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ABSTRACT 

Hydrometeorological inputs are a key ingredient and simultaneously one of the main sources 
of uncertainty of every hydrological study. This type of uncertainty is referred to as 
hydrometeorological uncertainty and is of utmost importance in risk-based engineering works, 
due the high variability and randomness that is naturally embedded in physical processes. 
Considering hydrometeorological time series as realizations of stochastic processes allow their 
analysis, modeling, simulation and forecasting. Embracing the existence of randomness and 
unpredictability in such processes is a first step towards their understanding and the 
development of uncertainty-aware methodologies for water-systems optimization. 

In this vein, due to the typical size of historical data, which is not (neither will ever be) sufficient 
to extract safe conclusions about the long-term performance of a system, the common 
procedure entails driving the typically deterministic water-system models (conceptual or 
physical-based) using stochastic inputs (that in a statistical sense resemble the parent 
information; typically, but not exclusively derived from the historical time series). This 
essentially enables the establishment of Monte Carlo experiments where the intrinsic 
uncertainty of the inputs (i.e., hydrometeorological processes) is propagated through a 
deterministic filter (i.e., a water-system simulation model) in order to derive, or assess, the 
probabilistic behavior of the output of interest (e.g., water supply coverage). Further to this, 
when the objective is the optimization of the deterministic model’s control variables (i.e., 
model’s parameters) with respect to some quantity or metric (i.e., objective), this procedure 
can (and should) be embed within an iterative scheme driven by an optimization algorithm 
(i.e., establishing uncertainty-aware simulation-optimization frameworks). 

An important step of this procedure is the realistic simulation of hydrometeorological 
processes, since they are the main drivers of the whole procedure, and eventually determine its 
accuracy, as well as the probabilistic behavior of the output of interest. This in turn, poses an 
intriguing challenge that arises from a series of unique peculiarities that characterize such 
processes, namely, non-Gaussianity, intermittency, auto-dependence (short- or long-range), 
cross-dependence and periodicity. Despite the significant amount of research during last 
decades, these challenges remain partially unresolved. To a large extent, this is due to the 
standard hypothesis of most simulation schemes that does not lie in the reproduction of a 
specific distribution, but on the reproduction of low-order statistics (e.g., mean, variance, 
skewness) and correlations in time and space. This is a problem because, a) for a given set of 
low-order statistics multiple distributions may be represented, thus making the simulation 
problem only partially defined, and b) as shown herein, this practice may lead to bounded, and 
thus unrealistic dependence forms among consecutive time steps and/or processes. 

Further to this, driving water-system simulation models with long stochastically generated 
sequences, thus accounting for input (hydrometeorological) uncertainty, inevitably increases 
the required computational effort, especially within the context of simulation-optimization 
frameworks. This in turn, poses the challenge of addressing and ensuring the practical 
implementation of water-system optimization problems under uncertainty. 

Thereby, the main research objectives and contributions of this Thesis are related to: 

a) The development of novel non-Gaussian stochastic simulation models, able to account also 
for the other peculiarities typically encountered in hydrometeorological processes, such as, 
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intermittency, auto- and cross- dependence, periodicity, as well as their scale-varying 
probabilistic and stochastic behavior. 

b) The development of surrogate-based optimization methodologies and algorithms that can 
efficiently and effectively confront water-system simulation-optimization problems under 
uncertainty, i.e., when using stochastic inputs to drive the simulation-optimization procedure. 

Specifically, herein a by building upon copula concepts, probability laws and the theory of 
stochastic processes, a theoretically justified family of univariate and multivariate non-
Gaussian stationary and cyclostationary models is defined and thoroughly investigated. This 
type of models have been unknown to the hydrological community, and this Thesis is the first 
attempt to align them with hydrological stochastics. The developed models are shown to be 
able to account for all the typical characteristics of hydrometeorological processes and 
simultaneously exhibit a simple and parsimonious character. Furthermore, these models are 
then coupled, using a disaggregation approach, thus eventually enabling the development of a 
modular stochastic simulation framework that allows the simultaneous reproduction of the 
probabilistic and stochastic behavior (including non-Gaussian distributions) of 
hydrometeorological processes at multiple time scales (from annual to daily; as well as finer 
time scales). The advantages of this class of stochastic processes and models, as well as of the 
modular stochastic simulation framework for multi-scale simulations, are demonstrated and 
verified through numerous hypothetical and real-world simulation studies. 

Finally, in order to ensure the effective exploitation and practical implementation of these new 
developments in the stochastic simulation of hydrometeorological processes within the 
uncertainty-aware, engineering design and management of water-systems (i.e., driven by 
stochastic inputs), this Thesis develops appropriate surrogate-based computationally-efficient 
methodologies and algorithms, that effectively handle water-system simulation-optimization 
problems under hydrometeorological uncertainty, thus alleviating the associated 
computational barrier. 
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ΠΕΡΙΛΗΨΗ 

ΘΕΤΟΝΤΑΣ ΤΟ ΠΛΑΙΣΙΟ  

Τα υδρομετεωρολογικά δεδομένα αποτελούν βασικό συστατικό και ταυτόχρονα μια από τις 
κύριες πηγές αβεβαιότητας κάθε υδρολογικής μελέτης. Αυτού του τύπου η αβεβαιότητα είναι 
γνωστή ως υδρομετεωρολογική. Λόγω της μεγάλης μεταβλητότητας και τυχαίας φύσης αυτών 
των διεργασιών, η αντιμετώπιση της αποτελεί ύψιστης σημασίας προτεραιότητα σε έργα και 
μελέτες μηχανικού οι οποίες λαμβάνουν υπόψιν τους τις έννοιες του ρίσκου και της 
διακινδύνευσης. Η παραδοχή πως οι παρατηρημένες υδρομετεωρολογικές χρονοσειρές 
αποτελούν πραγματοποιήσεις στοχαστικών ανελίξεων (ή αλλιώς διεργασιών) επιτρέπει την 
ανάλυση, μοντελοποίηση, προσομοίωση και πρόβλεψη τους ως τέτοιες. Η αναγνώριση και η 
παραδοχή ύπαρξης τυχαιότητας και μη προβλεψιμότητας σε αυτού του τύπου διεργασίες 
αποτελεί το πρώτο βήμα προς την κατανόησή τους, τη μελέτη και την ανάπτυξη μεθοδολογιών 
για τη βελτιστοποίηση υδατικών συστημάτων υπό αβεβαιότητα. 

Συνήθως, το περιορισμένο μέγεθος των ιστορικών δεδομένων (χρονοσειρών), δεν επιτρέπει 
(ούτε πρόκειται ποτέ) την εξαγωγή ασφαλών συμπερασμάτων για την μακροπρόθεσμη 
επίδοση ενός συστήματος. Για αυτό το λόγο, η συνήθης πρακτική κάνει χρήση στοχαστικών 
δεδομένων εισόδου (τα οποία είναι στατιστικά συνεπή με τις ιστορικές χρονοσειρές ή 
γενικότερα με την όποια διαθέσιμη υδρολογική πληροφορία) σε συνδυασμό με ντετερμινιστικά 
μοντέλα υδατικών συστημάτων (φυσικής ή εννοιολογικής βάσης). Αυτός ο συνδυασμός 
ουσιαστικά επιτρέπει την ανάπτυξη πειραμάτων τύπου Monte Carlo, όπου η αβεβαιότητα των 
δεδομένων εισόδου (π.χ., υδρομετεωρολογικές μεταβλητές) μεταφέρεται μέσω ενός 
ντετερμινιστικού φίλτρου (π.χ., μοντέλα προσομοίωσης υδατικών συστημάτων) στις 
μεταβλητές εξόδου (π.χ., αξιοπιστία κάλυψης υδατικών αναγκών) για τη εξαγωγή και 
διερεύνηση της πιθανοτικής συμπεριφοράς των τελευταίων. Επιπλέον, όταν ο στόχος της 
μελέτης είναι η βελτιστοποίηση των μεταβλητών ελέγχου του ντετερμινιστικού μοντέλου, με 
γνώμονα κάποια αντικειμενική συνάρτηση, η παραπάνω διαδικασία μπορεί (και πρέπει) να 
μετατραπεί σε επαναληπτική, μέσω της χρήσης κατάλληλων αλγόριθμων βελτιστοποίησης 
(δηλ. ανάπτυξη πλαισίων προσομοίωσης-βελτιστοποίησης που λαμβάνουν υπόψιν τους την 
αβεβαιότητα). 

Ένα σημαντικό σημείο της παραπάνω διαδικασίας είναι η ρεαλιστική προσομοίωση των 
υδρομετεωρολογικών διεργασιών, αφού αποτελούν βασικό οδηγό της όλης διαδικασίας, καθώς 
ταυτόχρονά καθορίζουν την ακρίβεια προσομοίωσης αλλά και την πιθανοτική συμπεριφορά 
των μεταβλητών εξόδου. Αυτό με τη σειρά του θέτει μια ενδιαφέρουσα πρόκληση η οποία 
πηγάζει από τα ιδιαίτερα χαρακτηριστικά που παρουσιάζουν αυτού του είδους διεργασίες, 
όπως οι μη-Γκαουσιανές κατανομές, η διαλείπουσα συμπεριφορά, η χρονική εξάρτηση (μικρής 
ή μακράς εμβέλειας), η χωρική αλληλεξάρτηση καθώς και η περιοδικότητα. Παρά τη σημαντική 
έρευνα που έχει πραγματοποιηθεί τις τελευταίες δεκαετίες, το πρόβλημα της ρεαλιστικής 
προσομοίωσης υδρομετεωρολογικών διεργασιών παραμένει ακόμη θέμα συζήτησης. Σε ένα 
μεγάλο βαθμό, αυτό οφείλεται στην συνήθη υπόθεση των περισσότερων σχημάτων 
προσομοίωσης, τα οποία δεν στοχεύουν στην αναπαραγωγή κάποιας πιθανοτικής κατανομής, 
αλλά στην αναπαραγωγή χαμηλής τάξης στατιστικών χαρακτηριστικών (π.χ., μέση τιμή, 
τυπική απόκλιση και συντελεστή ασσυμετρίας) και συσχετίσεων στο χρόνο και το χώρο. Κάτι 
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τέτοιο αποτελεί πρόβλημα γιατί, α) για δεδομένα στατιστικά χαρακτηριστικά χαμηλής τάξης 
πολλές κατανομές μπορεί να είναι συνεπής, κάτι που καθιστά το πρόβλημα μερικώς ορισμένο, 
και β) όπως αναδεικνύεται στην παρούσα διατριβή, αυτή η πρακτική μπορεί να οδηγήσει σε 
φραγμένες, και άρα μη ρεαλιστικές μορφές εξάρτησης μεταξύ διαδοχικών χρονικών βημάτων 
και/ή διεργασιών. 

Πέραν των παραπάνω, η χρήση συνθετικών χρονοσειρών μεγάλου μήκους σε συνδυασμό με 
μοντέλα προσομοίωσης υδατικών συστημάτων, ναι μεν παρέχει τη δυνατότητα ενσωμάτωσης 
της (υδρομετεωρολογικής) αβεβαιότητας, αλλά από την άλλη αυξάνει τον απαιτούμενο 
υπολογιστικό χρόνο, ειδικά στο πλαίσιο σχημάτων προσομοίωσης-βελτιστοποίησης. Αυτό με 
τη σειρά του, θέτει την πρόκληση της πρακτικής εφαρμογής τέτοιων σχημάτων για τη 
βελτιστοποίηση υδατικών συστημάτων υπό αβεβαιότητα.  

Κύριοι ερευνητικοί στόχοι και συνεισφορά της παρούσας διδακτορικής διατριβής είναι: 

α) Η ανάπτυξη μη-Γκαουσιανών στοχαστικών μοντέλων προσομοίωσης, τα οποία είναι επίσης 
ικανά να προσομοιώσουν τα ιδιαίτερα χαρακτηριστικά που παρουσιάζουν οι 
υδρομετεωρολογικές διεργασίες, δηλαδή, την διαλείπουσα συμπεριφορά, την χρονική και 
χωρική εξάρτηση, την περιοδικότητα καθώς και την πιθανοτική και στοχαστική συμπεριφορά 
τους σε πολλαπλές χρονικές κλίμακες. 

β) Η χρήση υποκατάστατων μοντέλων (surrogate models) για την ανάπτυξη μεθοδολογιών 
και αλγορίθμων που είναι σε θέση να αντιμετωπίσουν αποτελεσματικά και αποδοτικά 
προβλήματα βελτιστοποίησης υδατικών συστημάτων υπό αβεβαιότητα (μέσω του συνδυασμού 
στοχαστικών δεδομένων εισόδου και σχημάτων προσομοίωσης-βελτιστοποίησης). 

ΣΤΟΧΑΣΤΙΚΗ ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΚΑΙ ΠΡΟΣΟΜΟΙΩΣΗ 
ΥΔΡΟΜΕΤΕΩΡΟΛΟΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ 

Η ιδέα της χρήσης συνθετικών χρονοσειρών στις υδρολογικές μελέτες χρονολογείται, 
περισσότερο από  χρόνια πριν, από τον Hazen [] ο οποίος συνδύασε πολλές ιστορικές 
παρατηρήσεις σε μια χρονοσειρά με σκοπό να δημιουργήσει μια συνθετική πραγματοποίηση 
της ετήσιας απορροής. Αυτή η απλή προσέγγιση υπήρξε η πρώτη από τις πολλές που 
αναπτυχθήκαν εν συνεχεία (δες ανασκόπηση κεφαλαίου 2.3) και συνέβαλε καθοριστικά στην 
γένεση του επιστημονικού τομέα της συνθετικής (ή επιχειρησιακής) υδρολογίας.   

Σύμφωνα με την κλασσική κατηγοριοποίηση του Matalas [], η συνθετική υδρολογία 
αποτελεί παρακλάδι της στοχαστικής υδρολογίας και η εμφάνισή της αποδίδεται εν πολλοίς 
στις καθοριστικές εργασίας που πραγματοποιήθηκαν στα πλαίσια του προγράμματος για το 
νερό του Harvard [Maass et al., ] και στις σχετικές εργασίες των Thomas and Fiering 
[] που πιθανώς ήταν οι πρώτοι που εφάρμοσαν την θεωρία στοχαστικών ανελίξεων για τη 
σύνθεση μηνιαίων χρονοσειρών απορροής. Σύμφωνα με τον Koutsoyiannis [] σχετικά 
καθοριστικά επιτεύγματα που συνέβαλαν στην  καθιέρωση του τομέα αυτού (και της 
στοχαστικής υδρολογίας γενικότερα) ήταν η αξιοσημείωτη πρόοδος στους υπολογιστές κατά 
τη δεκαετία του  καθώς και η εκτεταμένη υιοθέτηση των μεθόδων Monte Carlo σε 
διάφορα επιστημονικά πεδία (π.χ., φυσική, βιολογία και οικονομικά). Μια άλλη αξιοσημείωτη 
συνεισφορά, που προέρχεται από ένα διαφορετικό επιστημονικό τομέα, ήταν η έκδοση του 
πλέον κλασσικού βιβλίου ανάλυσης χρονοσειρών από τους Box and Jenkins [] που 
προσφέρει μια ολοκληρωμένη αντιμετώπιση του θέματος και παρέχει μια λεπτομερή 
κατηγοριοποίηση των γραμμικών στοχαστικών μοντέλων περιλαμβανομένων των μοντέλων 



Page | xxxiv 

αυτό-παλινδρόμησης (AR), κινούμενου μέσου όρου (MA) καθώς και των συνδυασμό τους, 
μοντέλα αυτό-παλινδρόμησης κινούμενου μέσου όρου (ARMA).   

Οι αρχικές εργασίες που έκαναν χρήση της έννοιας των συνθετικών χρονοσειρών στόχευαν 
στην αξιολόγηση της επίδοσης των συστημάτων ταμιευτήρων με χρήση πιθανοτικών όρων, 
δηλ., με εκτίμηση της αξιοπιστίας επί της βάσης των προσομοιωμένων χρονοσειρών [e.g., 
Hazen, ; Sudler, ; Barnes, ; Thomas and Fiering, ; Klemeš, ]. Σήμερα, 
συνθετικά δεδομένα χρησιμοποιούνται σε μια μεγάλη ποικιλία μελετών (με δομή όμοια με αυτή 
των πειραμάτων Monte Carlo που αναφέρθηκαν παραπάνω), όπως ο βέλτιστος σχεδιασμός και 
λειτουργία των συστημάτων ταμιευτήρων [e.g., Koutsoyiannis and Economou, ; Celeste 
and Billib, ; Giuliani et al., ; Tsoukalas and Makropoulos, a, b; Feng et al., 
], η ανάλυση ρίσκου πλημμύρας [e.g., Wheater et al., ; Haberlandt et al., ; 
Paschalis et al., ; Qin and Lu, ; Moustakis et al., ] και γεγονότων ξηρασίας [e.g., 
Herman et al., ], καθώς και η προσομοίωση υδατικών πόρων επί της βάσης μελλοντικών 
κλιματικών συνθηκών [e.g., Fowler et al., ; Baltas, ; Kilsby et al., ; Baltas and 
Karaliolidou, ; Fatichi et al., ; Nazemi et al., ].      

Η βασική απαίτηση για την εξαγωγή στατιστικά συνεπών αποτελεσμάτων από τα πειράματα 
Monte Carlo (δεδομένου ότι το μοντέλο προσομοίωσης παρέχει μια πιστή αναπαράσταση του 
συστήματος που μελετάται) είναι η πιστή αναπαράσταση και προσομοίωση των 
υδρομετεωρολογικών διεργασιών που με τη σειρά της επιτάσσει τη χρήση στοχαστικών 
μοντέλων προσομοίωσης ικανών να λάβουν υπόψη τους τις ιδιαιτερότητες των 
υδρομετεωρολογικών διεργασιών. Οι πιο σημαντικές από αυτές είναι, η απόκλιση από την 
κανονική κατανομή, η διαλείπουσα φύση, η αυτό-συσχέτιση (βραχυπρόθεσμη ή 
μακροπρόθεσμη), η ετερο-συσχέτιση και η περιοδικότητα (δες κεφάλαιο 2.2).  

Σε ένα πιο αφηρημένο επίπεδο, τα δυο πρώτα χαρακτηριστικά (η απόκλιση από την κανονική 
κατανομή και η διαλείπουσα φύση) σχετίζονται με τις ιδιότητες της περιθώριας κατανομής της 
διαδικασίας και υπαγορεύουν την ανάγκη για ένα κατάλληλο πιθανοτικό μοντέλο. Από την 
άλλη πλευρά, οι αύτο- και έτερο-συσχετίσεις σχετίζονται με τις στοχαστικές (από κοινού) 
ιδιότητες της διαδικασίας, τόσο στο χρόνο όσο και στο χώρο, και υπαγορεύουν την ανάγκη για 
χρήση ενός στοχαστικού μοντέλου προσομοίωσης. Στην πραγματικότητα, στην περίπτωση 
που οι φυσικές διεργασίες δεν είναι αύτο- ή έτερο-συσχετισμένες, το πρόβλημα της 
προσομοίωσης θα ήταν αρκετά απλούστερο, καθώς η γέννηση συνθετικών χρονοσειρών θα 
στηριζόταν στη γέννηση αριθμών από ομοιόμορφη κατανομή και στη χρήση της αντίστροφης 
κατανομής (δηλ., probability integral transformation). Τέλος, η περιοδικότητα εισάγει 
επιπλέον πολυπλοκότητα, δεδομένου ότι υπαγορεύει την αναπαράσταση της διαδικασίας ως 
κυκλο-στάσιμη, με διαφορετικές περιθώριες και από κοινού ιδιότητες όχι μόνο σε διαφορετικές 
χρονικές κλίμακες αλλά και σε διαφορετικές περιόδους (ή γενικά σε συστηματικώς 
επαναλαμβανόμενα χρονικά διαστήματα).               

Αναμφισβήτητα, ένα κατάλληλο σχήμα στοχαστικής προσομοίωσης θα πρέπει να είναι ικανό 
να αναπαράγει την πιθανοτική και στοχαστική συμπεριφορά (δηλ., τις περιθώριες και από 
κοινού ιδιότητες) της υδρομετεωρολογικής διεργασίας, που διαφοροποιείται ανάλογα με τον 
τύπο της μεταβλητής (π.χ., βροχή, απορροή ή θερμοκρασία) αλλά και από την υπό μελέτη 
χρονική κλίματα (π.χ., ετήσια, μηνιαία, ημερήσια ή λεπτότερη).  

Η ανάγκη για γενικευμένα σχήματα προσομοίωσης που επιτρέπουν την παραγωγή συνθετικών 
χρονοσειρών για πολλαπλές κατανομές πηγάζει πρωτίστως από το γεγονός ότι, η πιθανοτική 
συμπεριφορά πολλών υδρομετεωρολογικών διεργασιών δεν αναπαράγεται ικανοποιητικά από 
τα κλασσικά στοχαστικά μοντέλα (δες επισκόπηση στο κεφάλαιο 2.3). Πολλά από τα μοντέλα 
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αυτά (δηλ., τα κλασσικά γραμμικά στοχαστικά μοντέλα, τα μοντέλα σημειακής προσομοίωσης 
και τα μοντέλα επαναδειγματοληψίας) δεν είναι σχεδιασμένα για να αναπαράγουν σημαντικές 
πιθανοτικές πτυχές της διεργασίας (π.χ. μέγιστα και ελάχιστα - που σχετίζονται με την ουρά 
της κατανομής), δεδομένου ότι εκ φύσεως δεν αναπαράγουν κάποια συγκεκριμένη κατανομή 
αλλά συγκεκριμένα χαμηλών τάξεων στατιστικά χαρακτηριστικά (π.χ., μέση τιμή, διασπορά, 
ασυμμετρία) και συσχετίσεις στο χρόνο και στο χώρο. Πέραν αυτού, όπως έδειξαν οι Tsoukalas 
et al. [a], και συζητείται στο Κεφάλαιο 3, οι τυπικές στρατηγικές μοντελοποίησης μπορούν 
να οδηγήσουν σε φραγμένες, και κατά συνέπεια, μη ρεαλιστικές και μη φυσικές δομές 
συσχέτισης, παρά το γεγονός ότι τα σημαντικά στατιστικά χαρακτηριστικά των ιστορικών 
δεδομένων αναπαράγονται ικανοποιητικά.  

Επιπλέον, η αναπαραγωγή της συνάρτησης κατανομής της διαδικασίας κρίνεται ως υψίστης 
σημασίας, όπως προτάσσεται από θεωρητικά και εμπειρικά στοιχεία. Αυτό τονίζεται εμφατικά 
από τους Klemeš and Borůvka [] οι οποίοι αναφέρουν: 

Simulation of a serially correlated series with a given marginal distribution is one of the 
important prerequisites of synthetic hydrology and of its applications to analysis of water 

resource systems. 

Αξίζει να αναφερθεί ότι η βιβλιογραφία προσφέρει εναλλακτικές μεθόδους για την 
αναπαραγωγή συνθετικών χρονοσειρών, όπως είναι τα επονομαζόμενα μοντέλα δυο-
καταστάσεων και τα πρόσφατα μοντέλα βασισμένα σε πολυμεταβλητές συναρτήσεις γνωστές 
ως copula. Αυτοί οι τύποι μοντέλων είναι ικανοί να παράγουν συνθετικές πραγματοποιήσεις 
με δεδομένη περιθώρια κατανομή, αλλά υποστηρίζουν ένα περιορισμένο εύρος από δομές 
συσχετίσεων (π.χ., τα μοντέλα δυο-καταστάσεων συνήθως αγνοούν την χρονική εξάρτηση, 
αυτοσυσχέτιση), ενώ χαρακτηρίζονται από δύσχρηστούς μηχανισμούς γέννησης (δες κεφάλαιο 
2.3 για περισσότερες λεπτομέρειες).       

Πέραν των παραπάνω, ένα κοινό χαρακτηριστικό των περισσοτέρων υπάρχοντών μεθόδων 
προσομοίωσης είναι ότι στοχεύουν στην προσομοίωση της διαδικασίας σε μια μόνο χρονική 
κλίμακα και δεν λαμβάνουν υπόψη τους την ρητή αναπαραγωγή των ιδιοτήτων της 
διαδικασίας σε πολλαπλά χρονικά επίπεδα. Επισημαίνεται ότι η ταυτόχρονη προσομοίωση των 
υδρομετεωρολογικών διεργασιών σε πολλά χρονικά επίπεδα παραμένει ακόμη μια ανοιχτή 
πρόκληση. Για την λεπτομερή παρουσίαση του προβλήματος καθώς και τους πιθανούς 
τρόπους αντιμετώπισής του με βάση τα νέα μοντέλα προσομοίωσης που παρουσιάζονται στα 
κεφάλαια 4-6, δες Κεφάλαιο 7.       

Αναμφισβήτητα, η κύρια δυσκολία στην προσομοίωση των υδρομετεωρολογικών διεργασιών 
πηγάζει από το γεγονός ότι, τα κλασσικά στοχαστικά μοντέλα (δες κεφάλαιο 2.3.1), που είναι 
ικανά να μοντελοποιήσουν και να προσομοιώσουν, μονομεταβλητές ή πολυμεταβλητές, 
στάσιμες ή κυκλο-στάσιμες, διεργασίες με μεγάλο εύρος δομών συσχέτισης, δεν είναι ικανά να 
αναπαράγουν την μη-Γκαουσιανή και διαλείπουσα φύση των υδρομετεωρολογικών 
διεργασιών δεδομένου ότι τα περισσότερα από αυτά έχουν κατασκευαστεί για την 
προσομοίωση διαδικασιών με κανονική (Gaussian) κατανομή.  Αυτή η δυσκολία ίσως 
σχετίζεται με την παρακάτω πρόταση, η οποία αποτελεί την προσευχή του Chester Kisiel [] 
στον θεωρητικό υδρολόγο [Klemeš,  p. ]: 

Oh, Lord, please keep the world linear and Gaussian. 
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ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΥΔΑΤΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΥΠΟ ΑΒΕΒΑΙΟΤΗΤΑ 

Η σύζευξη μεθόδων προσομοίωσης και βελτιστοποίησης αποτελεί μια ισχυρή τεχνική που έχει 
τραβήξει την προσοχή της επιστήμης και τεχνολογίας υδατικών πόρων, δεδομένου ότι 
παρουσιάζει μεγάλα πλεονέκτημα έναντι της παραδοσιακής μεμονωμένης χρήσης των δυο 
προσεγγίσεων [e.g., Koutsoyiannis and Economou, ]. Σε αυτό το πλαίσιο, ένα μοντέλο 
προσομοίωσης χρησιμοποιείται για να αναπαραστήσει τις δυναμικές που αναπτύσσονται στο 
υπό μελέτη σύστημα σε διαδοχικά χρονικά βήματα και εν συνεχεία να αξιολογήσει την 
συνολική του επίδοση επί της βάσης ενός ή πολλών κριτηρίων που ορίζονται από το χρήση. 
Δεδομένου ότι αυτά τα κριτήρια εκφράζονται μέσω μιας στοχικής συνάρτησης, η προσομοίωση 
μπορεί να καθοδηγηθεί μέσω ενός αλγόριθμου βελτιστοποίησης που υλοποιεί μια συστηματική 
αναζήτηση στον χώρο των παραμέτρων με στόχο την μεγιστοποίηση της επίδοσης του 
συστήματος - σε κάθε δοκιμή, νέες τιμές αποδίδονται στις μεταβλητές ελέγχου του μοντέλου 
προσομοίωσης το οποίο και τρέχει αυτόματα για ανανεώσει την τιμή της στοχικής συνάρτησης.   

Τα συνδυασμένα σχήματα προσομοίωσης-βελτιστοποίησης για υδατικά συστήματα μπορούν 
γενικά να κατηγοριοποιηθούν σε δυο γενικές κατηγορίες: (α) Προβλήματα λήψης αποφάσεων, 
στα οποία οι ιδιότητες του συστήματος και οι σχετικές διεργασίες είναι γνωστές εκ των 
προτέρων, ωστόσο κάποια μεγέθη σχεδιασμού και η διαχείρισή τους είναι άγνωστη, και (β) 
προβλήματα βαθμονόμησης (γνωστά και ως αντίστροφα προβλήματα) στα οποία κάποιες 
εσωτερικές ιδιότητες του συστήματος, είτε φυσικές είτε εννοιολογικές, είναι άγνωστες και 
πρέπει να προσδιοριστούν μέσω μιας διαδικασίας που προβλέπει την ελαχιστοποίησης της 
απόκλισης μεταξύ προσομοιωμένων και παρατηρημένων αποκρίσεων του συστήματος. Παρά 
την διαφορετική λογική τους, και οι δυο τύποι προβλημάτων χαρακτηρίζονται από 
συγκεκριμένες αβεβαιότητες και πολυπλοκότητες, και συχνά υπόκεινται σε πολλαπλά (και 
συχνά αντικρουόμενα) κριτήρια και αρκετούς περιορισμούς.       

Η ανάγκη για προχωρημένα εργαλεία ολικής βελτιστοποίησης (π.χ., εξελικτικοί αλγόριθμοι) 
έχει αναγνωριστεί νωρίς από την υδρολογική κοινότητα η οποία έχει σημαντική εμπειρία στην 
χρήση τους καθώς και καθοριστική συμβολή στην ανάπτυξή τους. Στην βιβλιογραφία είναι 
διαθέσιμες πολλές επισκοπήσεις μεθόδων βελτιστοποίησης σε τέτοια προβλήματα. Για 
παράδειγμα, στα πλαίσια σχεδιασμού και διαχείρισης συστημάτων νερού, διακρίνουμε τις 
εργασίες των Labadie [], Fowler et al. [], Nicklow et al. [], Reed et al. [] (που 
εστιάζουν στην πολυκριτηριακή εφαρμογή των μεθόδων) και των Ahmad et al. []. Η 
βιβλιογραφία που αφορά την υδρολογική βαθμονόμηση είναι ακόμα πιο εκτενής. Για 
διευκόλυνση, διακρίνουμε τις πρόσφατες εργασίες των Duan [] και Efstratiadis and 
Koutsoyiannis [], που παρέχουν μια πλήρη ανασκόπηση των ολικών και πολυκριτηριακών 
μεθόδων, αντίστοιχα. Επίσης, αξίζει να αναφερθεί, η εργασία των Maier et al. [], που 
συνοψίζει την τρέχουσα κατάσταση των εξελικτικών αλγορίθμων και άλλων μετα-ευρετικών 
μεθόδων, και ορίζει νέες κατευθύνσεις για μελλοντική έρευνα όσον αφορά στην εφαρμογή τους 
σε προβλήματα υδατικών πόρων.        

Στην όλη υπολογιστική διαδικασία, η προσομοίωση είναι με διαφορά η συνιστώσα με τον 
μεγαλύτερο υπολογιστικό φόρτο. Καθώς τα μοντέλα γίνονται όλο και πιο πολύπλοκα και 
απαιτητικά όσον αφορά τα δεδομένα, η απαιτήσεις τους σε υπολογιστικό φόρτο και ισχύ (δηλ., 
CPU) αυξάνει ραγδαία [e.g., Tolson and Shoemaker, ; Keating et al., ; Razavi et al., 
; Efstratiadis et al., ; Tsoukalas and Makropoulos, b, a, Tsoukalas et al., 
b, a, ].  Ένα τυπικό παράδειγμα αποτελούν τα υδρολογικά μοντέλα φυσικής 
βάσης μικρής χρονικής και χωρικής κλίμακας, σε αντίθεση με τα συγκεντρωτικά εννοιολογικά 
μοντέλα βροχής-απορροής.  
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Σε άλλες εφαρμογές, που αναφέρονται ως στοχαστικά προβλήματα προσομοίωσης-
βελτιστοποίησης (πειράματα Monte Carlo που εμπεριέχουν την χρήση μεθόδων 
βελτιστοποίησης - δες κεφάλαιο 1.1), ο υπολογιστικός φόρτος αυξάνει πολλές τάξεις μεγέθους 
λόγω της χρήσης συνθετικών (αντί ιστορικών) χρονοσειρών πολύ μεγάλου μήκους (π.χ., 
χιλιάδες χρόνια) έτσι ώστε να εκτιμηθούν τα πιθανοτικά μεγέθη (π.χ., αξιοπιστία, 
διακινδύνευση) με την απαραίτητη ακρίβεια. Ανάλογα με τον αριθμό των παραμέτρων και την 
πολυπλοκότητα της επιφάνειας απόκρισης, ο αλγόριθμος βελτιστοποίησης θα πρέπει να 
καλέσει το μοντέλο προσομοίωσης χιλιάδες φορές για να συγκλείνει σε μια καλή λύση. 
Συνεπώς, ο υπολογιστικός φόρτος της προσομοίωσης θέτει ένα πρακτικό εμπόδιο στην 
βελτιστοποίηση, που θα πρέπει να ολοκληρωθεί σε ένα περιορισμένο χρόνο, όπως αυτός 
συνήθως εκφράζεται μέσω του μέγιστου αριθμού επαναλήψεων ή υπολογισμών της στοχικής 
συνάρτησης. Για παράδειγμα, ας υποθέσουμε ένα πρόβλημα προσομοίωσης που απαιτεί 
περίπου . λεπτό για κάθε μια προσομοίωση και ένα αλγόριθμο βελτιστοποίησης που απαιτεί 
  επαναλήψεις για να προσεγγίσει το ολικό ελάχιστο. Μια τέτοια διαδικασία θα 
διαρκούσε περισσότερο από  μέρες, γεγονός που την καθιστά πρακτικά μη εφικτή.       

Σύμφωνα με τους Razavi et al. [], οι προσεγγίσεις για την εξάλειψη του υπολογιστικού 
φόρτου, που επιβάλλεται από χρονοβόρα μοντέλα προσομοίωσης, μπορεί να κατηγοριοποιηθεί 
σε τέσσερις κύριες κατηγορίες: () παράλληλος προγραμματισμός [e.g., Schutte et al., ; 
Cheng et al., ; Vrugt et al., ; Feyen et al., ; He et al., ; Regis and Shoemaker, 
; Dias et al., ], () υπολογιστικά αποτελεσματικούς αλγορίθμους βελτιστοποίησης 
[e.g., Tolson and Shoemaker, ; Kuzmin et al., ; Tan et al., ; Tolson et al., ], () 
στρατηγικές για την  αποφυγή υπολογισμών με χρονοβόρα μοντέλα [e.g., Ostfeld and 
Salomons, ; Razavi et al., ; Matott et al., ], και () υποκατάστατα μοντέλα τα 
οποία αναφέρονται και ως, μετα-μοντέλα [Blanning, ], μοντέλα επιφάνειας απόκρισης, και 
μοντέλα εξομοίωσης [Razavi et al., a], όπου στοχεύουν στην προσέγγιση των αποκρίσεων 
του πραγματικού μοντέλου προσομοίωσης. Είναι σημαντικό να επισημανθεί, ότι στα πλαίσια 
του συνδυασμένου σχήματος προσομοίωσης-βελτιστοποίησης, τα υποκατάστατα μοντέλα 
παίζουν το ρόλο προσεγγίσεων μαύρου-κουτιού που στοχεύουν στην δημιουργία μιας σχέσης 
εξάρτησης μεταξύ των μεταβλητών ελέγχου του μοντέλου προσομοίωσης (επεξηγηματικές 
μεταβλητές) και της στοχικής συνάρτησης του μοντέλου βελτιστοποίησης (μεταβλητή 
απόκρισης). Ο παράλληλος προγραμματισμός από την άλλη επιτρέπει την εκτέλεση 
ανεξάρτητων προσομοιώσεων από πολλαπλούς επεξεργαστές, και αναπόφευκτα απαιτεί 
σημαντικές επενδύσεις σε υλικοτεχνικό εξοπλισμό που τον καθιστά μη πρακτικό για κοινή 
χρήση. Αξίζει να σημειωθεί ότι για να μειωθεί ο υπολογιστικός χρόνος τρεις τάξεις μεγέθους – 
μια λογική απαίτηση για ένα πολύπλοκο πρόβλημα προσομοίωσης – θα πρέπει να 
χρησιμοποιηθούν   παράλληλοι επεξεργαστές, κάτι το οποίο απέχει από την 
πραγματικότητα. Οι δυο επόμενες επιλογές, δηλ., η βελτίωση της αποτελεσματικότητας των 
ήδη υπαρχόντων αλγορίθμων, καθώς και η διακοπή της διαδικασίας όταν η επίδοση του 
μοντέλου δείχνει να είναι φτωχή από τα πρώτα βήματα της προσομοίωσης μπορούν να 
εξοικονομήσουν χρόνο, αλλά όχι όσο απαιτείται. Από την άλλη, τα μοντέλα υποκατάστατων 
δεν έχουν κάποια συγκεκριμένη απαίτηση σε υπολογιστικούς πόρους και διασφαλίζουν πολύ 
γρήγορους υπολογισμούς καθώς αντικαθιστούν, σε κάποιο βαθμό, το ακριβά υπολογιστικά 
μοντέλα προσομοίωσης. Ο βασικός τους στόχος είναι η δημιουργία ενός μοντέλου που είναι 
ακριβές σε μια συγκεκριμένη περιοχή του χώρου αναζήτησης (συνήθως γύρω από το ολικό 
βέλτιστο) και επομένως οδηγούν ευφυώς την βελτιστοποίηση [Couckuyt et al., ]. Η 
σημαντική δυναμική των μοντέλων αυτών παρουσιάζεται στα Κεφάλαια 8 και 9 μέσω της 
ανάπτυξης νέων μεθοδολογιών και αλγορίθμων που βασίζονται στα υποκατάστατα μοντέλα 
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για προβλήματα προσομοίωσης-βελτιστοποίησης υδατικών συστημάτων υπό αβεβαιότητα 
(δηλ., συστήματα που ελέγχονται από στοχαστικές εισόδους).  

ΕΠΙΣΚΟΠΗΣΗ ΚΑΙ ΣΥΝΕΙΣΦΟΡΑ ΤΗΣ ΔΙΔΑΚΤΟΡΙΚΗΣ ΔΙΑΤΡΙΒΗΣ  

Ο κύριος στόχος της παρούσας διδακτορική διατριβής είναι η ανάπτυξη καινοτόμων εργαλείων 
και μεθοδολογιών για την ρεαλιστική μοντελοποίηση και προσομοίωση των 
υδρομετεωρολογικών διεργασιών (δηλ., παραγωγή συνθετικών υδρομετεωρολογικών 
χρονοσειρών με τις επιθυμητές πιθανοτικές και στοχαστικές ιδιότητες), και ταυτόχρονα 
αντιμετωπίζει τον επιπρόσθετο υπολογιστικό φόρτο που προκύπτει από την χρήση συνθετικών 
χρονοσειρών μεγάλου μήκους ως είσοδοι σε προβλήματα προσομοίωσης-βελτιστοποίησης. 
Κατά συνέπεια, εξασφαλίζει την πρακτική υλοποίηση προβλημάτων βελτιστοποίησης 
υδατικών συστημάτων υπό το καθεστώς αβεβαιότητας.       

Πιο συγκεκριμένα, ο βασικός στόχος της παρούσας διδακτορική διατριβής είναι διττός και 
αφορά: 

α) Την ανάπτυξη μη-Γκαουσιανών στοχαστικών μοντέλων προσομοίωσης που είναι ικανά να 
αναπαράγουν τις ιδιαιτερότητες που συνήθως συναντώνται στις υδρομετεωρολογικές 
διεργασίες, όπως είναι η διαλείπουσα φύση, η αύτο- και έτερο- συσχέτιση, η περιοδικότητα, 
καθώς επίσης και η ανά χρονική κλίμακα μεταβαλλόμενη πιθανοτική και στοχαστική 
συμπεριφορά των μεταβλητών (Κεφάλαια 3 με 7). 

β) Την ανάπτυξη κατάλληλων μεθοδολογιών βελτιστοποίησης βασισμένων σε μοντέλα 
υποκαταστατών  που είναι αποτελεσματικές στην αντιμετώπιση προβλημάτων 
βελτιστοποίησης-προσομοίωσης υδατικών συστημάτων υπό το καθεστώς αβεβαιότητας, δηλ., 
όταν γίνεται χρήση στοχαστικών εισόδων στην διαδικασία προσομοίωσης-βελτιστοποίησης 
(Κεφάλαια 8 με 9).   

Η παρούσα διατριβή μπορεί να διαβαστεί στο σύνολό της, ή στη βάση μεμονωμένων 
κεφαλαίων. Κάθε κεφάλαιο βασίζεται πάνω σε δημοσιευμένα ή υπό-κρίση επιστημονικά άρθρα, 
και κάθε ένα είναι αυτοτελές με δική του εισαγωγή, μεθοδολογία, αποτελέσματα και 
συμπεράσματα. Το περιεχόμενο (με τυπική γραφή), η βασική συνεισφορά και τα ευρήματα (με 
πλάγια γραφή) κάθε κεφαλαίου περιγράφονται παρακάτω:   

 
Το Κεφάλαιο 2 συνοψίζει τα κύρια χαρακτηριστικά των υδρομετεωρολογικών διεργασιών 
καθώς επίσης και τις επικρατέστερες ως τώρα μεθοδολογίες μοντελοποίησης και 
προσομοίωσης τους.  
[] Αυτό το κεφάλαιο παρέχει επισκόπηση των πλέον σύγχρονων πρακτικών μοντελοποίησης 

και προσομοίωσης για την γέννηση συνθετικών χρονοσειρών υδρομετεωρολογικών 
διεργασιών, και συζητά κατά πόσο επιτυγχάνουν την αναπαραγωγή των βασικών 
χαρακτηριστικών τους.    

 
Το Κεφάλαιο 3 διερευνά την καταλληλόλητα μιας συγκεκριμένης κατηγορίας στοχαστικών 
μοντέλων, που χρησιμοποιείται ευρέως για την παραγωγή συνθετικών χρονοσειρών στον 
τομέα υδρολογίας, και συγκεκριμένα των γραμμικών στοχαστικών μοντέλων με θόρυβο από 
μη-Γκαουσιανές κατανομές. 
[] Το Κεφάλαιο αυτό αποκαλύπτει ένα σημαντικό ελάττωμα αυτής της κατηγορίας μοντέλων, 

αποκαλούμενο ως  περιβάλλουσα συμπεριφορά (envelope behavior), το οποίο παρέμενε 
κρυμμένο για πάνω από μισό αιώνα. Τα μοντέλα αυτά είναι επιρρεπή στην παραγωγή μη 
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φυσικών, και κατά συνέπεια ασυνεπών δομών εξάρτησης που δεν παρατηρούνται στις 
φυσικές διεργασίες. Αυτή η συμπεριφορά αποδίδεται στον μηχανισμό γέννησης τους, που 
στερείται ρητής υπόθεσης όσον αφορά την από κοινού δομή εξάρτησης (σήμερα 
μοντελοποιείται μέσω συναρτήσεων copula).  

 

Το Κεφάλαιο 4 εισάγει το επονομαζόμενο από κοινού μοντέλο πιθανότητας Nataf (NDM; 
Nataf’s Joint Distribution Model), μια κεντρική ιδέα της παρούσας διατριβής, που σχετίζεται 
με την έννοια των (Gaussian) copulas, και με τη σειρά του επιτρέπει την μοντελοποίηση και 
προσομοίωση  μη-Γκαουσιανών τυχαίων (δεσμευμένων ή μη) μεταβλητών και στοχαστικών 
ανελίξεων (διαδικασιών). Το Κεφάλαιο ξεκινάει με μια εισαγωγή της θεωρητικής βάσης του 
μοντέλου, και την περιγραφή, μέσω του NDM, της από κοινού πολυμεταβλητής κατανομής 
μη-Γκαουσιανών τυχαίων μεταβλητών. Εν συνεχεία, το μοντέλο NDM επεκτείνεται στις 
περιπτώσεις δεσμευμένων κατανομών και στοχαστικών ανελίξεων. Το Κεφάλαιο επίσης 
περιέχει πλήθος παραδειγμάτων προσομοίωσης τυχαίων μεταβλητών και στοχαστικών 
ανελίξεων, με διακριτές, συνεχείς και μικτού τύπου περιθώριες κατανομές.  

[] Η ιδέα του NDM και τα συναφή εργαλεία παρέμεναν άγνωστα στην υδρολογική κοινότητα 
για χρόνια, καθώς δεν υπάρχει άμεση αναφορά σε αυτά. Η παρούσα διατριβή αποτελεί την 
πρώτη εργασία στον τομέα αυτό, ενώ τυποποιεί την ιδέα και παρέχει μια εκτενή 
αντιμετώπιση του θέματος.    

[] Ένα επιπλέον καινοτόμο σημείο της διατριβής αποτελεί η χρήση του NDM για την εξαγωγή 
της πολυμεταβλητής δεσμευμένης κατανομής. 

[] Διατύπωση γενικών οδηγιών για την κατασκευή στοχαστικών ανελίξεων και μοντέλων 
προσομοίωσης βασισμένων στο NDM, πέραν αυτών που περιγράφονται στο παρόν κείμενο 
(δες επόμενο Κεφάλαιο). 

[] Τέλος, μια ακόμα συνεισφορά αυτού του Κεφαλαίου είναι η ανάπτυξη μιας απλής και 
ευέλικτης διαδικασίας Monte Carlo για την αναγνώριση των επονομαζόμενων ισοδύναμων 
συντελεστών συσχέτισης που έχουν ένα ιδιαίτερα σημαντικό, αλλά συχνά παραμελημένο, 
ρόλο στην ανάπτυξη μεθοδολογιών βασισμένων στο μοντέλο NDM.     

 
Το Κεφάλαιο 5 εστιάζει στην μοντελοποίηση και προσομοίωση στάσιμων στοχαστικών 
ανελίξεων, και συγκεκριμένα αφορά δυο σημαντικά χαρακτηριστικά των υδρομετεωρολογικών 
διεργασιών που είναι η μη-Γκαουσιανή φύση των κατανομών (περιλαμβανομένης της 
διαλείπουσας φύσης) και η δομή αυτό-συσχέτισης τους (μακροπρόθεσμη ή βραχυπρόθεσμη).  
[] Χτίζοντας πάνω στα ευρήματα του Κεφαλαίου 4, αναπτύχθηκαν δυο καινοτόμα μοντέλα 

βασισμένα στην ιδέα του NDM. Το μοντέλο Symmetric Moving Average (neaRly) To 
Anything (SMARTA) και το μοντέλο Contemporaneous Multivariate Autoregressive 
(neaRly) to Anything (CMARTA). Και τα δυο μοντέλα είναι ικανά να προσομοιώσουν 
στάσιμες μονομεταβλητές ή πολυμεταβλητές (έτερο-συσχετισμένες) ανελίξεις με 
οποιαδήποτε δομή εξάρτησης (μακροπρόθεσμη ή βραχυπρόθεσμη) και περιθώρια 
κατανομή.     

[] Η θεωρητική βάση των παραπάνω μοντέλων και η ευέλικτη φύση τους περιγράφεται μέσα 
από μια σειρά υποθετικών και πραγματικών σεναρίων προσομοίωσης, καθώς και μέσα από 
τη σύγκρισή τους με άλλα γνωστά μοντέλα προσομοίωσης.  
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Το Κεφάλαιο 6 αφορά στην μοντελοποίηση κυκλο-στάσιμων ανελίξεων (π.χ., μηνιαίων) των 
οποίων η προσομοίωση είναι αναμφισβήτητα μια πρόκληση, δεδομένης της εποχιακά 
μεταβαλλόμενης δομής συσχέτισης και των περιθωρίων κατανομών.   
[] Το Κεφάλαιο αυτό εισάγει ένα κυκλ-οστάσιμο NDM μοντέλο (δες επίσης Κεφάλαιο 4), με 

την ονομασία Stochastic Periodic AutoRegressive To Anything (SPARTA), το οποίο επιτρέπει 
την προσομοίωση μονομεταβλητών ή πολυμεταβλητών κυκλο-στάσιμων ανελίξεων με 
οποιεσδήποτε, περιοδικά μεταβαλλόμενη, περιθώρια κατανομή.     

[] Θεωρητικά και πρακτικά οφέλη της προτεινόμενης μεθόδου, συγκρινόμενα με 
αποτελέσματα από άλλα ευρέως χρησιμοποιούμενα στοχαστικά μοντέλα,  παρουσιάζονται 
μέσα από πραγματικά, καθώς και υποθετικά, παραδείγματα μηνιαίας προσομοίωσης και 
αφορούν τόσο μονομεταβλητές αλλά και πολυμεταβλητές διαδικασίες.  

[] Μια χαρακτηριστική συνεισφορά αποτελεί η αναπαραγωγή δομών εξάρτησης που δεν 
μπορεί να προκύψει με χρήση κλασικών στοχαστικών μοντέλων (ένα ζήτημα που συζητείται 
επίσης στο Κεφάλαιο 3).  

 
Το Κεφάλαιο 7 συζητά και αντιμετωπίζει το πρόβλημα της παραγωγής συνθετικών 
χρονοσειρών που είναι συνεπείς σε πολλαπλά χρονικά επίπεδα. Αυτή η απαίτηση είναι υψίστης 
σημασίας σε πολλές εργασίες που σχετίζονται με την έννοια της διακινδύνευσης.  
[] Αυτό το Κεφάλαιο παρουσιάζει μια καινοτόμα προσέγγιση, αποκαλούμενη ως Nataf-

based Disaggregation To Anything (NDA), για την σύζευξη, μέσω διαδικασιών επιμερισμού, 
στοχαστικών μοντέλων βασισμένων στην προσέγγιση Nataf (π.χ. Κεφάλαια 4, 5 and 6). 

[] Η ανεξαρτησία από την χρονική κλίμακα και ο “top-down” χαρακτήρας της μεθόδου 
NDA επιτρέπει την ανάπτυξη μιας ποικιλίας από στοχαστικά σχήματα προσομοίωσης (μέσω 
της σύζευξης πολλαπλών μοντέλων) για την παραγωγή, συνεπών σε πολλαπλά χρονικά 
επίπεδα, συνθετικών χρονοσειρών από υδρομετεωρολογικές διεργασίες που έχουν 
οποιαδήποτε κατανομή και δομή συσχέτισης (περιλαμβανομένων στάσιμων και κυκλο-
στάσιμων διαδικασιών). Στην παρούσα διατριβή, αναπτύσσεται ένα ενοποιημένο σχήμα 
προσομοίωσης τριών χρονικών επιπέδων για την παραγωγή πολυμεταβλητών 
χρονοσειρών, συνεπών από την ετήσια μέχρι την ημερήσια χρονική κλίμακα, με 
οποιαδήποτε πιθανοτική κατανομή και δομή συσχέτισης.    

[] Η επίδοση του σχήματος τριών επιπέδων επιβεβαιώνεται μέσω δυο διαφορετικών 
παραδειγμάτων, ενός που αφορά την προσομοίωση της ημερήσιας βροχής-απορροής σε μια 
λεκάνη απορροής, και ενός που αφορά στην παραγωγή διαλειπουσών μη-Γκαουσιανών 
χρονοσειρών βροχής σε τέσσερις σταθμούς.   

[] Η ευελιξία της μεθόδου NDA να προσομοιώσει διαδικασίες σε ακόμη χαμηλότερες 
χρονικές κλίμακες αποδεικνύεται περαιτέρω από ένα επιπλέον παράδειγμα που 
περιλαμβάνει τον επιμερισμό ημερήσιας βροχής σε ωριαία.   

Όπως συζητήθηκε στο κεφάλαιο 1.3, η χρήση στοχαστικών εισόδων σε συνδυασμό με μοντέλα 
προσομοίωσης και/ή μεθόδους βελτιστοποίησης (δες κεφάλαιο 1.1) θέτουν ένα πρακτικό 
πρόβλημα καθώς αυξάνουν δραματικά τον απαιτούμενο υπολογιστικό φόρτο. Τα επόμενα δυο 
Κεφάλαια στοχεύουν στην αντιμετώπιση αυτού του ζητήματος.  

 
Το Κεφάλαιο 8 εξετάζει το πρόβλημα της αντιμετώπισης χρονοβόρων πολυμεταβλητών 
προβλημάτων βελτιστοποίησης στα πλαίσια περιορισμένου υπολογιστικού χρόνου/φόρτου. 
Σαν παράδειγμα, στοχεύουμε στην ανάπτυξη επιχειρησιακών κανόνων λειτουργίας για 
συστήματα πολλαπλών ταμιευτήρων - ένα δύσκολο πρόβλημα, που προκύπτει από τον αριθμό 
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των μεταβλητών απόφασης, τους αντικρουόμενους στόχους, τη μη γραμμικότητα των 
δυναμικών του συστήματος και την υδρολογική αβεβαιότητα. Αυτή η αβεβαιότητα μπορεί να 
αντιμετωπιστεί μέσω της σύζευξης μοντέλων προσομοίωσης με πολυκριτηριακούς  
αλγορίθμους βελτιστοποίησης και τη χρήση στοχαστικών υδρολογικών χρονοσειρών σαν 
εισόδους.  Ωστόσο, αυτή η προσέγγιση έχει μεγάλο υπολογιστικό φόρτο και θέτει πρακτικά 
εμπόδια στην αποτελεσματική εξερεύνηση του χώρου λύσεων. Το παρόν Κεφάλαιο, σε μια 
προσπάθεια να αντιμετωπίσει αυτό το πρόβλημα: 
[] Αναπτύσσει μια πολυκριτηριακή έκδοση του γνωστού φειδωλού πλαισίου 

parameterization-simulation-optimization (PSO), που επιτρέπει την εισαγωγή της 
υδρολογικής αβεβαιότητας μέσω της χρήσης στοχαστικών εισόδων και πιθανοτικών 
στοχικών συναρτήσεων.  

[] Εξερευνά την δυνατότητα των επονομαζόμενων multi-objective surrogate-based 
optimization (MOSBO) αλγορίθμων να αντιμετωπίσουν τον υπολογιστικό φόρτο. 
Συγκεκριμένα, τρεις αλγόριθμοί τύπου MOSBO συγκρίνονται με δυο πολυκριτηριακούς 
εξελικτικούς αλγορίθμους. Τα αποτελέσματα υποδεικνύουν ότι οι αλγόριθμοι MOSBO είναι 
ικανοί να παρέχουν εύρωστους επιχειρησιακούς κανόνες υπό αβεβαιότητα πολύ ταχύτερα, 
χωρίς έλλειψη της γενικότητας. 

 
Το Κεφάλαιο 9 αποτελεί μια καινοτόμα συνεισφορά όσον αφορά γενικά τα χρονοβόρα 
προβλήματα προσομοίωσης-βελτιστοποίησης. Τέτοιες περιπτώσεις προκύπτουν όταν η 
εκτίμηση της στοχικής συνάρτησης επιβάλει τη χρήση χρονοβόρων μοντέλων προσομοίωσης. 
Ο υπερβολικά μεγάλος χρόνος που απαιτείται από την όλη διαδικασία περιορίζει την εφαρμογή 
τέτοιων μεθόδων ή επιβάλει τον τερματισμό της διαδικασία πολύ νωρίτερα. Όπως συζητείται 
στο κεφάλαιο 1.3 και παρουσιάζεται στον παρόν Κεφάλαιο, μια πολλά υποσχόμενη στρατηγική 
για την αντιμετώπιση αυτού του μειονεκτήματος είναι η ενσωμάτωση μοντέλων 
υποκαταστατών σε αλγορίθμους ολικής βελτιστοποίησης. Σε αυτό το πλαίσιο, εισάγεται ο 
αλγόριθμος Surrogate-Enhanced Evolutionary Annealing-Simplex (SEEAS). Ο SEEAS 
συνδυάζει την δύναμη των μοντέλων υποκαταστατών με την αποτελεσματικότητα και 
αποδοτικότητα των εξελικτικών αλγορίθμων. Ο αλγόριθμος ενσωματώνει τρεις διαφορετικές 
τεχνικές βελτιστοποίησης (εξελικτική αναζήτηση, προσομοιωμένη ανόπτηση και μεθόδους 
αναζήτησης κατερχόμενου απλόκου), ενώ οι βασικές αποφάσεις καθοδηγούνται ευφυώς από 
προσεγγίσεις της στοχικής συνάρτησης μέσω μοντέλων υποκαταστατών.     
[] Η επίδοση του προτεινόμενου αλγορίθμου ελέγχεται έναντι άλλων αλγορίθμων 

βασισμένων σε μοντέλα υποκαταστατών, τόσο σε θεωρητικά (δηλ., 6 μαθηματικές 
συναρτήσεις, που δημιουργούν 24 μοναδικά προβλήματα βελτιστοποίησης) όσο και 
πρακτικά προβλήματα (δηλ., ένα που αφορά την βαθμονόμηση υδρολογικών μοντέλων και 
ένα πρόβλημα πολλαπλών ταμιευτήρων), με περιορισμένο αριθμό επαναλήψεων (λιγότερες 
από 1 000).   

[]  Τα αποτελέσματα φανερώνουν την δυνατότητα του SEEAS να διαχειριστεί και να 
αντιμετωπίσει δύσκολα προβλήματα βελτιστοποίησης, που εμπεριέχουν χρονοβόρες 
προσομοιώσεις.  

 
Το Κεφάλαιο 10 παρουσιάζει μια περίληψη των πιο σημαντικών επιστημονικών 
αποτελεσμάτων και συζητά τις δυνατότητες για μελλοντική έρευνα.   

Το Παραρτήματα A, B, C and D  παρέχουν επιπλέον συμπληρωματικό υλικό για τα Κεφάλαια 
3, 5, 6 and 7, αντίστοιχα. 
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ΕΠΙΛΟΓΟΣ 

Στην παρούσα διδακτορική διατριβή, χρησιμοποιώντας τις θεωρίες στατιστικής, πιθανοτήτων 
και στοχαστικών ανελίξεων, αναπτύσσεται περαιτέρω και μελετάται διεξοδικά μια κατηγορία 
θεωρητικά συνεπών, μονό-μεταβλητών και πολύ-μεταβλητών μη-Γκαουσιανών στάσιμων και 
κύκλο-στάσιμων στοχαστικών μοντέλων. Αυτού του τύπου μοντέλα, ήταν μέχρι πρότινος 
άγνωστα στην υδρολογική κοινότητα, και αυτή η διατριβή είναι μια πρώτη προσπάθεια 
μελέτης τους και εναρμόνισης τους με τη στοχαστική υδρολογία.  

