the required amount of water to produce (or consume) the desired amount of energy.

In the formulation of the optimization problem, we assessed the long-term performance of the
system in terms of mean energy benefit from the three energy components. Based on a slight
modification of the expression introduced by [Efstratiadis et al, 2012; Tsoukalas and
Makropoulos, 2015b], we evaluated the monthly benefit b; gained from each component i by:

b; = cg + e + cs max(e; — e}, 0) + cp min(e; — e;,0) — cpp; (9.13)

where e/ is the target energy that corresponds to the specific season of the year, e; and p; are
the actual energy production and consumption (in the case of pumped-storage), which are
estimated through the simulation model, cp and cg are unit profits for firm and secondary
energy production, respectively, cp is a unit penalty cost for energy deficits, and cp is the unit
pumping cost. The unit profit or cost values were set 0.43, 0.23, 0.80 and 0.23 €/kWh,
respectively.

9.6.3 Results

In Figure 9.14a are plotted the average convergence curves of the three algorithms, while in
Figure 9.14b are illustrated the corresponding CDFs, estimated on the basis of optimal results
obtained from 10 independent trials. Once again, SEEAS outperforms both DYCORS and
MLMSRBF, considering the budget of 500 trials, although their differences are relatively small.
Algorithms have almost similar behavior until ~300 FE, but then SEEAS evolves faster. In terms
CDFs, SEEAS stochastically dominates MLMSRBEF which, in turn, dominates DYCORS.

The two figures reveal the key peculiarity of reservoir optimization problems, which is the
formulation of flat response surfaces, indicating low sensitivity of the system performance
against the associated parameters. This is due to the existence of numerous constraints, physical
and operational, which significantly restrict the flexibility of decisions. Generally, the decision
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variables of water management models represent desirable quantities (by means of target
storages, target abstractions, target flows, etc.) that may be infeasible across a wide range of the
decision space. In such cases, the actual (i.e., simulated) decisions and the system performance
are mainly determined by the system constraints, which in turn results to the formulation of
extended valleys across the response surface.
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Figure 9.14 | Convergence curves (a) and empirical CDFs (b) for MFE = 500.

9.7 SUMMARY

This Chapter introduces a surrogate-enhanced extension of the evolutionary annealing-
simplex (EAS) method. This new scheme, called SEEAS, uses the RBF metamodel to assist the
generating mechanisms of EAS and identify promising solutions with low computational cost.

The effectiveness and efficiency of SEEAS have been demonstrated on the basis of a
benchmarking suite comprising a variety of optimization problems, both theoretical and real-
world. All problems were examined with alternative formulations and different budgets. The
performance characteristics of SEEAS (statistical characteristics of best solution found so far,
convergence behavior, stochastic dominance), were compared against three other state-of-the-
art algorithms, as well as the original EAS algorithm. SEEAS outperformed all other methods
in 18 out of 24 of theoretical problems (six functions with alternative configurations).
Moreover, SEEAS was found superior in all real-world applications. Specifically, in hydrologic
calibrations SEEAS showed consistency and robustness in locating near optimal solutions. In
the first sub-case, using real runoff data, SEEAS located parameter sets with efficiency values
larger than o.70 in 28 out of 30 independent runs. Similarly, in the toy application with
synthetic runoff, where the location of the optimum is a priori known, SEEAS ensured
efficiency values larger than 0.90 in 29 out of 30 runs. Finally, in the optimization of the multi-
reservoir system, SEEAS also exhibited the best behavior.

It is interesting mentioning that the two real-world applications are representative of the most
typical global optimization problems in water resources. Both problems are very demanding,
due to the complexity of their search space geometry. In particular, the goodness-of-fit
measures used in calibrations generate highly irregular response surfaces with many local
optima at all scales, in contrast to performance measures employed in water management
problems, which usually compose extended smooth areas. A common characteristic of the two
problems is the interactions between the model variables (or subsets of them), which is a major
reason of multimodality (i.e., existence of multiple local optima with almost similar
performance). The variety of generating mechanisms and quasi-stochastic transitions of
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9.7 SUMMARY

SEEAS provide flexibility to handle search spaces with such peculiarities and so diverse
geometry, while other algorithms seem to be less generic.

A well-known shortcoming of hybrid optimization algorithms (also including SEEAS) is the
need for defining a number of input arguments which may confuse and even discourage non-
experienced users. However, in the case of SEEAS, we recommend the use of generic values for
the associated inputs, which have been specified after extended investigations. In fact, our
analyses indicated that the algorithm is little sensitive against its input parameters, provided
that reasonable values are assigned to them. This is also a strong evidence of the robustness of
SEEAS.

Current research focuses on further improving the performance of SEEAS, by testing new
simplex transformations and investigating other metamodels. Moreover, the authors are
working towards extending SEEAS to handle noisy functions and developing a multi-objective
version of the algorithm
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The main aim of this Thesis is to provide innovative tools and methodologies for the realistic
modelling and simulation of hydrometeorological processes (i.e., the generation of synthetic
hydrometeorological time series with the desirable probabilistic and stochastic properties), and
simultaneously tackle the additional computational effort, which arises when long synthetic
time series are used to represent the input uncertainty in simulation-optimization frameworks.
Thereby, eventually ensuring the practical implementation of uncertainty-aware water-system
optimization problems.

CONCLUSIONS AND DISCUSSION

More specifically, the main objectives of this PhD Thesis are twofold:

a) The development of novel non-Gaussian stochastic simulation models, able to account also
for the other peculiarities typically encountered in hydrometeorological processes, such as,
intermittency, auto- and cross- dependence, periodicity, as well as their scale-varying
probabilistic and stochastic behavior (Chapter 4 to 7).

b) The development of surrogate-based optimization methodologies and algorithms that can
efficiently and effectively confront water-system simulation-optimization problems under
uncertainty, i.e., when using stochastic inputs to drive the simulation-optimization procedure
(Chapter 8 and 9).

As K. Pearson remark in Notes on the History of Correlation [1920], the mathematics are not
there for the joy of the analyst but because they are essential to the solution. In analogy to
Pearson’s statement, in this Thesis, stochastic modelling and simulation, as well as optimization
methods regard the mathematics and water-system problems are those requiring a solution. A
solution that due to the critical nature of such systems, for human life and security, owes to be
both uncertainty-aware and optimum.