Τα προτεινόμενα μοντέλα είναι σε θέση να προσομοιώσουν όλα τα χαρακτηριστικά των 
υδρομετεωρολογικών διεργασιών ενώ ταυτόχρονα χαρακτηρίζονται από απλότητα και 
φειδωλή παραμετροποίηση. Επιπλέον, με βάση τα παραπάνω μοντέλα, και τη βοήθεια 
επιμεριστικής διαδικασίας, αναπτύσσεται ένα αρθρωτό στοχαστικό πλαίσιο προσομοίωσης το 
οποίο επιτρέπει την αναπαραγωγή της πιθανοτικής και στοχαστικής συμπεριφοράς των 
υδρομετεωρολογικών διεργασιών σε πολλαπλές χρονικές κλίμακες (π.χ., από την ετήσια ως 
και ημερήσια ή και ακόμη μικρότερες κλίμακες). Τα πλεονεκτήματα των παραπάνω μοντέλων, 
αλλά και του αρθρωτού πλαισίου στοχαστικής προσομοίωσης, παρουσιάζονται και 
επαληθεύονται μέσα από πληθώρα υποθετικών και πραγματικών περιπτώσεων στοχαστικής 
προσομοίωσης. 

Τέλος, προκειμένου να διασφαλιστεί η αποτελεσματική εκμετάλλευση και ενσωμάτωση των 
νέων αυτών εξελίξεων, σχετικών με τη στοχαστική προσομοίωση υδρομετεωρολογικών 
διεργασιών, στο πλαίσιο του βέλτιστου σχεδιασμού και διαχείρισης υδατικών συστημάτων (σε 
συνδυασμό με στοχαστικά δεδομένα εισόδου), η παρούσα εργασία αναπτύσσει κατάλληλες 
μεθόδους και αλγορίθμους βελτιστοποίησης, που βασίζονται σε υποκατάστατα μοντέλα, για 
τον αποτελεσματικό χειρισμό προβλημάτων υδατικών συστημάτων υπό υδρομετεωρολογική 
αβεβαιότητα, ελαττώνοντας έτσι σημαντικά τον απαιτούμενο υπολογιστικό φόρτο. 
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1  
INTRODUCTION 

The only certainty is that nothing is certain 

~ Gaius Plinius Secundus (– AD) 

1.1 SETTING THE SCENE 
Hydrological sciences are not exempted from the introductory aphorism. A phrase that despite 
the tremendous technological advancements and the rise of the era of information technology 
and computing is undoubtedly still valid. Evidently, the omnipresence of uncertainty poses an 
intriguing challenge in decision making process regardless the scientific discipline applied to. 
Decision making under uncertainty remains, and probably will remain, a fruitful scientific area 
of continuous development and interest. 

The need to account for uncertainty within hydrological decision making is highlighted by the 
relationship that exists between, climate and water-related engineering works and operations, 
and human life and security. A characteristic example is that of a water-system comprised of 
several engineering works especially designed and managed to serve multiple purposes, such 
as flood protection, energy production and water supply for potable and irrigation purposes. 
The critical nature of these operations, and their apparent connection with the so-called water-
energy-food nexus, pose stringent reliability requirements and require the derivation of 
optimal solutions, especially when considering the potential impacts of changing climatic 
conditions. 

Key ingredients of every hydrological study, and simultaneously one of the main sources of 
uncertainty, are hydrometeorological inputs. A historical record of such observations will 
rarely if ever repeat in the future, due to the high variability, randomness and uncertainty that 
is inherent in the processes. This type of uncertainty is often referred to as hydrometeorological 
uncertainty and is arguably of utmost importance in related engineering works and studies.  

The scientific discipline of stochastic hydrology, attempts to address the challenging task of 
handling hydrometeorological uncertainty, though the employment of statistical concepts, 
probability laws and the theory of stochastic processes. The assumption that 
hydrometeorological time series (i.e., sequences of observations ordered in time) are 
realizations of stochastic processes allows their analysis, modelling, simulation and forecasting. 
In this vein, it can be argued that embracing the existence of randomness and stochasticity in 
such processes is a first step towards their understanding and the development of uncertainty-
aware methodologies for water-systems optimization. 

It is widely acknowledged (see next section) that stochastic simulation of hydrometeorological 
processes, which essentially, translates in generating alternative (statistically equivalent) 
plausible realizations of the processes (i.e., synthetic time series), providing the means to 
uncertainty-proof the decision-making process of design and operation of water-systems. 



INTRODUCTION    

Page | 2 

Due to the typical size of historical data, which is not sufficient to extract safe conclusions about 
the long-term performance of a system, the common procedure entails driving a deterministic 
simulation model that implements the operation of the associated system with stochastic 
inputs, i.e., realizations of input hydrometeorological processes that statistically resemble the 
parent information, which are generally (but not solely) derived from historical data. 
Therefore, one can obtain long time series of simulated realizations of the system’s operation 
that are conditioned to the statistical characteristics of the stochastic inputs. This approach 
essentially enables the establishment of Monte Carlo experiments, where the intrinsic 
uncertainty of the inputs is propagated through a deterministic filter (i.e., the simulation 
model) in order to derive and assess the probabilistic behaviour of the outputs of interest. 
Further to this, when the objective is the optimization of the deterministic model’s control 
variables (i.e., model’s parameters) with respect to some quantity or metric (i.e., objective), the 
above procedure can (and should) be embed within an iterative procedure driven by an 
optimization algorithm (i.e., establishing uncertainty-aware simulation-optimization 
frameworks). Arguably, the use of stochastic inputs provides a conceptually flexible and 
operationally effective approach for handling optimization problems of water-systems under 
uncertainty, but inevitably, their use, significantly increases the required computational effort. 

This Thesis focuses on two important aspects of this procedure, namely, 

a) the realistic stochastic modelling and simulation of hydrometeorological processes, and 

b) the effective and efficient implementation of optimization procedures for water-systems 
problems under uncertainty (i.e., driven by stochastic inputs). 

1.2 STOCHASTIC MODELLING AND SIMULATION OF HYDROMETEOROLOGICAL 
PROCESSES 

The idea of using synthetic time series within hydrological studies dates back, more than  
years, to Hazen [], who in order to create a synthetic realization of annual streamflow 
combined several historical observations into one enhanced time series record. This simple 
approach was the first of many that followed (see the review of section 2.3), since his idea was 
greatly valued by the hydrological community, and significantly motivated the birth of the 
scientific discipline of synthetic (or operational) hydrology. 

According to the classical classification by Matalas [], synthetic hydrology constitutes a 
sub-branch of stochastic hydrology, and its emergence owes much to the pivotal works 
conducted by the Harvard water program [Maass et al., ] and the associated works of 
Thomas and Fiering [], who were probably the first that employed the theory of stochastic 
processes for the synthesis of monthly streamflow time series. According to Koutsoyiannis 
[], other significant developments that forged the establishment of the field (and stochastic 
hydrology in general) was the remarkable advances in computing in the ’s accompanied 
by the emergence and wide-spread adaptation of Monte Carlo methods in several scientific 
fields (e.g., physics, biology and finance). Another notable contribution that stemmed from a 
different scientific domain, was the publication of the now-classic textbook in time series 
analysis by Box and Jenkins [] that offered a comprehensive treatment on the subject, as 
well as provided a detailed classification of linear stochastic models including autoregressive 
(AR), moving average (MA) and their combination, autoregressive moving average (ARMA) 
models. 
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Early works that employed the notion of synthetic time series aimed in assessing the 
performance of reservoir systems in probabilistic terms, i.e., by evaluating their reliability on 
the basis of simulated water release data [e.g., Hazen, ; Sudler, ; Barnes, ; Thomas 
and Fiering, ; Klemeš, ]. Today, synthetic data are used in a variety of studies (with 
structure similar to the aforementioned Monte Carlo experiments), among them, the optimal 
planning and management of reservoir systems [e.g., Koutsoyiannis and Economou, ; 
Celeste and Billib, ; Giuliani et al., ; Tsoukalas and Makropoulos, a, b; Feng 
et al., ], risk assessment of flood [e.g., Wheater et al., ; Haberlandt et al., ; 
Paschalis et al., ; Qin and Lu, ; Moustakis et al., ] and drought events [e.g., 
Herman et al., ], as well as water resources simulation under future climate conditions 
[e.g., Fowler et al., ; Baltas, ; Kilsby et al., ; Baltas and Karaliolidou, ; Fatichi 
et al., ; Nazemi et al., ]. 

A key requirement for extracting consistent statistical outcomes from such Monte Carlo 
experiments (provided that the simulation model is a faithful representation of the underlying 
system dynamics) is the concise representation and simulation of the hydrometeorological 
inputs; which in turn requires stochastic simulation schemes that are able to account for the 
main peculiarities of hydrometeorological processes, that is, non-Gaussianity, intermittency, 
auto- dependence (short- or long-range), cross-dependence and periodicity (see section 2.2). 

In a more abstract level, the first two characteristics (non-Gaussianity and intermittency) are 
associated with the marginal properties of the process, and imply the need for a suitable 
distribution model. On the other hand, auto- and cross-dependencies are associated with the 
stochastic (joint) properties of the process, both in time and space, and point out the need for 
stochastic simulation models per se. In fact, if the physical processes to simulate were not (auto- 
or cross-)correlated, the problem would be substantially simpler, as the generation of synthetic 
data would be made by, generating uniform numbers and then employing probability integral 
transformations. Finally, periodicity introduces further complexity, since it implies 
representing the processes as cyclostationary, thus differentiating their marginal and joint 
properties not only across different temporal scales but also across seasons (or systematically 
repeated time intervals, in general). 

Arguably an appropriate stochastic simulation scheme should be able to reproduce the 
probabilistic and stochastic behavior (i.e., marginal and joint properties) of a 
hydrometeorological process, which varies according to the variable type (e.g., rainfall, 
streamflow or temperature) and the time-scale of study (e.g., annual, monthly, daily or finer). 

The need for generic simulation schemes that allow producing synthetic data from multiple 
distributions primarily originates from the fact that the probabilistic behavior of many of 
hydrometeorological processes is not satisfactory captured by classical stochastic models (see 
the review of section 2.3). Many of these models (i.e., classic linear stochastic models, point 
process models, resampling models) are not designed to reproduce significant probabilistic 
aspects of the processes (e.g., maxima and minima, associated with the tails of the distribution), 
since their standard hypothesis does not lie in the reproduction of a specific distribution, but 
the resemblance of some low-order statistics (e.g., mean, variance, skewness) and correlations 
in time and space. Further to this, as shown by Tsoukalas et al. [a], and further discussed 
in Chapter 3, usual modelling strategies can lead to bounded, hence unrealistic, and non-
natural dependence patterns, even though the essential, low-order statistical characteristics of 
the parent data may be well-preserved. 
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Furthermore, the reproduction of the distribution function of a process is considered of 
paramount importance, as suggested by both theoretical reasoning and empirical evidence. 
This is also emphatically highlighted by Klemeš and Borůvka [], who argue that (our 
emphasis): 

Simulation of a serially correlated series with a given marginal distribution is one of the 
important prerequisites of synthetic hydrology and of its applications to analysis of water 

resource systems. 

It is worth noting that the literature offers alternative approaches for synthetic time series 
generation, such as the so-called two-part models and the recently emerged copula-based type 
of models. These type of models are capable of synthesizing realizations with the target 
marginal distributions, yet they are constrained by narrow type of correlation structures (e.g., 
two-part models typically neglect temporal dependence, i.e., auto-dependence) and 
cumbersome generation mechanisms (for further details see section 2.3). 

Nevertheless, a common characteristic of most of the existing simulation approaches is their 
focus on simulating processes at a single time scale and do not explicitly account for the 
reproduction of the process’s properties (either in term of a distribution function or a set of 
statistical properties) at multiple temporal levels. Highlighting that multi-scale simulation of 
hydrometeorological processes still remains an open challenge. For a detailed problem 
description, as well as a potential remedy that combines the new developments in modelling 
and simulation of hydrometeorological processes of Chapter 4-6, into an integrated scheme, 
see Chapter 7. 

Arguably, the primary difficulty in simulating hydrometeorological processes, originates from 
the fact that the classical linear stochastic models (see section 2.3.1), which are capable of 
modelling and simulating, univariate and multivariate, stationary and cyclostationary, 
processes with a wide range of dependence structures, are unable to reproduce the non-
Gaussian and intermittent nature of hydrometeorological processes, since most of them are 
formally developed for the simulation of Gaussian processes. This inconvenience may also be 
related with Chester Kisiel’s [] pray to the theoretical hydrologist, which reads [Klemeš, 
 p. ]: 

Oh, Lord, please keep the world linear and Gaussian. 

1.3 OPTIMIZATION OF WATER-SYSTEM PROBLEMS UNDER UNCERTAINTY 
Coupling of simulation and optimization methods is a powerful technique that has gained 
significant attention in water resources science and technology, since it ensures great 
advantages over the traditional individual implementation of the two approaches [e.g., 
Koutsoyiannis and Economou, ]. In this context, a simulation model is used to faithfully 
represent the dynamics of the system under study in subsequent time steps and next to evaluate 
its overall performance against one or more user-specified criteria. Provided that these criteria 
are expressed in terms of objective function, simulation can be driven by an optimization 
model, which employs systematic search through the parameter (or decision) space to 
maximize the system performance; at each trial, new values are assigned to the control variables 
of the simulation model, which runs automatically to update the value of the objective function. 

Combined simulation-optimization schemes for water resource systems can be generally 
classified into two categories [Tsoukalas et al., ]: (a) Decision-making problems, in which 
the system properties and associated processes are known a priori, but either some of its design 
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quantities or its management policy are unknown; and (b) calibration problems (or inverse 
problems), in which some internal properties of the system, either physical or conceptual, are 
unknown and have to be inverted by minimizing the departures of the simulated responses 
against the observed ones. Despite their different rationale, both types of problems suffer from 
significant uncertainties and complexities, and they are subject to multiple (and often 
conflicting) criteria as well as numerous constraints. 

The need for advanced global optimization tools (e.g., evolutionary algorithms) has been early 
recognized by the hydrological community, which has significant experience in their use and 
also remarkable contribution in their development. In the literature are found numerous 
reviews of optimization approaches in such problems. For instance, in the context of water 
resources planning and management, we distinguish the works by Labadie [], Fowler et al. 
[], Nicklow et al. [], Reed et al. [] (emphasis to multiobjective applications) and 
Ahmad et al. []. The literature for hydrological calibration is even more extended. For 
convenience, we highlight the recent works by Duan [] and Efstratiadis and Koutsoyiannis 
[], who provide a comprehensive review of global and multiobjective calibration 
approaches, respectively. It is also worth mentioning the article by Maier et al. [], who 
summarize the current status of evolutionary algorithms and other metaheuristics, and 
highlight new directions for future research across water resources applications. 

In the whole computational procedure, simulation is by far the most time-consuming 
component. As models become more complex and data-demanding, their requirements in 
computational time and/or CPU increase substantially [e.g., Tolson and Shoemaker, ; 
Keating et al., ; Razavi et al., ; Efstratiadis et al., ; Tsoukalas and Makropoulos, 
b, a, Tsoukalas et al., b, a, ]. A typical example is the case of physically-
based hydrological models of fine spatial and temporal resolution, in contrast to lumped 
conceptual rainfall-runoff models. 

In other applications, referred to as stochastic simulation-optimization problems (i.e., Monte 
Carlo experiments, also involving optimization; see section 1.1), the computational effort 
increases by orders of magnitude due to the use of synthetic (instead of historical) time series 
of very large length (e.g., thousands of years), in order to provide estimations for probabilistic 
quantities (e.g., reliability, risk) with satisfactory accuracy. Depending on the number of 
parameters and the irregularity of the response surface, the optimization algorithm may need 
to call the simulation model thousands of times, in order to converge to a good solution. 
Therefore, the time effort of simulation imposes a practical barrier to optimization, which is 
necessary to run with significantly restricted budget, by means of maximum allowable number 
of function evaluations. For instance, consider a simulation model that requires approximately 
. minutes for a single simulation run and an optimization algorithm that requires   
function evaluations (iterations) to approximate the global minimum. Such a procedure would 
last more than ten days, which makes it practically infeasible. 

According to Razavi et al. [], the approaches to alleviate the computational burden 
imposed by time-consuming simulation models are classified into four main categories: () 
parallel computing [e.g., Schutte et al., ; Cheng et al., ; Vrugt et al., ; Feyen et al., 
; He et al., ; Regis and Shoemaker, ; Dias et al., ]; () computationally efficient 
optimization algorithms [e.g., Tolson and Shoemaker, ; Kuzmin et al., ; Tan et al., 
; Tolson et al., ]; () strategies to avoid opportunistically (expensive) model 
evaluations [e.g., Ostfeld and Salomons, ; Razavi et al., ; Matott et al., ]; and () 
surrogate modelling techniques, also referred to as meta-modelling [Blanning, ], function 
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approximation, response surface modelling and model emulation [Razavi et al., a], where 
surrogate approaches are used to approximate the responses of the original simulation model. 
It is important to remark that in the context of combined simulation-optimization schemes, 
surrogate models play the role of black-box approaches that aim to establish a data-driven 
relationship between the control variables of the simulation model (i.e., explanatory variables) 
and the objective function of the optimization model (i.e., response variable). Parallel 
computing, on the other hand, allows the execution of independent simulations by multiple 
processors, and inevitably requires significant investments in hardware infrastructure, which 
makes it impractical for common use. Note that in order to reduce the time of computations 
by three orders of magnitude – a reasonable requirement when dealing with complex 
simulation models –   parallel processors should be used, which is far from realistic. The 
other two options, i.e., the improvement of efficiency of existing algorithms, as well as the 
interruption of the function evaluation procedure, when the model performance seems to be 
very poor from early steps of simulation, may save some time but not as much as required. 
Surrogate models do not have any specific requirements in computer resources and also ensure 
very fast computations, since they replace, to some context, the (expensive) simulation model. 
Their key objective is to generate models that are accurate in a certain region of the search space 
(i.e., around a potential optimum) and thus intelligently guide the optimization [Couckuyt et 
al., ]. The significant potential of such methods is also illustrated in Chapter 8 and 9 
through the development of new surrogate-based methodologies and algorithms for water-
system simulation-optimization problems under uncertainty (i.e., systems driven by stochastic 
inputs). 

1.4 THESIS OVERVIEW AND CONTRIBUTION 
The main aim of this Thesis is to provide innovative tools and methodologies for the realistic 
modelling and simulation of hydrometeorological processes (i.e., the generation of synthetic 
hydrometeorological time series with the desirable probabilistic and stochastic properties), and 
simultaneously tackle the additional computational effort, which arises when long synthetic 
time series are used to represent the input uncertainty in simulation-optimization frameworks. 
Thereby, eventually ensuring the practical implementation of uncertainty-aware water-system 
optimization problems. 

More specifically, the main objectives of this PhD Thesis are twofold, and regard: 

a) The development of novel non-Gaussian stochastic simulation models, able to account also 
for the other peculiarities typically encountered in hydrometeorological processes, such as, 
intermittency, auto- and cross- dependence, periodicity, as well as their scale-varying 
probabilistic and stochastic behavior (Chapter 4 to 7). 

b) The development of surrogate-based optimization methodologies and algorithms that can 
efficiently and effectively confront water-system simulation-optimization problems under 
uncertainty, i.e., when using stochastic inputs to drive the simulation-optimization procedure 
(Chapter 8 and 9). 

The Thesis can be read as a whole, or in a Chapter-wise basis. Each Chapter is built upon 
published or under-review journal articles, and all of them are self-contained with their own 
introduction, methodology, results and conclusion sections. The content (regular typeface), as 
well as the main contributions and findings (italics typeface) of each Chapter are described 
below: 
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Chapter 2 summarizes the characteristic properties of hydrometeorological processes, as well 
as the prevailing modelling and simulation methodologies. 

[] This Chapter reviews the current state-of-the-art modelling and simulation practices for 
synthetic times generation of hydrometeorological processes, and discusses whether they can 
satisfactory resemble key the characteristics of such processes. 

Chapter 3 explores the applicability of a particular class of stochastic models, extensively used 
for synthetic time series generation within the hydrological domain, that of linear stochastic 
models coupled with non-Gaussian white noise. 

[] This Chapter reveals a major flaw of this type of models, the s0-called “envelope behavior” 
that remained well-hidden for over half a century. These models are prone to the 
establishment of non-natural, hence physically inconsistent dependence patterns which 
cannot be observed in natural processes. This behavior is attributed to their generation 
mechanism which lacks of explicit assumption regarding the joint dependence structure 
(nowadays modelled using copulas functions) of the process. 

Chapter 4 introduces the so-called Nataf’s joint distribution model (NDM), a pivotal concept 
of this Thesis, that is closely related with the notion of (Gaussian) copulas, which in turn allows 
modelling and simulation (unconditional and conditional) of non-Gaussian random variables 
and processes. The Chapter begins with an introduction of the theoretical basis of the model, 
and the establishment, through NDM, of the multivariate joint distribution of non-Gaussian 
random variables, which was also its original purpose. Beyond this, NDM is progressively 
extended to conditional distributions and stochastic processes. These are supported by several 
simulation examples, that include correlated random variables (or processes) with continuous, 
discrete and mixed-type marginal distributions. 

[] The concept of NDM and the related constructs have been unknown within hydrological 
community for years, since there are no direct reference to it. This Thesis is the first work 
within the domain that formalizes it and provides an extensive treatment on the subject. 

[] An additional innovation point of this Thesis is the use of NDM for the derivation of 
multivariate conditional distributions. 

[] Formulation of general guidelines for the development of Nataf-based stochastic processes 
and simulation models, beyond those developed herein (see the next three Chapters). 

[] Finally, an additional contribution of this Chapter is the development of a simple and 
versatile Monte Carlo procedure for the identification of the so-called equivalent correlation 
coefficients, which have an important, yet often neglected, role in the establishment of NDM-
based constructs. 

Chapter 5 focuses on modelling and simulation of stationary stochastic processes, and 
particularly concerns two distinguishing characteristics hydrometeorological processes, that 
are non-Gaussianity (including intermittency) and auto-dependence, short- or long-range. 

[] By building upon the developments of Chapter 4, two novel Nataf-based stochastic models, 
termed Symmetric Moving Average (neaRly) To Anything (SMARTA) and 
Contemporaneous Multivariate Autoregressive (neaRly) to Anything (CMARTA), are being 
developed. Both models are capable of simulating stationary univariate and multivariate 
contemporaneously cr0ss-correlated processes with any-range dependence and arbitrary 
marginal distributions. 
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[] The sound theoretical basis, as well as the flexible character of the models are illustrated 
through a series of hypothetical and real-world simulation studies, as well as with a 
comparison with a well-established simulation model. 

Chapter 6 concerns modelling and simulation of cyclostationary process (e.g., monthly), which 
are arguably challenging to simulate, due to the seasonally-varying correlations and 
distributions. 

[] This Chapter introduces a cyclostationary Nataf-based model (see also Chapter 4), termed 
Stochastic Periodic AutoRegressive To Anything (SPARTA), which holds out the promise of 
simulating univariate and multivariate cyclostationary processes with arbitrary marginal 
distributions, which can also be seasonally varying. 

[] Theoretical and practical benefits of the proposed method, contrasted to outcomes from 
widely-used stochastic models, are demonstrated by means of real-world, as well as 
hypothetical monthly simulation examples involving both univariate and multivariate time 
series. 

[] An incidental contribution is the reproduction of dependence patterns that cannot be 
captured by classical stochastic simulation models (an issue also highlighted in Chapter 3). 

Chapter 7 discusses and addresses the problem of generating multi-scale (temporal) consistent 
synthetic time series. This modelling requirement is of paramount importance in many water-
related risk-based studies, and arguably still remains an open challenge. 

[] This Chapter presents a novel approach, termed Nataf-based Disaggregation To Anything 
(NDA), for the pairwise coupling of Nataf-based stochastic models (e.g., Chapter 4, 5 and 6) 
through disaggregation procedures.  

[] The scale-free and “top-down” character of NDA enables the development of a variety of 
stochastic simulation schemes (by coupling multiple Nataf-based models) for the generation 
of multi-scale consistent realizations of hydrometeorological processes (univariate and 
multivariate) with any distribution and correlation structure (including both stationary and 
cyclostationary ones). Herein, an integrated three-level simulation scheme is being developed 
for the synthesis of multivariate time series with any distribution and correlation structure 
that are consistent from annual to daily time scale. 

[] The performance of the three-level scheme is validated on a multi-scale basis using two 
particularly distinct case studies, one that concerns the simulation of daily rainfall-runoff 
series at a single location, and another that involves the synthesis of non-Gaussian, 
intermittent rainfall time series at four locations. 

[] The flexibility, as well as the modularity of NDA to simulate processes at even lower time-
scales is demonstrated through an additional study of disaggregation of daily rainfall to 
hourly. 

As discussed in section 1.3, the use of stochastic inputs in combination with simulation models 
and/or optimization techniques (see section 1.1) unwillingly pose a practical barrier in their 
application, since they substantially increase the required computational effort. The following 
two Chapters, aim to address this issue. 

Chapter 8 considers the problem of handling time expensive multi-objective problems using 
limited computational budget. As an example, we aim at developing operational rules for 
multi-reservoir systems; a challenging problem, that arises from the number of decision 
variables and conflicting objectives, the non-linearity of system dynamics and the hydrological 
uncertainty. This uncertainty can be addressed by coupling simulation models with multi-
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objective optimization algorithms driven by stochastically generated hydrological time series 
but the computational effort required imposes barriers to the exploration of the solution space. 
This Chapter in an effort to address this problem, 

[] Develops a multi-objective version of the well-established and parsimonious 
parameterization-simulation-optimization (PSO) framework, that allow to embed 
hydrological uncertainty though the use of stochastic inputs and probabilistic objective 
functions. 

[] Explores the potential of multi-objective surrogate-based optimization (MOSBO) to 
alleviate the computational burden. Three MOSBO algorithms are compared against two 
multi-objective evolutionary algorithms. The results suggest that MOSBOs are indeed able to 
provide robust, uncertainty-aware operation rules much faster, without significant loss of 
neither the generality of evolutionary algorithms nor of the knowledge embedded in domain-
specific models. 

Chapter 9 is as a novel contribution towards time expensive water resources simulation-
optimization problems. Such cases, arise when the evaluation of the objective function entails 
the use of an expensive simulation model. The excessive time required by the overall procedure 
may limit the applicability of such approaches, or terminate the optimization process much 
earlier than required. As discussed in section 1.3 and demonstrated in Chapter 8 and this 
Chapter, a promising strategy to address these shortcomings is the use of surrogate modelling 
techniques within global optimization algorithms. With this in mind, the Surrogate-Enhanced 
Evolutionary Annealing-Simplex (SEEAS) algorithm is being introduced. SEEAS couples the 
strengths of surrogate modelling with the effectiveness and efficiency of the evolutionary 
annealing-simplex method. The algorithm combines three different optimization approaches 
(evolutionary search, simulated annealing and the downhill simplex search scheme), in which 
key decisions are intelligently guided by surrogate-based approximations of the objective 
function. 

[] The performance of the proposed algorithm is benchmarked against other surrogate-
assisted algorithms, in both theoretical (i.e., 6 test functions, configured into 24 unique 
optimization problems) and practical problems (i.e., one that concerns hydrological 
calibration and another that concerns multi-reservoir problems), within a limited budget of 
trials (less than 1000). 

[]  The results reveal the significant potential SEEAS in handling challenging optimization 
problems, involving time-consuming simulations. 

Chapter 10 concludes the Thesis, by presenting a summary of its most significant research 
outcomes, and discusses opportunities for further work. 

Appendix A, B, C and D provide additional documentation and supplementary material for 
Chapter 3, 5, 6 and 7 respectively.



 

Page | 10 

2  
MODELLING AND SIMULATION OF HYDROMETEOROLOGICAL 
PROCESSES: A REVIEW OF THE STATE-OF-THE-ART  

PREAMBLE 
This Chapter provides some basic concepts and definitions used throughout this Thesis 
(section 2.1), as well as discusses the main characteristics of hydrometeorological processes 
(section 2.2), which are in turn related with the development of appropriate stochastic 
simulation models for hydrometeorological time series generation. In this vein, section 2.3 
aims at providing a brief overview and discussion on the most prominent modelling and 
simulation practices for this task; also hinting a critical flaw of linear stochastic models coupled 
with non-Gaussian white noise, extensively discussed in Chapter 3. Finally, section 2.4 
summarizes the identified problems and constraints in existing simulation schemes, which 
have motivated the development of alternative simulation models (Chapter 4 to 7). 
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2.1 BASIC CONCEPTS AND DEFINITIONS 
Before describing the main characteristics of hydrometeorological processes and the associated 
simulation schemes it is considered useful to provide some basic definitions regarding random 
variables (RVs) and stochastic processes [Yaglom, ; Papoulis, ; Lindgren, ; 
Koutsoyiannis et al., ], that are important in this Thesis. The following definitions concern 
continuous RVs, since they are easily extended for the case of discrete RVs (using summation 
operators, instead of integration). 

A random variable 𝑥 is defined by its cumulative distribution function (CDF), 𝐹j(𝑥) ≔
𝑃l𝑥 ≤ 𝑥n, or simply distribution function, which in turn is related with the corresponding 
probability density function (PDF) by, 𝑓j(𝑥) ≔ d𝐹j(𝑥)/d𝑥. The inverse relationship is, 
𝐹j(𝑥) = ∫ 𝑓j(𝑤)d𝑤

j
st , where 𝑤 is a (dummy) variable used for integration. A realization of a 

RV 𝑥 is denoted by 𝑥 and can be obtained by 𝑥 = 𝐹js((𝑢), where 𝐹js((∙) denotes the inverse 
cumulative distribution function (ICDF, or quantile function) and 𝑢 ∈ [;,(] denotes 
probability. Important quantitative measures related with distribution functions are raw 
(𝜇jy (𝑟)) and central moments (𝜇j(𝑟)) of order 𝑟. Also known as, product moments about the 
origin and the mean respectively. The former are defined by, 𝜇jy (𝑟) ≔ E{𝑥|} =

∫ 𝑥|𝑓j(𝑥)	d𝑥
t
st = ∫ ~𝐹js((𝑢)�

|
	d𝑢(

; . Note that, 𝜇jy (;) = ( and	𝜇jy (() = 	E{𝑥} = ∫ 𝑥𝑓j(𝑥)d𝑥, 
which is the mean of RV 𝑥, also denoted by 𝜇j. The central moment of order 𝑟 is given by, 
𝜇j(𝑟) ≔ E{l𝑥 − 𝜇jn

|} = ∫ l𝑥 − 𝜇jn
|
𝑓j(𝑥)	d𝑥

t
st = ∫ l𝐹js((𝑢) − 𝜇jn

|
	d𝑢(

; . Note that, 
𝜇j(() = ; and 𝜇j()), denotes the variance of 𝑥. i.e., Var{𝑥} = 𝜎j) = 𝜇j()). Additional, and 

commonly used in hydrology, measures of distribution shape, are the skewness �𝐶�� =

𝐸 ��
js��
��

�
E
� =

��(E)

��E
� and kurtosis �𝐶�� = 𝐸 ��

js��
��

�
>
� =

��(>)

��>
� coefficients. Similarly, two 

RVs 𝑥 and 𝑦 are defined by their joint CDF, 𝐹j� ~𝑥, 𝑦� or PDF, 𝑓j� ~𝑥,𝑦� =
�)���(j,�)

�j��
. The 

most common measure of association between 𝑥 and 𝑦 is the Pearson’s product-moment 

correlation coefficient defined by 𝜌j� = Corr �𝑥, 𝑦� = E �𝑥𝑦� − E{𝑥}E �𝑦� �Var{𝑥}Var �𝑦�	� , 

where E �𝑥𝑦� = ∫∫𝑥𝑦	𝑓j� ~𝑥, 𝑦� d𝑥d𝑦 is the first order joint moment of 𝑥 and 𝑦. This 
definition, implies that both their mean and variance have to be finite; a standard assumption 
in hydrology, also implied throughout this Thesis (see the discussion in section 4.3.9). 
Extensions of those definitions to multiple RVs are presented in the above-referenced works. 

A stochastic process �𝑥���∈	�	is a collection or a sequence of (typically infinite and correlated) 
random variables indexed using an argument 𝑡 ∈ 𝑇. This index typically refers to time and may 
take continuous or discrete values. Specifically, if 𝑇, the so-called index set, refers to time, and 
it is comprised of continuous values, then the process is called continuous-time, while if it is 
comprised of discrete values, it is referred as discrete-time process. Similarly, depending on the 
state space of 𝑥�, the process can be classified as discrete- or continuous state process. In 
general, a finite-dimensional stochastic process can be completely defined by the joint 
distribution 𝐹j�(,j�),…,j��(𝑥�(, 𝑥�), … , 𝑥��) of 𝑥�(, 𝑥�), … , 𝑥��. However, in practice, such level of 
sophistication or complexity is rarely required, due to the common, simplifying and convenient 
assumptions of stationarity and cyclostationarity, as well as ergodicity. 
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Strict (or full) stationarity implies that the any-order distribution function of the process 
remains invariant regardless the absolute value of argument 𝑡. 

Weak (or second order) stationarity implies that the second order distribution of the process 
remains invariant regardless the absolute value of argument 𝑡. In the case of Gaussian 
processes, strict and weak stationarity are equivalent, since such processes are fully described 
by the mean value and the covariance structure. 

Cyclostationarity implies a cyclic (and deterministic, in terms of recurrence) fluctuation of the 
marginal and joint properties of the process according to the value of argument 𝑡. 

A realization of a process 𝑥�	is denoted by 𝑥� and if it observed at multiple 𝑡 ; 𝑖 = (,)… is 
termed time series. 

2.2 CHARACTERISTICS OF HYDROMETEOROLOGICAL PROCESSES 
Depending on the type and time-scale of study, hydrometeorological variables exhibit a variety 
of different characteristics, that need to be reproduced by a good stochastic model. According 
to Moran [], Salas et al. [], as well as Koutsoyiannis [b] the most prominent are 
the following: 

Non-Gaussianity: It is widely acknowledged, and also supported by theoretical and empirical 
findings [e.g., Kroll and Vogel, ; Koutsoyiannis, c; McMahon et al., ; Bowers et al., 
; Papalexiou and Koutsoyiannis, , ; Blum et al., ], that hydrometeorological 
processes are characterized by non-Gaussian distribution functions, which is partially 
attributed to their non-negative nature (common for all processes) and the intermittent 
behaviour of some processes (see below). This peculiarity, usually quantified in terms of third-
order moments, is amplified as the time scale becomes finer. In fact, it is argued that non-
Gaussianity and intermittency (next paragraph) are the origin of most of the theoretical and 
computational challenges encountered in stochastic hydrology. 

Intermittency: This phenomenon, denoting the realization of a sequence of zero values 
interposed between non-zero ones, is a dominant characteristic of finely-resolved (i.e. sub-
monthly) processes, such as rainfall and runoff, in arid and semiarid regions [e.g., 
Koutsoyiannis, ]. The same behaviour is also evident across spatially-distributed processes, 
e.g., point rainfall simulated at different locations [e.g., Bardossy and Plate, ; Wilks, ]. 

Auto-dependence (also referred to as intra-dependence, temporal dependence, memory, or 
persistence): This is a property of all hydrometeorological processes at all temporal scales, 
whereby the current value of a process depends on its previous ones. Usually, we distinguish 
short- and long-range dependence, i.e., SRD and LRD. SRD refers to a stochastic process with 
a weak autocorrelation structure (e.g., exponential) that decays rapidly. On the other hand, 
LRD implies the exact opposite. In this case, the autocorrelation structure is a slowly decreasing 
function (typically power-type) of the time lag. LRD processes are omnipresent in geophysics, 
hydrology, climate and other scientific disciplines [Beran, ; Koutsoyiannis, ; Beran et 
al., ; O’Connell et al., ]. LRD dependence is associated with the widely studied Hurst 
phenomenon [Hurst, ] and fractional Gaussian noise process [Mandelbrot and Wallis, 
a, b, c]; which are special cases of LRD, implying a simple scaling behavior. 
Recently, the term Hurst-Kolmogorov (HK) dynamics was introduced [Koutsoyiannis and 
Montanari, ; Koutsoyiannis, a] to give credit to the early mathematical work by 
Kolmogorov []. 
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Cross-dependence (also referred to as interdependence): Hydrometeorological processes 
exhibit statistical interdependencies attributed either to cause-effect relationships (e.g., rainfall-
runoff) or to spatial proximity and thus climatic homogeneity [Efstratiadis et al., a]. In 
several cases, water-system models are driven by more than one inputs, thus highlighting the 
need for multivariate stochastic simulation schemes, able to represent multiple correlated 
processes simultaneously. 

Periodicity: This characteristic implies a kind of non-stationary behavior that cyclically 
alternates the marginal and joint properties of the process. Within the context of rainfall and 
streamflow processes, its presence is typically encountered in monthly time scale, which is often 
the time scale of interest in many water resources management studies. Depending on the type 
of the process (e.g., wind or solar radiation), periodicity can be detected at finer time scales 
(e.g., hourly). The effect of periodicity is generally handled either by standardizing the data or 
by employing explicit cyclostationary schemes with seasonally varying marginal and joint 
characteristics. We remark that the classic standardization has notable drawbacks since it fails 
to seasonally vary higher than second order marginal properties (e.g., skewness) and season-
to-season correlations coefficients (due to the underlying assumption of stationarity) [Tiao and 
Grupe, ; Bras and Rodríguez-Iturbe,  p. ]. For a review on the topic (that spans 
beyond hydrology), see the work of Gardner et al. []. 

2.3 SIMULATION SCHEMES 
Arguably, a good stochastic model should be able to provide synthetic realizations that resemble 
the above characteristics. This has led to intriguing challenges, which have motivated a 
significant amount of research during the last decades. In this vein, a plethora of simulation 
schemes have been developed (typically for rainfall processes), thus leading to a divert literature 
landscape. The following paragraphs aim at the ambitious task of providing a critical overview 
of some of the most widely used simulation schemes. The simulation schemes are organized 
according to their generation mechanism in a similar manner to the recent classification of 
rainfall stochastic models by Haberlandt et al. []. Specifically, the models are categorized 
to: ) Linear stochastic models, ) point process models, ) two-part models, ) resampling 
models, and ) copula-based models. Special attention is given to the class of linear stochastic 
models, both because they have been for years the main tool for stochastic simulation of 
hydrometeorological processes, but also because they are the main building blocks of the 
stochastic simulation models proposed in this Thesis (see Chapters 4, 5, 6 and 7). 

2.3.1 Linear stochastic models 

Early attempts to generate synthetic time series were based on the theory of stochastic processes 
and the use of linear stochastic models. Almost all these models have been originally developed 
for the simulation of stationary Gaussian processes, that are either ARMA-type, hence short-
range dependent [e.g., Fiering, ; Matalas, ; Matalas and Wallis, , ; Pegram 
and James, ; Camacho et al., , ] or long-range dependent [e.g., Mandelbrot and 
Wallis, a; Ditlevsen, ; Mandelbrot, ; Mejia et al., ; Granger and Joyeux, ; 
Hosking, ; Koutsoyiannis, , ]. In addition, the hydrological literature also offers 
several models for cyclostationary Gaussian processes [e.g., Thomas and Fiering, ; Salas 
and Pegram, ; Troutman, ; Salas et al., , ; Tiao and Grupe, ; Vecchia, 
; Bartolini et al., ; Salas and Abdelmohsen, ; Rasmussen et al., ; Shao and 
Lund, ]. These early days developments, as well as detailed descriptions of the associated 
models can be found in the classic textbooks of stochastic hydrology [Kottegoda, ; Salas et 
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al., ; Bras and Rodríguez-Iturbe, ; Salas, ; Hipel and McLeod, ; Reddy, ]. 
Beyond hydrology, an in-depth treatment on the subject can be found in textbooks that discuss 
stochastic processes in general [e.g., Yaglom, ; Papoulis, ; Lindgren, ] or time 
series modelling and analysis [e.g., Box and Jenkins, ; Brockwell and Davis, ; Cryer and 
Chan, ; Tsay, ]. 

To account for the non-Gaussian and skewed character of hydrometeorological process, these 
models had to be modified accordingly. The need for simulation schemes able to account for 
non-Gaussian distributions, was early recognized by many researchers [e.g., Thomas and 
Burden, ; Matalas, ; Fiering and Jackson, ; Klemeš and Borůvka, ; Matalas 
and Wallis, ; Lawrance and Kottegoda, ] and motivated the introduction of 
appropriate adjustments and modifications, which are briefly summarized below. 

The standard hypothesis for synthetic time series generation via linear stochastic models does 
not lie in the reproduction of a specific distribution, but on the resemblance of the essential 
statistical characteristics of the parent historical time series. These are usually expressed in 
terms of low-order statistics (e.g., mean, variance, skewness) and correlations (that express 
dependence) in time and space [Matalas and Wallis, ; Salas, ]. For a given set of low-
order statistics multiple distribution functions may be represented [cf. Matalas and Wallis, 
 p. ], thus making the simulation problem only partially defined. 

The standard approaches to handle skewness within linear stochastic models can be further 
classified in three categories [Tsoukalas et al., e]: a) Explicit methods, b) transformation-
based methods, and c) implicit methods, that treat skewness via employing non-Gaussian white 
noise for the innovation term. 

Explicit methods are typically designed, and hence constrained, to generate realizations from 
a specific distribution family [e.g., Matalas, ; Klemeš and Borůvka, ; Lawrance and 
Lewis, a; Lombardo et al., , ]. Common approaches include the stationary 
multivariate lag- model with Log-Normal distribution, proposed by Matalas [], and the 
univariate first order gamma-autoregressive (GAR) model of Lawrance and Lewis [a], as 
well as its periodic extension [Fernandez and Salas, ] (see also the model of Klemeš and 
Borůvka [] with similar capabilities). Recent literature also offers alternative schemes, such 
as the univariate Log-Normal model of Lombardo et al. [, ] which was specifically 
designed for the simulation of processes with HK autocorrelation structure. As such, these 
schemes are either limited in simulating a narrow type of autocorrelation functions or 
restricted to specific non-Gaussian distributions (typically Gamma and Log-Normal). 
Furthermore, they are typically able to simulate only univariate processes (with the exception 
of Matalas []), which is a major limitation, since in most water resources applications 
multiple processes have to be represented simultaneously. 

Transformation-based approaches initially aim to normalize the non-Gaussian historical data 
through a transformation function, which in turn allows modelling a plethora of dependence 
structures (due to the well-developed theory of Gaussian processes); next, parameter 
estimation and simulation are performed on the normalized data and the final product, i.e., the 
synthetic data, are obtained via the inverse transformation [Salas et al., ]. See for example 
the stochastic simulation software packages SPIGOT [Grygier and Stedinger, ], SAMS-
 [Salas et al., ] and SAMS- [Sveinsson et al., ]. The key component of such 
schemes is the transformation function. Early attempts used relatively simple conversions, such 
as Box-Cox, logarithmic, and alternatives, which cannot always ensure a satisfactory 
normalization (e.g., when the original data are too asymmetric or contain many zero values). 
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For this reason, for the case of hydrometeorological data, exhibiting significant skewness, more 
complex schemes have been proposed, involving however several unknown parameters and 
also require the use of optimization [e.g., Koutsoyiannis et al., ; Papalexiou et al., ]. In 
fact, the increase of complexity inevitably raises several questions about the transformation 
function, such as, 

− How many parameters should be used? 
− How does the sample size affect their estimation? 
− In the case of multivariate and cyclostationary simulations, should we use the same 

transformation function for all processes and seasons? 

Nevertheless, even an accurate normalization procedure does not ensure that the inverse 
transformation (i.e., the normalization – simulation – de-normalization scheme) will preserve 
both the statistical characteristics (let alone the marginal distribution) and the correlation 
structure of the original variables [Salas et al.,  p. ; Bras and Rodríguez-Iturbe, ; Lall 
and Sharma, ; Sharma et al., ]. Actually, it is argued that a general method for 
normalizing all types of data does not exist [Papalexiou et al., ]. We could also argue that 
neither an optimal transformation for each specific process exists (particularly in the 
multivariate case), since the selection and the parameters of the transformation model are 
prone to subjectivity and indefiniteness. To avoid such ill-transformations, the practice has 
leaned towards incorporating skewness within the generation mechanism of the stochastic 
model itself (see below). 

Implicit schemes embed non-Gaussian white noise within the innovation term, and are 
arguably the most popular approaches for synthetic time series generation [e.g., Matalas, ; 
Matalas and Wallis, , ; McMahon and Miller, ; O’Connell, ; Lettenmaier and 
Burges, ; Lawrance and Kottegoda, ; Todini, ; Vogel and Stedinger, ; 
Koutsoyiannis and Manetas, ; Koutsoyiannis, , ; Koutsoyiannis et al., b; Unal 
et al., ; Kim et al., ; Jothiprakash and Shanthi, ; Efstratiadis et al., a; Adeloye 
et al., ; Detzel and Mine, ; Montaseri et al., ]. The first attempts are attributed to 
Thomas and Fiering [] (presented in the book of Thomas and Burden []) and Fiering 
and Jackson [] who proposed a univariate simulation scheme for skewed and periodic 
streamflow data. Their key assumption is the preservation of the desirable statistical 
characteristics through the generation of white noise from a given distribution, usually the 
three-parametric Gamma (i.e., Pearson type-III). It is remarked that such approaches generate 
explicitly gamma-distributed variables for the white noise, while the strict explicitness is lost 
when the these are synthesized to provide the variables of interest [cf. Matalas and Wallis,  
p. ; Moschopoulos, ]. Hence, the desirable distribution is only approximately preserved 
through the reproduction of the process’s moments [Fiering and Jackson,  pp. -; 
Lettenmaier and Burges, ; Koutsoyiannis and Manetas, ]. Implicit approaches, that 
employ skewed white noise, have been developed for several other linear stochastic models. We 
distinguish those of the first order AR model [Thomas and Fiering, ; Matalas, ], the 
low order univariate stationary ARMA model, [O’Connell, ; Lettenmaier and Burges, 
], the modification of Lettenmaier and Burges [] to the fast fractional Gaussian noise 
(ffGn) model [Mandelbrot, ]), the univariate and multivariate broken line model 
[Ditlevsen, ; Mejia et al., ; Bras and Rodríguez-Iturbe,  pp. -], the first order 
multivariate periodic autoregressive (PAR) model [see, Matalas and Wallis, ; 
Koutsoyiannis, ], the univariate and multivariate symmetric moving average (SMA) model 
[Koutsoyiannis, , ], which has been recently extended [Koutsoyiannis et al.,  and 
references therein] for the reproduction of moments higher than skewness (e.g., kurtosis) by 
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the inclusion of additional model parameters, as well as the disaggregation-based approach 
implemented in Castalia software [Efstratiadis et al., a; Tsoukalas et al., c]. 

Despite the approximation of the marginal distribution, this class of implicit schemes, exhibits 
a series of other constraints and limitations that are thoroughly discussed in Chapter 3, as well 
as demonstrated by means of simulation studies in Chapters 5 and 6. Briefly, they are prone to 
the generation of negative values, encounter difficulties when modelling highly skewed 
(univariate or multivariate) processes [Todini, ; Koutsoyiannis, ], while, only few 
schemes, such as the SMA model, are able to describe a variety of temporal correlation 
structures. Furthermore, Chapter 3, as well as Tsoukalas et al. [a], reveal almost half a 
century after their introduction, an important and well-hidden, physical inconsistency of the 
implicit approach related with the reproduction of dependencies through such schemes. 
Particularly, it shown, both empirically and theoretically that this type of approach may lead to 
bounded, thus unrealistic and non-natural dependence patterns, that do not agree with 
observations. 

Finally, it is noted that all above categories of linear stochastic models are typically employed 
for the simulation of hydrometeorological processes at annual and monthly time scales. This is 
due to the weaknesses discussed above, that limit their capability to handle intermittency 
without the use of additional modelling tricks, such as, truncation of negative values to zero, 
power-transformation functions or latent Gaussian processes [e.g., Bell, ; Bardossy and 
Plate, ; Rasmussen, ]. 

2.3.2 Point process models 

Point process models, such as the Newman-Scott and Barlett-Lewis rectangular pulse models, 
are alternative simulation schemes specifically designed for the simulation of fine time scale 
processes, typically rainfall. This class of models builds upon the theory of continuous-type 
point processes and have been originally introduced in hydrology by Rodriguez-Iturbe et al. 
[]. Since then numerous simulation schemes have been developed that either improve or 
extend these schemes [e.g., Rodriguez-Iturbe et al., ; Cowpertwait, ; Bo et al., ; 
Onof and Wheater, a, ; Onof et al., ; Koutsoyiannis and Onof, ; Smithers et 
al., ; Koutsoyiannis et al., b; Kilsby et al., ; Burton et al., ; Evin and Favre, 
; Kaczmarska et al., ; Kossieris et al., , ]. Their main advantages are the 
physical interpretation of the model’s parameters and their signature feature regards their 
potential to reproduce the statistical characteristics of rainfall at multiple time scales. However, 
it is remarked, that similar to the classic linear stochastic schemes, this type of models aim at 
the resemblance of low order marginal statistics (typically up to skewness coefficient) and not 
to the reproduction of the marginal distribution of the process. Other notable weaknesses are 
related with difficulties in simulating multivariate processes and cyclostationary correlation 
structures, the reproduction of probability dry and extreme events [e.g., Rodriguez-Iturbe et al., 
; Onof and Wheater, b], as well as parameter identification through optimization 
techniques [e.g., Wheater et al., ]. Detailed reviews are given by Onof et al. [], Wheater 
et al. [] and Kossieris et al. []. 

2.3.3 Two-part models 

Two-part models (also referred as product models or chain-dependent processes), are fine time 
scale simulation schemes for intermittent processes (e.g., daily, or sub-daily). This class of 
models has been introduced by Todorovic and Woolhiser [] and later formalized by Katz 
[] for the simulation of univariate intermittent daily rainfall processes. It builds upon the 
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idea of representing the intermittent rainfall process as the product of two distinct processes: 
the occurrence process, which is utilized to express the realization or not of a certain event (e.g., 
rain or no rain; wet or dry state), and the amount (or intensity) process, which in turn is 
employed to assign an amount value in the case of event occurrence (e.g., rainfall amount, given 
a realization of a rain event, i.e., wet state). This dichotomy is an attempt to cope with the 
discrete-continuous nature typically encountered in several hydrometeorological processes 
such as rainfall. The following discussion is centered around rainfall simulation schemes, which 
was the main driver for the development of two-part models. 

The prevailing approach to model the occurrence process lies in the use of Markov chain 
models, which provide realizations of the occurrence process that typically alternate between 
wet and dry states through the use of the so-called transition probability matrix. Most 
commonly, first-order, two-state models are employed, which are parsimonious and easy to 
simulate [e.g., Gabriel and Neumann, ; Todorovic and Woolhiser, ; Katz, ; Stern 
and Coe, ]. Higher order Markov chain models have also been proposed to better describe 
the occurrence process, yet at the cost of additional model parameters and complexity [e.g., 
Pattison, ; Gates and Tong, ; Chin, ; Wilks, ; Srikanthan and Pegram, ; 
Mammas and Lekkas, ]. Beyond Markov chains, an alternative, albeit not so frequently 
employed, approach lies in the use on alternate renewal processes [e.g., Buishand, ; 
Foufoula-Georgiou and Lettenmaier, ; Acreman, ; Wilby et al., ]. A somewhat 
dated, yet thorough, comparison of Markov chains and alternate renewal processes for 
modelling daily rainfall occurrence processes is given by Roldan and Woolhiser []. 

Regarding the amount process, the typical modelling approach, employed by such simulation 
schemes, uses sequences of independent, identically, distributed (i.i.d.) random variables, 
which may by cross-correlated in the case of multivariate models, from a variety of 
distributions functions. The explicit use of distribution models is one of their key advantages, 
yet the assumption of independence implies that two-part models ignore the serial correlation 
of amounts (with the exception of few univariate [e.g., Katz and Parlange, ; Lee, ; 
Lombardo et al., ] and multivariate [e.g., Breinl et al., , ] models that only account 
for short-range dependence). This is considered as a major limitation for the simulation of 
processes at sub-daily time scales, where temporal dependence extends for many time lags. In 
the course of time, a plethora of distribution functions have been employed, that span from 
classic continuous-type distributions, such as Exponential [e.g., Todorovic and Woolhiser, 
; Richardson, ; Wilby, ], Gamma [Katz, ; Richardson, ; Richardson and 
Wright, ; Stern and Coe, ; Srikanthan and Pegram, ; Lee, ], Weibull [e.g., 
Breinl et al., ] and log-Normal [e.g., Katz and Parlange, ; Lombardo et al., ] to 
more complex, mixed-type distributions, that arguably better describe the behavior of extremes 
[e.g., Foufoula-Georgiou and Lettenmaier, ; Wilks, ; Furrer and Katz, ; Neykov et 
al., ; Breinl et al., ; Evin et al., ]. Another common assumption is that the 
probability distribution of the amount process is conditionally independent of the previous 
states of the occurrence process. This means that the distribution function at every time step is 
the same, regardless of the state of occurrence (e.g., wet or dry) at previous time steps. This 
modelling approach, in combination with the fact that the final process is obtained as the 
product of occurrence and amount processes, may lead to sudden and sharp transitions (from 
heavy to no rain at all) among consecutive time steps. As remarked by Bárdossy and Plate 
[] and Wilks [] the same issue is also apparent in spatial scale. However, there are 
some rare exceptions (limited in univariate and rather complex models) that explicitly model 



MODELING AND SIMULATION OF HYDROMETEOROLOGICAL PROCESSES
    

Page | 18 

this behavior [e.g., Chin, ; Katz, ; Wilks, ] through the use of additional 
parameters and conditional distributions. 

An important step towards the widespread adaptation and further development of two-part 
models was the pivotal contribution of Wilks [] who proposed the first multivariate two-
part simulation scheme for daily rainfall processes. The model combines a multivariate first-
order, tw-state Markov chain model with multivariate distribution sampling of 
contemporaneously correlated (yet serially independent) random variables. Its basis lies in the 
establishment of an empirical link between an auxiliary multivariate Gaussian distribution and 
its mapping to the real-domain via combining the notion of probability integral transformation 
and the target marginal distributions. Interestingly, as noted by Tsoukalas et al. [e, d], 
and further discussed in section 4.6, the foundations of Wilks’ empirical approach can be 
retrospectively attributed to the theoretical background of the so-called Nataf joint distribution 
model [Nataf, ] (and the associated Gaussian copula), which is also a key concept of this 
Thesis. 

The work of Wilks’ has motivated the development of numerous multivariate daily rainfall 
stochastic simulation schemes, that either employ parametric distributions [e.g., Brissette et al., 
; Khalili et al., ; Srikanthan and Pegram, ; Baigorria and Jones, ; Mhanna and 
Bauwens, ; Breinl et al., ; Lee, ] or use non-parametric ones, in combination with 
resampling schemes [e.g., Beersma and Buishand, ; Mehrotra, ; Mehrotra et al., ; 
Breinl et al., ]. For a short discussion on non-parametric distribution and the associated 
resampling scheme, see section 2.3.4. Further details and discussion on this type of rainfall 
models can be found in the review of works Srikanthan and McMahon [] and Haberlandt 
et al. []. 

Beyond the realm of rainfall simulation, such models are key components of many (univariate 
and multivariate) weather generator models, a term probably firstly used by Richardson and 
Wright [] and popularized by the review work of Wilks and Wilby []. Weather 
generators facilitate the simulation of additional weather variables (e.g., solar radiation, 
minimum and maximum temperature), by conditioning them on the state of rainfall process 
[Richardson, ; Richardson and Wright, ]. However, these schemes are not truly 
multivariate, in the sense that they consist of two distinct sub-models, one to simulate the 
intermittent rainfall process and another, typically a low-order Gaussian ARMA model (that 
links upon the former rainfall model), to simulate the other weather processes. Further to these 
early day schemes, the literature offers a variety of weather generation models, that build upon, 
extend or improve these original schemes [e.g., Semenov and Barrow, ; Semenov et al., 
; Buishand and Brandsma, ; Qian et al., ; Apipattanavis et al., ; Kilsby et al., 
; Khalili et al., ; Flecher et al., ; Chen et al., ; Breinl et al., , ], as well 
as detailed review works [Wilks and Wilby, ; Ailliot et al., ]. 

2.3.4 Resampling models 

A well-known alternative simulation scheme is offered by the so-called non-parametric 
approaches, which aim to reproduce the empirical distributions of the observed processes, 
typically through resampling of historical data (most often using the well-known k-nearest 
neighbor algorithm). This class of models has been pioneered in hydrology by Lall and Sharma 
[] and Sharma et al. [] for the simulation of monthly streamflow processes. Since then, 
numerous resampling schemes have been developed for the simulation of several 
hydrometeorological processes at time scales that span from annual [e.g., Lee and Salas, ], 



. SIMULATION SCHEMES 

Page | 19 

to monthly [e.g., Lall and Sharma, ; Sharma et al., ; Prairie et al., ; Lee et al., ; 
Salas and Lee, ], and daily [e.g., Brandsma and Buishand, ; Rajagopalan and Lall, 
; Buishand and Brandsma, ; Clark et al., ; Mehrotra, ; Mehrotra et al., ; 
Apipattanavis et al., ; Mehrotra and Sharma, ] or even finer time scales [e.g., Wójcik 
and Buishand, ; Lee and Jeong, ]. Such approaches have gained particular attention 
due to their ability to empirically establish marginal distributions that exhibit bi- or multi-
modality; a characteristic that typically arises in processes driven by multiple (often 
anthropogenic) generation mechanisms [Lall and Sharma, ; Sharma et al., ]. 
However, the use of the empirical, non-parametric, distributions (instead of fitting a theoretical 
model) prohibits the extrapolation out of the observed data ranges and the synthesis of 
unobserved values, which eventually limits their capability to simulate extreme events (low or 
high). Further to this, the lack of theoretical basis makes it difficult to reproduce long-range 
dependence and cross-correlations among multiple variables. As Serinaldi and Kilsby [] 
critically argue (within the context of rainfall simulation), Resampling models do not model 
rainfall but sample the observed values according to suitable rules that preserve the 
spatiotemporal statistical properties of the rainfall measurements. Heuristic solutions to the 
above limitations, such as the optimization-based approach of Bárdossy [] and the recent 
scheme of Borgomeo et al. [], do not necessarily mitigate these weaknesses. Such schemes 
are also subject to extremely high computational effort (due to their trial-and-error nature), 
and they are prone to inherent inefficiencies of optimization algorithms. 