10.1 STOCHASTIC MODELLING AND SIMULATION OF HYDROMETEOROLOGICAL
PROCESSES

This Thesis, identified critical problems and constraints in existing simulation schemes which
in turn motivated the quest for alternative simulation schemes. In this respect, the major
contributions of this work are:

a) The identification of an important flaw of linear stochastic models with non-Gaussian
white noise; which can lead to bounded, and thus unrealistic and non-natural
dependencies.

b) The formal introduction in hydrology of the so-called Nataf’s joint distribution model
(NDM); which to the best of author’s knowledge has been unknown to the hydrological
community for years. NDM provides the theoretical basis for the description of the
multivariate joint distribution of non-Gaussian random variables, as well as act as a main
building block for the establishment of non-Gaussian conditional distribution and
processes.
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10.1 STOCHASTIC MODELLING AND SIMULATION OF HYDROMETEOROLOGICAL PROCESSES

¢) The extension of NDM for the derivation of non-Gaussian conditional distributions.

d) The development of a computationally simple and efficient algorithm, based on a hybrid
Monte Carlo procedure, that is used to approximate the so-called equivalent correlation
coefficients; which are essential for any Nataf-based model.

e) The formulation of general guidelines that regard the development of non-Gaussian Nataf-
based stochastic models, for univariate and multivariate, stationary and cyclostationary
processes.

f) The development of two Nataf-based models, termed Symmetric Moving Average (neaRly)
To Anything (SMARTA) and Contemporaneous Multivariate Autoregressive (neaRly) to
Anything (CMARTA), that are able to simulate univariate and multivariate stationary
processes with any marginal distribution and autocorrelation structure.

g) The extension of the notion of Nataf-based stationary processes to the cyclostationary case,
and the introduction of Stochastic Periodic AutoRegressive To Anything (SPARTA) model,
which hold outs the promise of simulating univariate and multivariate cyclostationary
processes with arbitrary seasonally varying marginal distributions and correlations.

h) The integration of the developed Nataf-based models within a multivariate, multi-scale
disaggregation-based scheme, termed Nataf-based disaggregation to Anything (NDA),
allowing the development of a modular stochastic simulation framework. This framework,
enables the development of various configurations that can reproduce the desirable
distributions and correlation structures at multiple time scales (e.g., as shown herein via
two configurations, from annual to daily and from daily to hourly), and also cope for the
unique peculiarities encountered in different scales (e.g., periodicity and intermittency in
monthly and daily time scale respectively).

What is the added value offered by Nataf-based stochastic models?

The generation of long synthetic (hydrometeorological) time series that ideally resemble the
marginal and joint properties of the parent information (e.g., observed records) is a prerequisite
in many uncertainty-related hydrological studies, since they can be used as inputs and hence
allow the propagation of natural variability and uncertainty to the typically deterministic water-
system models. For this reason, it has been for years, one of the main research topics in the field
of stochastic hydrology.

It can be argued, that the overall question is not just a technical issue, i.e., providing better
stochastic models, but, in a more general context, revisiting the essentials of synthetic data
generation. In particular, it is suggested moving from the preservation of a specific set of
statistical characteristics, which are exclusively inferred from the observed data, to the
preservation of a priori specified theoretical distributions and correlation structures that are
hypothesized to be consistent with the anticipated probabilistic and stochastic behavior of the
underlying processes.

Distribution functions fully describe the behavior of random variables, hence their use within
stochastic simulation models is a reasonably a more precise modelling approach. Theoretical
correlation structures, allow modelling and description of the dependence (temporal or spatial)
in a parsimonious manner and additionally provide advantages, such as enhanced model
stability and incorporation of estimator’s bias. In both cases, it is also possible to take advantage
of the numerous available large-scale regional studies and identify appropriate models for data-
scarce regions.

The flexibility offered by the developed Nataf-based simulation schemes (particularly when
integrated in a multi-scale simulation configurations, i.e., through NDA), can facilitate the

Page | 215



CUNCLUSIONS AND DISCUSSION

preservation of the typically non-Gaussian distribution of hydrometeorological processes and
simultaneously cope for other common peculiarities (i.e., intermittency, auto- and cross-
dependence, periodicity, as well as their scale-varying probabilistic and stochastic behavior).

Specifically, Nataf-based methods, allow modelling processes with continuous, discrete or
mixed-type distributions (provided that their variance exists), as well as allow the selection of
any the fitting method for the identification of their parameters; this in turn offers the means
to exploit years of research and advances in statistical analysis of hydrometeorological
variables/processes. Further to this, these models, can and should, be coupled with theoretical
correlation structures thus parsimoniously identifying target dependencies to preserve, in time
and space.

It is stressed that blind use of stochastic models, with overconfidence on historical data, may
create a distorted reality, thus feeding operational hydrological and water management studies
with inconsistent synthetic inputs. In this vein, it is recommended to turn our efforts into the
selection of the suitable distribution model, as well as the careful assessment of the sample
statistics, with emphasis to high order moments and correlations that are prone to
uncertainties. Therefore, the flexibility of the proposed schemes can contribute towards the
establishment of a new paradigm in hydrological stochastics.

Of course, the need and utility of non-Gaussian processes spans beyond the realm of hydrology
and engineering, since it is widely acknowledged that such processes are omnipresent in many
other scientific domains, such as, finance, biology, communication networks and operations
research. The proposed non-Gaussian stochastic process models may find fertile ground of
application also in such domains, and hopefully resolve existing issues and trigger new
developments. It is also interesting to note that the developed schemes, after minimal
modifications, can also be used for forecasting purposes, an arguably interesting topic for
future research.

10.2 OPTIMIZATION OF WATER-SYSTEM PROBLEMS UNDER UNCERTAINTY

Increasing model requirements, in order to allow process descriptions at fine spatial and
temporal resolutions, as well as incorporation of uncertainty (e.g., using stochastic inputs
though the methods described in Chapter 4-7 of this Thesis), have substantially increased
hardware requirements, in terms of computational resources and time (e.g., water-system
models, and especially flood models are famous time-expensive simulation models). In this
respect, surrogate-modelling techniques have gained significant attention, since they promise
handling high-demanding optimization problems with a limited computational budget.

This Thesis contributions on the field of water-system optimization under uncertainty can be
summarized as follows,

a) The extension of the parameterization-simulation-optimization (PSO) framework for
water-systems management, to handle multiple objectives, as well its effective and efficient
implementation on a budget through the use of multi-objective surrogate-based algorithms.

b) The development of a surrogate-enhanced evolutionary optimization algorithm, termed
SEEAS, capable of handling a variety of time-expensive, water-resources, global
optimization problems.
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What is the added value of employing surrogate-modelling techniques in typical simulation-
optimization problems?

This type of methodologies and algorithms are specifically designed to confront optimization
problems, which are omnipresent in engineering sciences, in a fraction of time that is required
by other state-of-the-art methods (e.g., evolutionary algorithms), while not relying on
increasing the hardware’s performance. Their utility is highlighted by the fact that simulation
models requirements in computational time increase with a fast rate, therefore unwittingly
pose a barrier to real-world applications of typical optimization methods, particularly when
uncertainty needs to be explicitly embedded (i.e., using stochastic inputs). Such methods,
ensure the practical implementation of research developments in the realm of stochastic
modelling and simulation for uncertainty embedding within real-world engineering works,
which this Thesis also contributes to. Beyond hydrology, fruitful applications domains are
those of aerospace engineering and computational fluid dynamics, where a single simulation
run of the model may require several hours or even days; a fact that prohibits the use of classical
optimization methods.

10.3 OVERALL CONCLUSIONS AND FUTURE RESEARCH

Incorporating uncertainty within decision making (regardless of its origin) is, and
unfortunately will probably remain, a fruitful topic of research for the foreseeable future. In
principle, this is achieved by formulating Monte Carlo simulation-optimization experiments
driven by stochastic inputs. Such constructs enable the conversion of deterministic systems
(e.g., physical or conceptual) to stochastic ones, and hence allow the analysis of the system’s
behavior in a probabilistic and risk-aware manner.

The contributions of this Thesis to this paradigm are twofold: (i) developing novel stochastic
modelling and simulation approaches (Chapter 4-7) for the input (hydrometeorological)
processes, thus allowing their more accurate representation, and hence eventually improve the
quality of the deterministic model’s outputs; (ii) developing novel surrogate-based methods
(Chapter 8-9) to handle time expensive simulation-optimization problems, thus ensuring the
operational and practical implementation of such frameworks without requiring extensive and
expensive hardware infrastructure nor sacrificing the identification of optimum solutions.

The combination of these new developments, can further contribute to the wide-spread
implementation of uncertainty-aware frameworks, for the design, management and operation
of complex systems, aiming to identify reliable and optimal engineering solutions for the
protection of human life and society from low-frequency high-impact extreme events (e.g.,
floods and droughts). Currently, such frameworks, are typically employed within the domains
of water resources and multi-reservoir systems, yet their use and utility in other systems is
relatively unexplored. As such, future research, apart from further exploring, extending and
improving the new developments presented herein (see the summary of each Chapter), may
enable the development and application of uncertainty-aware frameworks for similarly critical
(hence requiring uncertainty embedding) and, arguably more complex systems (typically
simulated by time-expensive models), such as, urban water-systems and renewable energy
systems.
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APPENDIX A

A.1 THE UNIVARIATE CYCLOSTATIONARY THOMAS-FIERING MODEL

Herein we present the mathematical background of the univariate cyclostationary Thomas-
Fiering (TF) model, also known as the univariate periodic autoregressive model of order 1 (i.e.,
PAR(1)), with Pearson type-IIT (PIII) white noise. Let x5, be a cyclostationary (i.e., periodic)
process with each season denoted by, s = 1, ..., 5,1, ...,5,1 ..., and period ¢, where S denotes
the total number of seasons (e.g., for a monthly model, S = 12 and t denotes the year). The
process can also be expressed as, x5, where n € Z~ is the time index. In this form, the season
s is obtained by, s = n mod(S), while if n mod(S) = o, then s = S. Furthermore, the period
t can be obtained by, t = 1 + (n — s)/S. For convenience, we use the first formulation, also
omitting the period index t. The generating mechanism of the model is:

Xs = AsXg_y + bs&s (A.1)

where ag, b, are seasonally-varying parameters and &g denotes an i.i.d. variate. The parameter

as = Cov|x,,x,_,|/Var|x,_,] and bs = \[Var[&] — azVar[x,_,].

The statistical characteristics of the white noise &; term, which is generated through PIII
distribution, are related to those of the target process x; via the following relationships:

ue, = Eles | = b5 {E[x,] = asE|x,-,]} (A.2)
of =Varle]| =1 (A.3)
CS§5 = [§S] = bs_3 {I“l3 [ES] - as3 I“l3[£s—1]} (A4)

where 4 [i ] denotes the third central moment of an arbitrary random variable §, which in the

case of & coincides with its skewness coefficient since the model assumes unit variance.
Furthermore, following the rationale of Chapter 3, the envelope function of the generation
mechanism can be expressed as:

Xs 2 X5y + bsfg (A.s)

for positive skewness (i.e., PIII with b > 0), hence forming a lower boundary, and:

Xs S AsXs_y + byvg (A.6)
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for negative skewness (i.e., PIII with b < 0), hence forming an upper boundary. In the above,
€5 and v respectively denote the lower and upper supports of the distribution of the white
noise at season s. We remark that similar derivations, yet much more complex, can be derived
for other models that employ skewed white noise.

A.2 SUPPLEMENTARY MATERIAL OF CHAPTER 3

Table A-1 | Scenario-based summary of theoretical (see Table 3-1 of the main manuscript; section
3.2—“The envelope behavior in the classical univariate AR(1) model”’) and simulated (synthetically
generated; using an AR(1) with PIII white noise) statistics.

Scenario Type Mean (u) Variance (¢?) Skewness (C;) Autocorrelation (p;)
Scenario A Theoretical 0.50 1.00 1.00 0.20
Simulated 0.46 0.93 1.05 0.20
Scenario B Theoretical 0.50 1.00 2.00 0.20
Simulated 0.54 1.06 2.07 0.18
Scenario C Theoretical 0.50 1.00 4.00 0.20
Simulated 0.50 0.91 3.48 0.21
Scenario D Theoretical 0.50 1.00 1.00 0.40
Simulated 0.46 0.97 0.91 0.34
Scenario E Theoretical 0.50 1.00 2.00 0.40
Simulated 0.49 1.11 2.09 0.45
Scenario F Theoretical 0.50 1.00 4.00 0.40
Simulated 0.46 1.01 4.89 0.45
Scenario G Theoretical 0.50 1.00 1.00 0.60
Simulated 0.42 0.97 0.88 0.64
Scenario H Theoretical 0.50 1.00 2.00 0.60
Simulated 0.48 1.04 2.20 0.62
Scenario 1 Theoretical 0.50 1.00 4.00 0.60
Simulated 0.48 0.93 4.22 0.57
Scenario ] Theoretical 0.50 1.00 1.00 0.80
Simulated 0.50 1.09 0.75 0.82
Scenario K Theoretical 0.50 1.00 2.00 0.80
Simulated 0.45 0.97 2.11 0.81
Scenario . Theoretical 0.50 1.00 4.00 0.80
Simulated 0.55 1.08 4.24 0.81
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Figure A.1 | Scenario-based (see Table 3-1 of the main manuscript; section 3.2—“The envelope
behavior in the classical univariate AR(1) model”) comparison of synthetic (using the an AR(1) with
PIII white noise) and theoretical autocorrelation function (ACF). The labels of each plot resemble the
corresponding scenarios of the aforementioned table (see also Table A-1).

Table A-2 | Summary of theoretical and simulated statistics for the first, zero-autocorrelated,
bivariate AR(1) process with PIII white noise, employed in section 3.2.3—“From the univariate to the
multivariate AR(1) model” of the main text.