2.3.5 Copula-based models 

Another relatively new option is offered by copula-based simulation schemes. These, build 
upon the notion of copulas [Sklar, , ], which provide them with the ability to explicitly 
model a wide range of distribution functions and dependence structures. For a general 
discussion on copulas, see for instance, the works of Embrechts et al. [], Nelsen [] or 
Joe []. Copulas have been initially developed for modelling and simulation of random 
variables, not stochastic processes. Nevertheless, nowadays, the hydrological literature offers 
several copula-based schemes, typically able to model only short-range dependence structures, 
specifically designed for the simulation of hydrometeorological processes. Among them, the 
works of Bárdossy and Pegram [] and Serinaldi [a] that proposed simulation schemes 
for multivariate daily rainfall processes. These schemes are probably the first works that 
formally use copulas for this purpose. In a similar vein, Lee and Salas [], proposed a 
univariate copula-based model for the simulation of annual streamflow processes, while similar 
schemes for periodic (typically monthly) univariate [e.g., Hao and Singh, ; Jeong and Lee, 
] and multivariate streamflow processes [e.g., Hao and Singh, ; Chen et al., ] have 
also emerged recently. However, it is argued [Mikosch, ], that copulas are not directly 
compatible with the theory of stochastic processes and the associated linear stochastic models, 
which rely on Pearson’s correlation coefficient, since copulas typically employ rank-based 
correlation statistics (e.g., Spearman’s 𝓇T or Kendall’s 𝓉) to describe the dependencies among 
the variables. Furthermore, they are considered more sensitive against sampling uncertainty 
than classical stochastic schemes, in their attempt to describe complex (i.e., nonlinear) 
dependencies on the basis of usually limited hydrological data. However, as many researchers 
argue (see [Hao and Singh, ; Chen et al., ]), they rely on quite complicated and 
computationally demanding generation schemes, especially in high-dimensional spaces, a fact 
which may also be related with the emphasis, on the development of (only) short-range 
dependent simulation schemes. 
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2.4 SUMMARY 
Most of the available simulation schemes emphasize on the reproduction of summary statistical 
characteristics, up to third order (i.e., skewness coefficient), which arguably cannot provide the 
full behavior of a random variable (or processes), including its tails. Particularly, Chapter 3, 
focuses on a critical flaw of linear stochastic models with non-Gaussian white noise, which 
remained well-hidden for over half a century [Tsoukalas et al., a]. 

Currently, only few stochastic simulation schemes (i.e., two-part and copula-based models) are 
able to fully and explicitly account for non-Gaussian distributions, yet they are mainly focused 
on narrow-type of correlation structures (e.g., two-part models often completely neglect 
temporal dependence, while copula-based schemes often model only few time lags) and involve 
high-dimensional complex generation mechanisms (e.g., copula-based models). In this respect, 
to address the associated simulation challenge, Chapter 4 provides the theoretical basis of a new 
type of models, the so-called Nataf-based models [Tsoukalas et al., a, e, d, b], 
that can cope with this challenging task. Particularly, by building upon their theoretical 
background, Chapter 5 and Chapter 6 focus on modelling and simulation of non-Gaussian, 
stationary and cyclostationary processes respectively. 

Furthermore, it is observed that most of available simulation schemes are specifically designed 
for the simulation of specific type of processes (e.g., rainfall) at a specific time scale (e.g., daily). 
However, it is argued, that a good stochastic model should be able to provide synthetic 
realizations that resemble the probabilistic behavior and structure of the process across 
multiple time scales [e.g., Klemeš et al., ; Koutsoyiannis, a].  

It is well-known that the resemblance of marginal and stochastic properties at a certain time 
scale (e.g., daily) does not necessarily implies the resemblance of the process’s properties at 
multiple, higher time scales (e.g., annual). This fact imposes the requirement of multi-scale 
consistency, which is also related with so-called issue of low-frequency variability or over-
depression, that is often encountered in many weather-generation models [e.g., Wilks and 
Wilby, ].  

Depending on the type of study, different aspects of the process may be of interest. For instance, 
in the case of water resources management studies (e.g., in water supply and/or hydropower 
reliability studies) that are typically conducted at a monthly basis, it is considered important to 
simulate both the over-annual correlation structure, the periodic structure at the monthly scale 
and the marginal distributions. Multi-scale consistency is an important operational 
requirement, since it can significantly affect the outcome of a Monte Carlo experiment, and 
hence the probabilistic behavior of the output of interest, and eventually, affect the design and 
operation of the engineering works.  

In this vein, Chapter 7 moves beyond the previously discussed, single-scale, simulation 
methods, and considers the simulation challenge through the prism of 
disaggregation/downscaling methods, which in principal aim at the generation of multi-scale 
consistent realizations via the transfer of information among different time scales. 



 

Page | 21 

3  
ON THE REPRODUCTION OF DEPENDENCIES THROUGH LINEAR 
STOCHASTIC MODELS WITH NON-GAUSSIAN WHITE NOISE § 

Remember that all models are wrong; the practical question is how wrong do they have to be to 
not be useful. 

~	George Box and Norman Draper [ p. ] 

PREAMBLE 
Since the early days of stochastic hydrology back in ’s, autoregressive (AR) and moving 
average (MA) models (as well as their extensions) have been widely used to simulate 
hydrometeorological processes. Initially, AR() or Markovian models with Gaussian noise 
prevailed due to their conceptual and mathematical simplicity. However, the ubiquitous 
skewed behavior of most hydrometeorological processes, particularly at fine time scales, 
necessitated the generation of synthetic time series to also reproduce higher-order moments. 
In this respect, the former schemes were enhanced to preserve skewness through the use of 
non-Gaussian white noise— a modification attributed to Thomas and Fiering (TF). Although 
preserving higher-order moments to approximate a distribution is a limited and potentially 
risky solution, the TF approach has become a common choice in operational practice. In this 
study, almost half a century after its introduction, we reveal an important flaw that spans over 
all popular linear stochastic models that employ non-Gaussian white noise. Focusing on the 
Markovian case, we prove mathematically that this generating scheme provides bounded 
dependence patterns, which are both unrealistic and inconsistent with the observed data. This 
so-called envelope behavior is amplified as the skewness and correlation increases, as 
demonstrated on the basis of real-world and hypothetical simulation examples. 

The Chapter is structured as follows: section 3.1 provides the historical background of the TF 
approach; section 3.2 details the issue of envelope behavior. Section 3.3 demonstrates this 
problem through a real-world case study. Section 3.4 and 3.5 discuss and conclude this chapter 
respectively. 

3.1 A GLIMPSE OF HISTORY 
The celebrated Harvard water program and the development of the so-called Thomas-Fiering 
(TF) model in the early s [Maass et al., ; Thomas and Fiering, ; Fiering, ; Fiering 
and Jackson, ] played a historically crucial role in definition and advancement of the 

                                                        
§Based on:  

Tsoukalas, I., S. Papalexiou, A. Efstratiadis, and C. Makropoulos (a), A cautionary note on the reproduction 
of dependencies through linear stochastic models with non-Gaussian white noise, Water, 10(), , 
doi:./w. 
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scientific discipline of stochastic hydrology—more specifically, of synthetic hydrology. The 
emergence of this field was mainly motivated by the need to generate synthetic streamflow data, 
to be used in water resources planning and management models [Matalas, ; Jackson, ; 
Hirsch, ]. The use of synthetic streamflow generators (or more generally weather 
generators) allowed for representing the operation of complex hydrosystems and deriving risk-
related quantities that could not be obtained through classical statistics. Among the many 
different alternative models (see references below, as well as section 2.3.1), the TF model 
prevailed for many years and still remains a popular choice. To date, the original Thomas-
Fiering paper [] and the related works of the Harvard water program [Maass et al., ; 
Thomas and Fiering, ; Fiering, ; Fiering and Jackson, ] have been cited in the 
literature almost  times, a fact highlighting its vast popularity and reasonably justifying its 
denomination as the Ford’s Model T of stochastic hydrology [Klemeš, ]. Additionally, more 
than half a century since its conception, the TF model, its variants, and the associated approach 
to handle skewness (see below) are standard educational material in most stochastic-hydrology 
courses and are disclosed in prominent positions in many classic and contemporary textbooks 
[Kottegoda, ; Bras and Rodríguez-Iturbe, ; Salas, ; Hipel and McLeod, ; 
Reddy, ; Loucks and van Beek, ]. The wide acceptance of the model is also 
acknowledged by Salas and Pielke [], who asserted that, the PAR(1) model (also known as 
the Thomas-Fiering model) is likely one of the most widely used models in hydrology. 

The original TF model is essentially a cyclostationary version of the classic stationary linear 
autoregressive model of order  (AR()), also formulated as a periodic autoregressive of order 
 (PAR()), in order to account for systematic changes and non-stationarities of statistical 
characteristics across seasons. The fact that the marginal distributions of many 
hydrometeorological processes are not Gaussian, motivated Thomas and Fiering [] to 
propose the replacement of the Gaussian white noise with Gamma (𝒢) or Pearson type-III 
(𝒫III) distributed white noise [Fiering and Jackson, , pp. -] in order to account for the 
skewness coefficient (to our knowledge, this modification first appears in the book of Thomas 
and Burden []). Note that the 𝒫III distribution is a simple extension of the 𝒢 distribution, 
which introduces an additional location parameter. 

This approach was subsequently adopted by many other researchers [e.g., Matalas, ; 
McMahon and Miller, ; Fiering and Jackson, ; O’Connell, ; Lawrance and 
Kottegoda, ; Vogel and Stedinger, ; Koutsoyiannis and Manetas, ; Koutsoyiannis, 
, ; Koutsoyiannis et al., b; Unal et al., ; Kim et al., ; Jothiprakash and 
Shanthi, ; Efstratiadis et al., a; Adeloye et al., ; Montaseri et al., ], and can be 
classified as an implicit one, since it aims to approximate the distribution of the target process 
via the introduction of non-Gaussian white noise [Tsoukalas et al., e]. Hereafter, we refer 
to the use of non-Gaussian white noise in linear stochastic models (e.g., AR()) as the TF 
approach. 

Nevertheless, herein, we mainly focus on AR models with non-Gaussian white noise, which 
have been widely adopted in hydrology, and briefly discuss three alternative schemes, two of 
which are based on moving average (MA) models and one based on an autoregressive moving 
average model (ARMA). Specifically, we investigate the effect on the established dependence 
patterns that arise from the use of 𝒫III white noise within stationary univariate and 
multivariate linear stochastic models for generating synthetic hydrological data via stochastic 
simulation. Based on theoretical reasoning and empirical evidence, it is shown that the use of 
the implicit TF approach results in bounded and thus unrealistic dependence patterns, 
highlighting this approach’s limitations in simulating skewed hydrometeorological processes. 
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Our motivation stems from an observation of Tsoukalas et al. [e], who noticed this 
dependence pattern flaw while simulating  years of monthly streamflow data at Aswan 
dam through the TF approach (i.e., PAR() with skewed white noise), hereafter called envelope 
behavior. A characteristic sample of this work is shown Figure 3.1, where we depict the scatter 
plots of historical and synthetic data for three pairs of consecutive months (January–February, 
March–April, and September–October). It is observed that the synthetically-derived scatter is 
bounded by a linear threshold, while the historical data clearly extend below this limiting line. 
It is remarkable that the model reproduces almost perfectly the (often regarded as essential) 
statistical characteristics of historical data, i.e., the mean, variance, and skewness, as well as the 
month-to-month linear correlations (Pearson’s), which is the typical measure of statistical 
dependence that is encountered in all linear stochastic schemes. However, it seems that the 
preservation of these statistical characteristics does not ensure the generation of fully consistent 
dependence patterns. 

 
Figure 3.1 | Comparison of the (A) January–February, (B) March–April, and (C) September–October 
dependence patterns between historical and synthetic monthly runoff data ( m) of the Nile, at 
Aswan dam. Synthetic time series were generated by the cyclostationary Thomas-Fiering (TF) approach 
(adapted by Tsoukalas et al. [e]; the simulated negative values were not truncated to zero in order 
to avoid distortion of the dependence pattern). The red line (—) depicts the envelope equation of the 
TF model (when combined with 𝒫III white noise. See also Appendix A). 

3.2 THE ENVELOPE BEHAVIOR OF LINEAR STOCHASTIC MODELS WITH NON-
GAUSSIAN WHITE NOISE 

3.2.1 The Thomas-Fiering approach 

The basic idea of the TF approach lies in using non-Gaussian, skewed, white noise within linear 
stochastic models in order to resemble the target marginal statistics, i.e., sample mean, variance, 
and skewness. Note that the derivation of a theoretical formula for the white noise skewness in 
AR(𝑝) models of a higher order (𝑝 ≥ )) aiming to reproduce skewness is theoretically possible 
but practically of no use, as it involves high-order joint statistics (that are difficult to estimate 
and are also subject to significant sample uncertainties [Lombardo et al., ]). Thus, 
application is possible only based on sample estimates of these joint statistics. This is the major 
reason why the TF modification was originally restricted in AR() models, and thus similarly 
we also concentrate our main analysis in stationary univariate and multivariate AR() models 
with skewed white noise, while we briefly explore the cases of some other linear stochastic 
models (i.e., an ARMA and two variants of MA models). 
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Apparently, the selection of the underlying model determines the stochastic characteristics of 
the resulting simulation scheme. For example, when an AR() model is employed, the overall 
scheme will reproduce only Markovian autocorrelation structures, while if a more flexible MA-
based scheme is used, the simulation scheme will be able to resemble a wider range of 
correlation structures. 

However, regardless of the choice of the underlying model, such schemes exhibit a number of 
shortcomings and limitations, which are briefly summarized here [Tsoukalas et al., e]: () 
They provide just an approximation of the marginal distribution, as reproducing statistics 
generally is not equivalent to reproducing the distribution. Furthermore, the resulting 
distribution is not known a priori (e.g., in general the sum of Gamma distributed variables is 
not Gamma; see also, Moschopoulos []). We remark that this was acknowledged by the 
authors [Fiering and Jackson, , pp. -], as well as later remarked by other researchers 
[Matalas and Wallis, , p. ; Lettenmaier and Burges, ; Koutsoyiannis and Manetas, 
]; () In order to reproduce the skewness of the underlying process it is required (due to 
central limit theorem) to use white noise with higher skewness [Lettenmaier and Burges, ; 
Kottegoda, ; Todini, ; Koutsoyiannis, ], which can cause, in some cases, failure of 
the random number generator itself; () This simulation scheme generates time series that can 
have negative values, which is not consistent with many physical processes (e.g., rainfall, wind, 
streamflow, etc.). This is attributed to the fact that the lower bound of the white noise 
distribution may be negative in order to match the target statistics (as estimated from observed 
time series); () Finally, we prove and demonstrate in the next sections that this scheme leads 
to bounded and thus unrealistic dependence patterns that are not observed in natural processes 
(such as those depicted in Figure 3.1). 

3.2.2 The envelope behavior in the classical univariate AR(1) model 

Let us assume we wish to simulate a continuous-state (not necessarily Gaussian), discrete-time, 
stationary AR() process (also referred to as the Markov process) 𝑥�, 𝑡 ∈ ℤ, where 𝑡 is the time 
index. The main equation of the model reads: 

 𝑥� = 𝑎(𝑥�s( 	+ 𝜀�  (.) 

where 𝑎( = 𝜌(: = Corr{𝑥�, 𝑥�s(} is a model parameter and 𝜀� denotes an i.i.d. random variable 
(RV) known as white noise or the innovation term. The theoretical autocorrelation function 
(ACF) of the AR() model is 𝜌¬: = Corr{𝑥�, 𝑥�s¬} = 𝑎(

|¬|, where τ stands for the time lag. The 
mean 𝜇j�:= E{𝑥�} and variance 𝜎j�

) := Var{𝑥�} = E �l𝑥 − 𝜇jn
)� of 𝑥� are related with those of 

𝜀� via the following equations (hereafter, due to stationarity, the index t will be omitted when 
possible): 

 𝜇­ = 𝜇j(( − 𝑎() (.) 

 𝜎­) = 𝜎j)	(( − 𝑎()) (.) 

Apparently, if the process of interest is Gaussian (or well-approximated by it), Equations () 
and () in combination with Gaussian white noise would be sufficient and exact, since a linear 
combination of Gaussian RVs is also Gaussian. However, this is not the case for most 
hydrometeorological processes. In this context, the TF approach attempts to approximate the 
non-Gaussian behavior of 𝑥� by employing non-Gaussian white noise for 𝜀�, where the 
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skewness coefficient 𝐶^� ≔ E ��
js��
��
�
E
�	of 𝑥� is related with that of 𝜀� by [Fiering and Jackson, 

; Kottegoda, ; Bras and Rodríguez-Iturbe, ; Reddy, ; Loucks and van Beek, 
]: 

 𝐶®¯ = 𝐶®�
(( − 𝑎(E)
(( − 𝑎())E/)

 (.) 

Hence, in order to capture the first three marginal moments of 𝑥�, one has to generate non-
Gaussian white noise with certain statistical characteristics, which are all functions of the lag- 
autocorrelation coefficient of the process 𝑥�, given that 𝑎( = 𝜌(. In Figure 3.2 we provide two 
alternative views of Eq. (3.4), both depicting the variability of the required skewness 𝐶^¯ of the 
white noise against the skewness 𝐶^�  and the lag- autocorrelation 𝜌( of the target process	𝑥�. 
Particularly, in Figure 3.2A we fix 𝜌( to specific values, ranging from  to ., and with 𝐶^�  
varying from  to , while in Figure 3.2B we set 𝐶^� ∈ {(, ), E, >, 8} and vary 𝜌( from  to .. 
Considering a high 𝜌( = ;.@ and aiming to reproduce a moderate skewness, e.g., ≈ (, results 
in a white noise skewness ≈ E.8, while for a highly skewed variable the deviation becomes much 
larger (related of course to 𝜌(). For example, for a process with 𝜌( = ;.@ and 𝐶^� = >, the 
required white noise skewness is 𝐶^¯ ≈ ().8, i.e., more than three times higher than the target 
value. 

 
Figure 3.2 | Relationship between (A) the target skewness coefficient of process 𝑥� and the required 
skewness for white noise term 𝜀� for a given lag- autocorrelation coefficient	𝜌(; and (B) the lag- 
autocorrelation coefficient 𝜌( and the required skewness coefficient of white noise term 𝜀� to attain the 
target skewness coefficient of process 𝑥�. 

Within non-Gaussian simulations, the selection of the underlying statistical model of the white 
noise and the associated random number generation procedure is a pivotal step. Thomas and 
Fiering proposed the use of Pearson type-III (𝒫III) distribution, which is also one of the most 
commonly used distributions in hydrology. The probability density function (PDF) of 𝒫III is 
given by: 
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𝑓𝒫±±±(𝜉; 𝑎, 𝑏, 𝑐)

=
(

|𝑏|	Γ(𝑎) �
𝜉 − 𝑐
𝑏 	�

¶s(

exp �−
𝜉 − 𝑐
𝑏 � , ·𝑖𝑓	𝑏 > ; 𝑐 ≤ 𝜉 < ∞

𝑖𝑓	𝑏 < ; −∞ < 𝜉 ≤ 𝑐 
(.) 

where 𝑎 > ;, 𝑏 ≠ ;, and	𝑐 ∈ ℝ are shape, scale, and location parameters, respectively (if 𝑐 =
;, then 𝒫III reduces to the Gamma distribution). The mean 𝜇½ , variance 𝜎½) and skewness 𝐶T¾  

of the random variable 𝜉 are given by: 

 𝜇½ = 𝑐 + 𝑎𝑏, 𝜎½) = 𝑎𝑏), 𝐶®¾ =
)𝑏

|𝑏|√𝑎
 (.) 

Of course, as Matalas and Wallis [] noted, choosing the white noise distribution is a matter 
of convenience (see also discussion in Tsoukalas et al. [e]) and simplicity in generating 
random numbers, given of course that the selected distribution can reproduce the desired 
statistics of white noise, i.e., 𝜇­, 𝜎­, and	𝐶^¯ . 

The non-Gaussian formulation of the AR() model through the TF approach results in the so-
called envelope behavior issue, which is associated with the distribution of the white noise. Let 
us write Eq. (.) in the equivalent form: 

 𝑥� = 𝑎(𝑥�s( 	+ 𝐹­s(l𝑢n (.) 

where 𝐹­s( denotes the inverse cumulative density function (ICDF) of the white noise 𝜀� and 𝑢 
expresses a uniform (𝒰)	RV in [, ] (probability), i.e., 𝑢~𝒰(;,(). In the above formulation, 
we see that in the Gaussian case, where 𝜀�	ϵ	(−∞,∞), the random variable 𝑥� takes any value 
in	(−∞,∞). However, when the distribution of 𝜀� has a finite left support, as in 𝒫III or Gamma 
(𝒢) cases, then lim

Ä→;
𝐹­s((𝑢) = ℓ­, where ℓ­ stands for the lower bound of 𝜀�. Hence, for given 

𝑎( (e.g., specified from the data) and 𝑥�s(, we can estimate at any step of the generation 
procedure the lower bound of 𝑥� by: 

 𝑥� ≥ 𝑎(𝑥�s( 	+ ℓ­ (.) 

and thus calculate the theoretical lower bound of the synthetic data. Similarly, when the 
distribution of 𝜀� is bounded from above (as in the 𝒫III case adjusted for negative skewness), 
then lim

Ä→(
𝐹­s((𝑢) = 𝓋­ ,	 where 𝓋­ is the upper bound of the distribution of 𝜀�. In this case the 

generation mechanism is bounded from above, i.e.: 

 𝑥� ≤ 𝑎(𝑥�s( 	+ 𝓋­ (.) 

This limitation is especially important since hydrometeorological variables, such as river 
discharge, cannot be considered unbounded from above, even when the sample statistics 
erroneously indicate negative skewness. To the best of our knowledge, despite the popularity 
of the TF model and the associated approach of coupling it with skewed white noise, this 
shortcoming has never been reported in literature, regardless of its straightforward and 
intuitive theoretical derivation. This limitation also holds for the univariate cyclostationary TF 
model (i.e., PAR() with 𝒫III white noise), for which we provide the corresponding 
relationships in Appendix A. 
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Apart from the above relationships, based on the previous formulation it can be shown that a 
simple recursive procedure facilitates the estimation of the theoretical minimum (or 
maximum) value of the TF approach. Without the loss of generality, assuming 𝑥;:= 𝜇j, and 
by sequentially applying Eq. (3.7) for q steps with 𝜀� = 𝐹­s((;) = ℓ­, we can obtain the model’s 
theoretical minimum, which can differ from ℓ­ (they are identical when ℓ­ = ;). The recursive 
procedure can be written as follows: 

 

𝑥;:= 𝜇j
𝑥( = 𝑎(𝑥; 	+ 𝐹­s((;)
𝑥) = 𝑎(𝑥( 	+ 𝐹­s((;)

⋮
𝑥É = 𝑎(𝑥És( 	+ 𝐹­s((;)

 (.) 

Alternatively, and more vigorously (depending on the support of 𝜀�), the theoretical minimum 
and maximum are given, respectively, by minl𝑥�n = ℓ­ (( − 𝑎()⁄  and maxl𝑥�n =
𝓋­ (( − 𝑎()⁄ . 

In order to better demonstrate the envelope behavior, we apply the AR() model coupled with 
𝒫III white noise (termed AR()-𝒫III) to  hypothetical scenarios by simulating   time 
steps for each. For all scenarios we fix 𝜇j = ;.8 and 𝜎j) = ( combined with 𝐶�� ∈ {(, ), >} and 
𝜌( ∈ {;.), ;.>, ;.I, ;.?} (see Table 3-1 for a summary). Since the 𝒫III is used for generating 
white noise and 𝐶�� > ;, in all cases a lower bound is anticipated. 

Table 3-1 | Summary of target statistics for all scenarios (in all cases, 𝜇j = ;.8 and 	𝜎j) = (). 

Scenario A B C D E F G H I J K L 
𝐶�� 1 2 4 1 2 4 1 2 4 1 2 4 

𝜌Ë = 𝑎Ë 0.2 0.4 0.6 0.8 
𝜇­ 0.4 0.3 0.2 0.1 
𝜎­Ì 0.96 0.84 0.64 0.36 
𝐶�¯ 1.05 2.11 4.22 1.22 2.43 4.86 1.53 3.06 6.13 2.26 4.52 9.04 

𝒫III	distributio
n 

𝑎 3.596 0.899 0.225 2.706 0.677 0.169 1.706 0.426 0.107 0.784 0.196 0.049 
𝑏 0.517 1.033 2.067 0.557 1.114 2.229 0.613 1.225 2.450 0.678 1.356 2.711 

𝑐 −1.45
8 

−0.52
9 

−0.06
5 

−1.20
8 

−0.45
4 

−0.07
7 

−0.84
5 

−0.32
2 

−0.06
1 

−0.43
1 

−0.16
6 

−0.03
3 

As theoretically expected, the model reproduces the target ACF and target statistics for all 
scenarios with high accuracy (see Figure A.1and Table A-1 of Appendix A). However, the 
envelope behavior of the dependence pattern is apparent and indicates its limitation, a fact 
demonstrated by the scatter plots (Figure 3.3) corresponding to the  simulation scenarios. 
The theoretically-derived Eq. (3.8), defining the lower bound of the feasible space of the 
(𝑥�s(, 𝑥�) points, is depicted by a red line (Figure 3.3). Note that labels in each subplot follow 
the scenarios’ naming convention in Table 3-1 (e.g., panel C corresponds to scenario C of 
Figure 3.3). Apparently, in every case, regardless of the 𝐶��  and 𝜌( values, the model generates 
bounded dependence patterns enveloped by Eq. (3.8). This behavior appears even for low 
combinations of 𝐶��  and 𝜌( (e.g., scenario A). 
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Figure 3.3 |	Scatter plots depicting the simulated (using the TF model, i.e., the autoregressive model 
of order  (AR())-𝒫III) lag- dependence pattern among consecutive time steps (i.e., pair values (•) of 
the previous and current time steps). The labels of each plot resemble the corresponding scenarios of 
Table 3-1. The red line (—) depicts the envelope equation shown in the title of each plot. 

3.2.3 From the univariate to the multivariate AR(1) model 

It is reasonable to expect that the envelope behavior will also be observed in the multivariate 
case, i.e., when the multivariate autoregressive process of order  is used (MAR()) in 
combination with non-Gaussian white noise. Let us assume that we wish to generate an m-
dimensional vector 𝒙� = {𝑥�(,… , 𝑥� , … 𝑥�Î}

Ï
 of m cross-correlated AR() processes, indexed by 

i. The generation mechanism of the model is: 

 𝒙� = 𝑨(𝒙�s( + 𝜺� (.) 

where 𝑨( is an 𝑚 ×𝑚	matrix and 𝜺� is an m-dimensional column vector of cross-correlated 
yet serially independent RVs with covariance	𝜮𝜺 ∈ ℝÎ,Î. The model is often called the 
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multivariate lag-1 model when a full 𝑨( matrix is employed, while there exists a variation that 
assumes a diagonal 𝑨( matrix, often called multivariate Markov model or contemporaneous 
multivariate autoregressive model of order 1 (i.e., CMAR()). Both formulations explicitly 
account for the lag- cross-correlations of the variables while their major difference is that the 
former is able to explicitly account for the lag- cross-correlations [Pegram and James, ; 
Matalas and Wallis, ; Kottegoda, ]. On the other hand, the use of diagonal A ensures 
that each individual process is a Markov process and significantly simplifies the parameter 
estimation procedure, since the lag- cross-correlations are not explicitly modeled. Its use is 
often advocated by the literature, since several authors suggest that lag- cross-correlations can 
be neglected [e.g., Pegram and James, ; Camacho et al., ; Salas, ; Koutsoyiannis 
and Manetas, ; Efstratiadis et al., a; Tsoukalas et al., e]. Yet it is noted that while 
this simplification could be valid for processes considered at a coarse time scale (e.g., monthly 
or annual), it should be used with caution in cases of fine time scale processes (e.g., hourly) or 
for modelling phenomena characterized by cause-effect relationships (e.g., rainfall-runoff). 
Nevertheless, here we focus on the so-called multivariate Markov model (i.e., CMAR()). 
Regarding its parameter estimation and assuming that 𝑨( is a diagonal matrix of the form: 

 𝑨( = Õ
𝑎([(,(] ; ;
; ⋱ ;
; ; 𝑎([Î,Î]

× = [𝑨(] ,Ø  (.) 

where 𝑎([ , ] = Cov{𝑥� , 	𝑥�s(  }/Var{𝑥�s(  } = Corr{𝑥� , 	𝑥�s(  } 	= 𝜌(  , the following holds true: 

 𝜮𝜺 = 𝑴; −	𝑨(	𝑴;𝑨(Ï (.) 

where 𝑴; = Cov{𝒙�, 𝒙�} ∈ ℝÎ,Î is the lag- cross-covariance matrix. For instance, its ith, jth 
element is [𝑴;] ,Ø = Cov{𝑥� , 𝑥�

Ø}. The theoretical cross-covariance matrices 𝑴¬ =
Cov{𝒙�, 𝒙�s¬} can be obtained for any time lag τ by recursively applying the equation:  

 𝑴¬ = 𝜜(𝜧¬s(, 𝜏 > ; (.) 

Meanwhile, the theoretical and cross-correlation matrices 𝑹¬ = Corr{𝒙�, 𝒙�s¬} are obtained by 

𝑹¬ = ldiag(𝑴¬)n
s(/)

	𝑴¬ldiag(𝑴¬)n
s(/)

. Furthermore, the covariance matrix 	𝜮𝜺 can be 
expressed as: 

 𝑩𝑩Ï = 𝜮𝜺 (.) 

where B is an 𝑚 ×𝑚, typically lower triangular, matrix (also known as the square root of 𝜮𝜺) 
obtained by standard decomposition techniques (e.g., the Cholesky technique) or optimization 
approaches [Koutsoyiannis, ; Higham, ]. The latter methods are usually employed 
when B is non-positive definite. Typically, such problems arise when the sample estimates of 
the required statistics are extracted from historical time series of different and/or limited 
lengths [Kottegoda, ]. Nonetheless, given that 𝑨( is diagonal and assuming that 𝜺� = 𝑩𝝃� , 
where 𝝃� is an m-dimensional column-vector of i.i.d. RVs, the decomposition of Eq. (3.11) can 
be given as follows: 
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 𝑥�  = 	𝑎([ , ]	𝑥�s(  +á𝑏[ ,Ø]	𝜉�
Ø

Î

Øâ(

 (.) 

Additionally, the moments of 𝝃� and 𝒙� are interrelated through (index t is omitted due to 
stationarity): 

 𝜇½ = E �𝝃� = 𝑩s(�E{𝒙} − 𝑨(E{𝒙}� (.) 

 𝜎½) = Var �𝝃� = [(, … ,(]Ï (.) 

 𝐶�¾ = 𝜇E �𝝃� = l𝜝(E)n
s(
	�𝜇E{𝒙} −	𝑨((E)	𝜇E{	𝒙}� (.) 

where 𝜇E �𝝃� and 𝜇E{𝒙} denote column-vectors that contain the third central moments of 𝝃 and 
𝒙, respectively; we remark that 𝝃 coincides with the skewness coefficient, since the model 
assumes unit variance for 𝝃. Similar to the univariate case, the white noise term is typically 
generated using the 𝒫III distribution (Eq. (3.5)). To illustrate the envelope behavior of the 
model, we rewrite the Eq. (3.11) similarly to Eq. (3.7), i.e.: 

 𝑥�  = 	𝑎([ , ]	𝑥�s(  +á𝑏[ ,Ø]𝐹½ä
s(l𝑢Øn

Î

Øâ(

 (.) 

where 𝐹½ä
s(l𝑢Øn denotes the quantile function of 𝜉Ø for a given probability 𝑢Ø . If the distribution 

of 𝜉Ø  is bounded below or above by ℓ½ä or 𝓋½ä , respectively, then lim
Ää→;

𝐹½ä
s(l𝑢Øn = ℓ½ä, and 

lim
Ää→(

𝐹½ä
s(l𝑢Øn = 𝓋½ä . Therefore, we obtain: 

 𝑥�  ≥ 	𝑎([ , ]	𝑥�s(  +á𝑏[ ,Ø]ℓ½ä
Î

Øâ(

 (.) 

 
𝑥�  ≤ 	𝑎([ , ]	𝑥�s(  +á𝑏[ ,Ø]𝓋½ä

Î

Øâ(

 (.) 

or lower (left)- and above (right)-bounded cases, respectively. 

However, in the multivariate case, and since 𝑥�  depends on multiple values of 𝜉Ø , the limiting 
behavior (assuming that all RVs are left-bounded) is identified by setting 𝒖 =
{𝑢(, … , 𝑢 , … , 𝑢Î} → 𝟎. Of course, the envelope behavior diminishes if the white noise term 𝝃� 
is normally distributed (or more generally if 𝝃�	ϵ	(−∞,∞)), yet in this case skewness cannot be 

preserved. Without the loss of generality, we examine the bivariate case of 𝒙� = {𝑥�(, 𝑥�)}
Ï

 where 
both processes exhibit zero autocorrelation but their lag- cross-correlation is equal to .. For 
E{𝒙} = [;.8, ;.8]Ï, Var{𝒙} = [(, (]Ï, and 𝜇E{𝒙} = 𝐶T𝒙 = [), ).8]Ï we find: 
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 𝑨( = �; ;
; ;� , 𝑩 = � ( ;

;.? ;.I� (.) 

where 𝑩 is obtained by the Cholesky decomposition), while the generating equation (Eq. 
(3.11)) becomes: 

 ç
𝑥�(

𝑥�)
è = �; ;

; ;� ç
𝑥�s((

𝑥�s() è + � ( ;
;.? ;.I� ç

𝜉�(

𝜉�)
è (.) 

Given the target moments of 𝒙, the statistics of the white noise term are calculated as E �𝝃� =

[;.8;, ;.(I]Ï, Var �𝝃� = [(, (]Ï, and 𝜇E �𝝃� = 𝐶T𝝃 = [).;;, I.?E]Ï. Using the 𝒫III for white 

noise generation we obtain the lower bound vector 𝓵𝝃 = [−;.8;;,−;.()I]Ï. Thus, from Eq. 
(3.22) the limiting envelope equations are 𝑥�( = 	;	𝑥�s(( − ;.8;; and 𝑥�) = 	;	𝑥�s() − ;.>B8. In 
this case, it is also possible to estimate the envelope relationship a priori between 𝑥�( and 𝑥�) as 
𝑨( is a zero matrix. Particularly, since 𝑥�( = 𝜉�( and 𝑥�) = ;.?𝜉�( + ;.I𝜉�), and substituting the 
former into the latter, we get 𝑥�) = ;.?𝑥�( − ;.I𝜉�), and by setting 𝜉�) = ℓ½)  the envelope line 
𝑥�) = ;.?𝑥�( − ;.;BI is obtained. 

In order to demonstrate the envelope behavior in the multivariate case, we employ the above 
model and synthesized a time series of   time steps. Figure 3.4A–C depicts the established 
dependence patterns of each individual process for lag- (panels A and B), while panel C shows 
the pattern among the two processes for lag-. Also, at each panel we display the corresponding 
envelope equation. We remark that the model was able to accurately reproduce the theoretical 
stochastic structure, expressed by the autocorrelation (ACF) and cross-correlation functions 
(CCF) shown in Figure 3.4D–F, as well as, to approximate very well the target moments (Table 
A-2). 
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Figure 3.4 | Scatter plots depicting the simulated (using the contemporaneous multivariate 
autoregressive model of order  (CMAR() model) with 𝒫III white noise) for (A) and (B) lag- 
dependence patterns of the zero-autocorrelated processes 𝑥�( and 𝑥�), respectively, for consecutive time 
steps (i.e., pair values (•) of the previous and current time steps). Panel (C) depicts the contemporaneous 
dependence (lag-) of 𝑥�( and 𝑥�). The red line (—) depicts the envelope equation shown in the title of 
each plot. Panel (D) compares the simulated and theoretical autocorrelation function (ACF) of 𝑥�( while 
panel (E) compares that of 𝑥�). Finally, panel (F) compares the simulated and theoretical cross-
correlation function (CCF) of 𝑥�( and 𝑥�). 

In order to extend our working examples, we simulate another vector of bivariate time series 
(  time steps) using the same marginal moments as before, but this time with a different 
autocorrelation structure. Specifically, we assumed Corr{𝑥�(, 	𝑥�s(( } 	= 𝜌(( = ;.B	and 
Corr{𝑥�), 	𝑥�s() } 	= 𝜌() = ;.8. Thus, we get: 

 𝑨( = �
;.B ;
; ;.8� , 𝑩 = �

;.B(> ;
;.B)? ;.>I?� (.) 

and the generating formula (i.e., Eq. (3.11)): 

 ç
𝑥�Ë

𝑥�Ì
è = �0.7 0

0 0.5� ç
𝑥�sËË

𝑥�sËÌ è + �0.714 0
0.728 0.468� Õ

𝜉�Ë

𝜉�Ì
× (.) 

Similar to the previous analysis, Figure 3.5A–C depicts the established lag- and lag- 
dependence patterns, while the envelope equation of each process is displayed in the title of 
each panel. It is apparent that at each simulated step, the model poses significant constraints in 
the range of subsequent plausible values, which is far from reality. We remark that in this case 
the contemporaneous lag- relationship cannot be displayed in a two-dimensional (D) plot 
since it involves the lag- values of 𝑥�( and 𝑥�). Nevertheless, the model successfully reproduced 
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the target stochastic structure (Figure 3.5D–F) and the marginal moments (see Table A-3), at 
the cost, however, of unrealistically bounded dependence patterns. 

 
Figure 3.5 | Scatter plots depicting the simulated (using the CMAR() model with 𝒫III white noise) 
for (A) and (B) lag- dependence pattern of the autocorrelated processes 𝑥�(	and 𝑥�), respectively, for 
consecutive time steps (i.e., pair values (•) of the previous and current time steps), while panel (C) 
depicts the contemporaneous dependence (lag-) of 𝑥�( and 𝑥�). The red line (—) depicts the envelope 
equation shown in the title of each plot. Panel (D) compares the simulated and theoretical ACF of 𝑥�( 
while panel (E) compares that of 𝑥�). Lastly, panel (F) compares the simulated and theoretical CCF of 
𝑥�( and 𝑥�). 

3.2.4 The envelope behavior beyond AR models 

To demonstrate the impact of employing non-Gaussian white noise in combination with other 
linear stochastic models, we employed () a low-order autoregressive moving average model 
ARMA(p,q); () a simple moving average model MA(q); and () its symmetric variant, termed 
SMA(q). The parameters p and q determine the order of the models. As shown by O’Connell 
[] and later discussed by Lettenmaier and Burges [], it is possible for the case of 
ARMA(,) to derive an analytical relationship that links the skewness of the white noise with 
the skewness of the target process. Furthermore, it has been shown [Koutsoyiannis, ] that 
similar relationships can be established for the two moving average schemes regardless of the 
order q (i.e., MA(q) and SMA(q)). 

In this demonstration we utilized the aforementioned relationships for the simulation of a 
univariate stationary process with the characteristics of the hypothetical Scenario I of Table 
3-1, which refers to the Markovian process with 𝜌¬ = ;.I|¬| and 𝐶^� = >. Regarding the 
ARMA(,) process, it is noted that its autocorrelation structure is somewhat different from 
the Markovian one, hence we carefully choose its parameters in order to have 𝜌( = ;.I. On the 
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other hand, both MA(q) and SMA(q) are able to resemble the Markovian autocorrelation 
structure with satisfactory accuracy by setting q = . Nonetheless, in all cases we used 𝒫III 
distribution for the white noise, hence the models are termed ARMA(,)-𝒫III, MA()-𝒫III, 
and SMA()-𝒫III. However, due to a lack of analytical solution for the envelope function, and 
in order to derive a clear picture of the established dependence patterns, we generated very long 
realizations, each one consisting of   time steps. Figure 3.6 shows the lag- dependence 
pattern obtained by the three schemes as well as a comparison of the simulated and theoretical 
ACF, which is very well reproduced by all models. Despite the accurate reproduction of the 
target marginal statistics (mean, variance, and skewness) by all models, they establish 
peculiarly-shaped and always bounded dependence forms. However, it should be noted that 
the MA(q) and SMA(q) schemes are typically employed for the simulation of annual processes, 
which are typically well approximated by the Gaussian distribution, and thus it is reasonable to 
expect a minimization of this issue. 

 
Figure 3.6 | Scatter plots depicting the simulated lag- dependence pattern among consecutive time 
steps (i.e., pair values (•) of the previous and current time steps) obtained by: (A) ARMA(,)-𝒫III; (B) 
MA()-𝒫III; and (C) SMA()-𝒫III models. Comparison of synthetic and theoretical autocorrelation 
function (ACF) obtained by: (D) ARMA(,)-𝒫III; (E) MA()-𝒫III; and (F) SMA()-𝒫III models. 

3.3 REAL-WORLD CASE STUDY 
In this section we demonstrate the envelope behavior of the TF approach using a real-world 
and long dataset ( January  to  December ) of daily streamflow data (m/s) of river 
Achelous at Kremasta dam in Western Greece. It is assumed that the autocorrelation structure 
of the daily streamflow of each month can be described by a stationary AR() model. The 
historical monthly and daily time series are characterized by non-Gaussian distributions and 
skewness coefficients ranging from . (June) up to . (October). Specifically, we generate 
daily synthetic time series with a length of  years, using for each month a different AR() 
model with 𝒫III white noise (i.e., AR()-	𝒫III). The model very satisfactorily reproduced the 
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target historical marginal statistics of each month (Table A-4), as well as the theoretical 
Markovian autocorrelation structure (see Figure A.2 for a comparison among the empirical, 
synthetic, and theoretical ACFs), which however deviates from the empirical ACF for some 
months, showing a more persistent behavior. Yet a comparison of the lag- dependence 
patterns between the synthetic and the historical data, using scatter plots for each month 
(Figure 3.7), reveals the omnipresence of the envelope behavior. As shown, the model 
generates unrealistic dependence patterns that are far from the historical ones. The synthetic 
pairs of values are bounded by the theoretical envelope function (red line; embedded in each 
plot), while the historical pairs clearly extend beyond that line. In an effort to provide a 
quantitative metric, we calculate the empirical probability of a historical pair to lie below the 
envelope function. The overall mean value of this metric estimated from all months is , 
while it ranges from  (in November) to  (in April).  

 
Figure 3.7 | Scatter plots showing the lag- dependence pattern of the daily streamflow (m/s) of the 
Achelous river at the Kremasta dam, Greece (orange dots; •) and of a synthetic time series generated 
using an AR()-	𝒫III model (black dots; •). The red line (—) depicts the envelope equation embedded 
each plot. 
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3.4 DISCUSSION 
Historically, most of the questions raised regarding the TF approach have concerned the case 
of the AR() model and the range of attainable skewness coefficients [McMahon and Miller, 
; Lettenmaier and Burges, ; Obeysekera and Yevjevich, ]. This was mainly due to 
the use of Wilson-Hilferty transformation which was used for generating Gamma or Pearson 
type-III RVs [Kirby, ]. Nowadays, this technical issue is out of interest, since such RVs can 
be easily generated with high accuracy by modern random number generators which are 
available in almost every programming language (e.g., R, MATLAB, etc.). Additionally, we note 
that McMahon and Miller [] reported that Thomas and Burden [] and Fiering [] 
tested their approach for skewness values ranging in (−., .). 

This work focused on the effect of using Pearson type-III white noise in AR() models and we 
show that this approach leads to unrealistic dependence patterns. Furthermore, preliminary 
investigations have also shown that this issue extends over other popular linear stochastic 
models when coupled with non-Gaussian white noise. Particularly, we demonstrated three 
such cases using 𝒫III white noise in combination with () a classical ARMA(,); () a simple 
MA(q); and () its symmetrical variant SMA(q) [Koutsoyiannis, ]. In all cases the resulting 
dependence patterns exhibited a peculiar and unrealistic bounded shape which can be bounded 
from both directions. 

Nevertheless, it is noteworthy that Song et al. [] and Jeong and Lee [] also observed 
this issue independently while studying AR() with exponential white noise [Gaver and Lewis, 
; Lawrance and Lewis, b, a] and periodic Gamma autoregressive (PGAR) 
processes [Fernandez and Salas, ], respectively. However, to the best of our knowledge, 
these works, or any other, have not revealed the envelope limitation, neither provided a 
theoretical proof and a justification for this behavior, which probably arises from the lack of 
explicit assumption regarding the joint dependence structure of the process. Particularly, the 
joint moment of order 𝑘 + 𝑛 of two continuous RVs, 𝑥	and 𝑦, is given by: 

 E �𝑥�	𝑦ô� = õ õ 𝑥�	𝑦ô
t

st

𝑓j�(𝑥, 𝑦)𝑑𝑥𝑑𝑦
t

st

 (.) 

where 𝑓j� denotes the joint probability distribution function (PDF) of 𝑥	and 𝑦. The first cross 
product joint moment is embedded in the definition of covariance, as well as in the Pearson’s 
correlation, i.e.: 

 𝜌j� =
E �𝑥	𝑦� − E{𝑥}	E �𝑦�

�Var{𝑥}	Var �𝑦�
 (.) 

Hence, this points to the requirement for an assumption regarding 𝑓j�. When both 𝑥	and 𝑦 are 
Gaussian, and simulated through a typical decomposition scheme (e.g., the Cholesky 
technique) which applies linear operations on them, the joint PDF of 𝑥	and 𝑦 is also Gaussian 
(due to the affine transformation property of Gaussian RVs). When 𝑥	and 𝑦 are not Gaussian, 
this convenient property does not hold. By analogy, the joint moment of order 𝑘 + 𝑛 of a 
continuous-state, discrete-time stochastic process	𝑥�	can be expressed as: 
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 E{𝑥��	𝑥�s¬ô } = õ õ 𝑥��	𝑥�s¬ô

t

st

𝑓j�,j�÷ø(𝑥�, 𝑥�s¬)𝑑𝑥�𝑑𝑥�s¬

t

st

 (.) 

If 𝑥� is Gaussian and modeled using a linear stochastic process (e.g., AR or MA-type) with 
Gaussian white noise, then it is well known that the joint PDF 𝑓j�,j�÷ø is also Gaussian. This 
implies linear operations on Gaussian RVs. On the other hand, this does not hold for the TF 
approach, which uses non-Gaussian white noise and thus the form of 𝑓j�,j�÷ø is unclear. 

We remind that summary statistics such as mean, variance, skewness, and correlation are 
nothing more than some useful measures of location, dispersion, asymmetry, and dependence, 
and do not involve in their estimation the actual joint distribution. A classic example is 
provided by the so-called Anscombe’s Quartet [Anscombe, ] and recently by Matejka and 
Fitzmaurice []. Both works stress the importance of data science’s first principle: Visualize 
your data. They demonstrate this issue by devising several examples of datasets that have the 
same summary statistics but completely different dependence patterns. Apparently, as shown 
in this work, the aforementioned simple principle also applies in synthetic hydrology. 

Nowadays, multivariate random variables are typically modeled by copula functions [Sklar, 
, ], which despite the early-days skepticism [Sklar, ] have found wide acceptance 
and practical use. In hydrology, copulas have been popularized by the studies of De Michele 
and Salvadori [] and Favre et al. [], and since then have been widely applied for the 
description of correlated yet time-independent variables [e.g., De Michele and Salvadori, ; 
Favre et al., ; Salvadori and De Michele, , ; Zhang et al., ; Genest and Favre, 
; Zhang and Singh, ; Hao and Singh, ; Wang et al., ], while only lately they 
have been adapted and modified accordingly to account for time-dependence, which led to the 
development of copula-based schemes for the simulation of hydrometeorological processes 
[e.g., Bárdossy and Pegram, ; Serinaldi, a; Gyasi-Agyei, ; Lee and Salas, ; Hao 
and Singh, ; Chen et al., ; Lee, ]. 

A conceptually related, yet until recently unknown to the hydrological community, approach 
relies on the so-called Nataf joint distribution model [Nataf, ], which is associated to the 
well-known Gaussian copula [Sklar, ; Lebrun and Dutfoy, ]. Since their inception, 
Nataf-based models have been developed and applied for the simulation of univariate or 
multivariate autoregressive processes with arbitrary marginal distribution mainly within 
operations research, [e.g., Cario and Nelson, ; Biller and Nelson, ], and probabilistic 
engineering mechanics [e.g., Grigoriu, ; Deodatis and Micaletti, ], while recently they 
have been aligned with hydrological stochastics [Serinaldi and Lombardo, ; Tsoukalas et 
al., a, e, d, b; Papalexiou, ] in order to account for non-Gaussian 
processes, both univariate and multivariate, exhibiting intermittency, periodicity, and any-
range dependence. 

Apparently, both Nataf- and copula-based approaches can provide a remedy to the limitations 
of the TF approach, as well as explicitly account for non-Gaussianity, which is omnipresent 
within hydrometeorological processes [e.g., Kroll and Vogel, ; Koutsoyiannis, c; 
McMahon et al., ; Bowers et al., ; Papalexiou and Koutsoyiannis, , ; Blum et 
al., ]. We deem that Nataf-based models provide a convenient and more precise alternative 
given that they utilize (in an auxiliary or parent role) existing and well-known stochastic models 
which provide the basis for a straightforward and operational efficient generation scheme. It is 
also noted that the celebrated Log-Normal model of Matalas [], which incidentally can be 
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classified as a Nataf-based approach [Tsoukalas et al., e, d], does not exhibit the TF 
approach limitation and thus can provide a rather easy and consistent option for practitioners. 

3.5 SUMMARY 
To conclude, we bring back the aphorism and the question set by Box and Draper. 
Paraphrasing, we could say that indeed since all models are wrong and TF is not an exception, 
the question is how wrong the TF approach has to be to not be useful. A way to answer this 
question is through impact assessments of the envelope behavior in real-world applications, 
e.g., in important engineering studies (reservoir design and sizing, hydropower assessment, 
reliability-based studies, etc.), and of its effect on decision-making related to water resources 
management. Another question arising here is why should one use a model with known 
limitations and flaws (irrespective of whether these flaws have minor or major impacts on real-
world applications) which reproduces unrealistic rainfall or streamflow patterns?  

We recognize that the TF model and the associated approach was a major contribution that 
shaped stochastic hydrology, yet in practice linear stochastic models should be used cautiously 
when combined with non-Gaussian white noise, given the limitations shown in this Chapter. 
This approach preserves important summary statistics (i.e., mean, variance, and skewness) and 
correlations, yet for processes showing medium to high skewness values and/or correlations it 
will inevitably reproduce bounded and unrealistic dependence patterns that are then used in 
simulations.  

In this context, after half a century of use of this model and approach, we would suggest that it 
is time to move to alternative methods which are consistent in generating realistic dependence 
structures as well as the marginal distribution itself. The theoretical background of such an 
approach will be discussed in the next Chapter 4, while Chapters 5 to 7, are build upon it, and, 
propose a series of novel stochastic simulation schemes, suitable for a variety of stochastic 
simulation problems (i.e., univariate or multivariate, stationary or cyclostationary, as well as 
multi-scale).
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4  
NON-GAUSSIAN MODELS FOR UNCONDITIONAL, CONDITIONAL AND 
STOCHASTIC SIMULATION OF RANDOM VARIABLES AND PROCESSES § 

PREAMBLE 
This Chapter provides an overview of the theoretical foundations of the Nataf’s joint 
distribution model, a construct closely related with the Gaussian copula, which in turn allows 
modelling, and simulation (unconditional and conditional) of non-Gaussian random variables 
and processes. The description and background of the model is initially introduced for the 
establishment of the multivariate joint distribution (section 4.1) of non-Gaussian random 
variables, while progressively is extended to conditional distributions (section 4.2) and 
stochastic processes (section 4.3). Furthermore, section 4.5, presents a simple and efficient 
algorithm, based on a hybrid Monte Carlo procedure that is used to approximate the so-called 
equivalent correlation coefficients, an important concept of any Nataf-based method. Section 
4.6 discusses and highlights the similarity between the rationale of Nataf-based methods with 
other commonly used in hydrology approaches; which interestingly can be retrospectively 
classified as Nataf-based methods. Finally, section 4.7 summarizes the key points and findings 
of the Chapter.  
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4.1 ON THE NATAF JOINT DISTRIBUTION MODEL 

4.1.1 Introduction and historical background 

The problem of obtaining the joint distribution of random variables has long been discussed 
within the statistical community. The formal introduction of copulas [Sklar, , ] was 
arguably a hallmark development with broad impact. Copulas have been developed to describe 
multivariate distribution functions using simpler mathematical objects (i.e., using univariate 
distributions and the so-called copula functions) [e.g., Fréchet, ; Féron, ; Dall’Aglio, 
; Nataf, ; Mardia, ]. For a general discussion on copulas, see for instance, the 
works of Embrechts et al. [], Nelsen [] or Joe [].  

Among them, Nataf [] proposed a quite simple, yet general solution by mapping a 
multivariate Gaussian distribution with a given correlation matrix to multivariate uniform 
variables, which in turn are mapped to the desired distributions via the corresponding inverse 
cumulative functions, hereafter called Nataf joint distribution model (NDM). The key 
challenge of NDM is to identify the equivalent correlations to be applied within the generation 
of random variables in the normal (Gaussian) domain, in order to attain the desired correlation 
in the actual (or else, real) domain. In their classical work, Liu and Der Kiureghian [] 
showed that the NDM is suitable for describing a wide range of correlation values. Later, Cario 
and Nelson [] developed a generalized procedure based on NDM and referred to as 
NORTA (NORmal To Anything), for the generation of correlated random vectors with 
arbitrary marginal distributions, including also, combinations of continuous and discrete 
random variables. NDM may be considered as a specific case of copulas [Sklar, ], and more 
specifically the Gaussian one. In fact, it is argued, that linear stochastics are naturally 
compatible with the this copula, since both use the Pearson’s linear correlation as measure of 
dependence. Lebrun and Dutfoy [], in view of copula theory, provide an extensive and 
insightful discussion on the relation of NDM with the Gaussian copula, as well as provide an 
alternative formulation of the former in terms of Spearman’s 𝓇� and Kendall’s 𝓉 (under some, 
rather strict, assumptions – see also the discussion below). 

Admittedly Cario and Nelson [] argued that the generality of their approach came at the 
cost of computational efficiency (i.e., computational time), since the estimation of equivalent 
correlations presupposed solving numerically a double integral in the infinite domain. 
However, continuous advances in computing make this issue less and less relevant.  

4.1.2 Theoretical background 

Let 𝒙 = [𝑥(, … , 𝑥Î]Ï denote a vector of m cross-correlated (yet, time-independent) random 
variables (RVs), indexed using i, each one characterized by an arbitrarily specified marginal 
distribution function 𝐹j (𝑥) ≔ 𝑃l𝑥  ≤ 𝑥n, with finite variance; also referred to as cumulative 
distribution function (CDF). Let also 𝑓j (𝑥) ≔ d𝐹j (𝑥)/d𝑥 denote the corresponding 

univariate probability density function (PDF). Furthermore, let 𝑹 ≔ Corr{𝒙,𝒙Ï} denote their 
(target) correlation matrix (𝑚 ×𝑚). 

Let also, 𝒛 = [𝑧(, … , 𝑧Î]Ï be a vector characterized by a m-dimensional multivariate standard 
normal distribution, i.e., 𝒛	~	𝒩Î(𝝁ý, 𝜮þ), where 𝝁ý:= E{𝒛} = 𝟎Ï  is the mean vector (𝑚 × () and 
𝜮þ ≔ Cov{𝒛, 𝒛Ï} = E �l𝒛 − 𝝁ýnl𝒛 − 𝝁ýn

Ï� = E{𝒛	𝒛Ï} − 𝝁ý𝝁ýÏ is the covariance matrix (𝑚 ×𝑚), 
which has to be positive semi-definite and in the case of multivariate standard normal 
distribution is synonymous with its correlation matrix, 𝑹þ:= Corr{𝒛, 𝒛Ï} = 𝜮þ. The multivariate 
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standard normal CDF, 𝒩Î is denoted for simplicity as ΦÎl𝒛;𝑹þn, while its multivariate PDF 
as 𝜑Îl𝒛;𝑹þn. Notice that the mean, has been omitted for brevity. Apparently, each element of 
𝒛 is also characterized by standard normal distribution, Φ(∙) with density 𝜑(∙), i.e., 
𝑧½~𝒩(;,().  