Process Type Mean (u) Variance (¢?) Skewness (C,) Autocorrelation (p;)
o Theoretical 0.50 1.00 2.00 0.00
=t Simulated 0.50 1.06 2.39 0.00
2 Theoretical 0.50 1.00 2.50 0.00
=t Simulated 0.51 1.14 2.95 0.00

Theoretical cross-correlation (p) = 0.80 | Simulated cross-correlation (p,) = 0.79
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Table A-3 | Summary of theoretical and simulated statistics for the second, autocorrelated, bivariate
AR(1) process with PIII white noise, employed in section 3.2.3—“From the univariate to the

multivariate AR(1) model” of the main text.

Process Type Mean (u) Variance (¢?) Skewness (C,) Autocorrelation (p;)
o Theoretical 0.50 1.00 2.00 0.70
=t Simulated 0.52 1.08 2.00 0.70
2 Theoretical 0.50 1.00 2.50 0.50
=t Simulated 0.52 1.11 2.51 0.51

Theoretical cross-correlation (p,) = 0.80 | Simulated cross-correlation (p,) = 0.80

Table A-4 | Monthly-based summary of historical and simulated (synthetically generated using an
AR(1) with PIII white noise) statistics of the real-world case study employed in section 3.3—“Real
world case study” of the main text.

Month Type Mean (u) Variance (¢?) Skewness (C,) Autocorrelation (p;)
January Historical 167.89 33,973.86 3.89 0.69
Simulated 166.12 35,044.58 3.92 0.70
February Historical 179.50 32,317.25 3.95 0.66
Simulated 177.10 32,538.62 4.28 0.66
March Historical 172.07 13,773.37 2.69 0.75
Simulated 173.37 13,608.23 2.68 0.75
April Historical 172.47 10,253.59 4.04 0.74
Simulated 171.62 10,502.08 4.28 0.74
May Historical 107.83 4055.14 2.29 0.77
Simulated 110.20 4368.32 2.31 0.77
June Historical 50.86 591.95 1.59 0.64
Simulated 51.26 604.55 1.58 0.63
uly Historical 31.13 177.42 2.19 0.45
Simulated 31.06 176.04 2.17 0.45
August Historical 24.00 96.04 2.41 0.47
Simulated 23.96 94.83 2.35 0.47
September Historical 24.86 492.39 5.99 0.63
Simulated 24.42 432.84 5.57 0.63
October Historical 51.77 8883.06 6.70 0.60
Simulated 50.71 7905.46 6.26 0.60
November Historical 114.63 24,332.88 3.49 0.61
Simulated 111.69 23,039.17 3.63 0.61
December Historical 197.14 68,785.55 4.87 0.62
Simulated 193.85 63,948.33 4.53 0.61
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Figure A.2 | Monthly-based comparison of empirical (historical), synthetic (using AR(1) with PIII
white noise), and theoretical autocorrelation functions (ACFs) of the real-world case study employed

in section 3.3—“Real-world case study” of the main text.

Page | 255



APPENDIX B

B.1 SUPPLEMENTARY MATERIAL OF CHAPTER 5

The following figures (Figure B.1 - Figure B.6) complement the simulation studies
(hypothetical and real-world) presented in Chapter 5.

Figure B.1 regards section 5.6.1.2 “Simulation of multivariate processes” and illustrates the
established dependence patterns (for a randomly selected realization) among the 4 processes
(referred to as sites A-D) for time lag o (Figure B.1e, i, j, m, n, o) and for each process for time
lag 1 (Figure B.1a, f, k, p). Finally, the upper triangular panels (b, c, d, g, h, 1) of Figure B.1
illustrate the relationship between equivalent, p*/ and target p*/ correlation coefficients among
the four processes (i.e., all pairs of sites A-D).

Figure B.2 regards section 5.7.1 “Simulation of multivariate annual streamflow processes” and
compares the historical and simulated dependence patterns among the 4 variables for time lag
o (Figure B.2e, i, j, m, n, o) and for each variable for time lag 1 (Figure B.2a, {, k, p). This
assessment highlights the good agreement between the patterns of observed and synthesized
data. Finally, the upper triangular panels (b, ¢, d, g, h,1) of Figure B.2 illustrate the relationship
between equivalent, p/ and target p*/ correlation coefficients among the four processes.

Figure B.3 - Figure B.6 regards section 5.7.2 “Simulation of univariate daily rainfall process”,
and provide supplementary information on the resemblance of the target marginal
distributions and auto-dependence structures.
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Figure B.1 | The diagonal panels (a, f, k, p) depict, for a randomly selected realization, the dependence
pattern of the synthetically generated data of each process (i.e., for each site) for time lag 7= 1. The
lower triangular panels (e, i, j, m, n, o) illustrate the dependence pattern of the synthetically generated
data among the 4 processes (i.e., for each pair of sites A-D) for time lag 7= o. The upper triangular
panels (b, ¢, d, g, h, 1) present the established relationships between equivalent, 5%/ and target p%/

correlation coefficients  given the corresponding distributions of

(i.e., for each pair of sites A-D).
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Figure B.2 | The diagonal panels (a, f, k, p) depict the dependence pattern of the observed and
synthetically generated data of each process (i.e., for each station ID1-4) for time lag 7= 1. Furthermore,

they depict the lag-1, target (,01

CAS;i

), simulated (ﬁi), and equivalent (ﬁi) autocorrelation coefficients.

The lower triangular panels (e, i, j, m, n, o) illustrate the dependence pattern of the observed and
synthetically generated data among the processes (i.e., for each pair of stations ID1-4) for time lag 7 = o.

Furthermore, they depict the lag-o, target (p(i,‘j ), simulated (ﬁf,‘j ), and equivalent (,50

ij
]) Cross-

correlation coefficients. The upper triangular panels (b, ¢, d, g, h, 1) present the established relationships

between equivalent, p*/ and target p*/ correlation coefficients given the corresponding marginal

distributions of processes x! and x] (i.e., for each pair of stations ID1-4).
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Figure B.3 | Monthly-based comparison of empirical, simulated and theoretical distribution function
of positive daily rainfall at Pavlos station (using the Weibull’s plotting position). The title of each plot
contains the parameters of the GG distribution, as well as the historical (pp) and simulated (pp) values
of probability dry.
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Figure B.4 | Monthly-based comparison of empirical, simulated and theoretical ACF of daily rainfall
at Pavlos station. The title of each plot contains the parameters of the fitted auto-dependence structure
(i.e., CAS).
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Figure B.5 | Monthly-based illustration of the relationship between equivalent, 5 and target p
correlation coefficients for the mixed and GG distribution that regard daily rainfall simulation at Pavlos

station.
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C.1. THE MULTIVARIATE CONTEMPORANEOUS PAR(1) MODEL