The main idea of NDM lies into establishing the multivariate joint distribution 𝐹𝒙(𝒙) =
𝐹𝒙(𝑥(,… , 𝑥Î) = 	𝑃l𝑥( ≤ 𝑥(,… , 𝑥Î ≤ 𝑥În of 𝒙 through the joint CDF of 𝒛. Particularly, by 
expressing each element of 𝒛 as, 

 𝑧  = Φs( �𝐹j l𝑥 n� (.) 

where Φs((∙) denotes the quantile function, else known as inverse cumulative density function 
(ICDF), of the univariate standard normal distribution. It is straightforward to see that by 
employing the probability integral transformation to each marginal CDF we obtain 𝑢 : =
𝐹j l𝑥 n which is a uniformly distributed RV in [;, (] that denotes probability. See also, Papoulis 
[ p. ]. Nevertheless, through the rules of probability transformation, the joint 
distribution (CDF) of 𝒙 can be written as,  

 𝐹𝒙(𝑥(, … , 𝑥Î) = ΦÎ ~Φs( �𝐹j((𝑥()� , … , Φ
s( �𝐹jÎ(𝑥Î)� ; 𝑹

þ� (.) 

It is interesting to note that Eq. (4.2) is identical with the Gaussian copula. In brief copulas, 
denoted with 𝐶(∙), are m-dimensional distribution functions on [;, (]Î with uniform marginal 
distributions. Sklar [], established the theory of copulas and provided their general 
properties. Among them, it has been shown that any multivariate joint distribution can be 
regarded as a copula function. Particularly, Sklar’s theorem states that a multivariate 
distribution 𝐹𝒙(𝒙) = 𝐹𝒙(𝑥(,… , 𝑥Î) with marginal CDFs 𝐹j(, … , 𝐹jÎ, assuming that they are 
with continuous and differentiable, can be written as, 

 𝐹𝒙(𝑥(,… , 𝑥Î) = 𝐶 �𝐹j((𝑥(),… , 𝐹jÎ(𝑥Î)� (.) 

In this work we are interested in the Gaussian copula 𝐶"(∙) which is defined as multivariate 
standard normal distribution with correlation matrix 𝑹þ  [e.g., Embrechts et al., ],  

 𝐶"(𝒖) = 𝐶(𝑢(, … , 𝑢Î) = ΦÎlΦs((𝑢(),… , Φs((𝑢Î);𝑹þn (.) 

which apparently, after some substitutions can be transformed in in Eq. (4.2), i.e., NDM’s main 
equation. Generally, according to copula theory, assuming that both 𝐹j  and 𝐶(∙) are 
differentiable, the joint PDF of 𝒙 can be written as, 

 𝑓𝒙(𝑥(, … , 𝑥Î) = 𝑐 �𝐹j((𝑥(),… , 𝐹jÎ(𝑥Î)� ∙#𝑓j (𝑥 )
Î

 â(

 (.) 

where 𝑐(∙) denotes the joint PDF (referred also as copula density) of copula 𝐶(∙) and it is given 
by,  
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 𝑐 �𝐹j((𝑥(),… , 𝐹jÎ(𝑥Î)� = 𝑐(𝑢(, … , 𝑢Î) =
𝜕Î𝐶(𝑢(,… , 𝑢Î)
𝜕𝑢(⋯𝜕𝑢Î

 (.) 

Interestingly, by rearranging Eq. (4.5) as follows,  

 𝑐 �𝐹j((𝑥(),… , 𝐹jÎ(𝑥Î)� = 𝑐(𝑢(,… , 𝑢Î) =
𝑓𝒙(𝑥(,… , 𝑥Î)
∏ 𝑓j (𝑥 )
Î
 â(

 (.) 

It can be observed that the copula density 𝑐(∙) denotes the ratio of multivariate joint PDF to 
the case of independence, which can be translated as the necessary correction to transition from 
independence to dependence. It can be shown that in the case of Gaussian copula its joint 
density 𝑐"(∙) can be written as:  

 𝑐"(𝑢(,… , 𝑢Î) =
𝜑ÎlΦs((𝑢(),… , Φs((𝑢Î);𝑹þn	

∏ 𝜑lΦs((𝑢 )nÎ
 â(

 (.) 

Thus in the case of NDM and Gaussian copula the joint PDF of 𝒙 is given by substituting Eq. 
(4.8) to Eq. (4.5) [cf. Liu and Der Kiureghian, ], 

 𝑓𝒙(𝑥(,… , 𝑥Î) =
𝜑Î ~Φs( �𝐹j((𝑥()� ,… , Φ

s( �𝐹jÎ(𝑥Î)� ;𝑹
þ�	

∏ 𝜑 'Φs( �𝐹j l𝑥 n�(
Î
 â(

∙# 𝑓j (𝑥 )
Î

 â(

 (.) 

From these equations it is clear that, copula theory, in general, as well as NDM specifically, 
allow us to describe complex multivariate distributions using as individual components the 
marginal distributions 𝐹j(, … , 𝐹jÎ and the copula 𝐶(∙), which eventually allow the formulation 
of the joint distribution.  

Nevertheless, it is shown from Eq. (4.2) and Eq. (4.9), that in the case of NDM (i.e., Gaussian 
copula) the joint distribution of 𝒙 depends on the correlation matrix 𝑹þ  of 𝒛 and not directly on 
𝑹 of 𝒙. To elaborate, let us consider the inverse case where 𝒙 is obtained through 𝒛 via the 
following mapping equation: 

 𝑥  = 𝐹j)
s( ~Φl𝑧 n� (.) 

where 𝐹j)
s( is the ICDF of variable 𝑥 . It is noted that similar to the previous case (i.e., Eq. (4.1)) 

𝑢 : = Φl𝑧 n is also a RV uniformly distributed in [;, (] that denotes probability. A direct 
outcome of Eq. (4.10) is that for two variables 𝑥 	and	𝑥Ø their correlation is given by: 

 𝜌 ,Ø ∶= Corr{𝑥 , 𝑥Ø} 	= Corr �𝐹j)
s( ~Φl𝑧 n� , 𝐹jä

s( ~Φl𝑧Øn�� (.) 

thus the target correlations 𝜌 ,Ø  of 𝑹 are associated with the corresponding elements 𝜌. ,Ø  of 𝑹þ . 
An apparent approach could be setting	𝑹þ ≡ 𝑹, however, both theoretical and empirical 
evidence have indicated that this assumption will result in misspecification of the underlying 
model (i.e., NDM) and lead to systematically underestimating correlations within the generated 
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data. The theoretical justification of this behavior stems from the Pearson correlation 
coefficient itself, since it is not invariant under non-linear monotonic transformations, such as 
those imposed by the ICDFs [Embrechts et al.,  p. ]. More specifically, the largest the 
departure of the actual distribution,	𝐹j½ , from the normal one, the largest will be the 

underestimation. Therefore, and except the trivial normal case, in order to eliminate biases, it 
necessary to a priori identify the values of	𝜌. ,Ø . 

NDM and its theoretical background can provide a theoretical solution to the above problem 
by means of specifying an appropriate (i.e., equivalent) correlation matrix 𝑹þ  that leads to the 
target correlation matrix	𝑹. As highlighted by Liu and Der Kiureghian [], in order to 
employ NDM it is essential to ensure ) one to one mapping of Eq. (4.10), and ) positive 
definite correlation matrix 𝑹þ . The first requirement is by definition valid in typical cases of 
distributions used in hydrology, while the second is also usually satisfied, since the distances 
𝜀 ,Ø ≔ 	 ,𝜌 ,Ø − 𝜌. ,Ø, are often small (provided, of course, that the target matrix 𝑹 is positive 
definite). The following procedure is applied to each specific pair of variables 𝑥 	and	𝑥Ø of 𝒙 
(i.e., 𝑚(𝑚 − ()/)	times). Given the definition of Pearson’s correlation coefficient, i.e., 

 𝜌 ,Ø = Corr{𝑥 , 𝑥Ø} =
E{𝑥 	𝑥Ø} − E[𝑥 ]	E[𝑥Ø]

-Var[𝑥 ]	Var[𝑥Ø]
 (.) 

where E[𝑥 ], E[𝑥Ø] and Var[𝑥 ], Var[𝑥Ø] are the mean and variance of 𝑥 	and	𝑥Ø respectively, 
which are known since the associated marginal distributions are already specified (and have 
finite variance, otherwise the Pearson correlation coefficient cannot be defined). Thereby, the 
computational procedure is limited to identifying E{𝑥 	𝑥Ø}. Since the corresponding variables 
to be mapped,	𝑧 	and	𝑧Ø , respectively, are by definition jointly normally distributed, with 
correlation	Corr{𝑧 , 𝑧Ø} = 𝜌. ,Ø , then, using Eq. (4.10), the fundamental theorem of expectation 
(also known as the law of unconscious statistician) and the first cross-product moment of 
𝑥 	and	𝑥Ø we get: 

 

E{𝑥 	𝑥Ø} = E �𝐹j 
s( ~Φl𝑧 n� 	𝐹jØ

s( ~Φl𝑧Øn�� 	

= õ õ 𝐹j 
s(lΦ(𝑧 )n	𝐹jØ

s( ~Φl𝑧Øn�𝜑)l𝑧 , 𝑧Ø;	𝜌. ,Ønd𝑧 d𝑧Ø

t

st

t

st

 
(.) 

where 𝜑)l𝑧 , 𝑧Ø; 	𝜌. ,Øn is the bivariate standard normal PDF. By substituting Eq. (4.13) to Eq. 
(4.12) we obtain, 

 𝜌 ,Ø =
∫ ∫ 𝐹j 

s(lΦ(𝑧 )n	𝐹jØ
s( ~Φl𝑧Øn�𝜑)l𝑧 , 𝑧Ø;	𝜌. ,Ønd𝑧 d𝑧Ø

t
st

t
st − E[𝑥 ]	E[𝑥Ø]

-Var[𝑥 ]	Var[𝑥Ø]
 (.) 

For simplicity, let us rewrite this relationship as, 

 𝜌 ,Ø = ℱ ~𝜌. ,Ø/𝐹j , 𝐹jØ	�  (.) 
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where ℱ(∙) denotes an arbitrary function, which has the meaning that each target 𝜌 ,Ø is a 
function of	𝜌. ,Ø, that is embedded in	𝜑)l𝑧 , 𝑧Ø;	𝜌. ,Øn, and the given marginal distributions	𝐹j  
and	𝐹jØ . Eq. (4.15) have to be inverted in order to identify the values of 𝜌. ,Ø that result in the 

target values 𝜌 ,Ø. i.e., 

 	𝜌. ,Ø = ℱs( ~𝜌 ,Ø/𝐹j , 𝐹jØ	�  (.) 

Unfortunately, Eq. (4.15), and thus Eq. (4.16), does not have a general closed-form solution, 
with the exception of few special cases [Li and Hammond, ; Cario and Nelson, ; Crouse 
and Baraniuk, ; Xiao, ]. Among them the Log-Normal case [Mostafa and Mahmoud, 
] which is of particular interest in hydrology (see section 4.5.2). The aforementioned 
researchers, as well as Liu and Der Kiureghian [], provided several Lemmas that can be 
useful in order to approximate Eq. (4.15). Among them, 

Lemma 1: 𝜌 ,Øis a strictly increasing function of	𝜌. ,Ø . 

Lemma 2: 𝜌. ,Ø = ; for	𝜌 ,Ø = ; as well as, 𝜌. ,Ø ≥ (≤)	; if	𝜌 ,Ø ≥ (≤)	;. 

Lemma 3: ,	𝜌 ,Ø, ≤ ,𝜌. ,Ø,. 

Note that in Lemma , the equality sign is valid when 𝜌 ,Ø = ; or when both marginal 
distributions are normal. Furthermore, the minimum and maximum attainable value of 𝜌 ,Ø 
are in accordance with the Fréchet-Hoeffding bounds [Fréchet, ; Hoeffding, ] and are 
given for 𝜌. ,Ø = −( and	𝜌. ,Ø = (, respectively. Particularly, the following holds true, −( ≤

ℱ ~−(/𝐹j , 𝐹jØ 	� ≤ 𝜌 ,Ø ≤ ℱ ~(/𝐹j , 𝐹jØ 	� ≤ (. See also the work of Whitt [] for a 

comprehensive discussion on the topic.  

In this Thesis, unless stated otherwise, in order to establish the relationship ℱ(∙) we employ the 
simple, yet efficient method proposed by Tsoukalas et al. [e] which in a nutshell, is based 
on the evaluation of few pairs of 	𝜌 ,Ø		and		𝜌. ,Ø  using Monte Carlo simulation and subsequently, 
the establishment of the ℱ(∙) relationship through polynomial interpolation. For further details 
regarding the identification of equivalent correlation coefficients, as well as the above algorithm 
see section 4.5. Hereafter it is assumed that the equivalent correlation 𝜌. ,Ø	have been properly 
identified. 

Nevertheless, in order to shed some light on the functional form of ℱ(∙) (i.e., Eq. (4.15)) let us 
consider the case of two variables 𝑥( and 𝑥) are described by the two-parameter Gamma 
distribution (𝒢). Its PDF is given by: 

 𝑓𝒢(𝑥; 𝑎, 𝑏) =
(

|𝑏|Γ(𝑎) ~
𝑥
𝑏�

¶s(
exp ~−

𝑥
𝑏� , 𝑥 > ; (.) 

where 𝑎 > ; and 𝑏 ≠ ; are the shape and scale parameters respectively, while Γ(∙) denotes the 
gamma function. Figure 4.1a depicts the relationship among	𝜌.(,) and	𝜌(,)	(i.e., ℱ(∙), computed 
via numerical integration) for various values of distribution parameters. Specifically, we 
assumed 𝑎 ≔ 𝑎( = 𝑎) and constant 𝑏:= 𝑏( = 𝑏) = (. We remind that the theoretical 
skewness coefficient of a Gamma distributed variable is given by 𝐶�� = )/√𝑎. From this figure 
we also observe that the non-linearity of ℱ(∙) increases with low values of a (i.e., high 
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skewness), and that the maximum attainable value of 	𝜌½,0	 is equal to , which is due to the 
fact that 𝐹j) ≡ 𝐹j(. In addition, one may observe that the a is also related with the minimum 
attainable value of 	𝜌(,)	. For example, when 𝑎 = ;.;(, the latter value is practically restricted 
to zero, something that may be considered a reasonable behavior that is attributed to the very 
high value of positive skewness which does not allows for negative correlations. In a similar 
vein, in Figure 4.1b we set 𝑎( = 8 and vary the parameter 𝑎) from  to . (assuming again 
that 𝑏:= 𝑏( = 𝑏) = (). In this case, both the minimum and maximum attainable values of 
	𝜌(,)	are affected. We observe that when 𝑎(	and	𝑎) exhibit significant differences, the range of 
feasible values 	𝜌(,)	 is getting narrower. This implies that two variables with considerable 
different shape (expressed through parameter a) cannot be highly correlated. From an 
engineering point of view, and similar to the previous case (i.e., when 𝑎 ≔ 𝑎( = 𝑎)), this is 
barely considered a limitation of the NDM approach, since such behavior is rarely encountered 
in practice. For instance, it is not expected, or rational, two variables (or in general processes), 
one with skewness ~. and one with  to be highly (positively or negatively) correlated. In 
any case, we stress the importance of checking the range of attainable correlation coefficients 
when employing the concepts of NDM [see, Demirtas and Hedeker, ; Leonov and Qaqish, 
], especially within the context of stochastic process simulation (see section 4.3). For 
instance, given the non-linear and asymmetric nature of ℱ(∙), for some combinations of 
marginal distributions, a target correlation coefficient may be inadmissible (this also applies in 
any Nataf-based construct, including stochastic processes; see section 4.3 as well as, Chapter 5, 
6 and 7). However, in the examples (both hypothetical and real-world) employed in this Thesis 
such problems did not occur, a fact which by no means overrules the aforementioned need for 
compatibility verification. 

 
Figure 4.1 | Graphical illustration of function ℱ(∙) (i.e., Eq. (4.15)) that expresses the relationship 
between the equivalent, 	𝜌.(,) and target 	𝜌(,)	 correlation coefficients assuming that both 𝑥( and 𝑥) are 
described by the two-parameter Gamma distribution (assuming that	𝑏:= 𝑏( = 𝑏) = () with a) equal 
shape parameters (i. e. , 𝑎 ≔ 𝑎( = 𝑎)) and b) different shape parameters by setting 𝑎( = 8 and varying 
𝑎) from  to .. 



A NATAF-BASED STOCHASTIC FRAMEWORK 

Page | 46 

Additionally, in order to investigate the form of the established joint distribution functions, let 
us setup a hypothetic example where both 𝑥( and 𝑥) have identical marginal distribution, 
𝑓𝒢(𝑥; ;.8,() and 𝜌(,) ∈ {;.(, ;.>, ;.?, ;.@8}. Each row of subplots of Figure 4.2, corresponds to 
a specific value of 𝜌(,) (the equivalent value of 	𝜌.(,)  is also shown with red color – see also the 
corresponding curve in Figure 4.1a) and depicts, from left to right, the joint PDF in the 
Gaussian and uniform domain (copula density) as well as the joint CDF in the real domain. It 
is remarked that isolines of these plots were drawn using the theoretical equations provided by 
the mathematical background of NDM while, some random samples were generated (black 
dots) for visualization purposes. The plot depicts, in a step-by-step manner, the mapping 
procedure imposed by Eq. (4.10), as it illustrates the transition, from the Gaussian to uniform 
(copula) and finally the actual domain. Besides the various forms of the attained joint PDF it is 
also interesting to observe how NDM transforms a homoscedastic input (i.e., Gaussian) to a 
heteroscedastic one. 
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Figure 4.2 | Hypothetical example of two RVs, 𝑥(, 𝑥)~𝒢(𝑎 = ;.8, 𝑏 = () with 𝜌(,) ∈
{;.(, ;.>, ;.?, ;.@8}. Each row of subplots corresponds to a specific value of 𝜌(,) and each column of 
subplots, from left to right, depicts the joint PDF in the Gaussian and uniform domain as well the joint 
CDF in the actual domain. 
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4.1.3 Unconditional Monte Carlo simulation 

Unconditional Monte Carlo simulation is implemented in many applications in science and 
real-word practice [e.g., Robert and Casella, ; Kroese et al., , ]. Characteristic 
fields are those of physics, biology, finance and engineering. Often, its purpose is to propagate 
uncertainties related with input variables to the outputs of interest. For example, in finance, it 
is used to identify optimal portfolios of financial securities. In this case, each security (the input 
variables) is assumed to be a RV (often time-independent), and thus described by a distribution 
function. Since the overall portfolio (i.e., its performance; the output of interest) is composed 
by a linear combination of them, the ultimate goal is to estimate its efficiency and risk, i.e., the 
uncertainty of the overall portfolio (typically expressed via measures of dispersion or through 
its distribution function) via propagating the uncertainty of each individual security. This task 
can be accomplished with the use of Monte Carlo simulation, which, loosely speaking, holds 
out the promise of generating correlated inputs with the desired marginal distributions. In a 
similar vein, in engineering, one often has at his disposal a deterministic model that under some 
inputs returns the output variable of interest. In many cases we are particularly interested in 
quantifying (and eventually accounting for) the input variables uncertainty2. Analogous to the 
previous example, the central idea is to feed the deterministic model with multiple realizations 
of the input variables, run the model multiple times, and finally, derive the distribution 
function of the output variable of interest. Interestingly, both examples, and many other 
applications [e.g., Makropoulos et al., ; Tsoukalas et al., b; Psarrou et al., ] of 
Monte Carlo simulation, can be viewed as derived distribution problems, since, regardless of 
the case, we are interested in deriving the distribution function of the output variable(s). This 
kind of problems are becoming particularly challenging when the input variables are non-
Gaussian and cross-correlated. A potential remedy in such cases relies on the use of copulas. 
As such, the theoretical background of NDM [Nataf, ] and the NORTA procedure [Cario 
and Nelson, ], can provide a well-justified and easy to implement solution.  

Specifically, the problem of generating a m-dimensional correlated random vector 𝒙 =
[𝑥(,… , 𝑥 , … , 𝑥Î]Ï with a priori specified target marginal distributions 𝐹j(,… , 𝐹j , … , 𝐹jÎ	and 
target correlation matrix	𝑹 ∈ [−(, (]Î	×	Î  reduces to generating and subsequently map using 
𝑥  = 𝐹j)

s( ~Φl𝑧 n� (i.e., Eq. (4.10)), a m-dimensional correlated random vector 𝒛 =
[𝑧(, … , 𝑧 , … , 𝑧Î]Ï with multivariate standard normal distribution and equivalent correlation 
matrix	𝑹þ ∈ [−(, (]Î	×	Î. Assuming that the elements of 𝑹þ  has already been specified (e.g., 
using the algorithm of section 4.5.1), it is straightforward to generate a random vector 𝒛 
through the following linear transformation, 

 𝒛 = 𝜝þ𝒘 (.) 

of an uncorrelated standard normal vector 𝒘 = [𝑤(,… , 𝑤 ,… , 𝑤Î]Ï, where 𝜝þ  is a 𝑚	 × 	𝑚 
matrix obtained by, 

 𝜝þ𝜝þ2 = 𝑹þ (.) 

                                                        
2 It could also be of interest the quantification of other sources of uncertainty, such as parameter, structural, etc. 
Regardless of the case, Monte Carlo simulation is the most frequently employed approach for this purpose. 
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In order to obtain the matrix 𝜝þ , it is essential to solve a decomposition problem, also expressed 
as finding the square root of	𝑹þ . This can be achieved with the use of typical numerical 
techniques, such as Cholesky or singular value decomposition [e.g., Johnson, ]. We remark 
that when 𝑹þ  is positive definite, it has infinite number of feasible solutions, such as the solutions 
provided by the aforementioned numerical methods. On the other hand, if 𝑹þ  is non-positive 
definite the problem does not have a feasible solution, thus requiring the detection (e.g., 
through optimization [Koutsoyiannis, ; Higham, ]) of a parameter matrix 𝜝þ∗ which 
results to a feasible and near-to-optimum matrix 𝑹þ∗ ≔ 𝑩þ∗ 𝑩þ∗Ï which is as closest (typically 
quantified in terms of some distance measure; e.g., Euclidean norm) as possible to the original 
matrix 𝑹þ , thereby, ensuring an approximation of the given 𝑹þ . 

Some applications involve the derivation of the distribution function of some linear 
combination of 𝒙, expressed using the column vector 𝝎 = [𝜔(,… ,𝜔Î]Ï, which can be viewed 
also as weight coefficients. The first two moments of the derived distribution can be easily 
calculated analytically, using the equations below, however higher order moments are hard to 
estimate analytically (if not impossible) and the derivation of the complete distribution requires 
the resolution of the so-called convolution integral (in the case of independence). 
Unconditional Monte Carlo procedures provides the means to approximate the derived 
distribution by means of simulation, even in cases of non-linear combinations of 𝒙. Regarding 
the case of linear combination of 𝝎2𝒙, the mean, E{𝝎2𝒙}, and variance, Var{𝝎2𝒙}, can be 
calculated by [Lindgren, ], 

 Var{𝝎2𝒙} = Var Õá𝜔 𝑥 

Î

 â(

× = 𝝎2𝜮𝝎 =áá𝜔 𝜔Ø

Î

Øâ(

Î

 â(

Cov{𝑥 , 𝑥Ø} (.) 

where	𝜮 ≔ Cov[𝒙, 𝒙Ï] = 𝑫𝑹𝑫Ï is the covariance matrix (𝑚	 × 	𝑚) of 𝒙 and 𝑫≔
diag{-Var[𝑥(],… ,-Var[𝑥Î]	} is a diagonal (𝑚	 × 	𝑚) matrix which contains the square root 
of the variables variances (i.e., standard deviations; apparently	𝑫 = 𝑫Ï), which are known for 
all 𝑥 ,	since the marginal distributions are known (or specified). The inverse operation is 
simply, 𝑹 = 𝑫s(	𝜮𝑫s(. As a side note, it is worth mentioning that the above relationship can 
be generalized for the estimation of the covariance of linear combinations of two random 
vectors 𝒙 = [𝑥(,… , 𝑥 , … , 𝑥Î]Ï and 𝒚 = [𝑦(, … , 𝑦 , … , 𝑦ô]Ï with 𝝎 = [𝜔(, … ,𝜔Î]Ï and 𝜷 =
[𝛽(, … ,𝛽ô]Ï expressing the weight coefficients of 𝒙 and 𝒚 respectively. The covariance 

Cov �𝝎2𝒙,𝜷2𝒚� can be analytically estimated by, 

 Cov �𝝎2𝒙,𝜷2𝒚� = Cov :á𝜔 𝑥 ,á𝛽 𝑦 

ô

Øâ(

Î

 â(

; =áá𝜔 𝛽Ø

ô

Øâ(

Î

 â(

Cov �𝑥 , 𝑦Ø� (.) 

 E{𝝎2𝒙} = E Õá𝜔 𝑥 

Î

 â(

× = 𝝎2E{𝒙} = á𝜔½

Î

 â(

E{𝑥 } (.) 
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4.1.4 Numerical examples 

To elaborate more on the practical side of NDM, the unconditional Monte Carlo simulation 
technique, as well as provide few a hands-on examples on the identification of equivalent 
correlation coefficients and the mapping procedure of Eq. (4.10), let us consider the following 
simple bivariate cases of generating correlated non-Gaussian RVs. Throughout these examples 
the algorithms of sections 4.1.3 and 4.5.1 are employed. 

4.1.4.1 Continuous-type marginal distributions 

Let assume that we wish to generate two correlated variables 𝑥(	and	𝑥), both from the same 
distribution (i.e.,	𝐹j( ≡ 𝐹j)), the two-parameter Gamma distribution (Eq. (4.17)). 
Additionally, let assume that the parameters of both distributions are 𝑎 ≔ 𝑎( = 𝑎) = ;.B, 𝑏: =
𝑏( = 𝑏) = (; and the target correlation among them is	𝜌() = ;.B. After employing the 
algorithm of section 4.5.1 (using 𝜌.<c= = ;	and 𝜌.<>H = (, N =  , Ω =  and p = ) the 
following polynomial relationship is established between the equivalent and target correlation 
coefficients (the indices were omitted for simplicity). 

 𝜌 = ℱl𝜌.,𝐹j(	, 𝐹j)n 	≈ ;.)I@>𝜌.) + ;.B)E>𝜌. + ;.;;I( (.) 

This relationship is depicted graphically in Figure 4.3a, which highlights its non-linearity. It is 
apparent (from Figure 4.3a and Eq. (4.23)) that in order to attain the target correlation (=
;.B) between 𝑥( and 𝑥) it is suggested to generate standard normal variables (𝑧( and	𝑧)) with 
correlation equal to	𝜌.() ≅ ;.B8. Therefore, we simulated   data (𝑧( and	𝑧)) from a 
bivariate normal distribution with correlation equal to . which are first mapped to the 
uniform domain, i.e., 𝑢( = Φ(𝑧()	and	𝑢) = Φ(𝑧)), and then mapped to the actual (i.e., real) 
domain using their ICDF, i.e., 𝑥( = 𝐹j(

s((𝑢()	and	𝑥) = 𝐹j)
s((𝑢)). Figure 4.3b-d graphically 

depicts the previous procedure which is a step-by-step equivalent to Eq. (4.10). The simulated 
data (𝑥( and	𝑥)) in the actual domain attain the target correlation (i.e., .) as well as the 
specified marginal distributions. Furthermore, in order to further validate this statement, we 
used the maximum likelihood estimation (MLE) method to identify the distribution 
parameters of the simulated data. Their estimates were found equal to 
𝑎C( = 	;.I@B, 𝑏@(	 = 	@.@I; for 𝑥( and	𝑎C) = ;.B;(, 𝑏@) = (;.;I;, for	𝑥), which indicate a very 
close approximation of the specified parameters. 
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Figure 4.3 | Hypothetical example of generating two correlated (𝜌(,) = ;.B) identical Gamma-distributed 
variables with	𝒢(;.B, (;). a) The established relationship between equivalent, 𝜌. and target 𝜌 correlation 
coefficients (i.e., Eq. (4.23)). Scatter plots with histograms in the b) Gaussian c) uniform and d) actual 
domain. The estimate of correlation coefficient of the simulate variables in the Gaussian and the actual 
domain is	𝜌CD() = ;.B8;> and	𝜌C() = ;.B;BE respectively. 

4.1.4.2 Discrete-continuous-type marginal distributions 

Let us further extended this example by employing a zero-inflated distribution model such as 
the one discussed later in section 4.4. This type of distribution is comprised by an atom of mass 
at zero and a continuous part for positive values. Its CDF is given by (after some slight 
notational modifications), 

 𝐹j(𝑥) = 	 ·
	𝑝;,																																											𝑥 ≤ ;
	𝑝; + (( − 𝑝;)𝐺j(𝑥), 𝑥 > ;  (.) 

where, 𝑝; denotes the probability of observing a zero value, i.e., 𝑝; ≔ 𝑃l𝑥 = ;n and 𝐺j(𝑥) 
stands for the continuous distribution part, that entails values greater than zero, i.e., 𝐺j(𝑥) ≔
𝐹j|jB;(𝑥) = 𝑃(𝑥 ≤ 𝑥|𝑥 > ;). Using this zero-inflated CDF model, let us consider three 
scenarios with different values of 𝑝;, where in all three we assume a target correlation	𝜌() =
;.B and that the continuous parts of 𝑥( and 𝑥) are Gamma-distributed with 𝒢(;.B, (;). i.e., 
𝐺j( ≡ 𝐺j( ≡ 𝒢(;.B, (;). The scenarios differentiate on the specified values of 𝑝;. Specifically, 
in the first scenario it is assumed that they have identical probability zero 𝑝; = 𝑝;;j( = 𝑝;;j) =
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;.@. In the second that 𝑝;;j( = ;.@ and 𝑝;;j) = ;.I, while in the third that 𝑝;;j( = ;.@ 
and	𝑝;;j) = ;. For each scenario   data were simulated. The results from the three 
scenarios are visually summarized in Figure 4.4, Figure 4.5 and Figure 4.6 respectively. It is 
interesting to observe how the required equivalent correlation coefficient increases compared 
to the previous example, from 𝜌.() ≅ ;.B8 (which had the same continuous marginal; thus can 
be viewed as the limiting case of 𝑝; = ;) to 𝜌.() ≅ ;.?8 (st case), 𝜌.() ≅ ;.?? (nd case) and 
𝜌.() ≅ ;.@> (rd case). It also remarkable to notice how the non-linearity of ℱ(∙) evolves as the 
marginal distribution depart from Gaussianity. Finally, and in line with the continuous-type 
case, it was validated, using the MLE method, that the continuous part of the zero-inflated, 
mixed distribution was correctly and accurately simulated. In addition, it was empirically 
confirmed (simply by estimating the portion of zero-valued data) that the realized data had the 
desired atom at zero (i.e., 𝑝;). 

 
Figure 4.4 | Hypothetical example of generating two correlated (𝜌(,) = ;.B) zero-inflated Gamma-
distributed variables with identical continuous part 𝒢(;.B, (;) and	𝑝;;j( = 𝑝;;j) = ;.@. a) The established 
relationship between equivalent, 𝜌. and target 𝜌 correlation coefficients. Scatter plots with histograms in the 
b) Gaussian c) uniform and d) actual domain. The estimate of correlation coefficient of the simulate variables 
in the Gaussian and the actual domain is 	𝜌CD() = ;.?>E( and	𝜌C() = ;.I@?@ respectively. 
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Figure 4.5 | 
Hypothetical example of 
generating two 
correlated (𝜌(,) = ;.B) 
zero-inflated Gamma-
distributed variables 
with identical 
continuous part 
𝒢(;.B, (;), 𝑝;;j( = ;.@ 
and 𝑝;;j) = ;.I. a) The 
established relationship 
between equivalent, 𝜌. 
and target 𝜌 correlation 
coefficients. Scatter plots 
with histograms in the 
b) Gaussian c) uniform 
and d) actual domain. 
The estimate of 
correlation coefficient of 
the simulate variables in 
the Gaussian and the 
actual domain is 	𝜌CD() =
;.?B@8 and	𝜌C() =
;.B;B( respectively. 

 

Figure 4.6 | 
Hypothetical example of 
generating two 
correlated (𝜌(,) = ;.B) 
zero-inflated Gamma-
distributed variables 
with identical 
continuous part 
𝒢(;.B, (;), 𝑝;;j( = ;.@ 
and 𝑝;;j) = ;. a) The 
established relationship 
between equivalent, 𝜌. 
and target 𝜌 correlation 
coefficients. Scatter plots 
with histograms in the 
b) Gaussian c) uniform 
and d) actual domain. 
The estimate of 
correlation coefficient of 
the simulate variables in 
the Gaussian and the 
actual domain is 	𝜌CD() =
;.@>)) and	𝜌C() =
;.B;@I respectively. 
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4.1.4.3 Discrete-type marginal distributions 

As a final example, let us consider the bivariate case of correlated RVs from Poisson 
distribution. The probability mass function (PMF) of the Poisson distribution is given by, 

 𝑃𝒫ℴ𝒾(𝑥; 𝜆) =
exp(−𝜆) 𝜆j

𝑥! , 𝑥 = ;,(,), … (.) 

where 𝜆 > ; is the distribution parameter; and has the meaning of average number of 
occurrences within a time interval. Specifically, it was imposed a target correlation value equal 
to . and was it assumed that the distribution of 𝑥( and 𝑥) is identical, with 𝜆( = 𝜆) = ;.8. In 
a similar vein with the previous examples, Figure 4.7 summarized the outcomes of this 
demonstration and validates the ability of the scheme to generate correlated discrete-type RVs. 
Αlso, in this case, the MLE of the simulated data closely resembled the theoretical parameters. 
Specifically, it was found that its estimates for 𝑥( and 𝑥) were, 𝜆G( = 	;.>@?	and	𝜆G)	 = 	;.8;E 
respectively. 

 
Figure 4.7 | Hypothetical example of generating two correlated (𝜌(,) = ;.B) identical Poisson-distributed 
variables with	𝒫ℴ𝒾(;.8). a) The established relationship between equivalent, 𝜌. and target 𝜌 correlation 
coefficients. Scatter plots with histograms in the b) Gaussian c) uniform and d) actual domain. The estimate 
of correlation coefficient of the simulate variables in the Gaussian and the actual domain is 	𝜌CD() = ;.?(@E 
and	𝜌C() = ;.B;8> respectively. 
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4.2 A NATAF-BASED CONDITIONAL DISTRIBUTION MODEL 

4.2.1 Theoretical background 

This section extends the rationale of NDM for the derivation of conditional distributions, as 
well as conditional simulation of RVs (and processes) with pre-specified distributions and 
correlation matrix.  

Similarly to the previous sections, let 𝒙 = [𝑥(,… , 𝑥Î]Ï be a m-dimensional vector of RVs, with 
known distributions 𝐹j(,… , 𝐹jÎ	and correlation matrix 𝑹, partitioned in a n-dimensional 
column-vector 𝒙(∗ = [𝑥(, … , 𝑥ô]Ï and in a (𝑚 − 𝑛) × ( column-vector 𝒙)∗ = [𝑥ôH(, … , 𝑥Î]Ï. 
Let also 𝒉 = [𝑥ôH(, … , 𝑥Î]Ï denote a vector of realizations of 𝒙)∗  on which we wish to condition 
the derivation of the distribution of 𝒙(∗ 	|𝒙)∗ = 𝒉.  

As will be shown, in order to derive the conditional distribution it suffice to derive the one of 
the auxiliary RVs 𝒛. This can be done by using well-known properties of the auxiliary 
multivariate standard normal distribution [e.g., Eaton, ]. Particularly, let the auxiliary m-
dimensional vector 𝒛 = [𝑧(, … , 𝑧Î]Ï with 𝒛	~	𝒩Î(𝟎,𝑹þ) be similarly partitioned in 𝒛(∗ =
[𝑧(, … , 𝑧ô]Ï and 𝒛)∗ = [𝑧ôH(, … , 𝑧Î]Ï with sizes 𝑛 × ( and (𝑚 − 𝑛) × ( respectively. This allow 
us to partition the equivalent correlation matrix 𝑹þ  as follows (it is also noted that, 𝑹þ() = 𝑹þ)(Ï ),  

 𝑹þ = ç𝑹
þ(( 𝑹þ()
𝑹þ)( 𝑹þ))

èwith	sizes	 � 𝑛	 × 	𝑛 𝑛	 ×	 (𝑚 − 𝑛)
(𝑚 − 𝑛)	× 	𝑛 (𝑚 − 𝑛)	×	 (𝑚 − 𝑛)�	 (.) 

Furthermore, if 𝒛)∗ = 𝒉þ = �Φs( ~𝐹jNO((ℎôH()� , … ,Φ
s( ~𝐹jQ(ℎÎ)��

Ï
 then the conditional 

distribution of 𝒛(∗|𝒛)∗ = 𝒉þ is also multivariate normal, i.e., 𝑃l𝒛(∗ ≤ 𝒛(∗,𝒛)∗ = 𝒉þn~𝒩ô(𝝁ý,𝜮þ), 
where 𝝁ý = 𝑹þ()𝑹þ))s(𝒉þ and 𝜮þ = 𝑹þ(( − 𝑹þ()𝑹þ))s(𝑹þ)( denote the conditional mean vector and 
covariance matrix. The matrix 𝜮þ can be easily calculated by exploiting the fact that it is Schur 
complement of 𝑹þ)) in 𝑹þ . This allows the calculation of 𝜮þ via the inversion of the matrix 𝑹þ , the 
subsequent removal of columns and vectors that correspond to the variables conditioned upon 
(i.e., 𝒛)∗), and finally 𝜮þ is obtained by the inversion of the remaining matrix.  

Nevertheless, since Eq. (4.1) holds true, and similar to Eq. (4.2), the conditional CDF of 
𝒙(∗ 	|𝒙)∗ = 𝒉 can be written as,  

 
𝐹𝒙(∗|𝒙)∗â𝒉(𝒙(

∗) = 𝑃l𝒙(∗ ≤ 𝒙(∗,𝒙)∗ = 𝒉n = 

Φô;𝝁ý,𝜮þ ~Φ
s( �𝐹j((𝑥()� , … ,Φ

s( �𝐹jô(𝑥ô)� ; 𝝁ý, 𝜮
þ� 

(.) 

where Φô;𝝁ý,𝜮þ(∙) denotes the multivariate joint CDF of 𝒩ô(𝝁ý, 𝜮þ).  

Furthermore, in order derive the conditional joint PDF of 𝒙(∗ 	|𝒙)∗ = 𝒉 let us recall the following 
general property regarding conditional distributions [Papoulis,  p. ],  

 𝑓𝒙(∗|𝒙)∗â𝒉(𝒙(
∗|𝒙)∗ = 𝒉) =

𝑓𝒙(∗ ,𝒙)∗(𝒙(
∗ , 𝒙)∗)

𝑓𝒙)∗(𝒙)
∗) =

𝑓𝒙(𝑥(,… , 𝑥Î)
𝑓𝒙)∗(𝑥ôH(, … , 𝑥Î)

 (.) 
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thus by substituting Eq. (4.9) in the previous equation, the following relationship is obtained, 

 

𝑓𝒙(∗|𝒙)∗â𝒉(𝒙(
∗|𝒙)∗ = 𝒉) = 

𝜑Î ~Φs( �𝐹j((𝑥()� , … ,Φ
s( �𝐹jÎ(𝑥Î)� ; 𝑹

þ�	

∏ 𝜑'Φs( �𝐹j l𝑥 n�(
Î
 â(

∙∏ 𝑓j (𝑥 )
Î
 â(

𝜑(Îsô) ~Φs( �𝐹jôH((𝑥ôH()� ,… , Φ
s( �𝐹jÎ(𝑥Î)� ; 𝑹

þ))�	

∏ 𝜑'Φs( �𝐹j l𝑥 n�(
Î
 âôH(

∙∏ 𝑓j (𝑥 )
Î
 âôH(

 
(.) 

which after the cancelations of several terms reduces to the following relationship, 

 

𝑓𝒙(∗|𝒙)∗â𝒉(𝒙(
∗|𝒙)∗ = 𝒉) = 

𝜑Î ~Φs( �𝐹j((𝑥()� , … ,Φ
s( �𝐹jÎ(𝑥Î)� ; 𝑹

þ� ∙∏ 𝑓j (𝑥 )
ô
 â(

𝜑(Îsô) ~Φs( �𝐹jôH((𝑥ôH()� ,… , Φ
s( �𝐹jÎ(𝑥Î)� ;𝑹

þ))� ∙∏ 𝜑 'Φs( �𝐹j l𝑥 n�(
ô
 â(

 
(.) 

that can be further simplified to (since the left part of the products is essentially the conditional 
Gaussian PDF of 𝒛(∗|𝒛)∗ = 𝒉þ), 

 

𝑓𝒙(∗|𝒙)∗â𝒉(𝒙(
∗|𝒙)∗ = 𝒉) = 

# 𝑓j (𝑥 )
ô

 â(

∙ 	
𝜑ô;𝝁ý,𝜮þ ~Φ

s( �𝐹j((𝑥()� , … , Φ
s( �𝐹jô(𝑥ô)� ; 𝝁ý, 𝜮

þ�

∏ 𝜑 'Φs( �𝐹j l𝑥 n�(
ô
 â(

 
(.) 

where 𝜑ô;𝝁ý,𝑹þ(∙) denotes the PDF of 𝒩ô(𝝁ý, 𝜮þ). 

Additionally, in case of	𝑛 = ( (𝑥(∗ is a single RV) it is also possible to derive a direct expression 
for the conditional ICDF, which reads, 

 𝑥((Ä()
∗ = 𝐹j(∗|𝒙)∗â𝒉

s( (𝑢() = 𝐹j(∗
s( RΦ'Φ

(;𝝁ý,𝜮þ
s( ~𝑢(; 𝝁ý, 𝜮þ�(S (.) 

where Φ
(;𝝁,𝜮þ
s( (∙) denotes the ICDF of the conditional standard normal distribution, while 𝑢( ∈

[;,(] is a scalar that denotes probability. Using Eq. (4.32) it is possible to estimate the desired 
conditional quantiles by simply plugging the target value of 𝑢( (e.g., 𝑢( = ;.8, would return the 
conditional median of 𝑥(∗|𝒙)∗ = 𝒉). To the best of our knowledge, this formulation is new, and 
it is argued that it can be viewed as a m-dimensional generalization of the expression given in 
Kelly and Krzysztofowicz [], for the derivation of conditional quantiles of bivariate meta-
Gaussian distributions. Although it is important to note that the above authors did not 
employed the concept of equivalent correlations and instead relied on the use of rank-based 
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dependence measures for the parameter identification of the auxiliary model, i.e., the 
multivariate the Gaussian distribution (see also the discussion of section 4.5.3). Finally, it is 
remarked that while the discussion of the previous paragraphs was mainly focused on 
conditional distributions of RVs, their extension for stochastic processes and time series 
probabilistic forecasting is straightforward throughout the concepts of stationarity and 
cyclostationarity. In this vein, it is also interesting to note that the literature offers techniques 
for the optimal infilling of partially completed correlation matrices [e.g., Papoulis, ; 
Georgescu et al., ], which may be particularly useful in time series forecasting problems 
that involve large matrices and/or exogenous variables. Nowadays, hydrological forecasting is 
performed using point-based (hence not probabilistic) machine learning methods, such as 
neural networks [e.g., Hsu et al., ; Lekkas et al., , ; Jain and Kumar, ; Wang 
et al., ]. 

4.2.2 Conditional Monte Carlo Simulation 

Based on these developments and provided that the required inputs are already specified, i.e., 
the target marginal distributions 𝐹j(, … , 𝐹jÎ, the target correlation matrix	𝑹, as well as the 
equivalent matrix 𝑹þ , it is straightforward to establish a simulation algorithm for the conditional 
simulation of 𝒙(∗|𝒙)∗ = 𝒉 (using the same notation and dimensions as in the previous section). 
The first step consists of partitioning the matrix 𝑹þ  as in Eq. (4.44) and estimation of the 

auxiliary vector 𝒉þ = �Φs( ~𝐹jNO((ℎôH()� , … ,Φ
s( ~𝐹jQ(ℎÎ)��

Ï
. Next, the conditional mean 𝝁ý 

and covariance matrix 𝜮þ of the auxiliary conditional Gaussian distribution have to be 

determined. Given the latter, estimate a matrix 𝑩þ  such that 𝑩þ	𝑩þ
Ï
= 𝜮þ (see section 4.1.3) and 

generate an auxiliary vector 𝒛(∗  by 𝒛(∗ = 𝝁ý + 𝑩þ𝒘, where 𝒘 = {𝑤(, . . , 𝑤ô}
Ï

 is an i.i.d. vector with 
𝒩(;,(). Finally, obtain the conditioned RVs 𝒙(∗|𝒙)∗ = 𝒉 via mapping 𝒛(∗  to the actual domain 
using the corresponding ICDFs of 𝐹j(,… , 𝐹jô. This operation reads, 𝒙(∗ = {𝑥(∗, … , 𝑥ô∗ }

Ï
=

�𝐹j(∗
s( ~Φl𝑧(∗n� ,… , 𝐹jN∗

s( ~Φl𝑧ô∗n��
Ï
. Apparently, when 𝑛 = (, the above equation reduces to 

𝑥(∗ = 𝐹j(∗
s( ~Φl𝑧(∗n�, which in turn allows its expression it in terms of probability 𝑢(, i.e., 𝑥(∗ =

𝐹j(∗
s((𝑢(). This formulation is identical to Eq. (4.32) and can be used to derive the conditional 

quantiles of interest. 

4.2.3 Numerical examples 

To elaborate on the previously described Nataf-based conditional sampling method, as well as 
on the derivation of conditional quantiles (i.e., Eq. (4.32)), let us consider a bivariate example 
of 𝑥(~𝒢(), (;) and 𝑥)~ℒ𝒩(;.(;, >) for various values of correlation coefficient 𝜌 = 𝜌() ∈
{−;.@;, −;.B;, −;.8;, ;.;, ;.8;, ;.B;, ;.@;}. Apparently, in the bivariate case 𝒙(∗ ≡ 𝑥( and 𝒙)∗ ≡
𝑥), hence for the sake of simplicity, the star notation will be hereafter omitted. Nonetheless, in 
order to construct a proper conditional distribution it is required to estimate the equivalent 
correlation coefficients, which for these cases they were found, 𝜌. = 𝜌.() =
{−;.@B>	, −;.B8>,−;.8EI, ;.;, ;.8)), ;.B)?, ;.@E(}. Figure 4.8 concerns the first case of 
𝜌 = −;.@ and particularly panel a) depicts the ., . (i.e., median) and . probability 
quantiles of the auxiliary conditional Gaussian distribution of 𝑧(|𝑧) for various values of 𝑧) =
Φs(l𝐹j)(𝑥))n, which is also homoscedastic. Panel b) illustrates the same probability quantiles 
for the actual Nataf-based conditional distribution 𝑥(|𝑥) for 𝑥) = 𝑥). Interestingly, this plot is 
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characterized by a non-linear heteroscedastic behavior, which highlights the ability of the 
model to capture a wider range of dependence forms. Moreover, the plots, depict some 
randomly generated samples from the corresponding conditional distributions. Finally, panel 
c) and d) visualize the complete conditional PDF and CDF of 𝑥(|𝑥) respectively for two 
arbitrary selected values of 𝑥) li. e., 𝑥) = >8	and		𝑥) = I8n, which emphasize on the variety of 
distribution shapes (e.g., bell- or J-shaped) that can arise from the Nataf-conditional 
distribution model. Similarly, to the previous analysis, Figure 4.9 to Figure 4.14 provide 
further examples and illustrations of the conditional model, for different values of correlation 
coefficient 𝜌. 

 
Figure 4.8 | Bivariate example of 𝑥(~𝒢(), (;) and 𝑥)~ℒ𝒩(;.(;, >) with 𝜌 = −;.@. Probability 
quantiles in the a) Gaussian domain b) actual domain. Conditional c) PDF and d) CDF for 𝑥) =
>8	and		𝑥) = I8. 

 
Figure 4.9 | Bivariate example of 𝑥(~𝒢(), (;) and 𝑥)~ℒ𝒩(;.(;, >) with 𝜌 = −;.B. Probability 
quantiles in the a) Gaussian domain b) actual domain. Conditional c) PDF and d) CDF for 𝑥) =
>8	and		𝑥) = I8. 

 
Figure 4.10 | Bivariate example of 𝑥(~𝒢(), (;) and 𝑥)~ℒ𝒩(;.(;, >) with 𝜌 = −;.8. Probability 
quantiles in the a) Gaussian domain b) actual domain. Conditional c) PDF and d) CDF for 𝑥) =
>8	and		𝑥) = I8. 
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Figure 4.11 | Bivariate example of 𝑥(~𝒢(), (;) and 𝑥)~ℒ𝒩(;.(;, >) with 𝜌 = ;.;. Probability 
quantiles in the a) Gaussian domain b) actual domain. Conditional c) PDF and d) CDF for 𝑥) =
>8	and		𝑥) = I8. 

 
Figure 4.12 | Bivariate example of 𝑥(~𝒢(), (;) and 𝑥)~ℒ𝒩(;.(;, >) with 𝜌 = ;.8. Probability 
quantiles in the a) Gaussian domain b) actual domain. Conditional c) PDF and d) CDF for 𝑥) =
>8	and		𝑥) = I8. 

 
Figure 4.13 | Bivariate example of 𝑥(~𝒢(), (;) and 𝑥)~ℒ𝒩(;.(;, >) with 𝜌 = ;.B. Probability 
quantiles in the a) Gaussian domain b) actual domain. Conditional c) PDF and d) CDF for 𝑥) =
>8	and		𝑥) = I8. 

 
Figure 4.14 | Bivariate example of 𝑥(~𝒢(), (;) and 𝑥)~ℒ𝒩(;.(;, >) with 𝜌 = ;.@. Probability 
quantiles in the a) Gaussian domain b) actual domain. Conditional c) PDF and d) CDF for 𝑥) =
>8	and		𝑥) = I8. 
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A final demonstration, also related with the previous example, concerns the derivation of ., 
., ., ., ., . and . probability quantiles for two arbitrary selected values of 𝑥) 
li. e., 𝑥) = >8	and		𝑥) = I8n for a sequence of values of 𝜌 = 𝜌() ∈ {;.;, ;.(;,
;.);, ;.E;, ;.>;, ;.8;, ;.I;, ;.B;, ;.?;, ;.@;}. Figure 4.15 depicts the effect of dependence 
parameter (i.e., Pearson’s correlation) on the calculation of latter quantiles, through the 
visualization of the derived quantiles as a function of 𝜌.  

 
Figure 4.15 | Effect of dependence parameter (i.e., Pearson’s correlation coefficient) on the derived 
quantiles of 𝑥(|𝑥); visualized as a function of 𝜌 for a) 𝑥) = >8 and b) 𝑥) = I8. 

4.3 NATAF-BASED STOCHASTIC PROCESSES WITH ARBITRARY MARGINAL 
DISTRIBUTIONS AND CORRELATION STRUCTURE 

In a recent work, Tsoukalas et al. [e] highlighted the need for generalized generation 
schemes, which are able to represent processes from any distribution and any correlation 
structure. This has been also regarded as a shift in classical stochastic modelling, emphasizing 
on the reproduction of a finite set of essential statistical characteristics [cf. Matalas and Wallis, 
], estimated from the historical data.	

An effective and efficient handling of this requirement is offered by the so-called Nataf-based 
models [Tsoukalas et al., a, e, b, d]. As the name suggests, these are built 
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upon the idea by Nataf [] and the associated concept of NDM. Using a similar rationale, 
it is possible to establish stochastic processes with any target marginal distribution and 
correlation structure (expressed in terms of Pearson’s correlation coefficient) through the 
mapping (similar to Eq. (4.10)) of an appropriately specified auxiliary (stationary or 
cyclostationary) standard Gaussian process (Gp) with zero mean and unit variance, to which 
an equivalent correlation structure is assigned (see details below). The mapping operation is 
typically a non-linear function, often implemented through the inverse cumulative distribution 
function (ICDF). These approaches can be viewed as Gaussian copula-based schemes (since 
they rely on the mapping of a Gaussian process) or non-linear versions of the classic (i.e., 
Gaussian) linear stochastic schemes [Tsoukalas et al., d]. Nataf-based stochastic models or 
approaches with common rationale, have been used within the domain of operations research 
[e.g., Cario and Nelson, ; Biller and Nelson, ] and probabilistic engineering mechanics 
[e.g., Grigoriu, ; Deodatis and Micaletti, ]. Their employment within hydrological 
sciences was, until recently, formally unexplored, yet, post factum linked with other approaches 
in hydrological domain (see section 4.6, as well as [Tsoukalas et al., e, d]). More 
specifically, Cario and Nelson [] and Biller and Nelson [] employed this notion for the 
simulation of stationary non-Gaussian univariate and multivariate autoregressive (AR) 
processes respectively. In this vein, herein, by building-upon the aforementioned two 
paradigms, the concept of NDM is being aligned for the description of stationary (not 
necessarily AR) univariate and multivariate processes, as well as further extended for the 
particularly interesting cases, from a hydrological point of view, of univariate and multivariate 
cyclostationary processes [Tsoukalas et al., a, e].  

In this section we briefly discuss the theoretical background and key implementation steps of 
Nataf-based, simulation schemes, also providing guidelines for its optimal use. For 
convenience, we first present the most involved modelling case of multivariate cyclostationary 
processes, and next deal with the simpler case of stationary processes. 

4.3.1 Multivariate and univariate cyclostationary processes 

In general, cyclostationarity is regarded as a special type of non-stationarity that implies a cyclic 
switching on the marginal and joint characteristics of the process over a period (e.g., year). To 
elaborate, let �𝒙	�,ô	� be a 𝑚-dimensional multivariate cyclostationary process. Each individual 
process �𝑥	�,ô	  � is consisted of 𝑠 = (,… , 𝑆 sub-periods (e.g., months), while 𝑛 ∈ ℤB, denotes the 
time index. The sub-period (i.e., season) that corresponds to a time step 𝑛 may be recovered by 
𝑠 = 𝑛	mod(𝑆), while when 𝑛	mod(𝑆) = ;,	s = 𝑆. Furthermore, due to cyclostationarity, each 
one of them is characterized by seasonally varying (herein referred to as target) marginal 
distributions 𝐹jW) = 𝑃l𝑥	�	  ≤ 𝑥n, while their correlation structure is expressed through the 

Pearson’s correlation coefficient 𝜌�,�s¬
 ,Ø ≔ Corr{𝑥�  , 𝑥�s¬

Ø }, where 𝜏 denotes the time lag (the 
index 𝑛 is omitted for simplicity). Also let �𝒛	�,ô� denote an auxiliary m-dimensional 
cyclostationary standard Gp with 𝑧� ~𝒩(;,(). Due to cyclostationarity, the Gp is completely 
defined by its correlation structure, which is expressed through the so-called equivalent 
correlation coefficients 𝜌.�,�s¬

 ,Ø 	≔ Corr{𝑧� , 𝑧�s¬
Ø }. We note that both the target and the auxiliary 

Gaussian process can be expressed in sup-period/period notation, i.e., �𝒙	�,�	� and �𝒛	�,��, where 
𝑠 = (, . . , 𝑆, (, . . 𝑆, … denotes the season (e.g., month) and	𝑡 = ( + (𝑛 − 𝑠)/𝑆, denotes the 
period (e.g., year). Herein, for convinience, we will employ this notation. Nonetheless, by 
employing the concept of NDM and by analogy to RVs case (section 4.1.2), the target process 
�𝒙	�,�	� can be established through the auxiliary process �𝒛	�,�	� via the mapping function, 
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 𝑥�,�  = 𝐹jW)
s( ~Φl𝑧�,�	  n� (.) 

where 𝐹jW)
s( denotes the ICDF of 𝐹jW)  and Φ(∙) denotes the cumulative density function (CDF) 

of the standard Gaussian distribution. This mapping, eventually relates the target correlation 
coefficients 𝜌�,�s¬

 ,Ø  with the equivalent correlation coefficients 𝜌.�,�s¬
 ,Ø  of the auxiliary process 

[Tsoukalas et al., a, e]. Specifically, since Eq. (4.33) holds true, we can write, 

 𝜌�,�s¬
 ,Ø 	= Corr{𝑥�  , 𝑥�s¬

Ø } = Corr �𝐹jW)
s( ~Φl𝑧� n� , 𝐹jW÷øä

s( ~Φl𝑧�s¬
Ø n�� (.) 

Using the definition of Pearson’s correlation coefficient, we can also write, 

 𝜌�,�s¬
 ,Ø = Corr{𝑥�  , 𝑥�s¬

Ø } =
E{𝑥�  	𝑥�s¬

Ø } − E{𝑥� }	𝐸{𝑥�s¬
Ø }

�Var{𝑥� }	Var{𝑥�s¬
Ø }

 (.) 

where E{𝑥� }, E{𝑥�s¬
Ø } and Var{𝑥� }, Var{𝑥�s¬

Ø } denote the mean and variance of 𝑥�   and 𝑥�s¬
Ø  

respectively which are known from the corresponding distributions 𝐹jW)  and 𝐹jW÷øä  and have to 

be finite. Subsequently, the first cross-product moment of	𝑥�  	and	𝑥�s¬
Ø 	can be expressed as, 

 

E{𝑥�  	𝑥�s¬
Ø } = E �𝐹jW)

s( ~Φl𝑧� n�𝐹jW÷øä
s( ~Φl𝑧�s¬

Ø n��

= õ õ 𝐹jW)
s( ~Φl𝑧� n� 	𝐹jW÷øä

s( ~Φl𝑧�s¬
Ø n�	𝜑)l𝑧� , 𝑧�s¬

Ø , 𝜌.�,�s¬
 ,Ø nd𝑧� d𝑧�s¬

Ø
t

st

t

st

 
(.) 

where 𝜑)l𝑧� , 𝑧�s¬
Ø , 𝜌.�,�s¬

 ,Ø n is the bivariate standard normal probability density function. Thus, 
finally we obtain, 

 

𝜌�,�s¬
 ,Ø = 

∫ ∫ 𝐹jW)
s( ~Φl𝑧� n�	𝐹jW÷øä

s( ~Φl𝑧�s¬
Ø n� 	𝜑)l𝑧� , 𝑧�s¬

Ø , 𝜌.�,�s¬
 ,Ø nd𝑧� d𝑧�s¬

Øt
st

t
st − E{𝑥� }E{𝑥�s¬

Ø }

�Var{𝑥� }	Var{𝑥�s¬
Ø }

 
(.) 

Eq. (4.37) shows that 𝜌�,�s¬
 ,Ø  is a function of the	equivalent	correlation	coefficient	𝜌.�,�s¬

 ,Ø , and 
the target (i.e., given) distributions 𝐹jW)  and 𝐹jW÷øä . i.e., 

 𝜌�,�s¬
 ,Ø = ℱ ~𝜌.�,�s¬

 ,Ø [𝐹jW) , 	𝐹jW÷øä � (.) 

where ℱ(∙) denotes an abbreviation of the function defined by Eq. (4.37). Seemingly, for a 
univariate cyclostationary processes Eq. (4.37) simplifies to, 
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𝜌�,�s¬

=
∫ ∫ 𝐹jW

s(lΦ(𝑧�)n	𝐹jW÷ø
s( lΦ(𝑧�s¬)n	𝜑)l𝑧�, 𝑧�s¬, 𝜌.�,�s¬nd𝑧�d𝑧�s¬

t
st

t
st − E{𝑥�}E{𝑥�s¬}

�Var{𝑥�}	Var{𝑥�s¬}
 (.) 

and consequently Eq. (4.38) reads, 

 𝜌�,�s¬ = ℱl𝜌.�,�s¬,𝐹jW , 	𝐹jW÷øn (.) 

4.3.2 Multivariate and univariate stationary processes 

A similar relationship can be established between a target multivariate stationary process �𝒙	�	� 
and an auxiliary multivariate stationary standard Gp �𝒛𝒕	�. Particularly, let �𝒙	�	� be comprised 
by 𝑚 univariate stationary processes �𝑥	�	  �, indexed using 𝑡 ∈ ℤB. Furthermore, let each one 
described by a target CDF, 𝐹j) = 𝑃(𝑥  ≤ 𝑥) and let their correlation structure be expressed by 

𝜌�,�H¬
 ,Ø ≔ Corr{𝑥� , 𝑥�H¬

Ø }. Similarly, the process �𝒛�	� is a 𝑚-dimensional stationary standard Gp, 
with equivalent correlation structure, 𝜌.�,�H¬

 ,Ø ≔ Corr{𝑧� , 𝑧�H¬
Ø }. 

Using a similar rationale to the cyclostationary case, each target process �𝒙	�	� is established via 
�𝒛�	� by,	𝑥�  = 𝐹j�	

s( ~Φl𝑧� n�. Following the same reasoning with the previous section, the 
relationship between the target and equivalent correlation coefficients reads [e.g., Biller and 
Nelson, ; Tsoukalas et al., d], 

 

𝜌�,�H¬
 ,Ø

=
∫ ∫ 𝐹j)

s( ~Φl𝑧� n�𝐹jä
s( ~Φl𝑧�H¬

Ø n�	𝜑)l𝑧� , 𝑧�s¬
Ø , 𝜌.�H¬

 ,Ø nd𝑧� d𝑧�H¬
Øt

st
t
st − E{𝑥 }	E{𝑥Ø}

�Var{𝑥 }	Var{𝑥Ø}
 (.) 

Which for simplicity is abbreviated as,  

 𝜌�,�H¬
 ,Ø = ℱ ~𝜌.�H¬

 ,Ø [𝐹j) , 	𝐹jä� (.) 

In the univariate case the previous equations simplify to, 

 𝜌¬ 	=
∫ ∫ 𝐹js(lΦ(𝑧�)n𝐹js(lΦ(𝑧�H¬)n	𝜑)(𝑧�, 𝑧�H¬, 𝜌.¬)d𝑧�d𝑧�H¬

t
st

t
st − lE{𝑥}n

)

Var{𝑥}
 (.) 

and abbreviated as, 

 𝜌¬ = ℱl𝜌.¬,𝐹jn (.) 

The relationship ℱ(∙) imply that the correlation structure of the target process depends on the 
target distributions and the equivalent correlation structure of the auxiliary Gp. We underline 
that the term equivalent is used to highlight the fact that the correlation coefficients of the target 
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process and those of the auxiliary Gp, rarely coincide (due to the non-linear mapping 
operation), since the lemmas of section 4.1.2 also hold for the case of processes. 

4.3.3 Selection of the target marginal distributions and correlation structures 

As already explained, Nataf-based models can be used for the simulation of processes with 
arbitrary (continuous, discrete or mixed-type) marginal distributions and valid correlation 
structures, provided that their combination is feasible (i.e., leads to a positive definite 
correlation structure) and the variance of the distributions is finite (which is the typical 
assumption when modelling hydrometeorological processes; see section 4.3.9).  

Regarding the marginal distributions, and in contrast to the classical working paradigm of 
stochastic hydrology, it is stressed that by design, Nataf-based models do not aim at resembling 
the process’s moments; in fact, they aim to simulate processes with target, a priori specified, 
distributions, in order to fully describe its marginal properties (cf. discussion by Tsoukalas et 
al. [e]). In this respect, questions about skewness handling or how many moments should 
be reproduced for approximating the distribution of a specific process? become out of interest.	

For instance, within Nataf-based schemes, simulating a process following Gamma or Log-
Normal distribution requires the identification of just two parameters (shape and scale), which 
can be easily determined by straightforward methods. Even the classical method of product 
moments, would ensure reliable estimations, since in these specific cases it only requires 
computations up to second order (a safe upper bound as argued by Lombardo et al. []). 

In a more general context, the assignment of a specific distribution model for each modelled 
process is not a straightforward task, since the true distribution will always be unknown. For a 
given data sample one can fit a plethora of distributions, combined with different parameter 
estimation procedures, and use typical statistical tests to assess the optimal scheme.  

The Nataf-based approach offers the flexibility to employ robust fitting methods for parameter 
estimation, that rely on alternative notions, such as, probability weighted moments 
[Greenwood et al., ], L-moments [Hosking, ] or maximum likelihood. In our view, 
this is a major advantage, since it can avoid the data-driven estimation of high-order product 
moments (e.g., kurtosis or higher), which it is well known that are prone to sample 
uncertainties and bias [Matalas,  p. ; Lombardo et al., ]. 

In any case, particularly when the historical samples are short or not so much reliable, the 
selection of the most suitable distribution may be supported by hydrological evidence. For 
instance, one may take advantage of the statistical behavior of the underlying processes in the 
broader area, as validated by large-scale regional studies [e.g., Blum et al., ]. 

The specification of the above inputs is not a straightforward decision neither it is advised to 
be made automatically, especially when considering the flexibility of Nataf-based methods 
regarding the selection of the distribution function and hence the fitting method. Overall, in 
operation context, the modeler could (and should) account for multilateral information, based 
both on historical data and expert judgment, in order to establish a realistic formulation of the 
stochastic simulation model. 

Moving to the correlation structures, classical stochastic modelling strategies are designed to 
reproduce a limited number of low-order dependence metrics in space and time, typically 
expressed in terms of Pearson’s correlation coefficients. Actually, most of them still follow the 
specifications posed by Matalas and Wallis [], thus aiming to reproduce just two 
dependencies, i.e. lag- autocorrelations and lag- cross-correlations. It is remarked that 
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herein, the term spatial correlation will denote any dependence between different processes, 
either referring to different geographical locations or not. 

More modern approaches suggest the use of theoretical models for the mathematical 
description of the auto- and cross-dependence structures that span over any lag [e.g., Gneiting, 
; Koutsoyiannis, , ; Gneiting and Schlather, ]. These typically concern 
stationary processes, and are based on the notions of correlation, spectrum or variance over 
aggregated time scales, which are all interrelated [see, Beran, ; Koutsoyiannis, ]. The 
use of theoretical dependence models instead of sample statistics is mostly implied from the 
significant uncertainties and biases of data-driven estimates. 

Arguably, the most popular type of theoretical dependence models are correlation-based ones. 
These can be further classified to full spatio-temporal models [Chilès and Delfiner, ; 
Gneiting et al., ; Genton and Kleiber, ], which simultaneously model the auto- and 
cross-correlation structure of the process, and separable [Rodríguez-Iturbe and Mejía, ; 
Mardia and Goodall, ; Genton, ], which describe the two correlation structures 
independently, as product of two functions (i.e., one for the spatial and one for the temporal 
component).  

Throughout this Thesis, and without loss of generality (since alternative models can be used), 
we will employ the separable approach for stationary process. Specifically, we model directly 
the lag- contemporaneous cross-correlations of the processes, while the auto-dependence 
structure of each individual stationary process is modelled using the two-parameter Cauchy-
type autocorrelation structure (CAS), introduced by Koutsoyiannis [], i.e., 𝜌¬\]^(𝜅,𝛽) =
(( + 𝜅𝛽𝜏)s(/^, 𝜏 ≥ ; where 𝛽 ≥ ; and 𝜅 > ; are model parameters. By construction, CAS can 
resemble a wide spectrum of processes, characterized by both short- and long-range 
dependence, i.e., SRD and LRD (for more details see also, section 5.2). SRD refers to a 
stochastic process with a weak autocorrelation structure (e.g., exponential) that decays rapidly, 
while LRD implies the exact opposite (see section 2.2). These properties and its parsimonious 
character (as the model has only two parameters), make CAS a good candidate model for 
modelling hydrometeorological processes. Regarding parameter identification, the most 
straightforward option is to fit CAS to the empirical estimates of autocorrelation coefficients. 
However, this simple approach neglects the estimator’s biases [e.g., Marriott and Pope, ; 
Beran, ; Koutsoyiannis, ], which are considered to be significant in the presence of 
LRD and for large time lags (due to small sample sizes). In such cases, it may be advantageous 
to explicitly account for bias by using alternative robust parameter identification procedures, 
such as the climacogram [e.g., Dimitriadis and Koutsoyiannis, ; Koutsoyiannis, ], or 
even through empirical approaches, accounting for regional information and user expertise 
[Efstratiadis et al., a]. 

In summary, the combined use of Nataf-based models along with theoretical distribution 
functions and theoretical correlation structures (e.g., CAS), offers several advantages, such as, 
the easy alternative scenario exploration (by perturbing the models parameters), regional 
transferability (through spatial interpolation), improved model stability (since a valid 
correlation structure owes to be positive definite; a fact guaranteed by a proper theoretical 
model), and the decoupling of parameter identification (involving the parameters of the 
distribution model and the theoretical correlation structure) with the generation mechanism. 
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4.3.4 The auxiliary Gaussian processes 

In order to deploy a Nataf-based stochastic simulation scheme, it is required to employ and 
simulate realizations from an auxiliary Gp. Regardless this choice, it is important to estimate 
its parameters using the equivalent correlation coefficients. This way, the realizations of the 
auxiliary Gp will preserve the equivalent correlation coefficients, which in turn, after the 
mapping procedure, reproduces the target stochastic structure. The Gp could be modeled using 
simple mechanisms, especially in the case of univariate stationary processes, such as the well-
known decomposition-based simulation scheme discussed in section 4.1.3 or by utilizing more 
advanced schemes.  

An apparent option, extensively discussed in the following Chapters, is the use of Gaussian 
linear stochastic models (also called time series models). Characteristic examples, adapted from 
operations research, are, the works of Cario and Nelson [] and Biller and Nelson [], 
who used as an auxiliary Gp, univariate and multivariate stationary AutoRegressive (AR) 
processes, respectively. The resulting Nataf-based models are termed AutoRegressive To 
anything (ARTA) and Vector AutoRegressive To Anything (VARTA). A notable difference of 
these works compared to the approach described herein, lies in the fact that the previous works 
did not employ the notion of theoretical correlation structures. This implies that the order p of 
the associated AR model dictates the correlation structure of the process to simulate. This may 
be also the reason for the typical use of low order models. On the other hand, if the auto-
correlation structure has been a priori specified (e.g., using CAS), it is possible to employ high-
order models (e.g., AR(p)), even multivariate, without sacrificing parsimony. In this case, the 
order of the Gp model solely controls the degree of resemblance of the correlation structure up 
to the desired lag 𝜏 (since a higher order model provides more flexibility), while the associated 
model’s parameters can be viewed as internal coefficients (for bivariate examples using high-
order AR models, see section 5.6.2). In the water resources domain, a comprehensive treatment 
of multivariate and univariate Nataf-based schemes, based on stationary and cyclostationary 
Gaussian linear stochastic models, is presented in Chapters 5 and 6 respectively. A simple 
simulation example using the classical decomposition scheme is given in section 4.3.7. 

4.3.5 Estimation of the equivalent correlation coefficients 

An important step of any Nataf-based simulation scheme, is the identification of equivalent 
correlation coefficients, which in turn allows the reproduction of the target correlation 
structure. It is reminded that the equivalent correlations (i.e., in the Gaussian domain) typically 
differ from the target ones (in the real domain), and they are estimated on the basis of the NDM 
approach. Nevertheless, regardless the case, multivariate or univariate, stationary or 
cyclostationary, the identification of equivalent correlation coefficients (i.e., by inverting the 
corresponding ℱ(∙) relationship – see sections 4.3.1 and 4.3.2) can be accomplished in a 
pairwise basis using the methods of section 4.5. Particularly, the proposed algorithm of section 
4.5.1 can significantly simplify and thus accelerate the identification procedure since it 
establishes a functional relationship between the target and equivalent correlation coefficients 
that can be used multiple times (it also avoids the use of integration methods). For example, in 
the simple case of a univariate stationary process, this procedure has to be employed only once, 
to establish the relationship 𝜌¬ = ℱl𝜌.¬,𝐹jn and then reused multiple times for different target 
values of 𝜌¬. 
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4.3.6 Mapping auxiliary processes to the actual domain 

After simulating a realization of the auxiliary processes (i.e., 𝑧�, 𝒛�, 𝑧�,�	or	𝒛�,�), the last step is 
its mapping to the actual domain (i.e., 𝑥�, 𝒙�, 𝑥�,�	or	𝒙�,�), through the ICDF(s). It is noted that 
this procedure is implemented for each individual process and season (in the case of 
multivariate processes and cyclostationarity). Due to the use of the ICDF, as well as the use of 
equivalent coefficients of correlation within the auxiliary Gaussian model, final realization will 
preserve both the target marginal distributions (for all seasons and variables) as well as the 
target correlation structure. 

4.3.7 Brief overview via a step-by-step procedure 

For a given stochastic process (univariate case), or a set of processes (multivariate case) to 
simulate, the required methodological steps of any Nataf-based model are: 

Step 1. Identify the type (i.e., stationary or cyclostationary) of the processes, accounting for 
process properties and the time scale of simulation.	

Step 2. Based on the available information (e.g., historical data), as well as the user expertise, 
assign appropriate target marginal distributions to all processes and identify the target 
correlation structure, in time and (case of multivariate simulation) space. 

Step 3. Select a suitable linear stochastic model to simulate the auxiliary Gp. 

Step 4. Estimate the equivalent correlation coefficients for all pairs of variables that are required 
by the parameter estimation procedure of the auxiliary model, i.e. Gp. 

Step 5. Estimate the parameters of the Gp model through the equivalent correlation 
coefficients. 

Step 6. Generate a synthetic time series by employing the Gp (i.e., 𝑧�, 𝒛�, 𝑧�,�	or	𝒛�,�). 

Step 7. Map the auxiliary (i.e. Gaussian) time series to the actual domain in order to attain a 
realization of the target process (i.e., 𝑥�, 𝒙�, 𝑥�,�	or	𝒙�,�). 

4.3.8 Numerical examples 

As mentioned in the previous section, the decomposition-based simulation scheme of section 
4.1.3, which is typically employed for the simulation of correlated RVs, can be easily used for 
the simulation of stationary and non-stationary, non-Gaussian processes. The simulation 
procedure is exactly the same, with the only difference that given an autocorrelation function 
𝜌¬, 𝜏 ≥ ;, and assuming that we wish to generate a process with 𝑇 time steps, the elements of 
the now 𝑇 × 𝑇 matrix 𝑹 are being determined by 𝑹[ ,Ø] = 𝜌| sØ|. Particularly, in the case of 
stationarity, the marginal distribution of the process 𝑥� is constant for any 𝑡 ∈ ℤ, i.e., 𝐹j� ≡ 𝐹j. 
As first example, we employ a simple theoretical autocorrelation structure, that of the first 
order autoregressive model (i.e., AR()), which is given by, 𝜌¬ = 𝛼(

|¬|, where 𝛼( is a model 
parameter in [−(,(]. Assuming 𝛼( = ;.I and a zero-inflated discrete-continuous marginal 
distribution (as in the previous example of section 4.1.4.2) with 𝑝; = ;.? and 𝐺j(𝑥) =
𝐹𝒢(𝑥; ;.B,(;) for the continuous distribution part (i.e., a Gamma distribution) we simulate one 
realization of   time steps. Given this information, the first step is to identify the 
relationship, 𝜌¬ = ℱl𝜌.¬,𝐹jn (see Figure 4.17a), and subsequently invert it, in order to obtain 
the equivalent correlation coefficients; hence the structure of the auxiliary Gaussian process 
(brown dashed line Figure 4.17c). Next, a realization of the auxiliary process is generated, and 
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then transformed using a mapping function similar to Eq. (4.33). Figure 4.16a depicts the 
simulated sequence, as well as Figure 4.16b a comparison between the theoretical PDF and the 
empirical histogram. Furthermore, Figure 4.17b-d synopsize some of the key marginal and 
stochastic properties of the simulated time series, which arguably closely resemble the 
theoretical ones. However, it is noted that this scheme was mainly employed for demonstration 
purposes due to the fact that often suffers from numerical difficulties (as a result of large matrix 
operations), thus it is often preferable to resort to alternative modelling approaches, such as 
those of Chapter 4, 6 and 7. 

 
Figure 4.16 | Hypothetical example of a zero-inflated stationary process with 𝑝; = ;.? and continuous 
Gamma-distributed part 𝒢(;.B, (;). a) Simulated time series of   time steps. b) Comparison 
between empirical histogram and theoretical PDF. 

 
Figure 4.17 | a) The established relationship between equivalent, 𝜌. and target 𝜌 correlation 
coefficients. b) Theoretical and simulated CDFs (using Weibull’s plotting position). c) Theoretical, 
equivalent and simulated autocorrelation functions (ACF). d) Scatter plot depicting the established lag-
 dependence pattern among consecutive time steps. 

To further explore the applicability of the method, let us consider the simulation of a non-
Gaussian, non-stationary process 𝑥�. In this case the marginal distribution of the process is 
modeled using the two-parameter Log-Normal (i.e., ℒ𝒩(𝑎, 𝑏)) (see section 4.5.2) with its 
parameters depending on absolute time 𝑡, i.e., 𝑥�~ℒ𝒩l𝑎(𝑡), 𝑏(𝑡)n. Specifically, the shape 
parameter 𝑎 is related with time 𝑡 by, 𝑎(𝑡) = −;.;(𝑡 + (.(, while the scale 𝑏 by, 𝑏(𝑡) =
;.;>𝑡 + (. These parameters are also related with the mean and variance (that also depend on 
absolute time) of the process by, 𝜇� ≔ E{𝑥�} = exp ~𝑏(𝑡) + ;.8l𝑎(𝑡)n

)
� and 𝜎�) ≔ Var{𝑥�} =

exp ~)𝑏(𝑡) + l𝑎(𝑡)n
)
� ~exp ~l𝑎(𝑡)n

)
� − (� respectively. The ith and jth elements of the 

correlation matrix 𝑹 were set as 𝑹[ ,Ø] = ;.I| sØ|. Of course, this implies that the ith and jth 

elements of the equivalent matrix 𝑹þ  are being determined using, 𝑹þ[ ,Ø] = ℱs( ~𝑹[ ,Ø][𝐹j) , 	𝐹jä�, 
where 𝐹j) and 	𝐹jä denote the distribution of the process at time 𝑡   and 𝑡Ø  respectively. Using 
this setup,   realizations, each of  time steps, are synthesized (hereafter called ensemble) 
and the results from this example are summarized in Figure 4.18 and Figure 4.19, which 
illustrate that the model is capable to fulfill its promises and reproduce the time-varying, ) 
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distribution function, ) mean, and ) variance of the process, as well the target correlation 
structure. It is remarked, that in practice, deterministic relationships, such as those employed 
in this example are always unknown, hence the concept of non-stationarity should always be 
used with extreme caution. 

 
Figure 4.18 | Hypothetical example of a non-stationary process with Log-Normal marginal 
distribution. a) All   realizations (three of which are depicted with distinct colors), each consisted 
of  time steps. Comparison of theoretical and ensemble b) mean and c) variance as a function of 
time. Comparison between empirical histogram and theoretical PDF for time d) t = , e) t =  and f) 
t = . 

 
Figure 4.19 | a) Theoretical and b) simulated correlation as a function of absolute time. c) Absolute 
difference between theoretical and simulated correlation coefficients.  
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4.3.9 A brief note on Nataf-based stochastic models 

By now, it should be clear that the theoretical developments presented herein allow the 
construction of explicit, in terms of reproducing the distribution function, stochastic 
simulation methods (relieved from the limitations and constraints of such schemes; see section 
2.3) that fundamentally differ from the other two typical schemes (implicit and 
transformation-based; see section 2.3.1) used in hydrology, which also employ linear stochastic 
models.  

Compared to the implicit approaches that employ non-Gaussian white noise, Nataf-based 
schemes alleviate several notable limitations. Among them, the approximation of the 
distribution function, the generation of negative values, the bounded dependence patterns and 
the (often) narrow type of possible correlation structures, which is attributed to the limited 
number of schemes for which analytical equations can be derived to link the moments of the 
process with those of the white noise.  

Additionally, in contrast to transformation-based approaches, that aim to normalize the data, 
Nataf-based schemes explicitly model them using target marginal distributions. Though, it has 
to be noted, that in principle, the rationale of transformation-based approaches can be easily 
aligned with the theoretical background of Nataf’s distribution model by using the concept of 
equivalent (i.e., adjusted) correlation coefficients. This modification would mitigate their major 
weakness (i.e., the introduction of bias) but still will not be equivalent with the reproduction of 
a certain, pre-specified, distribution functions. On top of this, since the ICDF is employed, a 
unique advantage of Nataf-based approaches, over the aforementioned schemes, is that it can 
be used for the simulation of both univariate and multivariate stationary processes with 
continuous, discrete, or mixed-type distributions, which implies that explicitly avoid the 
generation of unwanted negative values (see Chapter 5 and 6).  

Regarding parameterization, the Nataf-based approaches exhibit a parsimonious character, as 
it is evident by the small number of required parameters, which are equal or lower than those 
required by the aforementioned schemes (for a comparison see section 5.6.1.1, 6.5.1 and 
6.5.3). 

As discussed earlier, NDM and the associated methods can be used for the simulation of 
correlated RVs with continuous, discrete or mixed-type marginal distributions, provided that 
their combination is feasible and the variance of the distributions is finite. The latter 
requirement stems for the definition of Pearson’s correlation coefficient, which implies that 
that both the mean and variance of the involved distributions are finite. This assumption also 
holds for Nataf-based stochastic models, and of course, for any other model that relies on 
Pearson’s correlation coefficient. In such situations the use of alternative simulation methods 
is required [e.g., Samoradnitsky, ].  

Random variables with infinite moments typically arise when heavy-tailed distribution 
functions with power-type tails are employed. For instance, a Pareto type-I distribution with 
CDF, 𝐹(𝑥) = ( − (𝑥 𝑏⁄ )s¶, where 𝑏 > ; (scale), 𝑎 > ; (shape) and 𝑥 ≥ 𝑏, has finite variance 
only for 𝑎 > ). The literature offers a plethora of studies indicating the suitability of heavy-
tailed distributions for both precipitation [e.g., Papalexiou and Koutsoyiannis, , ; 
Papalexiou et al., ; Cavanaugh et al., ; Koutsoyiannis and Papalexiou, ] and 
streamflow [e.g., Anderson and Meerschaert, ; Bowers et al., ; Basso et al., ; Blum 
et al., ] processes, especially regarding the description of their extreme behavior. By 
reviewing the outcomes of these studies, which involve the analysis of numerous worldwide 
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historical records, it was found that the majority of them agree that the such variables are 
characterized by distribution functions (with either exponential or power-type tails) with finite 
variance [Koutsoyiannis and Papalexiou, ]. On top of the empirical evidence provided by 
the aforementioned works, theoretical reasoning (related with entropy and energy production) 
further supports the finite variance hypothesis for natural processes [Koutsoyiannis, , 
]. In this vein, it is regarded that this infinite variance assumption poses a practical barrier 
of limited impact, if any, on the application of abovementioned methods for the simulation of 
hydrometeorological processes. 

Moreover, due to changing environmental and hydroclimatic conditions, the statistical 
information contained in historical data may not be fully representative of the projected future 
conditions. In this context, aiming to explore the effects of change, several researchers suggest 
perturbing the values of the statistical characteristics to be reproduced within synthetic data 
[e.g., Baltas, ; Baltas and Karaliolidou, ; Nazemi et al., ; Borgomeo et al., ], 
which implies employing parameters different than the data-driven ones. Nevertheless, 
wherever it is necessary to manually assign target input values, these have to be checked against 
both physical consistency and hydrological evidence. In this vein, it is remarked that Nataf-
based models are able to synthesize data from any distribution hence allowing their 
straightforward use in such studies. This can be easily accomplished by changing the 
parameters of the distribution functions (even the distribution functions themselves) or the 
correlation structure of the process and subsequently investigate the effects of such changes to 
the system under study. 

4.4 THE CASE OF MIXED MARGINAL DISTRIBUTIONS 
Herein we highlight the case of mixed-distributions (which can be used within Nataf-based 
methods), often advocated within hydrological applications, either to better represent the tails 
of the understudy hydrometeorological variable [e.g., Foufoula-Georgiou and Lettenmaier, 
; Wilks, ; Furrer and Katz, ; Li et al., , ; Evin et al., ], or to 
simultaneously represent the dual character of intermittent processes [e.g., Williams, ; 
Cannon, ; Serinaldi, a; Serinaldi and Kilsby, ; Bárdossy and Pegram, ; 
Papalexiou, ; Tsoukalas et al., d, b]. Herein we briefly describe the second case, 
which can be accomplished using a zero-inflated (also referred to as zero-augmented or discrete-
continuous) distribution model. This model is composed by both a discrete and a continuous 
part, and its CDF is given by, 

 𝐹j(𝑥) = 	 ·
	𝑝` ,																																											𝑥 ≤ ;
	𝑝` + (( − 𝑝`)𝐺j(𝑥), 𝑥 > ;  (.) 

The discrete part is represented by 𝑝` ≔ 𝑃l𝑥 = ;n, and denotes the probability of a zero value. 
The continuous part is given by 𝐺j ≔ 𝐹j|jB; = 𝑃l𝑥 ≤ 𝑥,𝑥 > ;n, which denotes a continuous 
distribution function for the non-zero data. For instance, within the context of intermittent 
hydrometeorological processes (e.g., rainfall), 𝑝`  stands for the probability of a dry interval 
(i.e., probability dry), and 𝐺j represents the distribution of positive amounts. In real-world 
situations, the most straightforward way to specify 𝑝`  and 𝐺j is through the available data. 
Specifically, 𝑝`  is estimated as the ratio of dry occurrences to the total number of observations, 
while 𝐺j  can be identified by fitting a continuous distribution function to the positive amounts. 
For completeness, the ICDF of the zero-inflated model, which can be used for RVs generation, 
is given by, 
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 𝐹js((𝑢) = 	a
	;,																																								; ≤ 𝑢 ≤ 𝑝`

𝐺js( '
(𝑢 − 𝑝`)
(( − 𝑝`)

( , 𝑝` < 𝑢 ≤ (  (.) 

where 𝑢	 ∈ 	[;, (] denotes probability. In this formulation values less or equal to 𝑥` (that arise 
with probability 𝑝`) are assumed equal to zero. For real-world applications of this distribution 
model within the context of hydrometeorological processes simulation see Chapter 5 and 7. 

4.5 IDENTIFICATION OF EQUIVALENT CORRELATION COEFFICIENTS 
An important part of every Nataf-based method (i.e., unconditional and conditional simulation 
of RVs, as well as for stochastic processes simulation) is the identification of equivalent 
correlations. As already mentioned, for the RVs case, in order to preserve the target 
correlations	𝜌 ,Ø in the actual domain, after mapping the Gaussian variables with their 
prescribed distributions 𝐹j 	and	𝐹jØ , it is essential to establish a suitable relationship between 

𝜌. ,Ø and	𝜌 ,Ø. i.e., ℱ(∙). The following discussion is centered towards the generic case of RVs, 
while it is easily adopted for stochastic processes by simply changing the associated RVs. For 
instance, in the cyclostationary case, we just have to set 𝑥  ≔ 𝑥�   and 𝑥Ø ≔ 𝑥�s¬

Ø , and 
approximate the required (by the auxiliary model) equivalent correlation coefficients	𝜌.�,�s¬

 ,Ø  of 
the target correlations	𝜌�,�s¬

 ,Ø .  

The literature offers a variety of approaches to establish ℱ(∙), including empirically derived 
relationships [Der Kiureghian and Liu, ; Liu and Der Kiureghian, ; Ditlevsen and 
Madsen, ], crude search procedures [Cario and Nelson, , ], methods based on the 
Gauss-Kronrod quadrature rule [Cario, ], root finding methods [Li and Hammond, ; 
Chen, ; Macke et al., ] as well as Gauss–Hermite quadrature and Monte Carlo methods 
[Zhou and Nowak, ; Li et al., ; Xiao, ]. Herein, in contrast to most of the 
aforementioned procedures, which are suitable only for continuous marginal distributions, we 
present a recently developed, simple and easy to implement method, which is applicable for 
any-type marginal distributions 𝐹j 	and	𝐹jØ , regardless if they are continuous, discrete, or 

mixed-type (see section 4.4), since its only requirement is the target ICDFs. In a nutshell, the 
proposed method is based on the evaluation of few pairs of 	𝜌 ,Ø		and		𝜌. ,Ø  using Monte Carlo 
simulation and subsequently, the establishment of the relationship of Eq. (4.15) through 
polynomial interpolation [Tsoukalas et al., a, e, d]. Throughout this Thesis, 
unless stated otherwise, the relationship of Eq. (4.15) is established using the above method. 
The proposed method is particularly useful when the concept of NDM is employed for the 
simulation of stochastic processes, since it significantly reduces the required computational 
load. See Chapter 5 and 6 for a more thorough discussion on the subject. 

4.5.1 A hybrid Monte Carlo approach 

In this context, the following generic procedure has been developed. Let 𝑥  and	𝑥Ø be two 
random variables while 𝜌. ,Ø  and 	𝜌 ,Ø stand for the equivalent (in Gaussian domain) and the 
target correlation coefficients respectively. Furthermore, let 𝐹j) and	𝐹jä , denote the 
corresponding target distributions, whose variance is assumed finite. The developed procedure 
is comprised by the following steps (the indices i and j are omitted for simplicity): 
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Step 1: Create a Ω-dimensional vector 𝝆ý = [𝜌.(, … , 𝜌.�, … , 𝜌.c] of equally spaced values in the 
interval [𝜌.<c= , 𝜌.<>H]. Here, lemma  can be accounted for in order to determine the boundaries 
𝜌.<c= and 𝜌.<>H , since it provides insights regarding the sign of 𝜌. ,Ø . For example, if the target 
correlation 𝜌 ,Ø is positive, then we set 𝜌.<c= = ; and 𝜌.<>H = (. 

Step 2: For each element of	𝝆ý , generate N samples from the bivariate standard normal 
distribution, with correlation	𝜌.� . 

Step 3: Map the generated data to the actual domain through 𝑥  = 𝐹j)
s( ~Φl𝑧 n�, using the 

associated target marginal distributions 𝐹j 	and	𝐹jØ .  

Step 4: Calculate the empirical correlations 𝜌Cd  and store them in the vector 𝝆e =
[𝜌C(,… , 𝜌Cd, … , 𝜌Cc]. 

Step 5: Approximate the relationship between target (𝜌 ,Ø) and equivalent (𝜌. ,Ø) correlation by 
establishing a polynomial function of order p, among the values of 𝝆ý and 𝝆e i.e., 

 𝜌 = ℱ ~𝜌./𝐹j , 𝐹jØ� ≅ 𝜌C = 𝜃g𝜌.g + 𝜃gs(𝜌.gs( +⋯+ 𝜃(𝜌.( + 𝜃; (.) 

Step 6: Evaluate the equivalent correlation 𝜌. ,Ø  by inverting the relationship between the fitted 
polynomial and the target correlation	𝜌 ,Ø.  

We highlight that, according to Weierstrass approximation theorem, the formulation of the 
polynomial expression of Eq. (4.47) is theoretically feasible, since ℱ(∙)	is continuous and 𝜌. is 
by definition bounded on the interval [-, ]. Moreover, we remark that the constant term 𝜃; 
could be omitted, as indicated by Lemma .  

The above procedure, which is hybrid combination of Monte Carlo simulation and numerical 
interpolation through polynomial regression, uses three input arguments, i.e., the vector 
dimension Ω, the sample size N, and the polynomial order p. The first two influence the 
accuracy and computational effort of the Monte Carlo procedure, while the third influences 
the accuracy of the interpolation approach. Preliminary analysis detected that a good balance 
between accuracy and computational efficiency is ensured for Ω around  - , and N around 
  -   trials. Regarding the polynomial order, Xiao [] conducted an extensive 
analysis, with distributions exhibiting a wide range of skewness and kurtosis coefficients, and 
concluded that ℱ(∙) can be accurately approximated by a polynomial of less than ninth degree 
(p ≤ ). Apparently, for p = Ω – , the polynomial passes exactly through all simulated points, 
yet, in order to ensure parsimony, it may be preferable employing a less complicated 
expression. In this vein, in order to avoid over-fitting, we propose adjusting the order of the 
polynomial with the use of cross-validation techniques or the Akaike information criterion 
[Akaike, ]. We note that on the basis of systematic investigations, instead of polynomials, 
alternative functions could be employed [e.g., Serinaldi and Lombardo, ; Papalexiou, 
].  

The key advantages of the proposed methodology, are its generality (it can be used for 
continuous, discrete or mixed-type distributions) and simplicity, as well as the fact that it 
doesn’t depend on specialized algorithms to solve the double integral embedded in Eq. (4.15), 
in order to obtain a valid expression	ℱ(∙). Despite the iterative nature of the algorithm, its 
implementation in high-level programming languages, such as R or MATLAB, requires less 
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than / second (assuming N =  , Ω =  and p = ) on a modest . GHz Intel Dual-Core 
i processor with  GB RAM. 

Note that, the proper and accurate identification of the relationship ℱ(∙) has a crucial role in 
NDM-based schemes, since its misspecification may lead to simulation errors. Hence, to assess 
the suitability of the developed algorithm, which is extensively used in this work, we employed 
it and recreated the cases depicted in Figure 4.2; which concerned the identification of 
equivalent correlation coefficients of two Gamma-distributed variables 𝑥( and 𝑥), for various 
values of shape parameters. The parameters of the algorithm were set as follows, N =  , 
p =  and Ω = . After the specification of the relationship ℱ(∙) by the latter algorithm, the 
target correlations where evaluated for values of		𝜌.(,) ∈ [−(,(] sampled by .. To provide a 
quantitative comparison, we estimated the MSE and maximum square error (Max(SE)) 
between the estimates of the numerical integration method (i.e., Figure 4.2) and those of the 
aforementioned algorithm. A synopsis of the results is given on Table 4-1, where the panels (a) 
and (b) corresponds to those of Figure 4.2. This analysis illustrates the potential of the 
employed method to resemble the asymmetric and non-linear nature of ℱ(∙) with high 
accuracy. 

Table 4-1 | Comparison between numerical integration and the algorithm of section 4.5.1 for the 
numerical example illustrated in Figure 4.2. Panels a) and b) correspond to those of Figure 4.2. 

a) 𝑎 ≔ 𝑎Ë = 𝑎Ì| 𝑏:= 𝑏½ = 𝑏Ì = 1 b) 𝑎Ë = 5| 𝑏:= 𝑏Ë = 𝑏Ì = 1 
 Shape (𝑎) MSE Max(SE)  Shape (𝑎Ë) MSE Max(SE) 
 0.01 8.03×10-5 7.75×10-4  0.01 2.12×10-5 3.79×10-4 
 0.05 5.81×10-5 3.08×10-4  0.05 6.46×10-6 2.70×10-5 
 0.1 2.44×10-6 9.89×10-6  0.1 6.26×10-6 4.15×10-5 
 0.5 4.33×10-6 1.59×10-5  0.5 1.51×10-5 9.37×10-5 
 1 3.31×10-6 1.88×10-5  1 2.54×10-6 1.13×10-5 
 2 1.22×10-6 8.47×10-6  2 7.19×10-7 3.20×10-6 
 5 3.70×10-6 1.80×10-5  5 5.24×10-7 1.77×10-6 

4.5.2 The Log-Normal case 

As mentioned earlier, Eq. (4.15) has a closed-form solution for the Log-Normal case, which is 
of particular interest from a hydrological perspective. The PDF of the -parameter Log-Normal 
distribution (ℒ𝒩) is given by,  

 𝑓ℒ𝒩(𝑥; 𝑎, 𝑏, 𝑐) =
(

(𝑥 − 𝑐)𝑎√)𝜋
exp'−

(
)'
log(𝑥 − 𝑐) − 𝑏

𝑎 (
)

( , 𝑥 > 𝑐	 (.) 

where 𝑎 > ;, 𝑏 ∈ ℝ and 𝑐 ∈ ℝ denote the shape (i.e., log standard deviation), scale (i.e., log 
mean) and location parameters respectively; while when 𝑐	 = 	;, the distribution reduces to the 
-parameter Log-Normal distribution. As shown in Mostafa and Mahmoud [], yet without 
direct reference to NDM, for two random variables 𝑥  and 𝑥Ø	that are Log-Normally 
distributed, Eq. (4.13), hence Eq. (4.15) simplifies to, 

 	𝜌 ,Ø	 =
expl	𝜌. ,Ø𝑎 𝑎Øn	 − (

�(exp(𝑎 )) − ()lexpl𝑎Ø)n − (n
 (.) 
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Which can be easily inverted in order to directly provide the equivalent correlation 
coefficient	𝜌. ,Ø, given the target value of 	𝜌 ,Ø	. i.e.,  

 
	𝜌. ,Ø =

Ln'( + 	𝜌 ,Ø	�(exp(𝑎 )) − ()lexpl𝑎Ø)n − (n(

𝑎 𝑎Ø
 

(.) 

It is remarked that Eq. (4.50) is identical with the one employed in the celebrated multivariate 
lag- Log-Normal model of Matalas [], to adjust the correlation coefficients, which 
interestingly can be identified as a Nataf-based approach [cf. Tsoukalas et al., d]. 

4.5.3 A cautionary note 

A delicate point worth stating concerns the use of alternative, rank-based dependence measures 
such as, Spearman’s 𝓇� and Kendall’s 𝓉 within NDM (or Gaussian copula). Under the 
assumption that both marginal distributions and copula are Gaussian (or more generally 
elliptical distributions) there is a one-to-one relationship between these dependence measures 
and Pearson’s correlation, which can be expressed as [e.g., Esscher, ; Kruskal, ; 
Embrechts et al., ; Lebrun and Dutfoy, ] (notice that the indices have been omitted for 
the sake of simplicity),  

 𝜌 = ) sin ~
𝜋𝓇�
I � 	↔ 	𝓇� = �

I
𝜋�arcsin ~

𝜌
)�	 

(.) 

 𝜌 = sin �
𝜋𝓉
) � 	↔ 	𝓉 = ~

)
𝜋� arcsin

(𝜌) (.) 

Both 𝓇� and 𝓉 are measures of concordance and are invariant to non-linear monotonic 
transformations, such as those imposed by 𝑥  = 𝐹j)

s( ~Φl𝑧 n�. Specifying NDM or Gaussian 
copula with estimates of 𝜌 based on the conversion of empirical estimates of 𝓇� or 𝓉 will 
inevitably preserve the target values of 𝓇� or 𝓉 after the application of the mapping procedure 
(due to the property of invariance) but it will lead to misspecification of the underlying model 
(i.e., NDM or Gaussian copula) due to Eq. (4.15), and of course the target values of 𝜌 won’t be 
preserved. Unfortunately, the underlying assumptions of Eq. (4.51) and Eq. (4.52) are often 
relaxed or not fully considered in practice since these equations have been employed in several 
works (that involve an auxiliary Gaussian model) within the hydrological domain [e.g., Kelly 
and Krzysztofowicz, ; Herr and Krzysztofowicz, ; Renard and Lang, ; Serinaldi, 
a, b; Srikanthan and Pegram, ; Mhanna and Bauwens, ; Serinaldi and Kilsby, 
], just to name a few. 

4.6 BITS AND PIECES OF NDM IN HYDROLOGY 
NDM-based approaches have been widely applied in industrial, financial and operations 
research applications, as indicated from the popularity of the original article by Nataf [] 
and the related publications [Liu and Der Kiureghian, ; Cario and Nelson, , ; 
Grigoriu, ; Deodatis and Micaletti, ; Biller and Nelson, ].  

While the hydrological community does not make direct reference to NDM, the concept of 
equivalent correlations (which are often neglected; see section 4.5.3) and the associated models, 
such as NORTA, ARTA, VARTA, etc. it actually shares the same rationale, even from the 
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geneses of hydrological stochastics [see, Tsoukalas et al., e]. Loosely speaking, the core idea 
of NDM comprises the initiation from the Gaussian domain, with properly adjusted correlation 
coefficients, and then a mapping to the desirable domain; an idea that can be retrospectively 
associated with several well-known hydrological approaches. 

In particular, Matalas [] has studied the effects of logarithmic transformations in the 
context of synthesizing log-normally distributed processes, concluding that the so far 
prevailing transformation approach failed to resemble the historical statistics. To reestablish 
consistency, he developed a framework based on the generation of normal processes, and 
provided a set of theoretical equations to estimate the statistical parameters (including adjusted 
correlation coefficients) in the Log-Normal domain. Moran [] developed a bivariate 
Gamma distribution using as main building block an auxiliary bivariate Gaussian distribution. 
Later, Klemeš and Borůvka [] developed a generation scheme for gamma-distributed 
univariate first-order Markov chains, through a mapping procedure of Gaussian processes with 
the use of adjusted correlation coefficients. Mejía and Rodríguez-Iturbe [] discuss the link 
between Gaussian and log-Normal processes, while they also comment that as formulated, the 
log-Normal model of Matalas [], is able to resemble only the lag- autocorrelation 
coefficient and approximate the Markovian autocorrelation structure. A fact attributed to the 
use of adjusted correlations only for the lag- correlations. Yet, it is noted that this deviation 
from the Markovian structure is typically minimal. More recently, Kelly and Krzysztofowicz 
[] proposed and illustrated through several hydrology-related applications, a flexible 
bivariate distribution model, termed meta-Gaussian, which builds upon the bivariate standard 
normal distribution and the normal quantile transformation. Wilks [], in the context of 
his widely known rainfall generation model (which is also associated with many weather 
generator schemes; see section 2.3.3), and in an effort to simulate cross-correlated random 
variates, representing either the precipitation occurrence or amount process (neglecting 
temporal dependence), proposed the simulation of cross-correlated Gaussian variables and 
their subsequent mapping via their ICDF. Wilks empirically observed that a monotonic 
relationship exists which links the correlation coefficients of the Gaussian and real domain. 
Hence, the use of inflated correlation coefficients was proposed within the multivariate 
Gaussian distribution, in order to attain random variates with the required cross-correlation 
and distribution. This seminal work has triggered the development of improved schemes, 
supporting more distributions and correlation structures (see also section 2.3.3).  

Additionally, advances in stochastic hydrology are also in alignment with NDM, since it seems 
that presently, Nataf-based approaches are gaining momentum. In particular, in a similar vein, 
Serinaldi and Lombardo [] proposed a fast procedure for autocorrelated univariate binary 
processes. Lee [] introduced a Gaussian copula, simulation-based method for cross-
correlated, yet serially independent, Gamma-distributed precipitation. Papalexiou [] 
provided a framework for synthetic data generation using autoregressive models, also 
accounting for intermittency using mixed distributions. Tsoukalas et al. [a, e], 
employed the notion of NDM and provided a cyclostationary generalization of the models 
ARTA and VARTA, termed SPARTA (Stochastic Periodic AutoRegressive To Anything), for 
the simulation of univariate and multivariate periodic processes with arbitrary marginal 
distributions (see Chapter 6). Furthermore, Tsoukalas et al. [d] proposed a model termed 
Symmetric Moving Average (neaRly) To Anything (SMARTA), which is capable of simulating 
univariate an multivariate stationary stochastic processes with any distribution and correlation 
structure (see Chapter 5, which presents also an additional model). It is noted that the 
designation nearly in the model is included to emphasize that the target marginal distributions 
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ought to have finite variance. Finally, Tsoukalas et al. [b], presented a multivariate multi-
level disaggregation-based approach, designed for the pairwise coupling of Nataf-based 
stochastic models that operate independently of each other at certain key time scales. The 
coupling approach, as well as the solid theoretical basis of these models, enable the development 
of modular stochastic simulation schemes, that can synthesize multivariate time series with any 
distribution and correlation structure that are also statistically consistent across multiple 
temporal scales (see Chapter 7). 

4.7 SUMMARY 
This Chapter provided a comprehensive treatment on the Nataf’s joint distribution (NDM) 
model, starting from its theoretical basis and the establishment of the multivariate joint 
distribution of RVs. The analysis also highlighted its relationship with the Gaussian copula, 
which in turn allow us to extend NDM for the derivation of the multivariate conditional 
distribution. The applicability of these concepts has been demonstrated through several 
examples, including continuous, discrete and mixed-type distributions. 

Subsequently, the concept of NDM, has been adapted for the simulation of non-Gaussian 
stochastic processes, and general guidelines that can be used for the development of Nataf-
based stochastic simulation models have been provided (see below). 

An additional contribution of this Chapter is the development of a simple and versatile Monte 
Carlo procedure for the identification of equivalent correlation coefficients, which have an 
essential, yet often neglected, role in the establishment of NDM-based constructs. 

In the following Chapters, 5 and 6, the focus is given on the development of non-Gaussian 
Nataf-based models for stationary and cyclostationary processes respectively, while Chapter 7 
provides a fusion of these new developments, into integrated stochastic simulation schemes, 
capable of simultaneously accounting for the peculiar characteristics of hydrometeorological 
processes at multiple time scales.
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5  
SIMULATION OF STATIONARY STOCHASTIC PROCESSES EXHIBITING 
ANY-RANGE DEPENDENCE AND ARBITRARY MARGINAL DISTRIBUTIONS 
§ 

PREAMBLE 
This Chapter presents a novel approach for synthetic time series generation. In particular it 
presents two models, termed Symmetric Moving Average (neaRly) To Anything (SMARTA) 
and Contemporaneous Multivariate Autoregressive (neaRly) to Anything (CMARTA), able to 
simulate stationary univariate and multivariate contemporaneously crss-correlated processes 
with any-range dependence and arbitrary marginal distributions; provided that the former is 
feasible and the latter have finite variance. This is accomplished by utilizing a mapping 
procedure in combination with the relationship that exists between the correlation coefficients 
of an auxiliary Gaussian process and a non-Gaussian one, formalized through the Nataf’s joint 
distribution model. The generality of the two models is validated through several hypothetical 
simulation studies (univariate and multivariate), characterized by different dependencies and 
distributions. We demonstrate the practical aspects of the proposed approach through two real-
world cases, one that concerns the generation of annual non-Gaussian streamflow time series 
at four stations and another that involves the synthesis of intermittent, non-Gaussian, daily 
rainfall series at a single location.  

The structure of the Chapter is as follows: Section 5.1 introduces the problem. Section 5.2 
presents some key concepts regarding modelling of auto-dependence structure in general. 
Section 5.3 provides the theoretical background of the proposed models; next, section 5.4 
describes the auxiliary SMA and CMAR models and, section 5.5 summarizes the overall 
approach and provides the generation mechanism of the two models in an algorithmic step-
by-step manner. The generality of SMARTA and CMARTA models is illustrated through a 
series of numerical examples, hypothetical (section 5.6) and real-world (section 5.7), including 
the simulation of both univariate and multivariate time series. Finally, in section 5.8 we 
summarize and discuss the proposed modelling approach.  

                                                        
§ Based on:  

Tsoukalas, I., C. Makropoulos, and D. Koutsoyiannis (d), Simulation of stochastic processes exhibiting any-
range dependence and arbitrary marginal distributions, Water Resour. Res., doi:./WR. 
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5.1 INTRODUCTION 
A typical characteristic encountered in hydrometeorological processes is auto-dependence 
(persistence), either short or long-range. The former, short-range dependence (SRD), has been 
extensively discussed in literature [e.g., Box and Jenkins, ] and implies an exponential 
autocorrelation structure that diminishes after few time lags. On the contrary, the second, long-
range dependence (LRD), also known as long-term persistence (sometimes referred to as long-
memory), implies an auto-dependence structure that strongly extends for large lags. This 
behavior is also related to the so-called Hurst phenomenon, also known as Joseph effect, 
fractional Gaussian noise (fGn), scaling in time or Hurst-Kolmogorov dynamics [HK; 
Koutsoyiannis and Montanari, ; Koutsoyiannis, a]; see also the review work of Molz 
et al. []. Its discovery is usually credited to Hurst [] who while studying long records 
of streamflow and other data noticed that extreme events tend to exhibit a clustering behavior 
in terms of temporal occurrence. However, as pointed out by Koutsoyiannis [a], it was 
Kolmogorov [] who first proposed its mathematical description. Eventually, after the 
seminal work of Hurst and the extensive documentation of Mandelbrot and Wallis [a, 
b, c] it is now acknowledged that LRD (and HK) processes are omnipresent in 
geophysics, hydrology, climate and other scientific disciplines [Beran, ; Koutsoyiannis, 
; O’Connell et al., ]. These publications provide further examples and details regarding 
the interpretation and identification of such behavior. 

As far as it concerns modelling and application of SRD or LRD in hydrological studies, the 
former type (SRD) has been systematically studied and employed in numerous cases for the 
simulation of a variety of hydrometeorological processes [Matalas, ; Srikanthan and 
McMahon, ; Brissette et al., ; Thompson et al., ; Khalili et al., ; Srikanthan 
and Pegram, ; Mhanna and Bauwens, ; Breinl et al., ; Mehrotra et al., ]. On 
the other hand, it is well recognized that proper representation of LRD is of high importance, 
especially in reservoir-related studies, since their operation and regulation is performed in 
over-annual scale, where LRD is mostly encountered [Bras and Rodríguez-Iturbe, ; 
Koutsoyiannis, ; Iliopoulou et al., ]. Other notable hydrology-related applications of 
LRD include the stochastic simulation of precipitation or streamflow at finer time-scales, from 
monthly and daily [Montanari et al., , ; Maftei et al., ; e.g., Detzel and Mine, ] 
to -second interval [Papalexiou et al., ; e.g., Lombardo et al., ], as well as the 
generation of synthetic storm hyetographs [e.g., Koutsoyiannis and Foufoula-Georgiou, ]. 

In general, SRD can be easily captured with the so-called AutoRegressive Moving Average 
(ARMA) family of models, while we note, that even though such models have a long history 
and are still popular, today the literature offers other powerful and flexible options [cf. 
Koutsoyiannis, ]. On the other hand, LRD, hence HK behavior, requires the use of 
alternative generation schemes [see, Bras and Rodríguez-Iturbe, ; O’Connell et al., ], 
such as, fractional Gaussian noise models [Mandelbrot and Wallis, a, b, c], fast 
fractional Gaussian noise (ffGn) models [Mandelbrot, ], broken line models [Ditlevsen, 
; Mejia et al., ] and Fractional AutoRegressive Integrated Moving-Average 
(FARIMA) models [Granger and Joyeux, ; Hosking, ]. In contrast to the 
abovementioned specialized simulation schemes, a notable exception, that can simulate any 
type of autocorrelation function of a process, is the symmetric moving average (SMA) model 
of Koutsoyiannis [, , ], coupled with theoretical autocorrelation (or 
autocovariance) structures. This flexibility is achieved by decoupling the parameter 
identification of the autocorrelation structure and the generation mechanism (i.e., the model).  
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In addition to temporal dependence, hydrometeorological processes are often characterized by 
non-Gaussian and skewed distribution functions (see the discussion in section 2.2), especially 
in fine time scales (e.g., daily or finer), where intermittency is omnipresent. Regarding 
stochastic hydrology and simulation through linear stochastic models, many efforts have been 
made towards that direction (i.e., simulating non-Gaussian processes) which can be broadly 
classified in three main categories [Tsoukalas et al., e]: a) Explicit methods that are able to 
generate data from specific marginal distributions [e.g., Matalas, ; Klemeš and Borůvka, 
; Lawrance and Lewis, a; Lombardo et al., , ] b) Implicit approaches, 
pioneered by Thomas and Fiering [], that treat skewness via employing non-Gaussian 
white noise (typically from Pearson type-III distribution) for the innovation term [e.g., 
Matalas, ; Matalas and Wallis, , ; Lettenmaier and Burges, ; Todini, ; 
Koutsoyiannis, , ; Efstratiadis et al., a; Detzel and Mine, ]. c) 
Transformation-based approaches that employ appropriate functions (e.g., Box-Cox) in order 
to normalize the observed data; next simulate realizations using typical Gaussian stochastic 
models and finally de-normalize the generated data in order to attain the process of interest 
[e.g., Salas et al., ].  

However, as discussed in Tsoukalas et al. [e], as well as in section 2.2, most of these 
schemes exhibit a number of limitations that still remain unresolved. Particularly, approaches 
of category (a) are limited to a narrow type of autocorrelation functions and non-Gaussian 
distributions (e.g., Gamma or Log-Normal), while they are typically able to simulate only 
univariate processes. On the other hand, approaches of category (b) are prone to the generation 
of negative values, provide an approximation of the marginal distributions, while encounter 
difficulties when modelling highly skewed (univariate or multivariate) processes [Todini, ; 
Koutsoyiannis, ]. It is noted thought, that some recent schemes are able to capture 
moments higher than skewness (e.g., kurtosis), by the inclusion of additional model parameters 
[Koutsoyiannis et al.,  and references therein]. On top of these issues, only few schemes 
(e.g., SMA) are able to simultaneously model a variety of temporal correlation structures, while 
it is also possible to establish bounded dependence patterns which are far from natural ones 
(see Tsoukalas et al. [e, a], Chapter 3 and section 6.5). Finally, regarding the schemes 
of category (c), they require the specification of a non-trivial normalization function (due to 
the inadequacy of simple transformations; such as, Box-Cox) that often entail several 
parameters (usually determined through optimization techniques). Further to this, even if the 
transformation function is properly identified, it is acknowledged that it introduces bias in the 
simulated marginal and joint characteristics [Salas et al., 1980 p. 73; Bras and Rodríguez-Iturbe, 
]. 

In this Chapter, in an effort to simultaneously address these challenges and provide flexible 
tools for the generation of hydrometeorological synthetic time series, we build upon the 
concept of Nataf-based processes (see section 4.3) and develop two particularly flexible models. 
The models follow rationale employed within the scientific field of operations research and 
particularly by Cario and Nelson [], as well as, Biller and Nelson [] who proposed the 
AutoRegressive To Anything (ARTA) and the Vector AutoRegressive To Anything (VARTA) 
methods respectively for the explicit simulation of stationary autoregressive (AR) processes 
with arbitrary marginal distributions. It is remarked that (to the extent of our knowledge) 
despite their wide acceptance, the aforementioned approaches (and their variants) have been 
unknown to the hydrological community and have never been used for the simulation of 
hydrometeorological processes until very recently (see section 4.6).  
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Herein we move beyond the simulation low-order AR autocorrelation structures, and 
introduce two generic, yet simple and theoretically justified, models for the simulation of 
univariate and multivariate contemporaneously crss-correlated stationary processes 
exhibiting any-range dependence and arbitrary marginal distributions (continuous, discrete or 
mixed-type). More specifically, the first model uses as an auxiliary model the SMA scheme of 
Koutsoyiannis [], hence termed Symmetric Moving Average (neaRly) To Anything 
(SMARTA). The second employs a Contemporaneous Multivariate AutoRegressive model 
(CMAR), hence termed Contemporaneous Multivariate AutoRegressive (neaRly) To Anything 
(CMARTA). Both SMARTA and CMARTA can explicitly model the autocorrelation structure 
and distribution of each individual process, provided that the former is feasible and the latter 
have finite variance, while simultaneously they can preserve the lag- cross-correlation 
structure. This assumption, which significantly simplifies the parameter estimation procedure, 
is often regarded adequate within hydrological domain, and can be found in several other 
(stationary and cyclostationary; typically Gaussian) stochastic simulation schemes [e.g., 
Pegram and James, ; e.g., Camacho et al., , ; Koutsoyiannis and Manetas, ; 
Rasmussen et al., ; Efstratiadis et al., a; Tsoukalas et al., e]. 

The main components of the models are, ) a theoretical autocorrelation structure, ) an 
auxiliary model for simulating Gaussian processes, and ) the pivotal concept of Nataf’s joint 
distribution model [NDM, Nataf, ]. The key idea of our approach lies in mathematically 
describing the (target) autocorrelation structure of the process to simulate using a theoretical 
model and subsequently, employing an auxiliary Gaussian stochastic process, with such 
parameters that reproduce the target auto- (i.e., temporal; SRD or LRD) and lag- cross-
correlation (i.e., spatial) coefficients of the target process after its subsequent mapping to the 
actual domain via the target inverse cumulative density functions (ICDFs). 