We briefly present the contemporaneous PAR(1) model with Pearson type-III (i.e., 3-
parameter Gamma) white noise (referred as PAR-PIII), for multivariate simulation of monthly
time series (see Koutsoyiannis [1999]). The model is able to preserve the essential statistics (i.e.,
mean, variance and skewness coefficient) as well as the lag-1 month-to-month correlations (i.e.,
autocorrelations) and the lag-o cross-correlations between locations. Particularly, let x5, =

[gsl,t, s gs";]T be a vector of m stochastically dependent processes at season s =
1,..,5,1,...,S, ... with period t. For instance if X, is a cyclostationary monthly process, then
S = 12 and t denotes the year. The process can also be expressed as, X, where n € Z~ is the
time index. In this form, the season s is obtained by, s = n mod(S), while if n mod(S) = o,
then s =S. Furthermore, the period t can be obtained by, t =1+ (n—s)/S. For
convenience, we use the first formulation, also omitting the period index t. The models’s
generating scheme is given by,

X, = Agx;_, + Bsw, (C1)

T
where A;, B are seasonally-varying m X m parameter matrices and wg = [v_vsl, oW isa
vector of independent random variables generated from Pearson type-III distribution. The

matrices Ay are calculated as follows:

1 g1 m ,m
oo (T )
while matrices B; are given by:
B.B! = G, (C3)
where,
Gy = Cov[x,, x| — Ag Cov[x,,, x,,] A7 (C.4)

where Cov[i,f] denotes the covariance of vectors & and f, ie., Cov [i, f] = E{(i -

E[E]) (IIJT — E[f]T)} At each season s, the parameter matrix Bg can be estimated either

through typical decomposition techniques (e.g., Cholesky or singular value decomposition) or
numerically approximated, e.g., through optimization approaches [Koutsoyiannis, 1999;
Higham, 2002].
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Regarding the white noise vector wg, its statistical structure is associated with the seasonal
statistical characteristics of the parent process, through the following equations:

E[w,] = B7*{E[x] — 4,E[x;,]} (C.5)
Var[w,] = [1,...,1]T (C.6)
M3 [ﬂs] = (323))_1 {U3 [Es] - As(3) u3[£s—1]} (C'7)

where ng) is a matrix whose elements are raised to power k while p, [ﬂs] and u3[ gs] are
vectors that denote the third central moments of wg and x; respectively. The white noise is
produced by a suitable random number generator, in particular the Pearson type-III
distribution, which can explicitly preserve E[ﬂs], Var[ﬂs] and p, [ﬂs].

C.2. SUPPLEMENTARY MATERIAL OF CHAPTER 6

The following figures (Figure C.1 - Figure C.5) and tables (Table C-1 — Table C-2) illustrate
the performance of SPARTA for the case study of section 6.5.3 (multivariate time series
simulation) for a long simulation period of 500 ooo years. It is noted that in this case, the
simulated negative values have not been truncated to zero since we want to validate the
theoretical basis of the proposed scheme. The following highlight the solid theoretical

background of SPARTA as well as its ability to exactly reproduce the desired marginal
distributions and the statistics of interest.
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Figure C.1 | Comparison of monthly mean values, y, of historical and synthetic data (simulation
length: 500 000 years).
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C.2 SUPPLEMENTARY MATERIAL OF CHAPTER 6

Table C-1 | Parameters of PIII for historical and simulated data (from PAR-PIII and SPARTA-PIII); identified
with the method of moments.

Nov Dec Jan Feb Mar Apr May June July  Aug Sep

Month/ Parameter

Site A
a (Hist.) 1.6 4.0 3.3 22.7  155.0 3.0 95.1 37.5 4.0 13.7 1.1 0.6
a (SPARTA Sim.) 1.6 4.1 3.3 23.0 150.1 3.0 94.8 37.1 4.0 13.8 1.1 0.6
a (PAR Sim.) 2.0 5.1 4.1 29.1  208.6 3.9 119.0 452 5.0 17.0 14 07
b (Hist.) 10.8 24.1 61.0 14.1 5.0 34.9 2.8 34 4.1 1.1 3.5 6.6
b (SPARTA Sim.)  10.9 24.0 60.8 14.1 5.0 35.2 2.8 3.5 4.1 1.1 3.5 6.6
b (PAR Sim.) 9.7 214 54.6 12.5 4.3 30.9 2.5 3.1 3.7 1.0 3.1 5.9
¢ (Hist.) 2.0 -224  -49.6 -2102 -6584 62 -1762 -77.1 52 -2.4 6.2 5.8
¢ (SPARTA Sim.) 2.2 -23.0 -50.0 -212.1 -646.2 6.8 -1759 -76.4 52 -2.5 6.2 5.8
¢ (PAR Sim.) 0.1 -34.3 -72.7 -252.3 -781.6 -7.4 -207.5 -89.9 34 -4.1 5.7 5.4
Site B
a (Hist.) 2.5 128.6 6.7 45.5 11.1 44.1 13.5 25.5 18.7 0.9 7.2 5.4
a (SPARTA Sim.) 2.5 134.3 6.8 45.6 11.3 44.7 13.8 25.0 18.5 0.9 7.0 5.4
a (PAR Sim.) 3.2 174.0 8.4 57.3 144 57.8 16.5 32.1 23.2 1.1 9.0 6.5
b (Hist.) 46.6 8.6 49.7 14.0 28.4 9.6 12.8 6.7 6.4 359 103  16.6
b (SPARTA Sim.)  46.5 8.4 49.4 13.9 28.2 9.6 12.7 6.8 6.5 365 104 16.6
b (PAR Sim.) 41.6 7.4 444 124 24.9 8.4 11.7 6.0 5.8 31.6 9.1 151
¢ (Hist.) -17.2 -891.1 -1219 -503.4 -171.2 -321.7 -764 -112.3 -855 -5.4  -41.1 -40.6
¢ (SPARTA Sim.) -17.3 -9149 -123.4 -5044 -1732 -3242 -781 -110.9 -84.8 -5.0 -40.2 -40.6
¢ (PAR Sim.) -30.9 -1071.8 -161.3 -581.6 -214.2 -382.4 -94.8 -133.3 -99.2 -9.3  -50.0 -49.8
Site C
a (Hist.) 1.9 1.9 2.8 8.3 31.3 5.7 404.0 10185 3293.8 21408 552 3.0
a (SPARTA Sim.) 1.9 1.9 2.9 8.3 30.4 5.7 459.8 942.6 3239.7 17083 534 3.1
a (PAR Sim.) 2.3 2.4 3.6 10.6 40.3 7.8 4279 1024.6 3179.6 33779 67.1 3.7
b (Hist.) 7.2 18.5 26.8 12.7 5.6 13.7 -0.7 0.4 0.1 0.1 0.7 3.3
b (SPARTA Sim.) 7.2 18.5 26.7 12.8 5.7 13.8 -0.7 0.5 0.1 0.1 0.7 3.3
b (PAR Sim.) 6.5 16.4 23.7 11.3 5.0 11.8 -0.7 0.4 0.1 0.1 0.7 3.0
¢ (Hist.) -2.5 1.5 -14.1  -525 -121.1 -19.8 340.2 -4084 -372.9 -2143 -322 ~-1.3
¢ (SPARTA Sim.)  -2.5 1.5 -143  -524 -118.6 -19.5 359.6 -391.6 -369.6 -190.2 -31.6 ~-1.4
¢ (PAR Sim.) -3.9 -2.8 -23.8  -66.1 -144.8 -33.0 349.0 -4102 -366.1 -272.2 -36.3 -2.5
Site D
a (Hist.) 4.6 9.1 1.8 17.3 129 2767  20.0 14.7 0.7 1.2 1.1 0.8
a (SPARTA Sim.) 4.6 9.2 1.8 17.2 127 2991 199 14.5 0.6 1.2 1.1 0.8
a (PAR Sim.) 5.7 11.5 2.3 21.6 159 3253 256 18.5 0.8 1.5 1.3 0.9
b (Hist.) 29.9 24.8 77.2 194 16.7 2.5 7.9 7.8 29.5 189  26.6 488
b (SPARTA Sim.) 29.8 24.6 77.6 19.5 16.8 2.4 8.0 7.8 29.7 189 26,5 487
b (PAR Sim.) 26.7 22.0 68.5 174 15.0 2.3 7.0 6.9 26.3 17.3 244 445
¢ (Hist.) -54.7  -66.3 156 -221.0 -113.0 -624.3 -984  -72.8 0.0 -6.8 -7.0  -3.1
¢ (SPARTA Sim.) -55.0 -68.0 164 -2206 -111.6 -652.0 -97.7 -71.9 0.1 -6.8 -7.1  -3.1
¢ (PAR Sim.) -71.1  -94.6 -24  -261.1 -137.1 -681.8 -1194 -86.9 -2.3 -9.0 -9.7  -6.8
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Table C-2 | Root mean square error between the theoretical values, (i.e., the historical) and the
distribution parameters of simulated data of PAR-PIII and SPARTA-PIII models (see Table C-1).