5.2 MODELLING THE AUTO-DEPENDENCE STRUCTURE OF STATIONARY PROCESSES 
Prior to describing the proposed models it is considered useful to provide a brief introduction 
to the tools that allow the mathematical description of the auto-dependence structure of a 
stochastic process. To elaborate, let 𝑥�, 𝑡 ∈ ℤ be a discrete-time stationary process, indexed 
using 𝑡, with finite variance 𝜎):= Var{𝑥�} and autocorrelation function 𝜌¬: = Corr{𝑥�, 𝑥�H¬}, 
where 𝜏 denotes the time lag. The autocovariance function (ACVF) of the process can be 
obtained by,	𝑐¬:= Cov{𝑥�, 𝑥�H¬} = 𝜎)𝜌¬. Note that a valid autocorrelation structure has to be 
positive definite [e.g., Lindgren, ], which can be readily checked by formulating, and 
testing for positive definiteness, the so-called (𝑛	 × 	𝑛) autocorrelation matrix 𝑹, whose 𝑖$j, 𝑗$j 
elements are being determined by, 𝑹[ ,Ø] = 𝜌| sØ|. 

Besides the ACF and ACVF, particularly useful stochastic tool, is the climacogram [CG, 
Koutsoyiannis, , ], which is typically depicted using a log-log plot, and expresses the 
variance of the aggregated ~𝑋m

(�)� or time averaged ~𝑥m
(�)� process at scale 𝑘 ∈ ℤH. We remark 

that the notation employed herein slightly differs from the typical one, since we restrict our 
attention to discrete-time processes. Assuming that 𝑥� denotes a discrete-time stationary 
process at the basic time scale 𝑘 = ( , the discrete-time aggregated process at scale 𝑘 > ( can 
be obtained by, 

 𝑋m
(�) ≔ á 𝑥�

�m

�â(ms()�H(

	 (.) 
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while the averaged discrete-time process is obtained by,	𝑥m
(�) = 𝑋m

(�)/𝑘. Hence the 
corresponding climacograms of the discrete-time aggregated and averaged process can be 
defined as	𝛤(�) ≔ Var�𝛸m

(�)� and 	𝛾(�) ≔ Var�𝑥m
(�)� respectively. Moreover, as shown by Beran 

[ p. ], as well as by Koutsoyiannis [, ], the variance over scales (i.e., the CG) and 
the ACVF (and therefore ACF) are interrelated. Specifically, if the theoretical ACVF (or ACF), 
𝑐¬ at the basic time scale (k = ) is known, the corresponding theoretical discrete-time 
climacogram of the aggregated process can be calculated through the following equation, 

 𝛤(�) = 𝑐;𝑘 + )á(𝑘 − 𝜏)
�s(

¬â(

𝑐¬	 (.) 

while the averaged one can be obtained by,	𝛾(�) = 	𝛤(�)/𝑘). The recursive application of the 
following equation facilitates the calculation of the climacogram	𝛤(�), 

 𝛤(�) = )𝛤(�s() − 𝛤(�s)) + )𝑐�s(	 (.) 

It is noted that,	𝛤(() = 𝛾(() = 𝑐; = 𝜎), while	𝛤(;) = ;. The inverse relationship that calculates 
the ACVF of the aggregated discrete-time process	~𝑋m

(�)�, denoted	𝐶¬
(�) ≔ Cov�𝑋m

(�),𝑋mH¬
(�)�, at 

time scale k given the theoretical climacogram is given by [Koutsoyiannis, ], 

 𝐶¬
(�) =

𝛤(|¬H(|�) + 𝛤(|¬s(|�)

) − 𝛤(|¬|�), ∀	𝜏 ∈ ℤ (.) 

Furthermore, the ACVF, 𝐶¬
(�) at scale k is linked with the ACVF, 𝑐¬,	of the basic time scale 

k = , through the following relationship, 

 𝐶¬
(�) =á á Cov{𝑥�, 𝑥|} = á á 𝑐|�s||

((H¬)�

|â¬�H(

�

�â(

((H¬)�

|â¬�H(

�

�â(

, 𝜏 ≥ ; (.) 

Analogously, the ACVF of the time averaged discrete-time process ~𝑥m
(�)� at scale k, denoted 

𝑐¬
(�) ≔ Cov�𝑥m

(�), 𝑥mH¬
(�)�, is obtained by	𝑐¬

(�) = 𝐶¬
(�)/𝑘). Hence, the ACF of the aggregated 

discrete-time process at time scale k can be obtained by,	𝜌¬
(�) = 𝐶¬

(�)/𝛤(�)	while the ACF of the 
time averaged discrete-time process by, 𝜌¬

(�) = 𝑐¬
(�)/𝛾(�). Note that the ACF of the aggregated 

and time averaged process are identical, due to standardization of the corresponding ACVF 
with the variance. It is also noted that 𝐶;

(�) = 𝛤(�) and	𝐶¬
(() = 𝑐¬, while similarly, 𝑐;

(�) = 𝛾(�) 
and	𝑐¬

(() = 𝑐¬. It is also noted that a similar relationship to Eq. (5.5), can be derived for the case 
of two processes. Particularly let 𝑥� and 𝑥�

Ø be two discrete time processes, at the basic time scale 
𝑘 = (, and 𝑐¬

 ,Ø = Cov{𝑥� , 𝑥�H�
Ø } denote the lag-𝜏 cross-covariance function at scale 𝑘 = (. The 

lag-𝜏 (for 𝜏 = ;,(,), …) cross-covariance 𝐶¬
 ,Ø = Cov�𝑋m

 (�),𝑋mH¬
Ø(�)� of the aggregated processes 

𝑋m
 (�) ≔ ∑ 𝑥�

Øm�
�â(ms()�H(  and 𝑋m

Ø(�) ≔ ∑ 𝑥�
Øm�

�â(ms()�H(  at scale 𝑘 is given by,  
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 𝐶¬
 ,Ø(�) =á á Cov{𝑥� 𝑥|

Ø}
((H¬)�

|â¬�H(

�

�â(

=á á 𝑐�s|
 ,Ø

((H¬)�

|â(

�

�â(

 (.) 

For instance, for 𝜏 = ;, the equation simplifies to, 

 𝐶;
 ,Ø(�) = Cov�𝑋m

 (�),𝑋m
Ø(�)� 	=ááCov{𝑥� 𝑥|

Ø}
�

|â(

= áá𝑐�s|
 ,Ø

�

|â(

�

�â(

�

�â(

 (.) 

Undoubtedly, the most commonly-employed tool to characterize the auto-dependence 
structure is the autocorrelation function (ACF). The literature offers a plethora of theoretical 
models in both continuous and discrete time [Gneiting, ; Koutsoyiannis, , ; 
Gneiting and Schlather, ; Papalexiou et al., ; Dimitriadis and Koutsoyiannis, ; 
Papalexiou, ], that can be easily combined with the proposed approach (see next section). 
In this Chapter we focus our attention to the discrete-time Cauchy-type autocorrelation 
structure (CAS) of Koutsoyiannis [] due to its simple and parsimonious form (a desired 
property of stochastic modelling), which however does not hinder its ability to model a wide 
range of short (ARMA-type) and long-range dependence structures (including HK behavior). 
CAS is a two-parameter power-type autocorrelation structure which in its simplest form, if the 
ACF has constant and positive sign, (as in the case of geophysical and hydrometeorological 
processes) is given by, 

 𝜌¬\]^ = (( + 𝜅𝛽𝜏)s(/^, 𝜏 ≥ ; (.) 

where 𝛽 ≥ ; and 𝜅 > ; are parameters that control the degree of dependence (or persistence) 
of the process. It is remarked that the autocorrelation function of an HK (i.e., fGn) process 
consists a special case (or a very good approximation) of the CAS model (i.e., Eq. (5.8)). The 
theoretical ACF of an HK process is given by, 

 𝜌¬st =
(
)
(|𝜏 − (|)u − )|𝜏|)v + |𝜏 + (|)v) (.) 

where H is the Hurst coefficient ( ≤ H ≤ ), which loosely speaking, controls the degree of 
long-term dependence (or persistency) of the process. It has been shown that for large time lags 
and 𝐻 > ;.8, the parameter β of CAS is related to the H coefficient of an HK ACF through the 
relationship 𝛽 = ( () − )𝐻)⁄ > (, thus asymptotically resembling the right tail of the HK 
theoretical model. More specifically, for β >  and when 𝜅	is set equal to 𝜅;, see Eq. (5.10), CAS 
closely approximates the theoretical ACF of an HK process, even from small time lags. 

 
𝜅 = 𝜅; ∶=

(

𝛽 ��( − (
𝛽��( −

(
)𝛽��

^ 
(.) 

In addition, the ACF of an SRD process (ARMA-type) can be obtained through CAS, by setting 
𝛽 = ; and applying the L’ Hôpital’s rule. The resulting SRD ACF is given by, 

 𝜌¬^x[ = exp(−𝜅𝜏) (.) 
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Furthermore, when 𝜅 = − ln(𝜌(), and ; ≤ 𝜌( ≤ (, Eq. (5.10) reduces to the classic Markovian 
ACF of an AR() process, given by, 𝜌¬

]x(() = 𝜌(
|¬|. For other parameter values, CAS resembles 

a plethora of alternative autocorrelation structures, that differ from the aforementioned classic 
models [see, Koutsoyiannis, ]. The flexibility of CAS is illustrated in Figure 5.1a where we 
depict (in a log-log scale) the theoretical ACF of various HK processes, characterized by 
different values of Hurst coefficient, H, as well as, their approximation with CAS. The close 
agreement of the two theoretical models is further validated in Figure 5.1b where we plot (also 
in log-log scale) their climacograms (assuming	𝜎) = 𝑐; = (), which are practically 
indistinguishable. It is noted that for an HK process, which exhibits simple and constant scaling 
laws, the slope, 𝑠, of the climacogram 	𝛾(�), i.e., the log-log derivative 𝑠 ≔
dllnl	𝛾(�)nn d(ln(𝑘))⁄ , is related with H parameter by 𝑠 = )𝐻 − ). The resemblance of the 
HK and CAS is confirmed by estimating the average mean square error (MSE) of the depicted 
processes by means of both ACF and climacogram. In terms of ACF, the average MSE value is 
. and the corresponding value in terms of climacogram is .. 

 
Figure 5.1 | a) Autocorrelation functions and b) climacograms of HK processes exhibiting different 
Hurst coefficients (dashed lines) and their approximation with the CAS (continuous line). 

Considering the practical aspects of the identification procedure of the auto-dependence 
structure (e.g., estimation of the parameters of CAS or any other theoretical structure, given a 
sample time series), it is remarked that it is a challenging task due the fact that the sample 
estimates of variance and autocorrelation coefficients (i.e., empirical variance and ACF - 
calculated from the historical time series) are negatively biased [e.g., Marriott and Pope, ; 
Beran, ; Koutsoyiannis, , , ], especially in the presence of LRD (e.g., HK 
behavior). A thorough treatment on the subject lies beyond the scope of this study, as it has 
been extensively documented by the aforementioned authors, as well as by Dimitriadis and 
Koutsoyiannis [] who highlighted the advantages of using the climacogram, in comparison 
with the ACF and power spectrum, for the identification of the auto-dependence structure. The 
authors via an extended analysis of a wide range of SRD and LRD processes showed that the 
climacogram exhibits less uncertainty and bias in its estimation, while bias can be easily 
estimated a priori, thus providing an attractive alternative to the latter classic approaches. 
Further to this, the climacogram can be used as a basis for LRD identification algorithms [e.g., 
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Tyralis and Koutsoyiannis, ], as well as for the development additional tools (e.g., the 
climacospectrum) that provide further insights regarding the asymptotic behavior of the 
process [Koutsoyiannis, , ]. It is noted that in this work, the above mentioned 
stochastic tools (i.e., ACF and CG) are mainly employed for diagnostic, and not for 
identification purposes, i.e., to verify that the simulated processes exhibit the desired 
dependence properties. 

5.3 THEORETICAL BACKGROUND OF THE MODELS 
The central idea of the proposed approach is based on the Nataf’s joint distribution model 
[NDM, Nataf, ] which has been originally implemented for the generation of cross-
correlated, yet serially independent, random vectors with arbitrary distributions. One of its key 
assumptions, which consequently holds for SMARTA and CMARTA or any other Nataf-based 
method, is that the employed distributions owe to have finite variance. This assumption is 
implied throughout this work. 

In this work, we employ the concept of NDM, but in a different context, i.e., for the simulation 
of stationary any-range-dependent stochastic processes. Particularly, the rationale of NDM is 
combined with an auxiliary Gaussian process in order to capture the stochastic structure (in 
terms of autocorrelation and cross-correlation coefficients) of the target process and 
simultaneously preserve the desired marginal distributions after the use of the ICDF.  

Suppose that the goal is to generate a m-dimensional discrete-time stationary process	𝒙� =
{𝑥�(,… , 𝑥� , … , 𝑥�Î}

Ï
, where t is the time index and the indices 𝑖, 𝑗 = (,… ,𝑚 are used to refer to 

individual process 𝑥�  and 𝑥�
Ø respectively. Also let, 	𝒙� = {𝑥�(,… , 𝑥� , … , 𝑥�Î}

Ï
 denote a 

realization of it. Furthermore, let us assign a target cumulative distribution function (CDF), 
denoted by,	𝐹j) ≔ 𝑃l𝑥  ≤ 𝑥n	to each individual process 𝑥� , and let 𝜌�,�H¬

 ,Ø ≔ Corr[𝑥� , 𝑥�H¬
Ø ] 

denote the target Pearson’s correlation coefficient between 𝑥�  and 𝑥�
Ø for time lag τ.  

Likewise, and using the same notation as above, let 𝒛� = {𝑧�(, … , 𝑧� , … , 𝑧�Î}
Ï

 be an auxiliary m-
dimensional stationary standard Gaussian process with zero mean and unit variance. Also, 
let	𝜌.�,�H¬

 ,Ø ≔ Corr[𝑧� , 𝑧�H¬
Ø ] denote the Pearson’s correlation coefficient of the auxiliary process 

between 𝑧�  and 𝑧�
Ø  for time lag τ, hereafter, referred to as equivalent correlation coefficient. It 

is noted that throughout the Chapter the superscripts or subscripts of 𝜌�,�H¬
 ,Ø  or 𝜌.�,�H¬

 ,Ø  may be 
omitted when possible. For example, the target autocorrelation of the process 𝑥�  will be denoted 
𝜌¬   and its lag-τ cross-correlation with 𝑥�

Ø as	𝜌¬
 ,Ø . 

As mentioned earlier, the idea behind SMARTA and CMARTA models (and any other Nataf-
based stochastic model; see section 4.3) lies in simulating an auxiliary standard Gaussian 
process 𝒛� using the auxiliary model (i.e., SMA or CMAR) with such parameters that after 
applying the inverse of their distribution function, results in a process 𝒙� with the desired 
correlation structure and marginal distributions. This mapping operation can be written as 
follows,  

 𝑥�  = 𝐹j)
s( ~Φl𝑧� n� (.) 

where Φ(∙) denotes the standard normal CDF and 𝐹j)
s((∙) stands for the ICDF of process 𝑥� . 

An advantage of the above scheme is that since the ICDFs of the target distributions are 
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employed (given that they can be analytically or numerically evaluated), the process 𝑥�  will 
inevitably have the desired marginal properties. Although, the Pearson’s correlation coefficient 
is not invariant under such non-linear monotonic transformations [Embrechts et al., ], 
hence 𝜌�,�H¬

 ,Ø  will differ from	𝜌.�,�H¬
 ,Ø .  

Therefore, the main challenge of such approaches, lies in identifying the equivalent correlations 
coefficients that should be used within the generation procedure (Gaussian domain) in order 
to attain the target correlation structure in the actual (i.e., real) domain. The relationship 
between equivalent and target correlations can be expressed theoretically through the following 
double infinite integral (see [Nataf, ; Liu and Der Kiureghian, ; Biller and Nelson, 
], as well as section 4.3.2), 

 

𝜌�,�H¬
 ,Ø = 

∫ ∫ 𝐹j)
s( ~Φl𝑧� n� , 𝐹jä

s( ~Φl𝑧�H¬
Ø n�	𝜑)l𝑧� , 𝑧�s¬

Ø , 𝜌.�H¬
 ,Ø nd𝑧� d𝑧�H¬

Øt
st

t
st − E{𝑥 }	E{𝑥Ø}

�Var{𝑥 }	Var{𝑥Ø}
 

(.) 

where E{𝑥 }, E{𝑥Ø} and Var{𝑥 }, Var{𝑥Ø} denote the mean and variance of 𝑥 	and	𝑥Ø 
respectively; which are known from the corresponding distributions 𝐹j) and 𝐹jä and have to 

be finite. Furthermore, 𝜑)l𝑧� , 𝑧�H¬
Ø , 𝜌.�,�H¬

 ,Ø n denotes the bivariate standard normal probability 
density function. 

Inspection of Eq. (5.13) indicates that 𝜌�,�H¬
 ,Ø  is a function of	𝜌.�,�H¬

 ,Ø , since all other quantities are 
already known from the target (i.e., given) distributions 𝐹j) and	𝐹jä. Therefore, it can be 
compactly written as, 

 𝜌�,�H¬
 ,Ø = ℱ ~𝜌.�,�H¬

 ,Ø [𝐹j) , 	𝐹jä� (.) 

where ℱ(∙) is an abbreviation of the function defined by Eq. (5.13), which can be approximated 
with the use of numerical techniques such as the one employed herein (see section 4.5.1). 

This relationship implies that prior to the estimation of the auxiliary Gaussian model’s 
parameters it is essential to identify, and next use within parameter estimation, the equivalent 
correlations, 𝜌.�,�H¬

 ,Ø , that result to the target correlations,	𝜌�,�H¬
 ,Ø ,	after the subsequent mapping 

of the auxiliary process to the actual domain. This can be achieved through inversion of Eq. 
(5.14), i.e., 𝜌.�,�H¬

 ,Ø = ℱs( ~𝜌�,�H¬
 ,Ø [𝐹j) , 	𝐹jä�. 

5.4 THE AUXILIARY GAUSSIAN MODELS 
Having described the theoretical background of the proposed Nataf-based models, this section 
provides a brief introduction a) to the univariate and multivariate symmetric moving average 
(SMA) model of Koutsoyiannis [], which is used within SMARTA as an auxiliary standard 
Gaussian process model, as well as b) to the univariate and contemporaneous multivariate 
autoregressive (CMAR) model, which is employed within CMARTA model. 

It is also remarked that instead of SMA or CMAR, any other linear stochastic model (e.g., 
ARMA-type) could be employed in order to mathematically describe the auxiliary Gaussian 
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process, yet, it is anticipated that the resulting simulation scheme will inherit its properties 
regarding the simulation of univariate and multivariate processes. For instance, since cross-
correlation coefficients other than lag- are not directly modeled by these models, in the case 
of hydrometeorological processes characterized by strongly lagged cross-correlations (e.g., 
rainfall-runoff at fine time scales), it may be advantageous to employ the full MAR model 
(preferably, for parsimony and stability, in combination with suitable theoretical auto- and 
cross-correlation structures; e.g., similar to CAS), which apart from the lag- cross-
correlations, is capable to directly model the lagged cross-correlation coefficients. 

Note that the notation slightly differs from the typical one (we use the tilde representation) in 
order to highlight the fact the models are employed in the Gaussian domain using the 
equivalent correlation coefficients 𝜌., instead of the target correlation coefficients,	𝜌.  

5.4.1 The univariate SMA model 

SMA model is a special case of the Backward-Forward Moving Average (BFMA) model, whose 
key idea is that a stochastic process 𝑧�  can be described as a weighted sum of infinite backward 
and forward random variables. In practice, the model slightly relaxes the assumptions of BFMA 
model and assumes that a stochastic process 𝑧�  can be described as a weighted sum of a finite 
number of backward and forward random variables. Particularly, the generating mechanism of 
the SMA model is given by the following equation, 

 𝑧� = á 𝑎.|y|𝑣�Hy

É

yâsÉ

= 𝑎.É𝑣�sÉ +⋯+ 𝑎.(𝑣�s( + 𝑎.;𝑣� + 𝑎.(𝑣�H( +⋯+ 𝑎.É𝑣�HÉ  (.) 

where 𝑣� are standard normal i.i.d. variables and 𝑎.y	are internal model parameters (i.e., weight 
coefficients) that are assumed to be symmetric, i.e., 𝑎.y = 𝑎.sy 	(for	𝜁 = (, ), … ) and approach 
zero after some value |𝜁| > 𝑞, where q denotes a large positive integer value. The selection of 𝑞 
depends on the degree of auto-dependence imposed by the target process (e.g., through CAS; 
Eq. (5.8)) and the desired level of accuracy. Furthermore, 𝑞 cannot be greater than the length 
of the time series to simulate. Particularly, the parameters 𝑎.y  are related to the autocorrelation 
coefficients 𝜌ý𝜏 via a q +  equation system of the following form, 

 𝜌.¬ = á 𝑎.|y|𝑎.|¬Hy|,
És¬

yâsÉ

							𝜏 = ;, (, ),… , 𝑞 (.) 

 𝜌.¬ =á 𝑎.y𝑎.¬sy ,
É

yâ¬sÉ
									𝜏 = 𝑞 + (,… , )𝑞 (.) 

If Eq. (5.16) is honored, the model resembles the theoretical ACF up to 𝜌ý𝑞, while it decays to 
zero after q (see Eq. (5.17)). In order to estimate the parameters 𝑎.y , Koutsoyiannis [] 
proposed two solutions, one closed-form and one based on a formulation of an optimization 
problem. The interested reader is referred to the above publication for a thorough and in-depth 
description of the two methods. In this work we restrict our attention in briefly describing only 
the first one since it is a fast and direct method. The aforementioned author showed that the 
discrete Fourier transformation (DFT) of 𝑎.y , i.e., 𝑆¶.(ω), is related to the power spectrum of 
the autocorrelation function, i.e.,	𝑆~ý(ω), by, 𝑆¶.(ω) = -)𝑆~ý(ω) . 
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If the autocorrelation structure 𝜌ý𝜏 is known (or specified), its power spectrum can be calculated 
using the DFT, hence estimate 𝑆¶.(ω).	Then, by applying the inverse Fourier transformation 
one can obtain the parameters 𝑎.y . It is remarked that algorithms that facilitate these 
calculations are nowadays built-in in most high-level programming languages (e.g., R or 
MATLAB) which in turn allow the straightforward implementation of SMA and SMARTA 
models in most computational environments. At this point we note that Koutsoyiannis [, 
] proposed an even simpler and straightforward procedure for the estimation of 𝑎.y  
coefficients, which however is applicable only for HK (i.e., fGn) type autocorrelation structures. 

5.4.2 The multivariate SMA model 

Furthermore, the SMA model can be extended for the multivariate simulation of 
contemporaneously cross-correlated processes via the explicit preservation of the lag- cross-
correlation coefficients. Particularly, let 𝒛� = {𝑧�(,… , 𝑧� , … , 𝑧�Î}

Ï
 be a m-dimensional vector of 

m processes and 𝜌.¬
 ,Ø ≔ Corr{𝑧� , 𝑧�H¬

Ø } denote the equivalent lag-𝜏 cross-correlation between 
process 𝑧�  and 𝑧�

Ø  for time lag 𝜏. Similar to the univariate case, each process 𝑧�  is represented 
by a weighted sum of random variables 𝑣�  , i.e., 

 𝑧�  = á 𝑎.|y|  𝑣�Hy 

É

yâsÉ

 (.) 

In this case, the random variables 𝑣�   are considered serially independent but 
contemporaneously cross-correlated. Therefore, the problem lies in generating such variables 
in a way that they reproduce the equivalent lag- cross-correlation coefficients (𝜌.;

 ,Ø).  

It has been shown that it suffices to generate random variables 𝑣�   with correlation	𝑔. ,Ø ≔
Corr{𝑣�  ,𝑣�

Ø} equal to, 

 𝑔. ,Ø =
𝜌.;
 ,Ø

∑ 𝑎.|y|  𝑎.|y|
ØÉ

yâsÉ

 (.) 

Hence, the (m × m) correlation matrix 𝑮þ is formulated, with ones in the diagonal and its 𝑖$j ≠
𝑗$j elements determined by, 𝑮þ[ ,Ø] = 𝑔. ,Ø . Furthermore, the theoretical lag-𝜏 cross-correlation 
structure of the model is given by, 

 𝜌.¬
 ,Ø = 𝜌.;

 ,Ø ∑ 𝑎.|¬Hy|  𝑎.|y|
ØÉs¬

yâsÉ

∑ 𝑎.|y|  𝑎.|y|
ØÉ

yâsÉ

= 𝑔. ,Ø á 𝑎.|¬Hy|  𝑎.|y|
Ø

És¬

yâsÉ

 (.) 

Regarding simulation, a vector of correlated random variables 𝒗� = {𝑣�(, … , 𝑣�  , … , 𝑣�Î}
Ï

 can be 

generated by, 𝒗� = 𝑩þ𝒘� , where	𝒘� = {𝑤�(, … , 𝑤�  … ,𝑤�Î}
Ï

 is a vector of standard normal i.i.d. 
variables, and 𝑩þ  is a m × m matrix obtained by finding the so-called square root of matrix 𝑮þ , 
i.e., Eq. (5.21). For its computation see section 5.4.5. 

 𝑩þ𝑩þÏ = 𝑮þ (.) 
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At this point it is noted that an incidental contribution of SMARTA is the alleviation of a 
burden related to preservation of the skewness coefficient. As mentioned in the introduction, 
a broad class of linear stochastic models in an attempt to preserve the coefficients of skewness 
of the target process, 𝑥�, employ non-Gaussian white noise for the innovation term, 𝑣�, typically 
from Pearson type-III distribution. However, this practice may lead to very high coefficients of 
skewness for the innovation term which are hardly attainable [Todini, ; Koutsoyiannis, 
]. This practice was also adopted by Koutsoyiannis [] in the original SMA scheme 
where the abovementioned distribution has been employed for the generation of skewed white 
noise. More specifically, as far as it concerns the univariate formulation of the SMA model 
(assuming q = ), in Figure 5.2a-b we depict (from two distinct points of view) the 
relationship between the skewness coefficient ~𝐶��� of innovation term, 𝑣� that is required in 

order to attain the target coefficient of skewness ~𝐶��� of the variable, 𝑥� , for several 
hypothetical HK process with characterized by different values of H coefficient. See also Eq. 
() in Koutsoyiannis []. It is apparent from in Figure 5.2a-b that the higher the value of 
H, the higher the required skewness of the innovation term, 𝑣�. For example, in an HK process 
with H = ., the skewness coefficient of innovation term 𝑣�  has to be set twice as high as than 
the one of 𝑥�. We remark that this issue is further amplified (not shown herein) when the 
underlying model is used in multivariate mode [Koutsoyiannis, ]. On the other hand, 
SMARTA completely alleviates these difficulties since the SMA scheme is used as an auxiliary 
model in the standard Normal (i.e., Gaussian) domain and the generated data are subsequently 
mapped to the actual domain using the target ICDFs. Therefore, the target marginal statistics 
are attained without making no attempts to generate skewed innovation terms, neither in 
univariate nor multivariate mode. Moreover, an additional contribution of SMARTA regards 
the optimization problem that arises when the matrix 𝑮þ is non-positive. Particularly, the 
problem is simplified in a nearest correlation matrix problem, since the rd term of Eq. () in 
Koutsoyiannis [], that accounts for skewness, is no longer needed. 

 

Figure 5.2 | Graphical illustration of the relationship between the required skewness coefficient ~𝐶��� 

of innovation term 𝑣� and a) the skewness ~𝐶���	of an fGn process 𝑥� for various values of H and b) the 
value of H of an fGn process 𝑥� for various values of skewness of 𝐶�� (using the SMA model with q = ). 
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5.4.3 The univariate AR model 

An alternative, and particularly popular model for stationary processes, is the autoregressive 
model of order p (i.e., AR(p)), which has been the basis of the AutoRegressive To Anything 
model (ARTA; [Cario and Nelson, ]). A standard Gaussian AR(p) process with zero mean 
and unit variance can be simulated by, 

 𝑧� = á𝑎.Ø𝑧�sm + 𝜀�

g

mâ(

 (.) 

where 𝑝 denotes the order of the model, and 𝑎.m  are the model’s parameters, while 𝜀�~𝒩(;, 𝜎­)). 
The parameters 𝛼.m  can be obtained by solving the Yule-Walker system. Specifically, given a p-
dimensional vector of correlation coefficients, 𝝆ýg = {𝜌.(, … , 𝜌.g}

Ï
 the parameter vector 𝒂ýg =

{𝑎.(, … , 𝑎.g}
Ï

, can be obtained by, 

 𝒂ýg = 𝑷þgs(𝝆ýg (.) 

where, 𝑷þgs( denotes the inverse of (𝑝 × 𝑝) matrix 𝑷þg whose ith and jth element are	[𝑷þg] ,Ø =
𝜌.| sØ|. After the specification of 𝑎.m , 𝜎­) is obtained by, 𝜎­) = ( − ∑ 𝑎.m𝜌.m

g
mâ( . A stationary AR(p) 

process reproduces the autocorrelation structure of the process up to lag p, while for 𝜏 ≥ 	𝑝 +
( its correlation structure is given by, 𝜌.¬ = 𝛼.(𝜌.¬s( + 𝛼.)𝜌.¬s) +⋯+ 𝛼.g𝜌.¬sg, or more 
compactly, by, 𝜌.¬ = ∑ 𝛼.Ø𝜌.¬sm

g
mâ( . 

As a side note let us provide an additional relationship that will be subsequently used within 
the parameter estimation procedure of the auxiliary Gaussian CMAR model. According to 
Wold’s representation theorem any covariance stationary causal process can be written as a 
general linear process, i.e., as a weighted linear combination of past and present i.i.d. random 
variables	𝑤� . 

 𝑧� = 𝜓;𝑤� + 𝜓(𝑤�s( + 𝜓)𝑤�s) +⋯ =á𝜓y

t	

yâ;

𝑤�sy  (.) 

where 𝜓y  are weight coefficients. This representation is also known as infinite moving average 
representation, i.e., MA(∞). It can be shown that 𝜓y  are related with the coefficients 𝑎.y 	of 
AR(p) model by [e.g., Cryer and Chan, ; Shumway and Stoffer, ], 

 

𝜓; = (
𝜓( = 𝑎.(

𝜓) = 𝑎.) + 𝑎.(𝜓(
⋮

𝜓y = 𝑎.g𝜓ysg + 𝑎.gs(𝜓ysgH( +⋯+ 𝑎.(𝜓ys(

 (.) 

or more compactly, 

 𝜓y =á𝑎.m

y	

mâ(

𝜓ysm , for	𝜁 = (, ), … (.) 
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where 𝜓; = ( and 𝑎.y = ;	for	𝜁 > 𝑝. It is also noted that a similar relationship exists for 
ARMA-type models. Nevertheless, since	𝜓Ø  decay with increasing 𝜁 and approach zero after 
some large value of 𝜁 it is possible to truncate Eq. (5.24) at some large value 𝑞 to read, 

 𝑧� = á𝜓y

É	

yâ;

𝑤�sy  (.) 

5.4.4 The multivariate AR model 

The univariate AR(p) model can been extended for multivariate processes [e.g., Pegram and 
James, ; Kottegoda, ; Bras and Rodríguez-Iturbe, ; Cryer and Chan, ; 
Shumway and Stoffer, ], and it is often referred to as multivariate or vector autoregressive 
(MAR(p) or VAR(p)) model. Assuming that we wish to model a m-dimension vector of 
Gaussian processes 𝒛� = {𝑧�(, . . , 𝑧�Î}

Ï
 with zero and unit variance, its generating equation is 

given by, 

 𝒛� = 𝑨þ(𝒛�s( + 𝑨þ)𝒛�s) +⋯+ 𝑨þg𝒛�sg 	+ 𝜺� =á𝑨þm𝒛�sm

g

mâ(

	+ 𝜺� (.) 

where 𝑝 denotes the order of the model, 𝑨þm  are (𝑚 ×𝑚) parameter matrices and 𝜺� =
{𝜀�(, . . , 𝜀�Î}

Ï
 is a vector of m Gaussian variates with zero mean and covariance matrix 𝑮þ ≔

Cov{𝜺�, 𝜺�} (whose ith jth element is denoted by 𝑔. ,Ø). The correlation (since we assume a 
standard Gaussian model) matrix of time lag 𝜏, is denoted by 𝑹þ¬ ≔ Corr{𝒛�, 𝒛�s¬}, and is 
related with the parameter matrices 𝑨þm  by, 

 𝑹þ¬ − 𝑨þ(𝑹þ¬s( −⋯− 𝑨þg𝑹þ¬sg = ·𝑮þ if	𝜏 = ;
𝟎 if	𝜏 > ;

 (.) 

Specifically, for 𝜏 = ;, the system reads, 

 𝑮þ = 𝑹þ; − 𝑨þ(𝑹þ(Ï −⋯− 𝑨þg𝑹þgÏ = 𝑹þ; −á𝑨þm𝑹þmÏ
g

mâ(

 (.) 

Furthermore, Eq. (5.29) can be written in a matrix notation as follows (for	𝜏 = (, … , 𝑝), 

 {𝑹(, 𝑹),… , 𝑹g} = {𝑨þ(, 𝑨þ),… , 𝑨þg}

⎣
⎢
⎢
⎢
⎡ 𝑹
þ; 𝑹þ( ⋯ 𝑹þgs(
𝑹þ(Ï 𝑹þ; ⋯ 𝑹þgs)
⋮

𝑹þgs(Ï
⋮

𝑹þgs)Ï
⋱ ⋮
⋯ 𝑹þ; ⎦

⎥
⎥
⎥
⎤
 (.) 

where 𝑹þs¬ = 𝑹þ¬2. Eq. (5.31) is also known as the multivariate Yule-Walker system of MAR(p) 
model. Provided that the matrices 𝑹þ(, 𝑹þ),… , 𝑹þg are known, the Yule-Walker system of 
MAR(p) can be solved for 𝑨þ(, 𝑨þ), … ,𝑨þg, i.e.,  
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 {𝑨þ(, 𝑨þ), … ,𝑨þg} = {𝑹(,𝑹),… , 𝑹g}

⎣
⎢
⎢
⎢
⎡ 𝑹
þ; 𝑹þ( ⋯ 𝑹þgs(
𝑹þ(Ï 𝑹þ; ⋯ 𝑹þgs)
⋮

𝑹þgs(Ï
⋮

𝑹þgs)Ï
⋱ ⋮
⋯ 𝑹þ; ⎦

⎥
⎥
⎥
⎤
s(

 (.) 

Arguably, this is a complex system of equations that requires the specification of 𝑝 matrices 𝑹þg. 
The overall parameter estimation procedure can be significantly simplified if we assume that 
the parameter matrices 𝑨þ(, 𝑨þ), … ,𝑨þg are diagonal, i.e., 

 𝑨þm = :
𝑎.m[(,(] ; ;
; ⋱ ;
; ; 𝑎.m[Î,Î]

; = {𝑨þm} ,Ø  (.) 

Thereby formulating the so-called contemporaneous multivariate autoregressive model of 
order 𝑝 (i.e., CMAR(p); [see, Pegram and James, ]). This simplification apart from the 
reproduction of the autocorrelation structure of the process up to time lag 𝑝 (as in the case of 
full matrices 𝑨þm), implies the direct reproduction of the lag- cross-correlation structure, i.e., 
correlation matrix 𝑹þ;. Using the contemporaneous formulation, the model can be decomposed 
into m univariate AR(p) models, which are contemporaneously cross-correlated at lag , i.e., 

 

𝑧	�( = 𝑎.([(,(]𝑧	�s(( + 𝑎.)[(,(]𝑧	�s)( +⋯+ 𝑎.m[(,(]𝑧	�sm( +⋯+ 𝑎.g[(,(]𝑧	�sg( 	+ 𝜀	�(

⋮
⋮
⋮

𝑧	�Î = 𝑎.([Î,Î]𝑧	�s(Î + 𝑎.)[Î,Î]𝑧	�s)Î +⋯+ 𝑎.m[Î,Î]𝑧	�smÎ +⋯+ 𝑎.g[Î,Î]𝑧	�sgÎ 	+ 𝜀	�Î

 (.) 

Alternatively, and assuming that 𝑩þ𝑩þÏ = 𝑮þ, where 𝑩þ  is a 𝑚 ×𝑚 matrix that denotes the square 
root matrix of 𝑮þ (for its computation see section 5.4.5.), Eq. (5.34) can be rewritten as, 

 𝑧�  = 	á𝑎.m[ , ]	𝑧�sm 

g

mâ(

+á𝑏D[ ,Ø]	𝑤�
Ø

Î

Øâ(

 (.) 

where 𝑤�
Ø are i.i.d. standard Gaussian variates (i.e., 𝑤�

Ø~𝒩(;,()).  

In this form, and assuming that the autocorrelation structure of each process is known (e.g., 
specified by a theoretical model such as CAS), the parameters 𝛼m  (𝑙 = (, . . , 𝑝), as well as the 
variance (𝜎­)) of	𝜀� , can be easily computed through the univariate Yule-Walker system. Hence 
it is possible to fully estimate the matrices 𝑨þ(, 𝑨þ),… , 𝑨þg as well as the diagonal elements of 𝑮þ, 
which are, 𝑔. ,  = Var{𝜀	�  , 𝜀	�  } = 𝜎­)

) .  

According to Pegram and James [], in order to estimate the off-diagonal elements of 𝑮þ one 
can resort either to iterative methods or solve a complicated system of equations. Both solutions 
experience difficulties, especially when implemented in a computer software. Herein, we 
propose an alternative technique, which to the best of our knowledge is new. It is reminded 
that according to Eq. (5.24) each individual process 𝑧	�   can be represented in terms of a MA(∞) 
process, which can be truncated in some high value of 𝑞, i.e., 
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 𝑧	�  =á𝜓y 
É	

yâ;

	𝑤	�sy   (.) 

The elements 𝜓y   can be easily computed for each process 𝑧	�   using Eq. (5.25) or (5.26). 
Provided that the 𝜓y   quantities are estimated, the off-diagonal ith jth elements (for 𝑖, 𝑗 = (,… ,𝑚 
and 𝑖 ≠ 𝑗; since the diagonal elements are known) of matrix 𝑮þ are identified as follows, 

 𝑔. ,Ø =
[𝑹þ�] ,Ø

∑ 𝜓y 
É
yâ; 𝜓y

Ø = 	
𝜌.;
 ,Ø

∑ 𝜓y 
É
yâ; 𝜓y

Ø  (.) 

It is also noted that the elements 𝜓y   can be used for the estimation of any cross-correlation 
value for lag 𝜏 = ;,(,)… through, 

 Cov{𝑧	�  , 𝑧	�H¬
Ø } = [𝑹þ�] ,Ø

∑ 𝜓y 
És¬
yâ; 𝜓yH¬

Ø

∑ 𝜓y 
É
yâ; 𝜓y

Ø = 𝜌.;
 ,Ø ∑ 𝜓y 

És¬
yâ; 𝜓yH¬

Ø

∑ 𝜓y 
É
yâ; 𝜓y

Ø = 𝑔. ,Ø á𝜓y 
És¬

yâ;

𝜓yH¬
Ø  (.) 

5.4.5 A note on the computation of the square root matrix 

Both of the aforementioned models, when employed in multivariate mode, involve the problem 
of find the square root of a matrix, i.e., 𝑩þ𝑩þÏ = 𝑮þ. This can obtained by standard decomposition 
(e.g., Cholesky or singular value decomposition) or optimization-based methods 
[Koutsoyiannis, ; Higham, ]. Specifically, if 𝑮þ is positive definite (which indicates that 
the multivariate process is admissible), the problem has infinite solutions hence, both 
decomposition and optimization-based methods can be employed. On the other hand, when 𝑮þ 
is non-positive definite (implying that the multivariate process is inadmissible), the former 
methods cannot offer a solution. In this case, optimization-based techniques can provide a 
potential remedy, by formulating an optimization problem, where the objective is to identify a 
matrix 𝑩þ∗ which results to a feasible and near-to-optimum matrix 𝑮þ∗ ≔ 𝑩þ∗ 𝑩þ∗Ï which is as 
closest (typically quantified in terms of some distance measure; e.g., Euclidean norm) as 
possible to the original matrix 𝑮þ. Of course, in such cases, the target process will not be exactly 
resembled, while, the difference between 𝑮þ and 𝑮þ∗ can be regarded as a proxy for the magnitude 
of approximation introduced to the simulation. Bras and Rodríguez-Iturbe [ p. ], as well 
as Koutsoyiannis [] discuss several situations which may lead to a non-positive definite 
matrix 𝑮þ. Almost all of these situations are related with the estimates of correlation coefficients 
from the empirical data. In the case of SMARTA and CMARTA, and provided that a feasible 
autocorrelation structure has been identified for each individual process, a non-positive 
definite matrix 𝑮þ may arise due to, data-based estimates of lag- cross-correlation coefficients, 
imprecise approximation of equivalent correlation coefficients or incompatible combinations 
of marginal distributions, autocorrelation structures and target cross-correlations (see section 
4.1.2). For instance, since the proposed scheme (in multivariate mode) treats each individual 
process separately of the cross-correlations, the simulation of highly cross-correlated processes 
with particularly different distributions and autocorrelation structures (e.g., very fast-decaying 
and very slow-decaying) may be infeasible (see section 5.6.1.2 for a simulation example using 
SMARTA, involving both positively and negative cross-correlated LRD and SRD processes), 
even if the employed autocorrelation structures are individually valid. 
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5.5 GENERATION PROCEDURE 

Having described in detail all the key components of SMARTA and CMARTA models in the 
previous sections, we useful to provide the complete generation procedure in a step-by-step 
manner. The procedure is similar for the two models (it differs only on step ), and can be 
decomposed into the following six steps: 

Step 1. Define a target distribution 𝐹j) for each process 𝑥� ; 	𝑖	 = 	(,… ,𝑚. SMARTA and 
CMARTA, as well as all Nataf-based methods, are flexible in terms of distribution fitting 
method; hence one can select a fitting method of their preference. 

Step 2. Define a target auto-correlation structure (𝜌¬  ) for each process 𝑥� ; 	𝑖	 = 	(, … ,𝑚 using 
a theoretical ACF model. For instance, for each process 𝑥�  identify the parameters of CAS that 
better fit the observed data.  

Step 3. Identify the equivalent correlation coefficients (𝜌.¬  ) of each theoretical ACF, up to the 
maximum specified lag (which depends on the type of the process; LRD or SRD), for each 
process 𝑥� ; 	𝑖	 = 	(, … ,𝑚. Furthermore, in the multivariate case, the lag- equivalent cross-
correlation coefficient 𝜌.;

 ,Ø  between processes, 𝑥� 	and	𝑥�
Ø; 	𝑖 ≠ 	𝑗	 = 	(, … ,𝑚 should be also 

determined. Assuming that the algorithm of section 4.5.1 is employed for the identification of 
equivalent correlations, and given the fact that it allows the direct estimation of the equivalent 
ACF up to any lag, the algorithm has to be employed m times, one for each process 𝑥� ; 	𝑖	 =
	(, … ,𝑚. Furthermore, in order to estimate the lag- equivalent cross-correlation coefficient 
𝜌.;
 ,Ø  , the same procedure should be employed 𝑚(𝑚 − ()/) additional times. For instance, in a 

-dimensional problem (𝑚	 = 	>), the algorithm of section 4.5.1 is executed in total,	𝑚(𝑚 +
()/) times (=). 

Step 4. (SMARTA) Calculate the parameters of the univariate auxiliary SMA model (section 
5.4.1), i.e., the weight coefficients (𝑎.y  ) of each auxiliary process 𝑧� ; 	𝑖	 = 	(, … ,𝑚. Additionally, 
in the multivariate case (section 5.4.2), calculate the elements of matrices 𝑮þ	and 𝑩þ  (see also, 
Eq. (5.20) and (5.21)). 

Step 4. (CMARTA) Calculate the parameters of the auxiliary AR model (section 5.4.3), i.e., the 
autoregressive coefficients (𝑎.m ) of each auxiliary process 𝑧� ; 	𝑖	 = 	(,… ,𝑚. Additionally, in the 
multivariate case (section 5.4.4), establish the MA(∞) representation (by truncating it to some 
large value 𝑞; see Eq. (5.25), Eq. (5.26) and Eq. (5.37)) of each process and obtain the quantities 
𝜓y  . Subsequently estimate the elements of matrices 𝑮þ	(see Eq. (5.37)) and 𝑩þ  (see also, Eq. 
(5.35)). 

It is noted that the weight coefficients (𝑎.y  ) of each auxiliary SMA model and the autoregressive 
coefficients (𝑎.m ) of each auxiliary AR model, are not essentially model parameters, since the 
correlation structure to simulate has already specified by a theoretical model (e.g., CAS; Step 
2). Thereby, high order model specifications are parameter-parsimonious and the order of the 
model solely controls the degree of resemblance of the target correlation structure. 

Step 5. Employ the auxiliary Gaussian SMA or CMAR model and generate a realization of the 
auxiliary univariate (𝑧�) or multivariate process (𝒛�).  
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Step 6. Attain the actual process	𝑥� (or	𝒙�), by mapping the auxiliary Gaussian process	𝑧� (or 
𝒛�) to the actual domain using the ICDF, 𝐹j)

s(, of each process 𝑥� ; 	𝑖	 = 	(, … ,𝑚, via Eq. (5.12). 

5.6 HYPOTHETICAL SIMULATION STUDIES 
Prior employing real-world datasets to demonstrate the developed approaches we decided to 
setup a series of hypothetical simulation studies (univariate and multivariate) of processes 
characterized by a variety of target distribution functions (continuous, discrete or mixed-type). 
The motivation regarding this choice was based on conducting experiments where all the 
assumptions are a priori known, hence allowing the comprehensive evaluation and assessment 
of the models without the effect of exogenous factors, such as, erroneous or short length 
historical data. However, it is remarked that the proposed models (SMARTA and CMARTA) 
are generic, and can be directly applied for the simulation of univariate and multivariate 
stationary processes (e.g., geophysical, hydrometeorological and beyond). In this vein, in 
section 5.7 we focus on SMARTA model whose applicability is demonstrated using two real-
world datasets, one that concerns the simulation of annual non-Gaussian streamflow at four 
stations and another that involves the simulation of intermittent, non-Gaussian, daily rainfall 
at a single location 

5.6.1 SMARTA model 

5.6.1.1 Simulation of univariate processes 

The first simulation study constitutes a comparison between the original SMA and the 
proposed SMARTA models (with q =  for both) for the simulation of long (i.e.,  time steps) 
univariate HK processes (i.e., fGn), exhibiting different Hurst coefficients, i.e., H ∈ {., ., 
., .} and Pearson type-III marginal distribution (𝒫III). Towards this, we identified a total 
of  scenarios each one characterized by 𝒫III and different H coefficients. It is reminded that 
the original SMA model, in order to approximate the marginal statistics employes 𝒫III variates 
for the innovation term (hence hereafter reffered to as SMA-𝒫III), while SMARTA uses the 
ICDF of the target ditribution; in this case 𝒫III. The rationale regarding the selection of this 
distribution intended at conducting a fair and meaningfull comparison among the two models, 
which in this formulation have exactly the same number of parameters. i.e., three for the 
marginal distribution (see, Eq. (5.39)) and one (i.e., H) for the autocorrelation structure. It is 
pointed out, that the comparison does not intends to infer which model is the best, rather is 
used as a benchmark to highlight the merits of the proposed approach. 𝒫III is essentially a 
Gamma distribution (𝒢; see, Eq. (4.17)) with an additional location (else known as threshold 
or shift) parameter, whose PDF is given by, 

 
𝑓𝒫���(𝑥; 𝑎, 𝑏, 𝑐)

=
(

|b|	Γ(𝑎) ~
𝑥 − 𝑐
𝑏 	�

¶s(
exp ~−

𝑥 − 𝑐
𝑏 � , �if	𝑏 > ; 𝑐 ≤ 𝑥 < ∞

if	𝑏 < ; −∞ < 𝑥 ≤ 𝑐 (.) 

where Γ(∙) denotes the gamma function, while, 𝑎 > ;, 𝑏 ≠ ; and 𝑐 ∈ ℝ are shape, scale and 
location parameters, respectively; and they are interconnected with the mean (𝜇j), variance 
(𝜎j)), skewness (𝐶��) and kurtosis (𝐶��) coefficients of random variable 𝑥 by,  

 𝜇j = 𝑐 + 𝑎𝑏, 𝜎j) = 𝑎𝑏), 𝐶�� =
)𝑏

|𝑏|√𝑎
, 𝐶�� =

I
𝑎 + E	 (.) 
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More specifically, in all scenarios, we employed a 𝒫III distribution with parameters 𝑎 =
;.B8I(>, 𝑏 = ((.8	and	𝑐 = (.E;>E> whose theoretical moments are given in Table 5-1.  

Table 5-1 | Summary of theoretical and simulated statistics as reproduced by SMA and SMARTA 
models. 

 Theoretical Simulated (SMA-𝒫III) Simulated (SMARTA) 
Scenario All H =0.6 H = 0.7 H = 0.8 H = 0.9 H =0.6 H = 0.7 H = 0.8 H = 0.9 
Mean (μ) 10 9.99 10.08 9.85 10.23 10.00 9.99 9.99 10.00 
Variance (σ2) 100 100.61 100.78 100.04 99.79 100.03 99.86 100.07 101.65 
Skewness coeff. (Cs) 2.30 2.35 2.34 2.32 2.35 2.30 2.29 2.30 2.35 
Kurtosis coeff. (Ck) 10.93 11.43 11.80 12.62 15.97 10.94 10.85 11.00 11.53 

Hurst coeff. (H) 0.60, 0.70,  
0.80, 0.90 0.61 0.70 0.80 0.89 0.60 0.71 0.80 0.90 

*The theoretical moments correspond to 𝒫III distribution (a = 0.75614, b = 11.5 and c = 1.30434). 

Regarding SMARTA and the given marginal distribution, Figure 5.3a illustrates the 
relationship between the equivalent correlation coefficients 𝜌. and the target ones 𝜌 (the 
superscripts are omitted for simplicity), while Figure 5.3b depicts the equivalent 
autocorrelation coefficients 𝜌.¬ employed by SMARTA in order to capture the target 
autocorrelation structure 𝜌¬ of the target HK processes. 

 
Figure 5.3 | a) The established relationship between equivalent, 𝜌. and target 𝜌 correlation coefficients. 
b) Comparison between the target and equivalent autocorrelation coefficients employed within the 
SMARTA model for HK processes with the various values of H. 

Table 5-1 presents the simulated (by the two approaches) first four moments; which are 
apparently well-captured by both models. It is noted that while SMA does not explicitly 
accounts for the kurtosis coefficient it is able to reproduce it in a satisfactory degree; especially 
when one considers the high uncertainty associated with its estimation [cf., Lombardo et al., 
]. Nevertheless, it is reminded that the resemblance of the moments does not imply the 
reproduction of the marginal distribution [Matalas and Wallis, ]. This is depicted in 
Figure 5.4a-d where we compare the target theoretical cumulative distribution (CDF) with the 
empirically derived cumulative density functions (ECDFs) of the two models. In this case, only 
SMARTA was able to reproduce the target distribution, regardless of the value of H coefficient 
(its ECDF is almost indistinguishable with the theoretical one). On the other hand, the ECDF 
of SMA-𝒫III departs from the theoretical one for high values of H (e.g., see Figure 5.4d). 
Furthermore, SMARTA explicitly avoids the generation of negative values; since the target 
distribution (𝒫III) is positively bounded at	𝑐 = (.E;>E>. A property of high importance in 
hydrology due to the (often) non-negative nature of such variables (e.g., streamflow and 
precipitation). Regarding the resemblance of the auto-dependence structure of the processes, 
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it is apparent from Figure 5.4e-h and Figure 5.4i-l that both models were able to reproduce 
the theoretical HK ACFs as well as the corresponding climacograms, even for high values of H. 
These graphs also provide an empirical evidence of the theoretical consistency of both 
approaches. In addition, the Hurst coefficient of the synthetic realizations (see Table 5-1) was 
estimated using the climacogram-based, least squares variance (LSV) method [Tyralis and 
Koutsoyiannis, ] and are in agreement with the theoretical values. Finally, in order to 
visually assess the form of the established dependencies, for both models and each HK process 
(i.e., scenario), we employ scatter plots of the lagged synthetic data for τ =  (Figure 5.4m-p) 
and τ =  (Figure 5.4q-t). It is observed that despite the fact that both models reproduced the 
same autocorrelation coefficient for τ =  and τ =  they establish particularly different 
dependence patterns. This is attributed to the underlying assumption of SMARTA regarding 
the joint behavior of the process which is related to the Gaussian copula (expressed through 
the auxiliary Gaussian model; see also [Tsoukalas et al., a], as well as section 3.2.4). 
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Figure 5.4 | Comparison between theoretical and simulated CDFs (using the Weibull’s plotting 
position) of SMA-𝒫III and SMARTA models for HK processes with a) H = ., b) H = ., c) H = ., 
d) H = .. Comparison between theoretical (HK) and empirical ACF of SMA-𝒫III and SMARTA 
models for HK processes with e) H = ., f) H = ., g) H = ., h) H = .. Comparison between 
theoretical and empirical climacograms of SMA-𝒫III and SMARTA models models for HK processes 
with i) H = ., j) H = ., k) H = ., l) H = .. Scatter plots of SMA-𝒫III and SMARTA models for 
time lag τ =  for simulated HK processes with m) H = ., n) H = ., o) H = ., p) H = .. Scatter 
plots of SMA-𝒫III and SMARTA models for time lag τ =  for simulated HK processes with q) H = ., 
r) H = ., s) H = ., t) H = .. 
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5.6.1.2 Simulation of multivariate processes 

To further elaborate on the SMARTA approach, we setup a multivariate problem that concerns 
the simultaneous generation of four contemporaneously cross-correlated SRD and LRD 
processes. These may be seen as four () different processes at the same site or processes of the 
same variable at  different sites. Hereinafter, we consider the latter for convenience and refer 
to them as sites A-D, as well as model them in that order, i.e., as -dimensional stationary 
process	𝒙� = {𝑥�(, 𝑥�), 𝑥�

E, 𝑥�
>}Ï, where for instance, i =  refers to site C. In this demonstration, 

the target auto-dependence structure of each process is described by the two-parameter CAS 
(i.e., Eq. (5.8)). More specifically, sites A and B are characterized by LRD behavior (particularly 
HK, since we set β >  and κ = κ0) and slowly-decaying ACF, while sites C and D by SRD (since 
we set β =  and H = .) and fast-decaying ACF. In addition, we assigned different target 
distributions to the sites A-D, i.e., Burr type-XII (ℬ𝓇XII; [Burr, ; Singh and Maddala, ; 
Tadikamalla, ]; Eq. (5.41)), Pearson Type-III (𝒫III; Eq. (5.39)), two-parameter Log-
Normal (ℒ𝒩; Eq. (4.48)) and Weibull (𝒲ℰℐ; Eq. (5.42)). The PDF of the Burr type-XII 
distribution is given by, 

 𝑓ℬ𝓇���(𝑥; 𝑎(, 𝑎), 𝑏) = ~
𝑎(𝑎)
𝑏 � ~

𝑥
𝑏�

¶(s(
�( + ~

𝑥
𝑏�

¶(
�
s¶)s(

, 𝑥 > ; (.) 

where 𝑎(, 𝑎) > ; are shape parameters and 𝑏 > ; is a scale parameter. It is noted that ℬ𝓇XII is 
a power-type distribution and its 𝑟th moment exist if and only if 𝑎(𝑎) > 𝑟. Furthermore, the 
PDF of the Weibull reads as follows, 

 𝑓𝒲ℰℐ(𝑥; 𝑎, 𝑏) = ~
𝑎
𝑏� ~

𝑥
𝑏�

¶s(
exp �−	~

𝑥
𝑏�

¶
� , 𝑥 ≥ ; (.) 

where 𝑎 > ; and 𝑏 > ; are shape and scale parameters respectively. Table 5-2a provides a 
synopsis of all assumptions, as well as contains the parameters of CAS and the theoretical 
moments of the corresponding distributions. Note that the Kurtosis coefficient of site A is 
infinite, since 𝑎(𝑎) < >. Further to this, the target and equivalent lag- cross-correlation 
coefficients (involving both positive and negative ones) are given in Table 5-2b. It is apparent 
that this is a peculiar simulation scenario, which was devised in order stress-test the SMARTA 
method. 

In order to provide further insights regarding the consistency of the model, we generated  
independent realizations with length  time steps and set the number of SMARTA model’s 
internal weight coefficients equal to, q = . Figure 5.5 provides a synopsis of some basic 
dependence statistics in terms of box-plots. SMARTA resembled with high precision the lag- 
autocorrelation and lag- cross-correlation coefficients (including the negative ones) despite 
the fact that the target processes are characterized by very different auto-dependence structures 
and distribution functions. Additionally, as far as the Hurst coefficient of the simulated series 
is concerned, it was once again estimated with the LSV method. Α small discrepancy that 
concern site D, which is an SRD process (i.e., H = .) is observed. This may be attributed to 
the associated estimation method and the high lag- autocorrelation (~.) of site D. 
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Table 5-2 | a) Synopsis of theoretical distribution models and their moments, as well as, of CAS 
parameters for each variable of the multivariate simulation study. b) The upper triangle (grey cells) 
contains the target lag- cross-correlation coefficients (𝜌;

 ,Ø) between sites A-D, while the lower triangle 
depicts the corresponding estimated equivalent correlation coefficients (𝜌.;

 ,Ø). 

a) 
Distribution/ Parameters 

Theoretical b) Lag-0 cross-correlation 
 Site A Site B Site C Site D   Site A Site B Site C Site D 
 ℬ𝓇XII 𝒫III ℒ𝒩 𝒲ℰℐ  Site A 1 -0.700 0.750 0.600 
 a 2.5 (a1) 3 0.5 1.5  Site B -0.940 1 -0.600 -0.700 
 b 1  1 2 10  Site C 0.862 -0.749 1 0.650 
 c 1.5 (a2) 10 - -  Site D 0.811 -0.923 0.707 1 
 Statistic Theoretical       
 Mean (µ) 4.76 13 8.37 9.02       
 Variance (σ2) 11.42 3 19.91 37.56       
 Skewness coeff. (Cs) 5.01 1.15 1.75 1.07       
 Kurtosis coeff. (Ck) - 8 8.89 4.39       
 CAS parameter, β 1.25 1.66 0 0       
 CAS parameter, κ 11.32 5 0.5 0.2       
 Hurst coeff. (H) 0.6 0.7 0.5 0.5       
 *Distribution abbreviations: ℬ𝓇XII: Burr type-XII (a1 = shape, a2 = shape, b = scale), 𝒫III: Pearson type-III 

(a = shape, b = scale, c = location), ℒ𝒩: Log-Normal (a = shape, b = scale), 𝒲ℰℐ: Weibull (a = shape, 
b = scale). 

 
Figure 5.5 | Comparison between theoretical (red dots, •) and simulated lag- autocorrelation and 
Hurst coefficient for sites A-D. Target (red dots, •) and simulated lag- cross-correlation coefficients 
for all pairs of sites A-D. 

Furthermore, in Figure 5.6a-d we compared the empirical distribution of each realization of 
each site A-D with the corresponding theoretical distribution in terms of the survival function 
(SF), also known as complementary CDF or tail function. It is denoted by 𝐹j and expresses the 
probability of exceedance, i.e., 𝐹j ≔ 𝑃l𝑥 > 𝑥n = ( − 𝐹j. Figure 5.6a-d highlights the ability 
of the model to preserve the target distribution functions even in multivariate mode, since the 
median SF of all  realizations for the  sites is virtually identical to the associated theoretical 
model. Furthermore, in Figure 5.6e-h we depict the relationship between the equivalent, 𝜌. and 
target 𝜌 correlation coefficients for each site A-D, while the preservation of the theoretical auto-
dependence structure can be verified by the simulated ACFs (Figure 5.6i-l) and climacograms 
(Figure 5.6m-p) of the four variables that closely resemble the corresponding theoretical ones.  
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Figure 5.6 | (a-d) Theoretical and simulated (SMARTA) distribution functions (using the Weibull’s 
plotting position) for sites A-D. (e-h) The established relationships between equivalent, 𝜌. and target 𝜌 
correlation coefficients given the marginal distribution of sites A-D. (i-l) Theoretical and simulated 
ACFs for sites A-D. (m-p) Theoretical and simulated climacograms (CGs) for sites A-D. In all cases, the 
simulation intervals have been established using all  realizations. 

Finally, to further explore the joint behavior of the model and the established dependence 
patterns we employ scatter plots. Figure B.1 of Appendix B depicts the established dependence 
patterns among the variables for time lag  (Figure B.1e, i, j, m, n, o), as well as for each variable 
for time lag  (Figure B.1a, f, k, p). Finally, the relationship between equivalent, 𝜌. ,Ø  and target 
𝜌 ,Ø  correlation coefficients is provided for every combination of sites A-D (Figure B.1b, c, d, 
g, h, l). 
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5.6.2 CMARTA model 

To demonstrate the capabilities of CMARTA model, we setup three bivariate case studies 
(hereafter termed case study A, B and C) that regard the simulation of two contemporaneously 
cross-correlated processes, 𝑥�( and 𝑥�), with continuous or discrete marginal distributions.  

For convenience, the three cases share some common assumptions which are: ) the order of 
the auxiliary Gaussian CMAR model (set to ), ) the length of the synthetic time series to 
simulate (set  ), ) the target lag- cross-correlation coefficient, that is, 𝜌;

(,) = ;.B, and 
) the target auto-dependence structure of each process, which is provided by CAS (i.e., Eq. 
(5.8)); that is, 𝑥�(~𝜌¬

��®;((𝛽 = ;,𝜅 = ;.IB) and 𝑥�)~𝜌¬
��®;)(𝛽 = (.),𝜅 = (). It is noted that the 

first process is modeled using an SRD auto-dependence structure, while the second using an 
LRD one. As briefly mentioned earlier (see also section 4.3.3), and since the autocorrelation 
structure of the processes is already specified, the use of high-order models does not introduces 
additional parameters, but solely controls the degree of resemblance of the target correlation 
structure. Particularly, by setting 𝑝 = (;;, the model will resemble the target CAS up to time 
lag , while for 𝜏 > (;; it will reduce according to its theoretical properties. Similarly, if we 
employed a higher-order model, e.g., 𝑝 = (;;;, we would resemble the target CAS up to time 
lag 𝜏 = (;;;, without needing more parameters for the description of the autocorrelation 
structure. The case studies, differ in terms of the target marginal distribution of the individual 
processes. More specifically, in case A it is assumed that the marginals of 𝑥�( and 𝑥�) are 
continoous and are, 𝑥�(~𝒢(𝑎 = ;.), 𝑏 = ;.(8) and 𝑥�)~ℒ𝒩(𝑎 = (, 𝑏 = (). In case B the target 
distributions are regarded to be discrete, and given by the Poisson distribution. Particularly, we 
assume that, 𝑥�(~𝒫ℴ𝒾(𝜆 = () and 𝑥�)~𝒫ℴ𝒾(𝜆 = )). Finally, in case C the target distribution 
of each process was assumed to be the discrete-type Bernoulli distribution (ℬℯ𝓇𝓃). 
Specifically,	𝑥�(~ℬℯ𝓇𝓃(𝑝 = ;.?) and 𝑥�)~ℬℯ𝓇𝓃(𝑝 = ;.B8).  

It is noted that from a hydrometeorological processes simulation perspective, case study A can 
be considered as the most common simulation scenario, since it involves the simulation of 
processes with non-Gaussian (and skewed) continuous marginal distributions. On the other 
hand, cases B and C, can naturally arise when aiming to model counting (e.g., number of flood 
or drought events in a given year) or occurrence (i.e., binary; e.g., sequences of wet and dry 
transitions) processes respectively. As noted by Serinaldi and Lombardo [], within the 
context of a univariate binary process generator, any sequence of observations can be 
dichotomized to a binary one (i.e., occurrence of an event or not) by imposing appropriate 
rules. In a similar vein, an observed time series can also provide information regarding the 
frequency of certain events (e.g., times exceeding, or not, a given threshold during a certain 
period), hence transformed to a counting process. 

Regarding CMARTA evaluation for case studies A-C, its performance was assessed through a 
series of comparisons among a variety of simulated and theoretical characteristics. Figure 5.7, 
Figure 5.8, and Figure 5.9 summarize the simulation results for cases A-C respectively and 
illustrate that the CMARTA is able to and accurately reproduce the probabilistic and stochastic 
structure of the target processes, regardless if its marginals are continuous or discrete. It is 
noted that similar results can be obtained using the SMARTA model. 
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Figure 5.7 | Case A – Continuous marginal distributions. Simulated realization of process a) 𝑥�( and 
b) 𝑥�). Comparison of simulated and theoretical distribution function for process c) 𝑥�( and d) 𝑥�). 
Simulated, equivalent and theoretical autocorrelation function (ACF) for process e) 𝑥�( and f) 𝑥�). g) 
Simulated and theoretical climacogram for process 𝑥�( and 𝑥�). h) Simulated and theoretical lag- 
autocorrelation (𝜌(

(�)) as a function of scale 𝑘 for process 𝑥�( and 𝑥�). The established relationships 
between equivalent, 𝜌. and target 𝜌 correlation coefficients given the marginal distribution of each 
process i) 𝑥�( j) 𝑥�), as well as their k) interaction. Simulated dependence pattern for time lag  for process 
l) 𝑥�( and m) 𝑥�). n) Simulated lag  dependence pattern among 𝑥�( and 𝑥�). 
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Figure 5.8 | Case B – Poisson marginal distributions. Simulated realization of process a) 𝑥�( and b) 𝑥�). 
Comparison of simulated and theoretical distribution function for process c) 𝑥�( and d) 𝑥�). Simulated, 
equivalent and theoretical autocorrelation function (ACF) for process e) 𝑥�( and f) 𝑥�). g) Simulated and 
theoretical climacogram for process 𝑥�( and 𝑥�). h) Simulated and theoretical lag- autocorrelation (𝜌(

(�)) 
as a function of scale 𝑘 for process 𝑥�( and 𝑥�). The established relationships between equivalent, 𝜌. and 
target 𝜌 correlation coefficients given the marginal distribution of each process i) 𝑥�( j) 𝑥�), as well as 
their k) interaction. Simulated dependence pattern for time lag  for process l) 𝑥�( and m) 𝑥�). n) 
Simulated lag  dependence pattern among 𝑥�( and 𝑥�). 
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Figure 5.9 | Case C – Bernoulli marginal distributions. Simulated realization of process a) 𝑥�( and b) 
𝑥�). Comparison of simulated and theoretical distribution function for process c) 𝑥�( and d) 𝑥�). 
Simulated, equivalent and theoretical autocorrelation function (ACF) for process e) 𝑥�( and f) 𝑥�). g) 
Simulated and theoretical climacogram for process 𝑥�( and 𝑥�). h) Simulated and theoretical lag- 
autocorrelation (𝜌(

(�)) as a function of scale 𝑘 for process 𝑥�( and 𝑥�). The established relationships 
between equivalent, 𝜌. and target 𝜌 correlation coefficients given the marginal distribution of each 
process i) 𝑥�( j) 𝑥�), as well as their k) interaction. Simulated dependence pattern for time lag  for process 
l) 𝑥�( and m) 𝑥�). n) Simulated lag  dependence pattern among 𝑥�( and 𝑥�). 
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5.7 REAL-WORLD SIMULATION STUDIES 
This section focuses on SMARTA model, since CMARTA is extensively used in the next 
Chapter within the context of a disaggregation-based simulation scheme. Of course, similar 
results could be obtained using either of the models. 

5.7.1 Simulation of multivariate annual streamflow processes 

The first real-world simulation study concerns the application of the proposed model for the 
stochastic simulation of annual streamflow at  stations in New South Wales region, Australia 
[Australian Government Bureau of Meteorology, ]. Particularly, we employed historical 
data (depicted in Figure 5.10a-d) from the following stations: Maragle Creek at Maragle (ID: 
), Goobarragandra River at Lacmalac (ID: ), Adelong Creek at Batlow Road 
(ID: ), Cotter River at Gingera (ID: ). Hereinafter, we refer to them using their 
station ID, as well as model them in that order, as -dimensional stationary process	𝒙� =
{𝑥�(, 𝑥�), 𝑥�

E, 𝑥�
>}Ï; (i.e., i =  refers to station Adelong Creek at Batlow Road with ID: ). 

The distribution of historical data does not exhibits the typical bell shape that is often 
encountered in annual data, hence we use the Gamma and Weibull distributions to model 
them. Specifically, using the maximum likelihood estimation method we identified the 
following distributions,	𝑥�(~𝒢(𝑎 = ).(E, 𝑏 = (I.@8), 𝑥�)~𝒲ℰℐ(𝑎 = ).E;, 𝑏 = E;).((), 
𝑥�
E~𝒲ℰℐ(𝑎 = ).>;, 𝑏 = (8.B8)	and 𝑥�

>	~𝒢(𝑎 = (.@8, 𝑏 = >?.>?). Furthermore, they are 
characterized by moderate-to-high temporal dependence and high lag- cross-correlation 
coefficients, that range from . (𝜌;

(,>) to . (𝜌;
),E). Following Koutsoyiannis [], the 

parameters of CAS (i.e., Eq. (5.8) - given in vector format), 𝜷 = [;.@@, ;.B8, (.(E, ;.B)] and 
𝜿 = [).8B, >.>(, I.;(, 8.;B] were identified for each process by minimizing the mean square 
error (MSE) among the sample and theoretical autocorrelation coefficients. In this case study, 
we simulated one realization of   years using the SMARTA model (with q = ). Figure 
5.10e-h provides, for each station, a visual comparison among the empirical, theoretical and 
simulated distribution. Furthermore, Figure 5.10i-l depicts, for each process, the relationship 
between the equivalent and target autocorrelation coefficients. The ability of the model to 
establish the target auto-dependence structures is verified by comparing, the theoretical and 
simulated ACF (Figure 5.10m-p) and corresponding climacogram (Figure 5.10q-t) of each 
process. Similarly to the previous simulation study, the model reproduced the target lag- 
cross-coefficients with high accuracy (Figure B.2e, i, j, m, n, o). 
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Figure 5.10 | Synopsis of annual streamflow simulation study at  stations in New South Wales region. 
(a-d) Historical time series. (e-h) Empirical, simulated and theoretical distribution functions (using the 
Weibull’s plotting position) for stations ID- (i-l) The established relationships between equivalent, 𝜌. 
and target 𝜌 correlation coefficients given the marginal distribution of stations ID-. (m-p) Empirical, 
simulated and theoretical ACFs for stations ID-. (q-t) Empirical, simulated and theoretical 
climacograms (CGs) for stations ID-. 
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5.7.2 Simulation of univariate daily rainfall process 

In the final case study, we employ the model for the stochastic simulation of a univariate daily 
rainfall process characterized by intermittency. The available data concern an observation 
period spanning from // to // ( years) from Pavlos rain gauge located at 
Boeticos Kephisos river basin, Greece (Figure 5.11a). See also, Efstratiadis et al. [a] for 
further details regarding the dataset. In general, apart from ad-hoc techniques to handle 
intermittency (e.g., truncation to zero of values below a threshold), typical stochastic 
simulation schemes [e.g., Serinaldi, a; Serinaldi and Kilsby, ; Papalexiou, ] rely 
on the use of mixed-distributions or employ two-part models, which, in a nutshell, describe 
precipitation processes as the product of two different processes, particularly, that of 
occurrence (rain or no-rain) and that of intensity [e.g., Wilks, ; Wilks and Wilby, ; 
Brissette et al., ; Thompson et al., ; Khalili et al., ; Mhanna and Bauwens, ; 
Breinl et al., ; Ailliot et al., ; Lee, , ; Lombardo et al., ]. Herein, we employ 
the former approach, that is, mixed-distributions, as it seems a convenient option [Papalexiou, 
] given the characteristics of SMARTA and particularly its flexibility regarding the 
selection of the marginal distribution. An alternative option, naturally compatible with the 
proposed method (and Nataf-based schemes in general), would be the use of distribution 
functions that by construction, exhibit an atom of probability mass at zero. A characteristic 
example, which in the past has been used for this purpose [Dunn, ; Hasan and Dunn, 
], is the Tweedie distribution [Tweedie, ; Jorgensen, ]. Nevertheless, in this 
simulation study, in order to simultaneously account for the effect of seasonality and the 
stationarity assumption of the model we treat each month as separate stochastic process, by 
varying the distribution function and autocorrelation structure on a monthly basis. Specifically, 
regarding the marginal distribution, we employ a discrete–continuous (i.e., mixed or zero-
inflated) model (see section 4.4) whose CDF is given by, 

 𝐹j(𝑥) = 	 ·
	𝑝` ,																																											𝑥 ≤ ;
	𝑝` + (( − 𝑝`)𝐺j(𝑥), 𝑥 > ;  (.) 

where, 𝑝`  denotes the probability of a dry interval (abbreviated as probability dry), i.e., 𝑝` ≔
𝑃l𝑥 ≤ 𝑥`n and 𝐺j stands for the distribution of amounts greater than the threshold 𝑥`, i.e., 
𝐺j ≔ 𝐹j|jBj� = 𝑃l𝑥 ≤ 𝑥,𝑥 > 𝑥`n. We remind the reader that the solely requirement of the 
algorithm of section 4.5.1, that is used to establish the relationship between equivalent (𝜌.) and 
target (𝜌) correlation coefficients, is the ICDF (see Eq. (4.46) in section 4.4). Nevertheless, after 
the specification of the threshold	𝑥`, the empirical probability dry, 𝑝` , can be directly obtained 
from the available data by counting the number of dry occurrences and dividing it with the 
total number of observed data. Regarding, 𝐺j, it is obtained by selecting and fitting a theoretical 
distribution to the amount data above 𝑥`. In this demonstration, we set 𝑥` ≔ ;, and for the 
description of the positive daily precipitation amounts of all months, we employ the generalized 
gamma (𝒢𝒢) distribution [Stacy, ], which has been proved particularly capable for the task 
at hand [Papalexiou and Koutsoyiannis, ; Chen et al., ; Papalexiou, ]. Of course, 
depending on the case, the 𝒢𝒢 could be replaced with other distribution functions. Back in our 
case, the parameters of the 𝒢𝒢 distribution were identified using a fitting approach based on L-
moments [Hosking, ]; specifically the one proposed by Papalexiou and Koutsoyiannis 
[]. The PDF of 𝒢𝒢 distribution is given by, 
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 𝑓𝒢𝒢(𝑥; 𝑎(, 𝑎), 𝑏) =
𝑎)

𝑏Γ(𝑎(/𝑎))
~
𝑥
𝑏�

¶(s(
exp �− ~

𝑥
𝑏�

¶)
� , 𝑥 > ; (.) 

where Γ(∙) denotes the gamma function, while, 𝑎( > ;, 𝑎) > ; are parameters that control the 
shape of the distribution and 𝑏 > ; is a scale parameter. The interested reader is referred to the 
above works for further details regarding the 𝒢𝒢 distribution and the associated fitting method. 
For instance, for the marginal characteristics of October’s daily rainfall, we estimated,	𝑝` =
;.?>, while the parameters of 𝒢𝒢 were found b = ., 𝑎( = . and 𝑎) = .. Furthermore, 
regarding the description of the auto-dependence structure of the process we employed CAS 
and estimated its parameters on a monthly basis (e.g., for October it we identified, β =  and 
κ = .) by minimizing the MSE among the sample and theoretical autocorrelation 
coefficients. Finally, we generated   years (i.e.,   days) of synthetic data (Figure 
5.11b depicts a random window of  years) and performed a similar analysis with the previous 
cases studies; which is summarized in Figure 5.11, where we depict the results of three 
characteristic months, i.e., February, June and October (the results are similar for the other 
months – see Appendix B, Figure B.3 - Figure B.6). Particularly, panels (c)-(e) illustrate the 
capability of the model to reproduce the target distributions (in terms of the SF) of positive 
precipitation amounts (𝑝`  is explicitly preserved since it is embedded in the employed mixed-
distribution model), while, panels (f)-(h) depicts the relationship of equivalent, 𝜌. and target 𝜌 
correlation coefficients for both 𝒢𝒢 and mixed-distribution models. It is observed that the non-
linearity of this relationship increases from 𝒢𝒢 to mixed distribution due to the fact that the 
latter is zero-inflated. Furthermore, panels (i)-(k) depict the accurate resemblance of the target 
autocorrelation structure (i.e., CAS), while, panels (l)-(n) provide a comparison of empirical 
and simulated scatter for time lag , which seems to be in agreement with the historical pattern. 
Finally, preliminary analysis (not shown herein) indicated that the model has the potential to 
approximate some of the empirical statistics (in terms of L-moments) across coarser time 
scales, even though they are not explicitly modelled by it. This observation should not be 
interpreted as a general conclusion, rather as a direction for further investigation. We remark 
that the literature offers several well-established techniques with proven results, specifically 
designed for this purpose, i.e., to address scaling and intermittency, such as disaggregation [e.g., 
Kossieris et al., ; Lombardo et al., ] and multi-fractal methods, based on cascade 
models [Tessier et al., ; e.g., Deidda et al., ; Kantelhardt et al., ]. These methods, 
by design, aim to simultaneously resemble the process at multiple aggregation levels, 
employing scaling relationships for high order moments (often greater than second). In our 
view, an interesting topic of future research would be a comparison among these simulation 
techniques with Nataf-based methods for the reproduction of the multi-scale behavior that 
characterizes hydrometeorological processes. Similar works, yet involving alternative 
simulation schemes, are those of Lombardo et al. [] and Pui et al. []. 
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Figure 5.11 | Synopsis of daily rainfall simulation at Pavlos’ station. a) Historical time series. b) 
Synthetic time series; randomly selected window of  years. Empirical, simulated and theoretical 
distribution function of positive precipitation amounts for c) February, d) June and e) October (using 
the Weibull’s plotting position); the title of each plot provides the parameters of the 𝒢𝒢 distribution, as 
well as the historical (𝑝`) and simulated (�̂�`) values of probability dry. The established relationship 
between equivalent, 𝜌. and target 𝜌 correlation coefficients for the mixed and 𝒢𝒢 distribution for f) 
February, g) June and h) October. Empirical, simulated and theoretical ACF for i) February, j) June and 
k) October; the title of each plot depicts the parameters of CAS. Empirical and simulated dependence 
pattern for time lag  for l) February, m) June and n) October; the title of each plot depicts the lag-, 
target (𝜌(��®), simulated (𝜌C(), and equivalent (𝜌.() autocorrelation coefficients. 
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5.8 SUMMARY 
This Chapter introduces two novel versatile stochastic models, termed SMARTA and 
CMARTA, with solid theoretical background and proven capability of addressing important 
hydrometeorological simulation problems. A prominent characteristic of the models is their 
ability to simulate univariate and multivariate stationary processes with any autocorrelation 
structure and marginal distribution, provided that the former is feasible and the latter have 
finite variance. Their central idea relies on the use of an appropriately parameterized (expressed 
through equivalent correlation coefficients) auxiliary Gaussian process which after its mapping 
to the actual domain results in a process with the desired stochastic structure and marginal 
distribution.  

Briefly, the proposed approach is built upon three major elements, that is, a) auxiliary linear 
stochastic models (i.e., the SMA scheme of Koutsoyiannis [] and the CMAR model) in the 
Gaussian domain, b) theoretical autocorrelation structures (e.g., CAS), that allows the 
parsimonious description of both SRD and LRD processes, and c) the rationale of NDM [Nataf, 
], and the associated mapping procedure, that provide the theoretical basis of the method 
and in turn allows the identification of the equivalent correlation coefficients; hence determine 
the parameters of the auxiliary model.  

Overall, the proposed methodology is parameter parsimonious and exhibits a series of virtues, 
as demonstrated through several hypothetical and two real-world simulation studies. Among 
them: 

a) The unambiguous advantage of explicitly simulating any-range dependent (SRD or LRD) 
stationary processes with arbitrary distributions (that may be continuous, discrete or 
mixed-type), using a single simulation scheme. 

b) Its ability to simulate univariate and multivariate processes that exhibit contemporaneous 
cross-correlations. The generation of time series at multiple locations, or of individual 
correlated processes, is often the case in hydrological studies, making SMARTA and 
CMARTA particularly useful methods for such tasks. 

c) The possible incorporation of novel advances in statistical science in stochastic simulation; 
such as new distributions and robust fitting methods (e.g., L-moments). In addition, 
regarding distributions of hydrometeorological processes, both models (as any Nataf-based 
model; see section 4.3.1, as well as Chapter 6 and 7) can take advantage of years of research 
in statistical analysis of hydrometeorological variables, since it can incorporate any 
distribution function whose variance exists. 

d) The ability of the model to explicitly avoid the generation of negative values, which is a 
shortcoming of many linear stochastic models. This is due to the direct use of the 
distribution function(s) within the generation mechanism of the model. If the used 
distribution is defined in the positive real line, then all the generated values will be within 
those bounds (i.e., positive). 

Typical, but not limited, applications of the proposed models entail the simulation of stationary 
processes at time scales not affected by cyclostationary correlation structures (e.g., monthly 
scale). For instance, given the wide range of admissible correlation structures and distributions, 
the models could be applied for the generation of synthetic time series of various 
hydrometeorological processes, such as, precipitation, streamflow and temperature, at annual 
and fine time scales (e.g., daily), which are characterized by stationarity.  



STATIONARY PROCESSES 

Page | 112 

Next, in Chapter 6, the particularly interesting case of cyclostationarity is discussed, and a novel 
non-Gaussian Nataf-based stochastic model is being proposed [Tsoukalas et al., a, e]. 
Ongoing research aims in an enhanced stochastic simulation scheme that will combine (using 
disaggregation techniques) both stationary (e.g., SMARTA and CMARTA) and cyclostationary 
Nataf-based models (next chapter); thus providing an even more flexible and versatile 
simulation method for synthetic time series generation (see Chapter 7). 
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6  
SIMULATION OF CYCLOSTATIONARY STOCHASTIC PROCESSES WITH 
ARBITRARY MARGINAL DISTRIBUTIONS § 

PREAMBLE 
This Chapter presents a novel model, termed Stochastic Periodic AutoRegressive To Anything 
(SPARTA), for the simulation of cyclostationary processes (univariate and multivariate) with 
arbitrary marginal distributions. SPARTA offers an alternative and novel approach which 
allows the explicit representation of each process and season of interest with any distribution 
model, while simultaneously establishes dependence patterns that cannot be fully captured by 
the typical linear stochastic schemes. Cornerstone of the proposed approach is the Nataf joint-
distribution model, which is related with the Gaussian copula, combined with Gaussian 
periodic autoregressive (PAR) processes. Theoretical and practical benefits of the proposed 
method, contrasted to outcomes from widely-used stochastic models, are demonstrated by 
means of real-world as well as hypothetical monthly simulation examples involving both 
univariate and multivariate time series. 

The organization of this Chapter is as follows: Section 6.1 introduces the problem of generating 
cyclostationary process with emphasis on the reproduction of marginal distributions. The 
rationale and computational procedure of SPARTA are described in the next three sections, 
where section 6.2 summarizes the overall methodology, section 6.3 describes auxiliary 
Gaussian PAR model, while section 6.4 described the generation procedure of SPARTA in a 
step-by-step manner. In section 6.5 we evaluate the proposed method by means of three case 
studies, involving real-world and hypothetical simulations. The case studies also involve a 
comparison with the widely used implicit Periodic AutoRegressive (PAR) scheme. Finally, the 
key conclusions and perspectives of this research are outlined in section 6.6.  

                                                        
§ Based on:  

Tsoukalas, I., A. Efstratiadis, and C. Makropoulos (e), Stochastic Periodic Autoregressive to Anything 
(SPARTA): Modeling and simulation of cyclostationary processes with arbitrary marginal distributions, Water 
Resour. Res., (), –, doi:./WR. 

Tsoukalas, I., A. Efstratiadis, and C. Makropoulos (a), Stochastic simulation of periodic processes with 
arbitrary marginal distributions, in th International Conference on Environmental Science and Technology. 
CEST ., Rhodes, Greece. 
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6.1 INTRODUCTION 
The generation of synthetic time series following specific, typically skewed, distribution 
functions becomes even more challenging when aiming to simulate hydrometeorological 
processes at time scales finer than annual, that are dominated by periodicity. Characteristic 
examples are the monthly processes of precipitation and river flow discharge, which exhibit 
strong seasonal variations in both their marginal and joint properties. In that case, the 
stochastic model should account for all facets of cyclostationarity, involving not only, the 
stochastic structure of the underlying processes but also their distribution, which may be 
seasonally-varying and non-Gaussian (see section 2.2). As detailed in section 2.3, typical 
stochastic models in hydrology (e.g., implicit linear stochastic schemes, point-process models, 
resampling schemes, and disaggregation models) traditionally aim at reproducing the 
empirically-derived statistical characteristics of the observed data rather than any specific 
distribution model that attempts to describe the usually non-Gaussian behavior of the 
associated processes. Notable exceptions are copula-based methods, which however are subject 
to high-computational requirements and complex generation mechanisms (see section 2.3). 
Further to this, some of the available schemes are not designed, hence capable, for the 
simulation of such processes (e.g., point-process models and tw-part models).  

In order to address the aforementioned shortcomings, this Chapter presents an explicit 
method, called Stochastic Periodic AutoRegressive To Anything (SPARTA) model, which 
offers a generalized procedure with solid theoretical background for the generation of 
cyclostationary processes from a priori defined distribution functions that are seasonally-
varying. The proposed method builds upon the so-called Nataf joint-distribution model 
[NDM; Nataf, ], which is generic mapping procedure, and extends the AutoRegressive To 
Anything (ARTA) model, introduced by Cario and Nelson [] that represents stationary 
processes with arbitrary marginal distributions and autocorrelation structure. Initially, ARTA 
was formulated as univariate and later extended for multivariate simulations [Biller and Nelson, 
]. Both versions involve the simulation of stationary processes, but they have not been 
extended to account for cyclostationarity, which is a sine qua non for hydrological processes. 
Beyond this, it noted that SPARTA is able to establish dependence patterns that cannot be fully 
captured by the typical linear stochastic schemes (see Chapter 3, as well as section 6.5.1 and 
6.5.3). Briefly, the proposed approach involves the simulation of an auxiliary process from the 
Periodic AutoRegressive (PAR) family, in the normal domain (i.e., Gaussian), which allows 
accounting for cyclostationarity, and then its mapping to the real domain, via the desired 
inverse cumulative distribution functions (ICDFs).  

6.2 SPARTA AT A GLANCE 
SPARTA aims at simulating periodic processes from any given marginal distribution and a 
given stochastic structure, typically (but not exclusively) expressed in terms of first order 
autocorrelations and lag zero cross-correlations. Its fundamental advantage is the explicit 
preservation of the theoretical marginal distributions of the processes, in contrast to existing 
linear stochastic approaches that preserve the marginal statistics (not the distributions 
themselves) up to a specific order, typically the third one (i.e., mean, standard deviation, 
skewness).  

More specifically: Let 𝒙�,� = {𝑥�,�( , … , 𝑥�,�Î }
Ï

 be a m-dimensional vector of cyclostationary 
stochastic processes to simulate, where 𝑠	 = 	(, 	 … , 	𝑆, (,… , 𝑆, . .. denotes the season (e.g., 
month), 𝑆 the total number of seasons, and 𝑡	 = 	(, … , 𝑇 denotes the aggregated time scale (e.g., 
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year). This process can also be written as	𝒙�,ô, where 𝑛 ∈ ℤB, denotes the time index. In this 
form, the season 𝑠 is recovered by, 𝑠 = 𝑛	mod(𝑆), while when 𝑛	mod(𝑆) = ;, 𝑠 = 𝑆. The 
period 𝑡 is obtained by, 𝑡 = ( + (𝑛 − 𝑠)/𝑆. For convenience, the first formulation will be 
employed in the following paragraphs. Each element of 𝒙�,�  is symbolized	𝑥�,�  , where 𝑖	 =
	(, … ,𝑚	denotes an individual random process, and 𝑥�,�   denotes its realization. Herein, index 
𝑖 will be also referred to as location or site, without necessarily implying spatial reference. Let 
also 𝜌�,�s¬

 ,Ø ≔ Corr[𝑥�  , 𝑥�s¬
Ø 	] be the Pearson coefficient of correlation among processes 𝑖 and 

𝑗, for season 𝑠 and time lag 𝜏. For instance, when 𝑗	 = 	𝑖 and 𝜏	 ≠ 	;, the quantity 𝜌 represents 
the season-to-season correlation of the process for lag 𝜏, while for 𝑗	 ≠ 	𝑖 and 𝜏	 = 	;, 𝜌 
represents the cross-correlation between 𝑖 and 𝑗, for zero time lag. Furthermore, when the 
superscripts or subscripts of 𝜌 are identical (i.e., when 𝑗	 = 	𝑖 or 𝜏	 = 	;) we may omit repeating 
them for convenience (e.g., 𝜌�,�s¬

 , 
 may be written as	𝜌�,�s¬   and	𝜌�,�

 ,Ø
 as	𝜌�

 ,Ø).  

For each process at each season 𝑠 and each location 𝑖, we assign a specific distribution function, 
𝐹jW) ≔ 𝑃(𝑥�  ≤ x), and also assign target coefficients of correlation, 𝜌�,�s¬

 ,Ø , to preserve within 
the proposed generation scheme.  

The key idea of SPARTA employs the concept of NDM and the associated methods, and 
establishes the process 𝒙�,�  through an auxiliary Gaussian cyclostationary process 𝒛�,� =
{𝑧�,�( , … , 𝑧�,�Î }

Ï
	with 𝑧�,�  ~𝒩(;,() and equivalent correlation coefficients 𝜌.�,�s¬

 ,Ø ≔
Corr[𝑧� , 𝑧�s¬

Ø 	]. The 𝒛�,�  process is generated from a standard Normal (i.e., Gaussian) Periodic 
AutoRegressive process (symbolized PAR-N), with such parameters that their mapping via the 
corresponding inverse marginal distributions (ICDFs) results into processes with the target 
marginal distributions and the target correlation structure, i.e.,  

 𝑥�,�  = 𝐹jW)
s( ~Φl𝑧�,�  n� (.) 

where Φ(∙) is the CDF of the standard Gaussian distribution and 𝐹jW)
s((∙) denotes the ICDFs of 

the target distributions of process 𝑖 at season 𝑠. This mapping function, ensures the 
representation of any distribution across seasons and processes. 

However, as thoroughly discussed in section 4.3, the main challenge, encountered in all Nataf-
based models (including SPARTA), is the identification of proper parameters for the auxiliary 
process in the normal domain that reproduce the desired stochastic structure, after applying 
the mapping procedure. This arises from the fact that the Pearson correlation coefficient, which 
is used to describe all kinds of dependencies within linear stochastic models (including PAR), 
cannot be preserved when applying a non-linear monotonic transformation, such as the ICDF. 
In particular, Eq. (6.1) results into underestimation of target correlations, 𝜌�,�s¬

 ,Ø , when they are 
directly applied to the auxiliary processes. The origin of this shortcoming is the fact that the 
Pearsons’ correlation coefficient (in contrast to rank correlation statistics) is invariant only 
under linear transformations [Embrechts et al.,  p. ], while for any other transformation, 
the correlation coefficients should be properly adjusted. Section 4.6 mentions some early works 
in stochastic hydrology that were aware of this issue and attempted to provide analytical or 
empirical solutions to this problem, for specific distributions (e.g., Log-Normal).  

Therefore it is essential to identify the equivalent (𝜌.�,�s¬
 ,Ø ) correlation coefficients which should 

be used within the parameters estimation procedure of the auxiliary PAR model, that result 
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into the desired target (𝜌�,�s¬
 ,Ø ) correlations. By building upon the theoretical background of 

NDM, and assuming that the marginal distributions 𝐹jW)  for all 𝑖 = (, . . , 𝑚 and 𝑠 = (, . . , 𝑆, 

have been specified, the relationship between the equivalent (𝜌.�,�s¬
 ,Ø ) ant target (𝜌�,�s¬

 ,Ø ) 
correlations is given by (see section 4.3.1; [Tsoukalas et al., a, e]), 

 

𝜌�,�s¬
 ,Ø = 

∫ ∫ 𝐹jW)
s( ~Φl𝑧� n�	𝐹jW÷øä

s( ~Φl𝑧�s¬
Ø n�	𝜑)l𝑧� , 𝑧�s¬

Ø , 𝜌.�,�s¬
 ,Ø nd𝑧� d𝑧�s¬

Øt
st

t
st − E{𝑥� }E{𝑥�s¬

Ø }

�Var{𝑥� }	Var{𝑥�s¬
Ø }

 
(.
) 

where 𝜑)l𝑧� , 𝑧�s¬
Ø , 𝜌.�,�s¬

 ,Ø n is the bivariate standard normal probability density function and 
E{𝑥� }, E{𝑥�s¬

Ø } and Var{𝑥� }, Var{𝑥�s¬
Ø } denote the mean and variance of 𝑥�  	and	𝑥�s¬

Ø  
respectively which are known from the corresponding distributions 𝐹jW)  and 𝐹jW÷øä  and have to 
be finite. For convenience, the above equation is abbreviated as,  

 𝜌�,�s¬
 ,Ø = ℱ ~𝜌.�,�s¬

 ,Ø [𝐹jW) , 	𝐹jW÷øä � (.) 

The relationship of Eq. (6.3) can be established (in a pair-wise basis) through the hybrid 
method of section 4.5.1, and subsequently should be inverted, i.e., 𝜌.�,�s¬

 ,Ø =
ℱs( ~𝜌�,�s¬

 ,Ø [𝐹jW) , 	𝐹jW÷øä �, in order to identify the equivalent coefficients, 𝜌.�,�s¬
 ,Ø , to be used 

within the PAR-N generation procedure.  

6.3 THE AUXILIARY GAUSSIAN PAR MODEL 
As mentioned above, the generation procedure of SPARTA requires the synthesis of an 
auxiliary process	𝒛�,� , which is then mapped to the actual one, i.e.,	𝒙�,� . This process has to be 
cyclostationary (since the target process is also cyclostationary) and normal. These premises 
are fulfilled by standard periodic autoregressive models with normally-distributed noise (PAR-
N) of any order [e.g., Salas and Pegram, ; Salas et al., ; Salas, ].  

Although any stochastic scheme from the PAR-N family may be applicable, we pay attention 
to the PAR() process, in order to keep things simple and parsimonious, thus providing an easy 
to follow narrative. In addition, it is argued that the assumption of a first-order model is well-
justified for most of practical applications in hydrology [Efstratiadis et al., a]. Nevertheless, 
higher-order models may be cumbersome, because the empirical estimation of joint statistics 
from historical samples is subject to major uncertainty, usually resulting to ill-posed conditions 
(e.g., due to inconsistent autocorrelation structures), which in turn leads to substantial defects 
within parameter estimation. 

With respect to cross-correlations, the multivariate PAR() model, in its full formulation, 
preserves both the lag zero and lag one dependencies. However, as Koutsoyiannis and Manetas 
[] have shown, for reasons of parsimony it is sufficient using the contemporaneous PAR() 
[Salas,  p. .], which does not explicitly accounts for lag-one cross-correlations within 
parameter estimation. This is also advocated by an older study of Pegram and James []. 
For instance, in a four-variable problem with  seasons, the full PAR() model requires the 
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specification of  parameters to describe the dependencies among the variables, while the 
contemporaneous one entails . 

It is reminded that in order to employ the multivariate contemporaneous PAR()-N within 
SPARTA, it is essential to provide the equivalent lag- month-to-month correlations (i.e., 
autocorrelations), 𝜌.�,�s(  , for each process 𝑖 and season 𝑠, as well as the equivalent zero-lag 
cross-correlations, 𝜌.�

 ,Ø , for each pair of processes 𝑖 and 𝑗 and season 𝑠. Hence in order to 
emphasize on the use of equivalent correlation coefficients within the parameter estimation 
procedure of the PAR model the tilde notation will be employed. 

6.3.1 Multivariate contemporaneous PAR(1) model 

Keeping the same notation for the auxiliary and actual processes, the multivariate PAR() reads 
(for convenience, the index of the period 𝑡 is omitted): 

 𝒛� = 𝜜þ�𝒛�s( + 𝜝þ�𝒘� (.) 

where 𝒛� = {𝑧�(, … , 𝑧�Î}
Ï

 is a vector of m stochastic processes in season s, 𝜜þ�,𝜝þ�  are 𝑚	 × 	𝑚 

parameter matrices that depend on season s, and 𝒘� = {𝑤�(, … ,𝑤�Î}
Ï

 is a vector of mutually 
independent random variables. By definition, the random process 𝒛� is Gaussian, provided that 
𝒘� is generated from the standard normal distribution, i.e., 𝑤� ~𝒩(;, ().  

For each season s, the parameter matrix	𝜜þ�	is diagonal and contains the equivalent lag- 
month-to-month correlations, 𝜌.�,�s(  , i.e., 

 𝜜þ� = diagl𝜌.�,�s(( , … , 𝜌.�,�s(Î n	 (.) 

On the other hand, parameter matrices 𝜝þ� are calculated by, 𝜝þ�𝜝þ2� = 𝑮þ�	where 𝑮þ�:= 𝑪þ� −
	𝜜þ�𝑪þ�s(𝜜þ2� and 𝑪þ� is a symmetric 𝑚	 × 	𝑚	matrix that contains the equivalent lag-zero cross-
correlations, 𝜌.�

 ,Ø , i.e., 

𝑪þT = :
( ⋯ 𝜌.�

(,Î

⋮ ⋱ ⋮
𝜌.�
Î,( ⋯ (

; 

Furthermore, as discussed in Koutsoyiannis [], the lagged correlation matrices 𝑪þ�| ≔
Corr{𝒛�, 𝒛|} of the PAR()-N model can be estimated, on the basis of the parameter matrices 
𝜜þ� and the lag-zero cross-correlation matrices 𝑪þ�, for any time lag (𝑠 − 𝑟), by, 

 𝑪þ�| = Corr{𝒛�, 𝒛|} = 𝜜þ�𝜜þ�s( …𝜜þ|H(𝑪þ|, 𝑠 > 𝑟 (.) 

As mentioned earlier (e.g., section 4.1.3), the estimation of the parameter matrix 𝜝þ� (which is 
often assumed to be lower triangular) requires the formulation of a decomposition problem 
(i.e., finding the square root of	𝑮þ�), typically resolved using standard matrix decomposition 
techniques (e.g., Cholesky or singular value decomposition [e.g., Johnson, ]), when 𝑮þ� is 
positive definite, or otherwise, approximated via optimization techniques [e.g., Koutsoyiannis, 
; Higham, ]. In particular, Koutsoyiannis [] has developed an optimization-based 
approach, paying attention on the preservation of skewness, which is a well-known trouble of 
multivariate stochastic models, asking for generating skewed white noise [e.g., Todini, ]. 
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A great advantage of SPARTA approach is the assumption of normality within the auxiliary 
process, which substantially simplifies the optimization problem within decomposing non-
positive definite matrices. More precisely, the empirical penalty term considered by 
Koutsoyiannis [], in order to prohibit the generation of highly-skewed white noise, which 
introduces significant complexity to the optimization procedure [Efstratiadis et al., a], is 
neglected, thus resulting to a reduced objective function that only contains a distance term to 
minimize. Even in case of non-positive definite correlation matrices, where the desired 
stochastic characteristics are not explicitly preserved by the auxiliary model, the reduced 
optimization approach ensures a very good approximation, with minimal computational 
burden. 

6.3.2 Univariate PAR(1) model 

The univariate model can easily be derived from the above equations. Since m = , 𝜜þ� = 𝜌.�,�s((  

and	𝑪þ� = (, thus	𝜝þ�𝑩þ2� = ( −	𝜌.�,�s(( 𝜌.�,�s(( , which leads to	𝜝þ� = �( −	𝜌.�,�s(( ). Hence, by 

substituting in Eq. (6.4) and removing the redundant indices we read: 

 𝑧� = 𝜌.�,�s(𝑧�s( + �( − 𝜌.�,�s()	𝑤� (.) 

where	𝑤� are i.i.d. white noise with 𝒩(;, (). We remark that since 𝑖	 = 	( the superscript of 𝜌. 
has been omitted for simplicity. 

6.4 GENERATION PROCEDURE OF SPARTA MODEL 
Summarizing, the implementation of SPARTA comprises five steps:  

Step 1. For each variable 𝑖 and each season 𝑠, specify a suitable target marginal distribution, 
𝐹jW) , and also identify the dependencies to be preserved in time and space, as well as the target 

values of the associated coefficients of correlation, 𝜌�,�s¬
 ,Ø . 

Step 2. On the basis of the desirable dependencies to preserve (in terms of auto- and cross-
correlations), identify the suitable auxiliary model from the PAR-N family.  

Step 3. Determine the equivalent coefficients of correlation, 𝜌.�,�s¬
 ,Ø , for all pairs of variables that 

are required by the auxiliary model (e.g., using the algorithm of section 4.5). 

Step 4. Estimate the parameters of the auxiliary PAR-N model, on the basis of equivalent 
correlations, and run the model to generate the auxiliary Gaussian synthetic time series of	𝒛�,� . 

Step 5. Map the auxiliary process 𝒛�,�  to the actual domain using their ICDFs, i.e., through Eq. 
(6.1), to obtain	𝒙�,� . 

It is noted that, in contrast to classical stochastic approaches (see section 2.3.1 and 4.3.7), 
which imply the use of a specific statistical model for the noise, Nataf-based methods allow to 
employ pre-specified distribution models, in order to describe the probabilistic and stochastic 
structure of the modelled processes themselves and not of the noise. 
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6.5 CASE STUDIES 

6.5.1 Univariate simulation with common distribution models 

The first case study involves the simulation of monthly flow of Nile River at Aswan dam, based 
on a historical dataset from March  to December  [Hipel and McLeod, ]. The 
flows are characterized by strong seasonality and high correlations across all subsequent 
months (Figure 6.1). In order to demonstrate the performance of SPARTA against the classic 
implicit PAR model, we compare the outcomes of a stochastic simulation scenario of   
years length, which has been used several times in the past for providing synthetic flows [e.g., 
Koutsoyiannis et al., ]. The implicit PAR() model is typically coupled with Pearson type-
III distribution for white noise generation (referred to as PAR-𝒫III model). Hence, in order to 
conduct a fair and meaningful evaluation, within SPARTA we also set this distribution as target 
one for all months (referred to as SPARTA-𝒫III model). We remind that SPARTA explicitly 
accounts for the marginal distribution of each season, while PAR-𝒫III, similarly to most linear 
stochastic models (see section 2.3.1), attempts to resemble the statistical characteristics (e.g., 
mean, variance and skewness) via implicitly representing the marginal distributions into the 
innovation term. The multivariate formulation of PAR-𝒫III of order  is given in Appendix 
C.1. 

It is remarked that due to the use of Pearson type-III distribution, which allows for negative 
location parameters, the two models can produce negative values that would not be acceptable 
in a real-world hydrological study. A typical way to address this inconsistency within both 
models is the artificial truncation of all synthetic values to zero, which would yet introduce bias 
to the stochastic structure of the synthetic processes. However, among the two models, 
SPARTA also offers a much more rigorous alternative, since the data are generated via the 
corresponding ICDFs. This property enables fitting another positively bounded distribution 
model (e.g., Gamma, Log-Normal, etc.) to the observed data that explicitly prohibits the 
generation of negative values. 

The two models are evaluated through visual inspection of simulated against observed values 
of their monthly statistical characteristics, in terms of calculated values of mean, μ, standard 
deviation, σ, skewness coefficient, Cs, and lag- month-to-month correlation, ρ (Figure 6.1), 
as well as in terms of their monthly marginal distributions (Figure 6.2). It is noted that these 
statistics were calculated after truncation of negative values. Except for the trivial case of means 
and standard deviations, which are perfectly reproduced by both models, for the skewness and 
month-to-month correlations, only SPARTA-𝒫III ensures full consistency with the target 
values across all seasons. In addition, SPARTA-𝒫III fits perfectly the target theoretical 
distribution models, which is a direct outcome of employing the inverse mapping, while PAR-
𝒫III occasionally deviates from the target distributions, and particularly their tails (e.g., in 
February, March, April and May). 
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Figure 6.1 | Comparison of key statistics (μ, σ, Cs and ρ) between historical and simulated flow data 
of Nile River (PAR and SPARTA). 
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Figure 6.2 | Comparison between simulated flow data ( m), through PAR-PIII and SPARTA-PIII, 
empirical and theoretical cumulative distribution functions (Weibull’s plotting position). Simulated 
negative values are also included to avoid the distortion of the established CDFs. 

To further highlight the advantages of SPARTA over PAR-𝒫III, we also investigate the derived 
dependence forms, by focusing on the scatter plots of the  pairs of adjacent monthly data sets 
(Figure 6.3). Interestingly, PAR-𝒫III, although it preserves quite satisfactory the key statistical 
characteristics, including the observed coefficients of correlation, it fails to capture the full 
extent of the observed patterns, in contrast to SPARTA-𝒫III, which generates well-spread data 
pairs which are in compliance with the observations. In particular, in the scatter plots of pairs 
December – January, January – February, February – March and March – April, it is shown 
that PAR-𝒫III not only fails to capture the dependence patterns of the historical data, but also 
seems fails to produce synthetic pairs out of a lower boundary. Therefore, the synthetic 
dependencies are not in good agreement with the observed ones, although the correlation 
coefficients themselves are reproduced with high accuracy. For further details regarding this 
behavior, as well as its origin, see Chapter 3.  
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Figure 6.3 | Month-to-month scatter plots of historical and simulated flow data ( m), through 
PAR-𝒫III and SPARTA-𝒫III. Simulated negative values are also included to avoid the distortion of the 
established dependence patterns. 

6.5.2 Toy simulation with seasonally-varying distribution models 

The second case study involves the simulation of a hypothetical seasonal process �𝑥�,��, with 
different marginal distribution per season (for convenience,  seasons are considered). The 
target distribution models and the associated parameters across seasons are given in Table 6-1. 
In addition, we assume the target lag- (i.e., season-to-season) correlation coefficients equal to 
𝝆 = {𝜌(),(, 𝜌(,), … , 𝜌�,�s( … , 𝜌(;,((, 𝜌((,()} =	[., ., ., ., ., ., ., ., ., 
., ., .]. Using SPARTA we generated   ×  =   synthetic values of	𝑥�,� and 
compared their statistical characteristics against the target ones. We remark that in contrast to 
the previous case study, we do not compare against another linear stochastic model (e.g., PAR-
PIII), given that we have specified different statistical distributions across seasons, which 
cannot be represented by such models. 
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Table 6-1 | Theoretical distributions and associated parameters of hypothetical process across 
seasons, as well as MLE estimation of simulated data. 

Season 1 2 3 4 5 6 7 8 9 10 11 12 

Distribution/ 
Parameters 

𝒫III ℰ𝒳𝒫 𝒢 𝒩 ℒ𝒩 𝒲ℰℐ 𝒲ℰℐ ℒ𝒩 ℰ𝒳𝒫 𝒫III 𝒲ℰℐ 𝒢 

Theoretical Values 

a 1.7 0.015 10 85 0.3 4.5 6 0.25 0.003 11 3 9 

b 10 - 0.15 30 5 680 820 6 - 19 155 0.2 

c 40 - - - - - - - - -50 - - 

 Simulated Values 

a 1.72 0.015 10.01 85 0.29 4.47 5.99 0.25 0.003 9.12 2.97 9.09 

b 9.88 - 0.15 29.98 5 680.03 819.91 6 - 20.98 154.90 0.20 

c 39.94 - - - - - - - - -51.39 - - 

*Distribution abbreviations: 𝒫III: Pearson type-III (a = shape, b = scale, c = location), ℰ𝒳𝒫: Exponential (a = 
1/scale), 	
𝒢: Gamma (a = shape, b = 1/scale), 𝒩: Normal (a = mean, b = st. dev.), ℒ𝒩: Log-Normal (a = shape (log mean), 
b = scale (log st. dev.)), 𝒲ℰℐ: Weibull (a = shape, b = scale) 

The theoretical and simulated values of the key statistical characteristics of the modelled 
process are illustrated in Table 6-2. The former were calculated through the corresponding 
theoretical equations of each distribution. As shown, SPARTA is very efficient, since it 
reproduces all key statistics, including the kurtosis coefficient, Ck. Furthermore, SPARTA 
preserves the parameters of the target marginal distributions (Table 6-1, upper part), which 
are estimated through the MLE method. Actually, as shown in Table 6-1 (lower part), there is 
close agreement between the target and simulated parameter values for all seasons. This is also 
visually confirmed by plotting the associated CDFs (Figure 6.5), as the disparencies between 
the theoretical and empirical distributions are almost indistinguishable. It is noted that the 
distributions employed for season  and  allowed the generation of negative values since we 
assigned to the former a Gaussian one (which is unbounded) and in the latter a Pearson Type-
III with location parameter c = - which coincides with its theoretical lower bound (given that 
b > ). All other distributions are defined in the positive real axis, hence they don’t allow the 
generation of negative values. 

Furthermore, the stochastic structure of the hypothetical process, by means of season-to-season 
correlations, ρ, is reproduced, despite the fact that it exhibits significant variability, also 
comprising some very high ρ values. In order to shed further light on the seasonal dependence 
patterns, we provide scatter plots combined with histograms for four adjacent seasons, from 
which it becomes clear that SPARTA can reproduce a plethora of marginal distributions and 
simultaneously account for dependence patterns of different complexity (Figure 6.4). 
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Table 6-2 | Simulated and theoretical values of key statistical characteristics of hypothetical process. 

Season/ Statistic             

μ (Theor.) . . . . . . . . . . . . 

μ (Sim.) . . . . . . . . . . . . 

σ (Theor.) . . . . . . . . . . . . 

σ (Sim.) . . . . . . . . . . . . 

Cs (Theor.) . . . . . -. -. . . . . . 

Cs (Sim.) . . . -. . -. -. . . . . . 

Ck (Theor.) . . . . . . . . . . . . 

Ck (Sim.) . . . . . . . . . . . . 

ρ (Theor.) . . . . . . . . . . . . 

ρ (Sim.) . . . . . . . . . . . . 

𝜌.( (Equiv.) . . . . . . . . . . . . 

*Table abbreviations: Theor: Theoretical value, Sim: Simulated value, Equiv: Equivalent value. 

 
Figure 6.4 | Scatter plots with histograms for a) season  vs.  b) season  vs. , c) season  vs. , and 
d) season  vs. . 
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Figure 6.5 | Comparison between simulated (SPARTA) and theoretical cumulative distribution 
functions (Weibull plotting position) of hypothetical process. Simulated negative values (season  and 
) are also included to avoid the distortion of the established CDFs. 

6.5.3 Multivariate simulation 

The third case study involves the simultaneous generation of monthly runoff and rainfall data 
at two major reservoirs of the water supply system of Athens, i.e., Evinos and Mornos (details 
about the system are provided by Koutsoyiannis et al. [a]). The historical data cover a -
year period (Oct/ – Sep/), which is marginally adequate for estimating up to third 
moment statistics with acceptable accuracy. For convenience, herein we will refer to Evinos 
runoff and rainfall as sites A and B, respectively, and to Mornos runoff and rainfall as sites C 
and D, respectively (here term site denotes a specific hydrological process at a specific location). 

In this problem we employed the multivariate version of SPARTA and compared against the 
contemporaneous PAR() model with Pearson type-III white noise, again, referred as PAR-
𝒫III model (Appendix C.1). Similarly to the case study of section 6.5.1, in the context of 
specifying the underlying marginal distributions of SPARTA, and in order to ensure fair 
comparisons, we decided fitting the Pearson type-III model at all sites and for all months, and 
estimating its parameters via the method of moments. Under this premise, the generating 
scheme will be next referred to as SPARTA-PIII. Although we remark, that in an operational, 



CYCLOSTATIONARY PROCESSES   

Page | 126 

real-world study one could take advantage of SPARTA model flexibility and select appropriate 
distributions models that are positively bounded, thus directly surpass the problem of negative 
values generation (see also the previous sections). 

The performance of both models was assessed in a monthly basis, by contrasting the statistical 
characteristics of historical data that should be theoretically preserved by the corresponding 
generating schemes (i.e., monthly means, standard deviations, and skewness coefficients, lag- 
correlations across months, and zero-lag cross-correlations between all sites) against the 
simulated ones. 

It is well-known that while the theoretical equations of any stochastic model are built in order 
to explicitly reproduce a specific set of statistical characteristics, this preservation is only 
ensured for very long (theoretically infinite) simulation horizons [Efstratiadis et al., a]. If 
we consider relatively small horizons and repeat the simulation many times, the smaller the 
length of the synthetic sample, the larger is expected to be the variability of the simulated 
against the theoretical values of these characteristics. In this context, the stochastic model that 
ensures the minimum variability will be recognized as the most robust, since its performance 
will be the less sensitive against the simulation length. In this context, we employed two 
experiments, the first one by employing a single simulation of   years length, and the 
second one by running each model  times, to obtain independent synthetic samples of   
years length. This Monte Carlo approach allowed for evaluating the uncertainty of the 
simulated statistical characteristics (after truncation of negative values to zero), which is 
depicted by means of box-plots (Figure 6.6 to Figure 6.10). 

As shown in Appendix C (Figure C.1 to Figure C.5), the estimated statistical characteristics 
from the large (i.e.,   years) synthetic sample perfectly agree with the historical ones, 
thus confirming the solid theoretical background of SPARTA-𝒫III. As expected, PAR-𝒫III also 
ensures perfect fitting of the simulated to the observed statistics, expect for skewness, which are 
slightly underestimated. Probably, this systematic deviation is due to the simplified method 
employed for covariance matrix decompositions (namely, the Cholesky technique). The 
superiority of SPARTA-𝒫III against PAR-𝒫III is further revealed when evaluating the fitting 
of synthetic data to the theoretical distribution that has been adopted in this simulation 
experiment, i.e., Pearson type III. The 𝒫III distribution is mathematically defined through Eq. 
(3.5) comprising three parameters, i.e., shape, a, scale, b, and location, c, which have been 
estimated for each site and each month with the method of moments (Table C.1). It is shown 
that the estimated parameter values originated by SPARTA-𝒫III are very close to the 
theoretical ones, thus the desirable distributions are accurately reproduced. On the other hand, 
there are several cases where the PAR-derived parameters, and consequently the derived 
distributions, oscillate significantly form the theoretical model. This becomes even more 
evident when expressing these deviations in terms of root mean square error, per site and 
parameter. As shown in Table C.2, this error is up to three times larger than the error induced 
by SPARTA-𝒫III. 

With respect to the second (i.e., Monte Carlo) experiment, from Figure 6.6 and Figure 6.7 it 
is shown that both SPARTA-𝒫III and PAR-𝒫III are able to reproduce the observed monthly 
means and standard deviations, respectively, since their variability is generally low across all 
sites and seasons. 

Regarding the reproduction of monthly coefficients of skewness (Figure 6.8), it seems that 
SPARTA-𝒫III slightly outperforms PAR-𝒫III in terms of statistical uncertainty, as indicated 
by the narrower box-plots that are provided is several cases (e.g., October, March, August and 
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September for site A, October, November and March for site B, November, December and 
March for site C, and March, August and September for site D). Finally, in terms of lag- 
month-to-month and lag- cross-correlations, both schemes ensure robustness, as illustrated 
in Figure 6.9 and Figure 6.10, respectively. 