Site/ Parameter Site A SiteB CiteC CiteD
a (SPARTA Sim.) 1.42 1.66 128.73 6.46

a (PAR Sim.) 1722 1437 358.73 14.2
b (SPARTA Sim.) 0.11 022  0.06 0.16
b (PAR Sim.) 240 281 1.30 3.39
¢ (SPARTA Sim.) 3.58 6.99 1023 8.03
¢ (PAR Sim.) 39.75 62.70 1943  25.09
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D.1 SUPPLEMENTARY MATERIAL OF SECTION 7.4
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Figure D.1 | Rainfall - Monthly-based summary of L-scale (L2) as a function of aggregation scale k.
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Figure D.6 | Runoff - Monthly-based summary of prob. dry (Pp) as a function of aggregation scale k.
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APPENDIX D

D.2 MULTI-TEMPORAL SIMULATION OF MULTIVARIATE DAILY RAINFALL
PROCESSES

To further explore the capabilities of the NDA-based three-level configuration scheme of
Chapter 7, we employ it for the synthesis of long daily rainfall time series (2 ooo years) at four
locations. More specifically, the historical data'’> concern four rain gauges located at Boeoticos
Kephisos river basin, Eastern Greece. The historical data, that span from 1/1/1964 to
31/12/2006, were obtained from the rainfall stations of Pavlos, Atalanti, Leivadia and Tithorea,
which hereafter are referred to as site A, B, C and D respectively. See also, Efstratiadis et al.
[2014a] for further details regarding the dataset. In this case, in order to account for the
intermittent character of rainfall, at monthly and daily time scale, we employ the mixed, zero-
inflated, distribution model discussed in section 4.4. Its CDF reads,

Pp, x<o0
Fe(x) = { pp + (1 = pp)Gy (%), x>0 (D-1)

where, pp denotes the probability of a dry interval (abbreviated as probability dry), i.e., pp =
P(& < xD) and G, stands for the distribution of amounts greater than the threshold xp, i.e.,
Gy = Fyx>xp = P(g < xlg > xD). Herein it was assumed that xj, := 0, while G, was obtained
by fitting (using the L-moments method) both the Generalized Gamma (GG; Eq. (5.44)) and
the Burr type-XII (BrXII; Eq. (5.41)) distributions and selecting the one that better describes
that data at hand.

Similar to the case study of section 7.4, we shall start the assessment of the model and
presentation of the results from the annual time scale and subsequently move to the monthly
and daily ones. Figure D.7 presents a summary of the simulation results at the annual time
scale and verifies that the model was capable of preserving the target distribution functions and
autocorrelation structure (i.e., CAS). It is noted that for demonstration purposes the
parameters of CAS at the annual scale were manually setto f = 0 and k = 1.5 for all processes.
Figure D.8 depicts the lag-o cross-correlations among the four sites, which are all very well
preserved by the model.

13 http://main.hydroscope.gr/

Page | 272



D.2 MULTI-TEMPORAL SIMULATION OF MULTIVARIATE DAILY RAINFALL PROCESSES

»
=

Site A - Historical Site B - Historical % Site C - Historical d Site D - Historical
= 800- I ~ 1200- ~ 1000-
£ £ 800- £ £
£ £ 5 £
= ~ ~ 1000- ~
I | | | 800 -
= 600~ = 00 = =
] @ Ol -
';,_: = € 800- ‘=
& o S S &£ 600-
e} S 400- T 600~ =
= 3 3 =
= = = =
= £ = £ 400-
< 200- . . ) \ 5 . ' . ) < 400- . . | ) = ) ' | '
1970 1980 1990 2000 1970 1980 1990 2000 1970 1980 1990 2000 1970 1980 1990 2000

Year Year Year Year

e Site A- Dist.: .GG f Site B- Dist.: .GG g Site C- Dist.: .GG h Site D - Dist.: .GG
b =296.037 | a; =6.492 | a, = 2.058 b=355.696 | a; =7.004 | a, =2.298 b=167.298 | a; = 14.295 | a, = 1.496 b=322.561|a,=11.251 | a;=2.207
~ 10° = 10°- 8 = 10°- > 10°- —
A A A = A
> 1014 S 10t- S 10t- S 10t-
e =% =5 =%
l I [ | 2
10 102~ 10%- 102-
>
E ® Synthetic data S = E
S 10°- e 3 10%- 5 10°- 3 10°-
® Historical data © ] ]
o e o e =2 e =o
£ 10*- = Theor. dist. £ 104 g 10 g 10%-
] ' ' ' A ) 1 ' U &~ ' l U U A ' ' ' U
400 600 800 400 600 800 1000 600 800 1000 1200 400 600 800 1000
y y y A4
i Site A- CAS: B=1.25 | k=5 Site B- CAS: $=1.25 | k=5 k Site C- CAS: B=1.25|x=5 1 Site D - CAS: B=1.25 | k=5

1.00 - 1.00-
Historical data

-e— Synthetic data 0.75-

l: 0.50 - — Theoretical ACF

0.25-

0.00-

ACF, p. ;
HACsz
r
r
(/

0.00-

0 5 10 15 20 5 lll 15 5 10 15 20

20 0 5 10 15 20

Lag,t Lag T Lag t Lag, t

m Site A - Synthetic - Site B - Synthetic o Site C - Synthetic P Site D - Synthetic

= 1000 - v 2 1000- ~ ~

£ — Rainfall £ £ 1200- £ 1000-

\T 750 - — 30-year mean T’ - T’ \T

! h — 750 . 1000~ =

= & & & 750~

£ - £ £ 800- £

S 500- g 500- 3 g

4 -4 < >4

s | T 600- T 500

= ae = =1 =

= 250 £  250- = =

g g g 400- g

< U U U U ' U < U U 1 U U U < U U U U U 1 < U U U ' U U

2000 2200 2400 2600 2800 3000 2000 2200 2400 2600 2800 3000 2000 2200 2400 2600 2800 3000 2000 2200 2400 2600 2800 3000

Year Year Year Year
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Figure D.8 | Comparison of historical and simulated lag-o cross-correlations at the annual time scale.

Moving to the monthly time scale, Figure D.9 provides a brief summary of the simulation
results and highlights the ability of the three-level configuration to resemble the first three L-
moments (i.e., L-mean, L-scale and L-Skewness), as well as reproduce the moderate
intermittent behavior of the rainfall data, mostly observed during the summer months.
Furthermore, Figure D.10 and Figure D.11 compare the historical and simulated lag-1 month-
to-month correlations and the lag-o cross-correlations of the monthly time scale respectively.

Inspection of these graphs reveals that model closely resembles the target correlations in all
cases.
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Figure D.11 | Comparison of monthly historical and simulated lag-o cross-correlations for sites A-D.

Figure D.12 to Figure D.15 provide a comparison among the monthly empirical, simulated
and theoretical distribution functions (as well as their parameters) of all months for sites A-D.
These figures highlight the ability of the model to preserve the target distribution functions (GG
or BrXII) of the monthly time scale with notable accuracy.
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Figure D.12 | Monthly-based comparison of empirical, simulated and theoretical distribution
functions at monthly time scale for site A (using the Weibull’s plotting position). The title of each
subplot provides the selected distribution and its parameters, as well as the historical (pp) and simulated
(Pp) values of probability dry.
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Figure D.13 | Monthly-based comparison of empirical, simulated and theoretical distribution
functions at monthly time scale for site B (using the Weibull’s plotting position). The title of each
subplot provides the selected distribution and its parameters, as well as the historical (pp) and simulated
(Pp) values of probability dry.
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Figure D.14 | Monthly-based comparison of empirical, simulated and theoretical distribution
functions at monthly time scale for site C (using the Weibull’s plotting position). The title of each

subplot provides the selected distribution and its parameters, as well as the historical (pp) and simulated
(Pp) values of probability dry.
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Figure D.15 | Monthly-based comparison of empirical, simulated and theoretical distribution
functions at monthly time scale for site D (using the Weibull’s plotting position). The title of each
subplot provides the selected distribution and its parameters, as well as the historical (pp) and simulated
(Pp) values of probability dry.

Regarding the daily time scale, Figure D.16 provides a quick summary of the simulation results
in terms of reproducing some key summary daily statistics (L-Mean, L-Scale, L-Skewness and
probability dry), while Figure D.17 presents a comparison among the daily historical and
simulated lag-o cross-correlation coefficients for sites A-D. As shown, the model reproduced
the first three L-moments, as well as the historical probability dry with high accuracy, while it
managed to satisfactory reassemble the lag-o cross-correlation coefficients of all sites and for
all months. The slight difference between the historical and simulated lag-o cross-correlations
can be attributed to the introduction of bias through the application of the proportional
adjusting procedure.

To further assess the ability of the scheme to reproduce the target marginal distributions at the
daily time scale, Figure D.18 to Figure D.21 present a monthly-based comparison among the
empirical, simulated and theoretical distribution functions for sites A-D, that highlight the
potential of the model to reproduce not only the target summary statistics (i.e., L-moments and
correlations), but the entire target distribution functions. Furthermore, regarding the
reproduction of the auto-dependence structure at the daily time scale, Figure D.22 to Figure
D.25 validate the capabilities of the scheme to resemble the target daily autocorrelation
functions (i.e., the fitted CAS to the historical data) for all sites and months. In addition, to
explore the performance of the model in the intermediate temporal scales (i.e., those between
the monthly and daily time scale) we performed a similar analysis as the one presented in the
previous case study. Figure D.26 to Figure D.29, Figure D.30 to Figure D.33 and Figure D.34

to Figure D.37 depict a monthly-based summary of the L-Scale (L(Zk)), L-Skewness (L(Cks)) and
probability dry (Plgk)) as a function of time scale k respectively.
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Figure D.16 | Monthly-based comparison of daily empirical and simulated L-Mean, L-Scale and L-
Skewness, as well as probability dry.

Site A vs Site B Site A vs Site C Site A vs Site D
=]
ap 0.4-
S
= 0.2-
: I
S 00-
Il
] Site B vs Site C Site B vs Site D Site C vs Site D
=
S 06-
0
S 04-
S
s I I I I I I I

’ M A M A N‘ A

Historical data . Synthetic data

Figure D.17 | Comparison of daily historical and simulated lag-o cross-correlations for sites A-D.
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Figure D.18 | Monthly-based comparison of empirical, simulated and theoretical distribution
functions at daily time scale for site A (using the Weibull’s plotting position). The title of each subplot
provides the selected distribution and its parameters, as well as the historical (pp) and simulated (pp)
values of probability dry.
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Figure D.19 | Monthly-based comparison of empirical, simulated and theoretical distribution
functions at daily time scale for site B (using the Weibull’s plotting position). The title of each subplot
provides the selected distribution and its parameters, as well as the historical (pp) and simulated (pp)
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s of probability dry.
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Figure D.20 | Monthly-based comparison of empirical, simulated and theoretical distribution
functions at daily time scale for site C (using the Weibull’s plotting position). The title of each subplot
provides the selected distribution and its parameters, as well as the historical (pp) and simulated (pp)
values of probability dry.
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Figure D.21 | Monthly-based comparison of empirical, simulated and theoretical distribution
functions at daily time scale for site D (using the Weibull’s plotting position). The title of each subplot
provides the selected distribution and its parameters, as well as the historical (pp) and simulated (pp)
values of probability dry.
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Figure D.22 | Monthly-based comparison of empirical, simulated and theoretical autocorrelation
function (ACF) at daily time scale for site A; the parameters of CAS are given on the title of each subplot.
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Figure D.23 | Monthly-based comparison of empirical, simulated and theoretical autocorrelation
function (ACF) at daily time scale for site B; the parameters of CAS are given on the title of each subplot.
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Figure D.24 | Monthly-based comparison of empirical, simulated and theoretical autocorrelation
function (ACF) at daily time scale for site C; the parameters of CAS are given on the title of each subplot.
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Figure D.25 | Monthly-based comparison of empirical, simulated and theoretical autocorrelation
function (ACF) at daily time scale for site D; the parameters of CAS are given on the title of each subplot.
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Figure D.26 | Monthly-based summary of L-Scale (L2) as a function of aggregation scale k for site A.
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Figure D.27 | Monthly-based summary of L-Scale (L2) as a function of aggregation scale k for site B.
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Figure D.28 | Monthly-based summary of L-Scale (L2) as a function of aggregation scale k for site C.
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Figure D.29 | Monthly-based summary of L-Scale (L2) as a function of aggregation scale k for site D.
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Figure D.30 | Monthly-based summary of L-Skewness (Lc;) as a function of aggregation scale k for site
A.
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Figure D.31 | Monthly-based summary of L-Skewness (L) as a function of aggregation scale k for site
B.
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Figure D.32 | Monthly-based summary of L-Skewness (Lc;) as a function of aggregation scale k for site
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Figure D.33 | Monthly-based summary of L-Skewness (Lc;) as a function of aggregation scale k for site
D.
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Figure D.34 | Monthly-based summary of prob. dry (Pp) as a function of aggregation scale k for site
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Figure D.35 | Monthly-based summary of prob. dry (Pp) as a function of aggregation scale k for site
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Figure D.36 | Monthly-based summary of prob. dry (Pp) as a function of aggregation scale k for site
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Figure D.37 | Monthly-based summary of prob. dry (Pp) as a function of aggregation scale k for site
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D.2 MULTI-TEMPORAL SIMULATION OF MULTIVARIATE DAILY RAINFALL PROCESSES

Finally, in order to investigate the behavior of the three-level configuration regarding the
simulation of daily extreme events, the series of historical and simulated annual rainfall
maxima has been extracted and depicted as a function of the return period in Figure D.38. The
plot also depicts the parameters of the fitted (using the L-moments method) to the historical
data GEV distribution (i.e., Eq. (7.6)). It is noted that Site B (i.e., the annual rainfall maxima
obtained from Atalanti gauge) exhibited negative shape parameter (a = —0.050), which is not
consistent from hydrological point of view, since it implies that the distribution is bounded
from above. Thereby, for this site we fitted the Gumbel distribution (a = 0; in Eq. (7.6)).
Regarding site B, visual inspection of Figure D.38, reveals that the scheme generates annual
daily maxima with arguably heavier tails; a fact also confirmed by the shape parameter of the
GEV distribution fitted to the simulated data. In this case, the identified GEV parameters are
for Site B~GEV(c = 46.941,b = 16.091,a = 0.068). As far it concerns the behavior of the
extremes of sites A, C and D, the historical, simulated data are in better agreement, while the
theoretical GEV distribution (extracted from the historical data) has in both cases a positive
value. Further to this, it is noted that the simulated annual daily maxima of sites A, C and D lie
within the 95% confidence intervals (estimated using the parametric bootstrap method). The
parameters of the fitted GEV distribution to the simulated annual rainfall maxima are: Site
A~GEV(c = 47.796,b = 18.549,a = 0.073), Site C~GEV(c = 56.829,b = 19.479,a =
0.143) and site D~GEV(c = 51.382,b = 16.816,a = 0.116), which are relatively close
(considering the associated large uncertainty) to those obtained from the historical maxima
(see the titles of Figure D.38a-d).

a Site A | Fit: GEV with L-moments b Site B | Fit: Gumbel with L-moments
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Figure D.38 | Empirical (+) and simulated (o) daily annual rainfall maxima of sites A-D, as a function
of the return period. The solid red line (—) depicts the fitted to historical data Generalized Extreme
Value (GEV) distribution (parameters: location (¢), scale (b) and shape (a)). The dashed blueline (- — -)
represents the 95% confidence intervals (estimated using the parametric bootstrap method).
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Figure D.39 | Disaggregated hourly rainfall rainfall (non-zero) - monthly-based comparison of
empirical, simulated and theoretical distribution functions (using the Weibull’s plotting position). The
title of each subplot provides the selected distribution and its parameters, as well as the historical (pp)
and simulated (pp) values of probability dry
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Figure D.4o0 | Disaggregated hourly rainfall - monthly-based comparison of empirical, simulated and
theoretical autocorrelation function (ACF); the parameters of CAS are given on the title of each subplot.
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Figure D.41| Disaggregated hourly rainfall - Monthly-based summary of L-mean (L1) as a function
of aggregation scale k.
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Figure D.42 | Disaggregated hourly rainfall - Monthly-based summary of L-scale (L2) as a function
of aggregation scale k.
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Figure D.43 | Disaggregated hourly rainfall - Monthly-based summary of L-skewness (Lcs) as a
function of aggregation scale k.

a January
1.00-
P == Disag.
Empirical

o
=2 050-
[N

o
=
o

<

Py
E’:‘

025-
0.00-
12 4 6 8 12 2
Scale, k
i September
1.00-
A,
0.75
=2 050-
a
0.25-
0.00-
12 4 6 8 12 24
Scale, k

b February c March
1.00- 00
0.75- da, 0.75- Sa,
? R | =
~a 0.50- o 3 o 0.50-
& a
0.25 0.25-
0.00- [N 1 [ ' g 0.00- N 1 [
12468 12 24 12 4 6 8
Scale, k
f June g July
1.00- e
A
0.75- % 0.75- ™
g 0.50 g 5
~ 0.50- “a 0.50
o ] <
025~ o 0.25-
0.00- L] 1 " 1 g 0.00- 1 I "
12 4 6 8 12 24 12 4 6 8
Scale, k
i October k November
100~ 1.00-
& &
0.75- \H\\*__ 0.75- T
= —_— =
a 0.50- “a 0.50
a &
0.25- 0.25-
0.00 e ' 0 . g 0.00- o i ' .
12 4 6 8 12 24 12 4 6 8
Scale, k

12
Scale, k

12
Scale, k

24

24

24

(k)

Py

Py

April
1.00-
Vo
0.75-
050 - \
0.25-
0.00-
12468 12 24
Scale, k
August
1.00-
075- %
050~ \\
0.25-
0.00- [N () 1 " 1
12 4 6 8 12 24
Scale, k
December
1.00-
0.75-"‘\.\
e
050- ——
0.25-
000~

12 4 6 8 12
Scale, k

Figure D.44 | Disaggregated hourly rainfall - Monthly-based summary of prob. dry (Pp) as a
function of aggregation scale k.
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