As already highlighted, a great advantage of SPARTA over linear stochastic schemes, such as 
PAR-𝒫III, is its ability to reproduce realistic dependence patterns, in compliance to the 
observed ones (see also Chapter 3). This is also empirically confirmed in the current case study, 
which aims to reproduce both temporal and spatial dependencies (i.e., dependencies between 
different processes). A characteristic example is given in Figure 6.11, illustrating the scatter 
plots of historical and simulated runoff values of at Evinos (site A) and Mornos (site C), for 
months January and February, from the long-term experiment (i.e.,   years). It becomes 
now even more clear that the SPARTA-PIII generation scheme provides reasonably-
distributed data, while the synthetic data by PAR-PIII are again bounded within a specific 
range, which is far from truthful and does not capture the full extent of the observed scatter 
(notice the incompatibility between the synthetic series of PAR-PIII and the historical data in 
Figure 6.11). 

 
Figure 6.6 | Comparison of monthly mean values, μ, of historical and synthetic data. 
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Figure 6.7 | Comparison of monthly standard deviation values, σ, of historical and synthetic data. 

 
Figure 6.8 | Comparison of monthly skewness coefficients, Cs, of historical and synthetic data. 
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Figure 6.9 | Comparison of month-to-month lag- correlations, ρ, of historical and synthetic data. 

 
Figure 6.10 | Comparison of monthly lag- cross-correlations, ρ, between sites of historical and 
synthetic data. 
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Figure 6.11 | Scatter plots of   synthetic data for sites A and C, representing monthly runoff 
(mm) processes at Evinos and Mornos reservoirs, respectively, for (a) January and (b) February. 
Simulated negative values are also included to avoid the distortion of the established dependence 
patterns. 

6.6 SUMMARY 
This Chapter presents a novel approach, termed SPARTA, for the explicit stochastic simulation 
of univariate and multivariate cyclostationary (i.e., periodic) processes with arbitrary marginal 
distributions. SPARTA uses an auxiliary Gaussian PAR process with properly identified 
parameters, such as after its mapping to the actual domain through the ICDFs, it results to a 
process with the target correlation structure and a priori specified marginal distributions. Since 
the temporal and spatial dependencies are typically expressed by means of Pearson correlation 
coefficients, we focus on the identification of equivalent correlation coefficients of the auxiliary 
processes to be used in the Gaussian domain, in order to attain the target correlations in the 
actual domain. In this context, we use the Nataf joint distribution model, originated from 
statistical sciences for the generation of correlated random variables with prescribed 
distributions (see also Chapter 4). 

Further to the advantage of simulating cyclostationary processes with arbitrary marginal 
distributions, the proposed approach is also flexible in implementing any distribution fitting 
method, offered by recent advances in statistical sciences. This flexibility also offers the 
capability of explicitly ensuring the generation of non-negative values within simulations, 
through selecting appropriate distributions that are positively bounded. This important 
property, which is not offered by most of known stochastic schemes used in hydrology, is 
attributed to the use of the ICDF; if the employed distributions are positively bounded, the 
generated values will be by definition non-negative. 

The advantages of SPARTA in practice, i.e., in the context of generating monthly synthetic 
data, have been illustrated through three stochastic simulation studies, emphasizing different 
aspects of the proposed methodology. Furthermore, in two out of three studies, SPARTA has 
been contrasted to the well-established linear stochastic model PAR-PIII, i.e., PAR() with 
Pearson type-III white noise. The major outcomes of our analyses are:  
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• Both models reproduced almost perfectly the essential statistical characteristics of the 
simulated processes up to second order (means, standard deviations, lag- month-to-
month correlations (i.e., autocorrelations), zero-lag cross-correlations). 

• SPARTA was also able to preserve with high accuracy the third order statistics, expressed 
in terms of skewness coefficients, while in several cases PAR-PIII provided quite 
underestimated skewness, which varied significantly across independently generated 
synthetic samples. 

• SPARTA was able not only to preserve the theoretical statistical characteristics of the 
observed data but also the parameters of the prescribed marginal distributions, which is in 
fact the primary goal of simulation. 

• SPARTA produced dependence structures in time and space that are in agreement with the 
observed patterns, while, in some cases, PAR-PIII provided rather irregular scatter patterns 
that were fragmented out of the observed ranges. 

To this end, it is argued, that SPARTA is a convenient way to simulate cyclostationary 
processes, either univariate or multivariate, yet it should not be regarded as a panacea for all 
kind of simulation problems, since it inherits the characteristics of the auxiliary process from 
the periodic autoregressive family. In this context, it cannot preserve the statistical 
characteristics at aggregated time scales, e.g., annual, including long-range dependence (Hurst 
phenomenon).  

For this reason, the Chapter 7 regards the integration of SPARTA within a multi-scale 
stochastic simulation framework (by coupling multiple Nataf-based models; see Chapter 5), 
allowing us to reproduce the desirable distribution and desirable correlation structures at 
multiple time scales, and also reproduce the peculiarities of different scales. As shown in the 
literature, an effective and efficient way to address this is through disaggregation techniques. 
For instance, the coupling procedures formalized by Koutsoyiannis and Manetas [] and 
Koutsoyiannis [], which has been successfully implemented within advanced simulation 
schemes [e.g., Efstratiadis et al., a; Kossieris et al., ; Tsoukalas et al., c], can be 
easily aligned with SPARTA and other Nataf-based models to ensure statistical consistency 
across scales. 
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7  
BUILDING A PUZZLE FOR MULTI-TEMPORAL STOCHASTIC SIMULATION 
§ 

PREAMBLE 
The generation of hydrometeorological time series that exhibit a given probabilistic and 
stochastic behavior across multiple temporal levels, traditionally expressed in terms of specific 
statistical characteristics of the observed data, is a crucial task for risk-based water resources 
studies, and simultaneously a puzzle for the community of stochastics. The main challenge 
stems from the fact that the reproduction of a specific behavior at a certain temporal level does 
not imply the reproduction of the desirable behavior at any other level of aggregation. In this 
respect, we first introduce a pairwise coupling of Nataf-based stochastic models within a 
disaggregation scheme, and next we propose their puzzle-type configuration to provide a 
generic stochastic simulation framework for multivariate processes exhibiting any distribution 
and any correlation structure. Within case studies we demonstrate two characteristic 
configurations, i.e., a three-level one, operating at daily, monthly and annual basis, and a two-
level one to disaggregate daily to hourly data. The first configuration is applied to generate 
correlated daily rainfall and runoff data at the river basin of Achelous, Western Greece, which 
preserves the stochastic behavior of the two processes at the three temporal levels. The second 
configuration disaggregates daily rainfall, obtained from a meteorological station at Germany, 
to hourly. The two studies reveal the ability of the proposed framework to represent the peculiar 
behavior of hydrometeorological processes at multiple temporal resolutions, as well as its 
flexibility on formulating generic simulation schemes. 

This Chapter is organized as follows: Section 7.1 reviews the literature and presents the 
objectives of this chapter. Section 7.2 describes the disaggregation-based coupling approach, 
designed to maintain consistency across pairwise scales. Section 7.3 presents a generic and 
modular stochastic simulation framework that enables the development of various multi-scale 
schemes (i.e., configurations). Section 7.4 demonstrates a three-level configuration through 
two case studies, which highlight the capabilities of the framework to simulate a wide range of 
processes (multivariate) exhibiting intermittency, different distribution functions and 
correlation structures across multiple time scales. Section 7.5 entails a simpler configuration 
and aims at synthesizing hourly rainfall data from a given (i.e., observed) daily record, thus 
illustrating the efficiency of the method against challenging disaggregation problems. Finally, 
section 7.6 summarizes the overall modelling framework and discusses potential applications.  

                                                        
§ Tsoukalas, I., A. Efstratiadis, and C. Makropoulos (b), Building a puzzle to solve a riddle: a new approach 
to multi-temporal stochastic simulation, J. Hydrol., doi:(in review). 
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7.1 INTRODUCTION 
Today, most of water recourses studies employ Monte Carlo simulations, by running 
deterministic models that are driven by synthetic inputs, which are typically generated by 
stochastic models. In this context, key requirement for extracting statistically consistent 
outcomes is the concise representation of the probabilistic behavior and stochastic structure of 
the input hydrometeorological processes (e.g., rainfall, runoff, temperature). It is well-known 
that these exhibit a significantly complex regime, the most prominent aspects of which are non-
Gaussianity, intermittency, auto- and cross-dependence, as well as periodicity [Moran, ; 
Salas et al., ; Koutsoyiannis, b]. All above peculiarities dictate the specifications of a 
good simulation model (see also of section 2.2). 

During more than a half century, the need for good synthetic data generators, to be used within 
risk-aware decision-making frameworks for design, assessment and operation of water 
resource systems (see section 1.2) has triggered numerous researchers for developing a plethora 
of stochastic approaches and associated modelling tools. These can be primarily classified into 
two broad categories, i.e., single-scale and multi-scale. The former ensure the reproduction of 
a set of statistical and stochastic properties at a unique time scale of interest, i.e., the time 
interval of simulation, while the latter attempt to simultaneously represent the desirable 
properties of the simulated data, as well as the properties of the aggregated data at coarser 
temporal scales. 

The numerous single-scale simulation schemes that have been developed so far can be further 
distinguished into (see the review of section 2.3): ) linear stochastic models, also known as 
time series generators [e.g., Thomas and Fiering, ; Matalas, ; Matalas and Wallis, 
; Salas et al., ; Bras and Rodríguez-Iturbe, ; Koutsoyiannis, , ]; ) point 
process models [e.g., Bo et al., ; Onof et al., ; Kilsby et al., ; Burton et al., ; 
Evin and Favre, ; Kaczmarska et al., ]; ) two-part models, i.e. product models of 
occurrence and amount that are represented as discrete and continuous processes, respectively 
[e.g., Todorovic and Woolhiser, ; Katz, ; Richardson and Wright, ; Wilks, ; 
Khalili et al., ; Srikanthan and Pegram, ; Baigorria and Jones, ; Breinl et al., , 
; Ailliot et al., ; Lee, ]; ) resampling methods [e.g., Lall and Sharma, ; 
Rajagopalan and Lall, ; Buishand and Brandsma, ; Wójcik and Buishand, ; Clark 
et al., ; Mehrotra et al., ; Mehrotra and Sharma, ; Salas and Lee, ]; and ) 
copula-based models [e.g., Bárdossy and Pegram, ; Serinaldi, a; Hao and Singh, , 
; Lee and Salas, ; Chen et al., ; Jeong and Lee, ; Lee, ]. 

By design, single-scale simulation models attempt to reproduce the desirable statistical and 
stochastic behavior within the synthetic data at the scale of simulation, yet they provide limited 
control to the properties of the same process, when aggregated at higher (coarser) time scales. 
It is well-known that the reproduction of the probabilistic and stochastic behavior of a process, 
expressed either in terms of a distribution function or a set of statistical properties, at a certain 
time scale does not ensure the reproduction of the associated characteristics of the aggregated 
process at any other time scale. 

The necessity for the hereto referred to as multi-scale consistency has been early recognized by 
the hydrological community, through the pioneering work by Harms and Campbell []. 
Actually, from the first steps of Monte Carlo approaches in water resources it has been accepted 
that that the outcomes of stochastic analyses are associated with the overall statistical and 
stochastic behavior of the input hydrometeorological processes, which may extend far beyond 
the time interval of the underlying (deterministic) simulation model [see, Klemeš, ; 
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Koutsoyiannis, b]. For instance, the design and operation of large reservoir systems that 
employ overyear regulation, which are typically modelled in monthly intervals, is strongly 
dictated by the probabilistic and stochastic properties of the aggregated inflows, at the annual 
and even over-annual scales. Similarly, the outputs of continuous flood simulation models, 
driven by fine-time (e.g., hourly) rainfall series, are substantially affected by the sequence of 
accumulated rainfall, as the runoff production strongly depends on the antecedent soil 
moisture conditions. In this respect, multi-scale consistency in stochastic simulation can be 
regarded as an operational sine qua non. 

Furthermore, multi-scale consistency is directly linked with the so-called issue of low-
frequency variability or over-depression (i.e., the deficiency to reproduce the process’ variance 
at higher time scales), which is encountered in many popular daily weather-generation models 
[e.g., Wilks, ; Katz and Parlange, ; Wilks and Wilby, ; Mehrotra et al., ; 
Brissette et al., ; Srikanthan and Pegram, ; Khalili et al., ; Serinaldi, a; 
Baigorria and Jones, ; Mhanna and Bauwens, ; Breinl et al., , ; Lee, ]. 

Multi-scale simulation schemes, with the exception of few specifically designed models [e.g., 
Rodriguez-Iturbe et al., ; Langousis and Koutsoyiannis, ], is typically build upon the 
disaggregation paradigm. Essential element of disaggregation is the additive property, which 
enables the generation of multi-scale consistent time series via the transfer of information 
among different temporal scales. This implies that the sum of the generated variables at the 
lower level (e.g., monthly) at any period should add to the corresponding value at the higher 
level (e.g., annual), which is assumed known, either from observed or synthetic (simulated) 
data. This property distinguishes disaggregation from downscaling [e.g., Wilks and Wilby, 
; Cannon, ; Lombardo et al., ], which focus on generating lower level time series 
that statistically resemble the properties of higher level ones, and not necessarily honor the 
additive constraint. 

As already mentioned, the beginning of the quest (at least in hydrological domain) for multi-
scale simulation models can be attributed to Harms and Campbell [], who developed a 
two-level version of the classical stochastic model by Thomas and Fiering [] that preserves 
some key statistical properties of the observed data at both the annual and monthly scale. Little 
later, the interest on such methods reinforced with the theoretical research on disaggregation 
by Valencia and Schakke [] and Mejia and Rousselle []. However, the proposed 
methods were fully general only for normally distributed variables, thus limiting their 
applicability to a relatively narrow range of processes and scales. 

Next generation approaches offered multi-scale schemes that utilized the notion of the so-
called adjusting procedures [Harms and Campbell, ; Stedinger and Vogel, ; Grygier and 
Stedinger, ; Koutsoyiannis and Manetas, ; Koutsoyiannis, ]. These aimed in 
coupling single-scale simulation models of any type, operating independently at different time 
scales. The rationale is generating low-level synthetic data as auxiliary information, and next 
adjusted them to the known higher-level values, by using relatively simple algebraic 
transformations, such as the partial sums at the low level equal the values of the higher level. 
Koutsoyiannis and Manetas [] and Koutsoyiannis [] investigated several adjusting 
procedures, and also standardized the concept of repetitive sampling (kind of Monte Carlo 
approach), to ensure that the partial sums are close to the given values. This can be regarded as 
an informal method of conditional sampling, that can significantly improve the efficiency of 
such schemes [see also, Glasbey et al., ]. 
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Adjusting procedures of varying complexity have been implemented within a number of 
disaggregation-based schemes, in order to couple single-scale simulation models (such as the 
ones described above) across various time scales. In particular, they were used within linear 
stochastic models [e.g., Koutsoyiannis et al., b; Segond et al., ; Lombardo et al., ; 
Efstratiadis et al., a; Allard and Bourotte, ; Tsoukalas et al., c], point processes 
[e.g., Glasbey et al., ; Koutsoyiannis and Onof, ; Onof et al., ; Kossieris et al., ], 
two-part models [e.g., Shao et al., ; Evin et al., ], resampling methods [e.g., Lee et al., 
] and copula-based models [e.g., Gyasi-Agyei, ; Gyasi-Agyei and Melching, ]. It is 
highlighted that the overall simulation capabilities of adjusting-based schemes are determined 
by the underlying simulation models, which consist the core data generation mechanism. 

In addition, several modern schemes for establishing multi-scale consistency are built upon the 
concepts of scaling and multifractality [e.g., Tessier et al., ; Kantelhardt et al., ; 
Veneziano et al., ]. Typically, these employ multiplicative random cascade models [Gupta 
and Waymire, , ] to generate multi-scale consistent (in terms of typically high-order 
moments) realizations [e.g., Menabde et al., ; Olsson, ; Deidda et al., ; Molnar and 
Burlando, ; Rupp et al., ; Müller and Haberlandt, , ]. Recent works by, 
Licznar et al. [], Lombardo et al. [] and Pui et al. [] provide comparative studies 
involving such models, as well as alternative downscaling or disaggregation methods. 

Besides the vast effort made so far, the quest for full generality and full consistency across 
multiple temporal scales still remains a puzzle. Recently, Tsoukalas et al. [e] highlighted 
that many of widespread schemes, including linear stochastic models with non-Gaussian 
innovations, point-process models and resampling techniques, emphasize on the reproduction 
of a specific set of summary statistical characteristics, which arguably cannot capture the full 
behavior of a random process. As also shown, under some common conditions these may lead 
to bounded dependence patterns, which are not realistic (see Chapter 3; [Tsoukalas et al., 
a]). On the other hand, two-part and copula-based models are actually able to explicitly 
account for the distributional properties of simulated processes, yet they are mainly designed 
to represent specific correlation structures. For instance, two-part models often neglect 
temporal dependencies, while copula-based schemes typically account for temporal 
dependencies spanning over only few time lags. 

In this Chapter, our focus is not on disaggregation per se, rather than we employ the flexibility 
provided by the concepts of repetitive sampling and adjusting procedures to link individual 
stochastic models, in order to represent the varying regime of hydrometeorological processes 
across multiple temporal scales. Our emphasis is to shift from the classical paradigm of 
resembling a process in terms of few summary statistics (in particular, moments up to third 
order and low order correlation coefficients), to the explicit representation of its marginal and 
stochastic properties, in terms of distribution functions and theoretical correlation structures, 
respectively. This is accomplished by building upon a recently introduced (in hydrology) class 
of stochastic models, the so-called Nataf-based [Tsoukalas et al., a, e, d]. These, 
through the mapping of an auxiliary Gaussian process (Gp) (Chapter 4-6), are able to simulate 
multivariate, stationary and cyclostationary processes with any marginal distributions and any 
correlation structures. These properties allow for characterizing Nataf-based models as good 
single-scale stochastic simulators, and thus appropriate data generators within multi-scale 
adjusting-based schemes. Taking advantage of the above concepts, we propose a scale-free 
disaggregation approach for pairwise coupling of Nataf-based models, next referred to as 
Nataf-based Disaggregation to Anything (NDA). Eventually, a chain configuration NDA allows 
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for developing puzzle-type, i.e., modular, simulation schemes that ensure consistent 
simulations across any sequence of temporal scales. 

7.2 ADDRESSING MULTI-SCALE CONSISTENCY 
Provided that the theoretical background of Nataf-based stochastic models has been extensively 
discussed (Chapter 4-6), and in order to avoid repetition, this section focuses on addressing 
the problem of multi-scale consistency. Nataf-based models, although fulfill the requirements 
of a good stochastic model, i.e., the explicit reproduction of any distribution and any correlation 
structure, do not account for multi-scale consistencySince the problem is independent of the 
generation procedure and the time scale of simulation, we first provide a global overview and 
then propose a generic solution for Nataf-based models, herein referred to as Nataf-based 
Disaggregation To Anything (NDA). 

7.2.1 Problem description 

 Let us begin from the univariate case, denoting by �𝜔ô�ô∈ℤ�  a discrete-time, stationary or 
cyclostationary (the season indicator 𝑠 is omitted for simplicity), stochastic process at time scale 
𝑘 = (, where n is a time index. Let also define the aggregated process 𝜔m

(�) at a higher time scale 
𝑘 ∈ ℤ ), obtained by: 

 𝜔m
(�) = á 𝜔ô

�m

ôâ(ms()�H(

 (.) 

where 𝑙 is the time index of the aggregated process. Alternatively (e.g., if 𝜔ô refers to an 
instantaneous quantity), we can define the averaged process, also denoted by 𝜔m

(�), by, 𝜔m
(�) =

∑ 𝜔ô�m
ôâ(ms()�H( /𝑘. Apparently, the properties of �𝜔ô� at scale 𝑘 = ( are related with those of 

the aggregated (or averaged) process at a higher time scale 𝑘 ∈ ℤ ). 

Herein, without loss of generality, we focus on the aggregated case. To simplify, we first remark 
that the operations implied by Eq. (7.1), can be viewed as a sum of 𝑘 RVs. Thus, if we were 
interested on the distribution of �𝜔m

(�)¡, it would be identical to solve an aggregated distribution 
problem. If the process �𝜔ô� is stationary at 𝑘 = (, then at any higher scale 𝑘 we would have 
the sum of 𝑘 identical RVs. On the other hand, if �𝜔ô� is cyclostationary at the lower scale 𝑘 =
(, at any higher scale k we would have the sum of 𝑘 non-identical RVs (their marginal and 
dependence properties depend on the season 𝑠 = (, . . , 𝑆, implied by the time index 𝑛; see 
section 4.3.1). 

Arguably, the problem of identifying the distribution of 𝜔m
(�) at 𝑘 > ( is particularly 

challenging, since there is not a general method (without resorting to simulation) to identify 
the distribution of the sum of 𝑘 RVs, especially, in the presence of dependence, which is typical 
for hydrometeorological processes. Furthermore, apart from some low order moments (i.e., 
mean, variance, autocovariance and autocorrelation), higher order moments of the aggregated 
process are also particularly difficult to estimate, either analytically or theoretically. 
Analogously, it is also challenging to specify a process �𝜔ô� that has the desirable (for this time 
scale) marginal and stochastic properties, when it is aggregated at a higher scale 𝑘 > (.  
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The problem becomes even harder when multiple processes are involved, in the context of 

multivariate simulation problems. Let 𝝃� = �𝜉�(, … , 𝜉�Î�
Ï

and 𝝎ô = {𝜔ô(,… ,𝜔ôÎ}
Ï

 be two m-
dimensional vectors of two discrete-time processes 𝜉�   and 𝜔ô  , indexed using 𝑡 ∈ ℤB and 𝑛 ∈
ℤB, respectively. Furthermore, let assume that 𝜉�   and 𝜔ô   represent the same process at two 
different temporal scales, higher and lower, respectively, with time units denoted by 𝛿½ and 𝛿£, 
respectively (i.e., 𝛿½ > 𝛿£). 

Similarly to Eq. (7.1), when 𝑘∗ ≔ 𝑘 = 𝛿½ 𝛿£⁄  (e.g.,  year/ month = , or  month/ hour = 
 × ,  × , × ; depending on the number of days of the month), we obtain an 
aggregated process at the same temporal level of 𝜉�  , i.e., 

 𝜉¤�  ≔ 	𝜔m
 ;(�∗) = á 𝜔ô 

m�∗

ôâ(ms()�∗H(

, (𝑙 = 𝑡) (.) 

Evidently, when 𝜔ô   is simulated without reference to the higher-level process 𝜉�  , then 𝜉�  ≠ 𝜉¤�  . 
Hence, for each process 𝑖 = (, . . , 𝑚, our target is to generate a 𝑘∗-dimensional random 
sequence, 𝝎�;(�∗)

  = {𝜔(�s()�∗H(
  , … ,𝜔��∗

  }, of the low-level process (𝑘 = (), with the desirable 
properties, which honors the equality, 𝜉�  = 𝜉¤�  , when aggregated to the time scale 𝑘∗. The 
multivariate formulation of the problem is written as: 

 

𝜴�;(�∗) = �𝝎�;(�∗)
( Ï, … ,𝝎�;(�∗)

Î Ï�
Ï
= :

𝜔(�s()�∗H(
( ⋯ 𝜔��∗

(

⋮ ⋱ ⋮
𝜔(�s()�∗H(
Î ⋯ 𝜔��∗

Î
; , and 

𝝃¦� = �𝜉¤�(, … , 𝜉¤�Î�
Ï
= : á 𝜔ô(,…

��∗

ôâ(�s()�∗H(

, á 𝜔ôÎ
��∗

ôâ(�s()�∗H(

;

Ï

 

(.) 

7.2.2 The NDA approach: Step-by-step implementation 

In order to address the problem, we develop the Nataf-based Disaggregation To Anything 
(NDA) approach, which combines Nataf-based models, considered as data generation 
mechanisms, with a coupling procedure that encompasses the notions of repetitive sampling 
and adjusting procedures. These two key notions are thoroughly discussed by Koutsoyiannis 
and Manetas []. 

The NDA procedure starts from a given realization, 𝝃�, of a process	𝝃�, at a specific time scale, 
aiming to produce a consistent realization, 𝝎ô, at a lower scale. The given realization 𝝃� is 
known either from observations or already generated by another model (deterministic or 
stochastic). In the second case, if a Nataf-based model is employed, the synthesized higher-level 
realization would have the desirable marginal distributions and correlation structure, hence the 
problem would reduce to generating a lower-level realization with the target properties, which 
when aggregated to the higher-level honors the additive property. Fulfilling both conditions 
allows preserving the properties of the process at both temporal levels, given that the realization 
at the higher level is kept as is. 
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Therefore, given the realization 𝝃�, and assuming a temporary Nataf-based lower-level process, 
denoted by 𝝎§ô, with properties identical to those of the target process 𝝎ô  (i.e., 𝝎§ô = 𝝎ô), the 
following steps are applied for all time indices 𝑡. 

) Using a Nataf-based model (Chapter 4-6), generate 𝑁½/£ temporary realizations 𝝎§ô of the 
lower level process 𝝎§ô, of length 𝑘∗, thus obtaining 𝑁½/£ sets of matrices �𝜴© �;(�∗)(𝜈); 𝜈 =
(,… ,𝑁½/£�. 

) For each of the 𝑁½/£ matrices 𝜴© �;(�∗), estimate the corresponding vector 𝝃¦� and obtain a set 
of vectors �𝝃¦�(𝜈); 𝜈 = (,… ,𝑁½/£�. 

) Calculate the difference between 𝝃¦�(𝜈) and the known 𝝃� using a distance metric, 𝑒�(𝜈) =
𝐷l𝝃¦�(𝜈), 𝝃�n. See also Eq. (7.4). 

) Formulate the set �𝑒�(𝜈); 𝜈 = (,… ,𝑁½/£� and select the realization 𝜴© �;(�∗)(𝜈) with the 
minimum value of 𝑒�(𝜈), hereafter denoted 𝜴�;(�∗)

y  (the breve notation has been omitted 
for simplicity). Under this premise, by aggregating 𝜴�;(�∗)

y  to time scale 𝑘∗, thus obtaining 
the corresponding sum 𝝃¦�y , its difference with the target values of 𝝃� will be the minimum 
over the simulated set.  

) Produce the final values of 𝜴�;(�∗) by adjusting the remaining difference between 𝝃¦�y  and 𝝃�, 
by employing a specific adjusting procedure. Herein we employ the proportional adjusting 
procedure of Eq. (7.5). 

We remark that since we employ Nataf-based models, in order to ensure a proper sequential 
generation procedure, it is essential to maintain an archive of the realizations generated by the 
auxiliary Gaussian process (Gp) model. These are needed to condition the generation 
mechanism on the required number of previous values. For instance, if we employ 
CMARTA(p) for generating the temporary realizations 𝝎§ô, 𝑝 previous values of the auxiliary 
Gaussian realization are needed to condition the generation of 𝝎§ôH(. 

7.2.3  Computational details 

For convenience, within repetitive sampling (step ), we employ as distance metric the 
following quantity, also used by Koutsoyiannis and Manetas []:	

 𝑒� = 𝐷l𝝃¦�, 𝝃�n =
(
𝑚á ,𝜉�  − 𝜉¤� ,	 Var �𝜉� ��

Î

 â(

 (.) 

On the other hand, all available adjusting procedures (APs) that are found in the literature [see, 
Harms and Campbell, ; Grygier and Stedinger, ; Koutsoyiannis, ] are compatible 
with the proposed approach. Here we employ the so-called proportional AP that can be 
implemented independently for each 𝝎y

�;(�∗)
   and reads as follows:	

 𝝎�;(�∗)
  = 𝝎y

�;(�∗)
  𝜉�  𝜉¤�y

 ⁄  (.) 

Apart from its simplicity, key advantage of this AP is the preservation of the sign of each 
realization 𝝎y

�;(�∗)
  . For instance, in case of rainfall, where the underlying Nataf-based model is 

combined with a mixed-type distribution to represent intermittency, the proportional 
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adjustment not only prohibits the generation of negative rainfall values but also preserves the 
sequence of zero and non-zero values, as explicitly foreseen by the auxiliary Nataf model.	

A final technical issue involves the termination criteria for repetitive sampling. Here, we 
consider that the iterative procedure terminates when reaching a maximum number of 
allowable iterations, 𝑁½/£ . An alternative option would imply the use of a convergence 
criterion, by means of a similarity metric between 𝝃¦�y  and 𝝃�. Nevertheless, the stopping criteria 
should be carefully assigned, since they control both the accuracy and computational efficiency 
of NDA, which are inherently conflicting. In our examples, we set 𝑁½/£ = )8; to E8;, which 
was heuristically identified as a fair conciliation, even for multivariate problems involving up 
to five individual processes.  

We remark that in contrast to other disaggregation schemes, where repetitive sampling had an 
optional role [cf. Koutsoyiannis and Manetas, ], in our approach its role is pivotal, since it 
allows the preservation of the advantages of Nataf-based models, and hence generate lower-
level realizations with the target probabilistic and stochastic properties.  

7.3 MODULAR FRAMEWORK FOR DEVELOPING MULTI-TEMPORAL SIMULATION 
SCHEMES 

7.3.1 Multi-temporal stochastic simulation as a puzzle 

As already discussed, there does not exist a general, bottom-up solution to the problem of multi-
scale consistency, by means of a generation procedure that provides consistent synthetic data 
at a time scale of interest, and simultaneously captures the scale-varying stochastic-
probabilistic behavior of the aggregated process at higher time scales. In a practical context, the 
generally accepted requirement for a good stochastic model is to reproduce the desirable 
probabilistic and dependence properties across specific temporal scales that have operational 
interest. Typically, these follow the standard resolutions of hydrometeorological time series, 
i.e., annual, monthly, daily, hourly, etc. 

In this context, we propose a puzzle-type implementation of NDA, to address multi-scale 
simulation problems of any complexity. Essentially, this can be done by coupling, in a pairwise 
manner, multiple Nataf-based models, which operate independently of each other. Thereby, 
one can establish a modular, top-down approach, starting from the first level, which 
corresponds to the highest time scale of interest, and subsequently moving to next levels, until 
reaching the lowest scale, which is dictated by the simulation problem at hand. As shown in 
Figure 7.1, each individual coupling of subsequent scales through NDA can be considered as 
the pieces of a puzzle. The generic design of NDA ensures flexibility regarding the combination 
of temporal scales, while at the same time, the robustness of the underlying Nataf-based 
approach ensures the preservation of the desirable process properties. 

.  

Figure 7.1 | The stochastic simulation framework as a puzzle, involving a chain implementation of 
individual NDA pieces. 

NDA2	→	3 NDAn–1	→	n

Level	1 Level	2 Level	3 Level	n	– 1 Level	n

NDA1	→	2
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For demonstration, we next present a typical configuration of this puzzle, by means of a three-
level scheme for annual to daily simulation, which is of significant interest for a wide range of 
operational hydrological problems. In section 7.4, we explore the capacities of this 
configuration, in the context of a real-world case study (an additional one is presented in 
Appendix D), involving the generation of synthetic daily rainfall and runoff series. Moreover, 
in section 7.5, we present another useful configuration, this time for handling a classical 
disaggregation problem, i.e., the generation of hourly rainfall from a given daily time series. 

7.3.2 Three-level configuration for annual to daily simulations 

In this configuration we couple three Nataf-based models, shown in Table 7-1, to provide a 
multivariate three-level simulation scheme. This modular scheme (i.e., puzzle) aims to preserve 
the probabilistic and dependence properties of typical hydrometeorological processes at the 
annual, monthly, and daily scales. From the models of Table 7-1, SMARTA and CMARTA are 
designed for stationary processes, while SPARTA for cyclostationary ones (i.e., accounting for 
the season-to-season correlations). A common characteristic of the three models is the direct 
reproduction of lag- cross-correlations coefficient among multiple contemporaneous 
processes. It is stressed that, regardless the choice of the auxiliary Gp model, in order to 
generate realizations with the equivalent correlation structure, the model parameters have to 
be estimated using the equivalent correlation coefficients. 

Table 7-1 | Summary of employed Nataf-based models (p and q, denote the order of the model). 

Auxiliary Gp model Associated Nataf-based model Type References 
SMA(q) SMARTA(q) Stationary Chapter 5 
CMAR(p) CMARTA(p) Stationary Chapter 5 
PAR(p) SPARTA(p) Cyclostationary Chapter 6 
Abbreviations: SMA (Symmetric Moving Average), CMAR (Contemporaneous Multivariate AutoRegressive), PAR (Periodic 
AutoRegressive), SMARTA (Symmetric Moving Average neaRly To Anything), CMARTA (Contemporaneous Multivariate AutoRegressive 
neaRly To Anything), SPARTA (Stochastic Periodic AutoRegressive To Anything). 

To elaborate on the devised configuration, let us first introduce some notation regarding the 

main assumptions and specifications. Let 𝒚� = �𝑦�(,… , 𝑦�Î�
Ï

 be a vector of 𝑚 stationary 
stochastic process at the annual time scale (where 𝑡 ∈ 𝑇� denotes the time index, i.e., year, over 
the set 𝑇�). In the context of this configuration we model the annual processes using SMARTA, 
in order to preserve: 

• the distribution function of 𝑦� , i.e., 𝐹�)(𝑦); 

• its autocorrelation structure, 𝜌�;¬  = Corr �𝑦� , 𝑦�H¬  �; 

• the lag- cross-correlations among processes 𝑦�  and 𝑦�
Ø, i.e., 𝜌�

 ,Ø = Corr �𝑦� , 𝑦�
Ø�. 

On the other hand, the standard hypothesis for the monthly time scale is cyclostationarity. Let 
the monthly process be represented by a 𝑚 dimensional vector 𝒙�,ô = {𝑥�,ô( ,… , 𝑥�,ôÎ }Ï , where 
𝑠	(= (, . . ,(),(. . ,(),… ) denotes the month and 𝑛 ∈ 𝑇j is the time index. The index t of the 
annual process (i.e., the year) may be recovered by 𝑡 = ( + (𝑛 − 𝑠)/(). For monthly 
simulation we employ SPARTA in order to resemble: 

• the seasonally-varying marginal distribution of 𝑥�,ô  , i.e., 𝐹jW(𝑥) = 𝐹jWO()(𝑥); 
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• the lag- month-to-month correlation coefficients 𝜌j;�,�s(  = Corr{𝑥�  , 𝑥�s(  }; 

• the lag- cross-correlations among processes 𝑥�   and 𝑥�
Ø for each season 𝑠, i.e., 𝜌jW

 ,Ø =
Corr{𝑥�  , 𝑥�

Ø}. 

Finally, the hydrometeorological processes at sub-monthly time scales (e.g., daily) are typically 
regarded to be cyclically stationary within in each month s. In this respect, let 𝒘�;­ =
{𝑤�;­( , … ,𝑤�;­Î }Ï be a m-dimensional vector of stationary processes at month s, where 𝑑 ∈ 𝑇®�, 
denotes the time index. We remark that in this case, 𝑘∗ = 𝛿jW/𝛿®W , where 𝛿jW and 𝛿®Wdenote 
the time units of 𝑥�,ô   and 𝑤�;­   respectively. For instance, if 𝑤�;­   represents the process of month 
𝑠, at the daily temporal level, 𝑘∗ = 𝐷�, where 𝐷�  stands for the days of a month s (i.e., ,  or 
, excluding leap years; similarly, if 𝑤�;­   denotes an hourly process, then 𝑘∗ = 𝐷� × )>). 
Nonetheless, for the simulation of daily temporal level, we employ CMARTA model, and aim 
to reproduce: 

• the seasonally varying marginal distribution of 𝑤�;ô  , i.e., 𝐹®W(𝑤) = 𝐹®W;N(𝑤); 

• the within-month autocorrelation structure 𝜌®W;¬
  = Corr{𝑤�;­  , 𝑤�;­H¬  }; 

• the lag- cross-correlation coefficients among processes 𝑤�   and 𝑤�
Ø  for each season 𝑠, 

i.e., 𝜌®¯
 ,Ø = Corr{𝑤� , 𝑤�

Ø}. 

Provided that the parameters of the individual models have been identified (see Chapter 4 for 
a general overview, as well as Chapter 5 and 6 for a model-specific description), the simulation 
procedure starts with generating a realization of the annual process, using the SMARTA model, 
and subsequently, moves to the monthly and daily level, through the NDA approach. The 
overall procedure can be organized as follows: 

Generation of annual synthetic time series 

Using SMARTA synthesize a m-dimensional realization of the annual process 𝒚�  with 𝑡 =
(, … , 𝑇, where 𝑇 denotes the desired length of the time series. The synthesized realization is 
represented by a 𝑚 × 𝑇 matrix 𝒀, i.e., 

𝒀 = Õ
𝑦(( ⋯ 𝑦�(
⋮ ⋱ ⋮
𝑦(Î … 𝑦�Î

× 

Generation and adjustment of monthly synthetic time series 

By construction, the realization 𝒚� , fulfils the specifications of the annual level, hence the next 
step is to generate 𝑇 realizations of the monthly process 𝒙�,ô, each of length  (i.e., equal to 
the number of months) in a way that they reproduce the specifications implied for the monthly 
time scale, and additionally when aggregated to the annual temporal level they honor the 
additive property, i.e., each 𝑦�  = ∑ 𝑥�,ô ()�

ôâ(�s()()H( . Therefore, for each year 𝑡 = (, …𝑇, we 
employ NDA with SPARTA model as generation mechanism (by setting 𝝃� = 𝒚� and 𝝎ô =
𝒙�,ô), and obtain T matrices 𝑿(,… ,𝑿�,…,𝑿�, which contain the final adjusted monthly 
realizations. Each matrix has the form: 

𝑿� = :
𝑥(,(�s()()H(
( ⋯ 𝑥(),�()(

⋮ ⋱ ⋮
𝑥(,(�s()()H(
Î ⋯ 𝑥(),�()Î

; 
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Finally, the matrices are concatenated in 𝑿 = [𝑿(, . . ,𝑿�, . . . ,𝑿�]. 

Generation and adjustment of daily synthetic time series 

For the disaggregation of monthly to the daily temporal level, and given the previous matrix 
organization, it is convenient to refer to the obtained, adjusted, monthly realization with 
reference in season 𝑠 and year 𝑡 (not time index 𝑛), i.e., 𝒙�,� , where 𝑠 = (,… ,() and 𝑡 = (, … , 𝑇. 
For instance, in this notation, 𝒙E,), refers to the third month of the second year. At this point 
we have at our disposal, a realization at the monthly level of length () × 𝑇, and seek to generate 
an equal number of realizations of the daily time scale, each one with length 𝐷�. Similarly, to 
the previous level and for the same reasons, we wish the realizations of 𝒘�;­  to resemble the 
specifications of the sub-monthly time scale, and fulfil the additive property, i.e., 𝑥�,�  =
∑ 𝑤�;­ 
`W�
­â(�s()`WH(

. In this vein, for each month 𝑠 = (,… ,()	and year 𝑡 = (, …𝑇, employ NDA 
using CMARTA for data generation (by setting 𝝃� = 𝒙�,�  and 𝝎ô = 𝒘�;­), and obtain () × 𝑇 
matrices 𝑾�,� , which contain the final adjusted daily realizations, i.e., 

𝑾�,� = :
𝑤�;(�s()`WH(
( ⋯ 𝑤�;�`W

(

⋮ ⋱ ⋮
𝑤�;(�s()`WH(
Î ⋯ 𝑤�;	�`W

Î
; 

Finally, the matrices are concatenated in 𝑾 = {𝑾(,(, … ,𝑾(),(, … ,𝑾(,�, … ,𝑾(),�}, which 
contains the complete sequence of the daily realization. 

7.4 CASE STUDY A: MULTI-TEMPORAL SIMULATION OF DAILY PROCESSES 
To assess the performance of the aforementioned three-level configuration scheme, we 
employed two case studies, one that regards the synthesis of contemporaneous daily rainfall-
runoff series at a single location, and another that that concerns the generation of intermittent 
daily rainfall at four locations (presented in Appendix D). In both cases, the evaluation of the 
model is performed at multiple time scales, by aggregating the generated time series and 
comparing the empirical, simulated and theoretical (i.e., target) marginal and joint 
characteristics. Herein we shall describe only the first case study, since the results are similar in 
both cases. 

This case study regards the contemporaneous synthesis of daily rainfall and runoff data, at the 
river basin of Achelous, Western Greece, upstream of Kremasta dam (Figure 7.2a-b). We note 
that the runoff series of this dataset has been employed in Tsoukalas et al. [a] (section 3.3), 
to demonstrate the so-called envelope behavior of the AR() model when combined white noise 
from Pearson type-III distribution (i.e., Thomas-Fiering approach). Herein the same dataset is 
employed to demonstrate the three-level configuration scheme, for the synthesis of long daily 
rainfall-runoff time series (  years; Figure 7.2c-d). It is noted that the units have been 
converted to mm (from m/s) for convenience in aggregation/disaggregation operations. 

Regarding the model parameterization, we employed a theoretical autocorrelation model, i.e., 
Cauchy-type (CAS; Eq. (5.8)) for describing the auto-dependence structure of the processes, at 
the annual and daily time scales. It is noted that at daily scale, the parameters of CAS were 
varied on a monthly basis. Furthermore, the target distribution functions were varied according 
to the time scale of simulation, the season and the type of processes (i.e., runoff or rainfall). In 
all cases, the parameters of the distribution functions have been identified on the basis of 
historical data, using the L-moments method. Particularly, in the case of runoff, we modeled 
the data using either the three-parameter Log-Normal (ℒ𝒩; Eq. (4.48)), the Generalized 
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Gamma (𝒢𝒢; Eq. (5.44)) or the Burr type-XII (ℬ𝓇XII; Eq. (5.41)) distribution. On the hand, 
for the daily rainfall process, which is characterized by intermittent behavior, we employed the 
zero-inflated distribution model of Eq. (4.45), using for the continuous component one of the 
above distributions. 

 
Figure 7.2 | a-b) Historical daily rainfall-runoff time series ( January  to  December ). c-
d) Synthetically generated time series (randomly selected window of  years). 

Starting from the annual temporal level, Figure 7.3, summarizes the ability of the highest-level 
model to preserve both the target distribution function and the autocorrelation structure of 
each process. Furthermore, the model resembled the lag- cross-correlation among the two 
processes with high accuracy (the historical and simulated values are . and . 
respectively). It is noted that the parameters of CAS have been manually fine-tuned in order to 
increase the degree of annual long-range dependence and stress-test the capabilities of the 
associated simulation scheme.  

Figure 7.4-Figure 7.5 provides a quick outlook of the results obtained at the monthly time 
scale, preserving with high accuracy, the empirical L-moments, the seasonality, expressed by 
means of month-to-month correlation coefficients, as well as the lag- cross-correlations. 

Beyond summary statistics, a more challenging test is the reproduction of the monthly target 
marginal distributions. Figure 7.6-Figure 7.7, compare the empirical distribution of the 
historical and synthetic data with the target theoretical model (the fitted distribution, as well as 
its parameters are shown in the title of each sub-plot). In all cases, the model resembled the 
target distribution with notable accuracy. 
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Figure 7.3 | Rainfall-runoff series: (a-b) Historical annual time series. (c-d) Empirical, simulated and 
theoretical distribution functions (using the Weibull’s plotting position). (e-f) Empirical, simulated and 
theoretical ACFs. (g-h) Synthetic annual time series (randomly selected window of   years). 

The previous figures, illustrate the ability of the integrated model, to generate cyclostationary 
realizations that are also consistent with the specifications of the annual temporal level. As an 
additional diagnostic, and to test the model for envelope behavior we employed scatter plots, 
and depicted the established dependence patterns. An example is given in Figure 7.8, which 
depicts the lag- month-to-month dependence patterns of runoff series. The scheme is relieved 
from the aforementioned behavior, yet more interestingly, it was found capable of creating a 
variety of dependence forms, which are also in accordance with the historical ones. The results 
obtained for other time scales (or rainfall) are similar, hence not shown herein. 
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Figure 7.4 | Comparison of monthly empirical and simulated L-Mean, L-Scale and L-Skewness, as well 
as historical and simulated lag- month-to-month correlations. 

 
Figure 7.5 | Comparison of monthly historical and simulated lag- cross-correlations. 
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Figure 7.6 | Monthly rainfall - monthly-based comparison of empirical, simulated and theoretical 
distribution functions (using the Weibull’s plotting position). The title of each subplot provides the 
selected distribution and its parameters, as well as the historical (𝑝`) and simulated (�̂�`) values of 
probability dry. 

 
Figure 7.7 | Monthly runoff - monthly-based comparison of empirical, simulated and theoretical 
distribution functions (using the Weibull’s plotting position). The title of each subplot provides the 
selected distribution and its parameters, as well as the historical (𝑝`) and simulated (�̂�`) values of 
probability dry. 
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Figure 7.8 | Monthly runoff (mm) - month-to-month scatter plots of historical and simulated series. 
The title of each subplot provides the lag- month-to-month target l𝜌�,�s(n and simulated l𝜌C�,�s(n 
correlation coefficients. 

Regarding the lowest level of simulation, that is the daily time scale, the comparison among 
summary statistics of Figure 7.9 and Figure 7.10 and, as well as the empirical, simulated and 
theoretical distribution functions depicted in Figure 7.11-Figure 7.12, underline the ability of 
the model to generate consistent realizations with the higher levels, and also preserve the target 
distribution functions of the daily process, which at this time scale, are characterized by 
considerably heavier tails. Notice that for daily runoff, and for the months, February to May, 
we selected the ℬ𝓇XII model, which is a heavy-tailed distribution with power-type tail. Recall, 
that the 𝑟�³-moment of the ℬ𝓇XII exist only if 𝑎(𝑎) < 𝑟. Remarkably, the scheme accurately 
simulated even February’s daily runoff, which is characterized by 𝑎(𝑎) < ).@;; implying that 
it only has finite mean and variance. 

Furthermore to this, Figure 7.13-Figure 7.14 depict a monthly-based comparison of the 
empirical, simulated and theoretical autocorrelation function (ACF) of the daily process, which 
in most cases deviates from the typical AR() ACF, that most daily stochastic models are 
capable of simulating. Inspection of this figure, reveals that the integrated model can resemble 
the theoretical auto-dependence structure with high precision. This result stems from the 
combination, within NDA, of two modelling components; the CMARTA and the use of 
theoretical autocorrelation structures (i.e., CAS). 

Further the above analysis, which concerned the three characteristic time scales of simulation, 
in order to investigate the performance of the model at the intermediate time scales between 
daily and monthly, we aggregated, on a monthly basis, the generated daily series at several scales 
𝑘 ∈ {), . . ,𝐷�} and estimated the L-scale ~𝐿)

(�)�, L-Skewness ~𝐿��
(�)� coefficients, as well as 

probability dry ~𝑃(�)� at scale 𝑘. The latter analysis is presented in Appendix D.1. It is 
remarked that the intermediate time scales (i. e. , 𝑘 ≠ {(,𝐷�}) are not explicitly modelled 
neither by the three-level scheme or NDA, hence the arguably good results can be attributed to 
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the accurate simulation of the process at daily and monthly time scales. Similar results were 
obtained for the case studies of Appendix D.2 and section 7.5. 

 
Figure 7.9 | Comparison of daily empirical and simulated L-Mean, L-Scale, L-Skewness, as well as 
probability dry. 

 
Figure 7.10 | Comparison of daily historical and simulated lag- cross-correlations. 
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Figure 7.11 | Daily non-zero rainfall - monthly-based comparison of empirical, simulated and 
theoretical distribution functions (using the Weibull’s plotting position). The title of each subplot 
provides the selected distribution and its parameters, as well as the historical (𝑝`) and simulated (�̂�`) 
values of probability dry. 

 
Figure 7.12 | Daily non-zero runoff - monthly-based comparison of empirical, simulated and 
theoretical distribution functions (using the Weibull’s plotting position). The title of each subplot 
provides the selected distribution and its parameters, as well as the historical (𝑝`) and simulated (�̂�`) 
values of probability dry. 
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Figure 7.13 | Daily rainfall - monthly-based comparison of empirical, simulated and theoretical 
autocorrelation function (ACF); the parameters of CAS are given on the title of each subplot. 

 
Figure 7.14 | Daily runoff - monthly-based comparison of empirical, simulated and theoretical 
autocorrelation function (ACF); the parameters of CAS are given on the title of each subplot. 

A final assessment of model’s performance concerns its capabilities regarding the reproduction 
of the daily extremes. It is reminded that the distribution of the extremes is not explicitly 
modelled by the method. Figure 7.15 depicts the empirical and simulated daily annual 
maxima, as well as the fitted (using the L-moments method), to the historical data, Generalized 
Extreme Value (𝒢ℰ𝒱) distribution.The CDF of 𝒢ℰ𝒱 is given by, 
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 𝐹𝒢ℰ𝒱(𝑥; 𝑐, 𝑏, 𝑎) =

⎩
⎪
⎨

⎪
⎧exp R−~(	 + 	𝑎

𝑥	 − 	𝑐
𝑏 �

s	(¶S , 𝑎 ≠ ;

exp ~−exp ~−
𝑥	 − 	𝑐
𝑏 �� , 𝑎 = ;

,		 (.) 

where 𝑎, 𝑐 ∈ ℝ and 𝑏 > ; are shape, location and scale parameters respectively. 𝒢ℰ𝒱 
encompasses three distributions, the Fréchet (𝑎 > ;	with	𝑥 ∈ [𝑐 − 𝑏 𝑎⁄ ,+∞)), the Gumbel 
(𝑎 = ;	with	𝑥 ∈ (−∞, +∞)) and the reversed Weibull (𝑎 < ;	with	𝑥 ∈ (−∞, 𝑐 − 𝑏 𝑎⁄ ]); the 
latter case is not considered herein, since it regards upper bounded random variables. 

Inspection of Figure 7.15, shows that, in both cases, the model managed to resemble the 
distributional form of the identified 𝒢ℰ𝒱 distribution, which in both cases, is characterized by 
an arguably heavy-tailed behavior, expressed through the Fréchet distribution (since 𝑎 > ;). 
In our opinion, this behavior can be attributed to the concise reproduction of the distributions 
at the daily time scale, which in several instances was modelled using either, the power-type 
ℬ𝓇XII or the ℒ𝒩 distribution. 

 
Figure 7.15 | Empirical (•) and simulated (•) daily annual rainfall-runoff maxima, as a function of the 
return period. The solid red line (—) depicts the fitted to historical data Generalized Extreme Value 
(𝒢ℰ𝒱) distribution (parameters: location (c), scale (b) and shape (a)). The dashed blue line (− − −) 
represents the  confidence intervals (estimated using the parametric bootstrap method). 

7.5 CASE STUDY B: DISAGGREGATION OF DAILY RAINFALL TO HOURLY SCALE 
To demonstrate the flexibility provided by NDA, as well the potential to extend the three-level 
scheme of the previous section to even lower temporal levels, we now provide a two-level 
configuration for disaggregating a univariate daily sequence to the hourly scale. 

Particularly, we employ an hourly rainfall dataset from the German Weather Service 
(Deutscher Wetterdienst; DWD). The historical hourly time series (Figure 7.16b), extend over 
the period // – // and concern data at Oberstdorf (station ID: ).  

In this example, we do not aim to generate synthetic data that represents the actual process 
across multiple time scales of interest (such as in case study A). In contrast, our goal is to 
provide a synthetic hourly realization, under the following requirements: 

• the synthetic data at the hourly scale reproduces the probabilistic and stochastic 
properties of the historical sample; 
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• the additive property is preserved between the aggregated hourly (𝑘 = () synthetic data 
and the corresponding historical ones (i.e., 𝑘∗ = )>; Figure 7.16a). 

By definition, in disaggregation problems, the synthetic sequence has the same length with the 
given data. 

To cope with the effect of seasonality, we employ the typical assumption for fine-time scale 
rainfall processes (e.g., daily, hourly or finer), that of cyclical stationarity with annual period 
and monthly sub-period (see also section ). Assuming that the sequence �𝑤�;­� denotes the 
observed daily records for month 𝑠, we wish to simulate an hourly process, say, �𝜂�;³¡

³∈ℤ�
, 

which is also considered stationary within the month 𝑠. This implies that the distribution 
function (i.e., 𝐹»W) of the process, as well as its auto-correlation structure, i.e., 𝜌»W;¬ =

Corr �𝜂�;³ , 𝜂�;³H¬� remain invariant within the month 𝑠. Furthermore, to account for temporal 

consistency we impose the requirement of generating realizations of the process �𝜂�;³¡ 

constrained by, 𝑤�;­ = 𝑤§�;­ , where 𝑤§�;­ ≔ 𝜂�;m
()>) = ∑ 𝜂�;³

m)>
³â(ms())>H(  (analogous to Eq. (7.2)). 

In order to simulate the hourly rainfall, we employ as generation mechanism the univariate 
version of CMARTA, which is known as ARTA [Cario and Nelson, ]. We remind that this 
model uses as an auxiliary Gp a Gaussian AR process (see section 5.4.3). The generation 
scheme is employed on a monthly basis, since the hourly process properties are reasonably 
considered seasonally varying. 

Regarding the parameterization of ARTA, the marginal distribution of hourly rainfall of each 
month is modelled using the zero-inflated model of Eq. (4.45). In this case, for the continuous 
part we fitted (using L-moments) the 𝒢𝒢 distribution (the parameters of the model are shown 
in Figure 7.16d-e). For the autocorrelation structure of the hourly rainfall, we fitted monthly-
varying CAS models (i.e., Eq. (7.1)) to the corresponding empirical autocorrelation coefficients 
(red line in Figure 7.16g-i; including the identified parameters). Eventually, each individual 
hourly process is modeled using five parameters (three for the marginal distribution and two 
for the autocorrelation structure). 

We note that, since our main purpose is demonstration, both the discrete and continuous part 
are estimated from historical data, yet it is noted that, in alternative situations, one could 
employ, regional information and/or rainfall’s scaling properties. 

The results from this study are essentially identical for each month (the complete synthesized 
series is shown in Figure 7.16c), hence herein we shall present the results obtained from 
disaggregating daily rainfall to hourly for three months (i.e., February, June and October). As 
shown by Figure 7.16d-e, and Figure 7.16g-i, the model resembled the target distributions and 
autocorrelation structures respectively, with high precision. Similarly good performance is 
achieved for the rest of months (see Appendix D.3). 
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Figure 7.16 | Historical a) daily and b) hourly rainfall series. c) Synthetic (disaggregated) hourly 
rainfall realization. d-f) Comparison of distribution function of non-zero amounts for hourly historical 
and disaggregated series for February, June and October respectively (the fitted theoretical model is 
shown with red line). g-i) Comparison of autocorrelation function (ACF) for hourly historical and 
disaggregated series for February, June and October respectively (the fitted theoretical model is shown 
with red line). 

Furthermore, to investigate the behavior of the model at the intermediate time scales (i.e., ( <
𝑘 < )>), in Figure 7.17, we depict for both the historical and synthetic series, the L-mean 
(𝐿(
(�)), L-scale (𝐿)

(�)), L-skewness (𝐿��
(�)), probability dry (𝑝`

(�)) and lag- autocorrelation 
coefficient (𝜌(

(�)), as a function of aggregation level 𝑘 (estimated by aggregating the hourly 
sequences at the corresponding scale 𝑘). Inspection of these plots reveals the potential of the 
approach to preserve the empirical scaling properties of rainfall, without requiring the use 
cascading techniques and direct simulation of rainfall at the intermediate temporal levels. 

In our view, apart from the arguably good results of this study, the most important finding is 
the validation of the modular and scale-free character of NDA, which make it suitable for a 
wide range of hydrological stochastic simulation problems. Depending on the problem’s needs, 
NDA can be easily applied, by making minimum adjustments or interventions on the algorithm 
of section 7.2.2. 
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Figure 7.17 | Comparison of empirical and disaggregated, a-c) L-mean (𝐿(
(�)), d-f) L-scale (𝐿)

(�)), g-i) 
L-skewness (𝐿��

(�)), j-l) probability dry (𝑝;
(�)) and m-o) lag- autocorrelation coefficient (𝜌(

(�)), as a 
function of aggregation scale 𝑘, for February, June and October. 

7.6 SUMMARY 
In order to address the puzzle of multi-temporal simulation of hydrometeorological processes, 
we developed a puzzle-type approach, employing chain implementation of a novel generation 
procedure, called Nataf-based Disaggregation to Anything (NDA). This is built upon recent 
advances in stochastics by means of Nataf-based models (Chapter 4-6), coupled with the 
concepts of repetitive sampling and adjusting [e.g., Harms and Campbell, ; Koutsoyiannis 
and Manetas, ; Koutsoyiannis, ]. 

This coupling allows taking advantage of the primary ability of Nataf-based models to represent 
stationary processes that exhibit any distribution and any correlation structure. The recent 
extension of Nataf-based models to simulate cyclostationary as well as multivariate processes, 
offered the essential generality to handle challenging single-scale hydrometeorological 
simulation problems. 

However, as widely discussed, the reproduction of a target probabilistic and stochastic behavior 
at a single temporal scale does not guarantee similarly consistent performance at higher 
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temporal scales. In this Chapter, the issue of consistency across any pair of scales is handled via 
the NDA approach (section 7.2), while the general puzzle-type framework (section 7.3) enables 
the transition to multi-scale simulations. We remind that NDA uses Nataf-based models at two 
independent scales as underlying data generators, and coupling mechanisms to adjust the 
lower-level data to the higher one. 

The above approach ensures significant flexibility, since it allows establishing any configuration 
of scale-consistent simulators, through pairwise link of NDAs. This flexibility and the 
advantages of NDA itself have been mainly revealed by configuring a multivariate simulation 
scheme (section and 7.3.1) that reproduces the probabilistic and stochastic properties of the 
processes of interest at three characteristic temporal scales (i.e., annual, monthly and daily). In 
this configuration, we integrated different Nataf-based models for each scale, i.e., SMARTA 
[Tsoukalas et al., d] for the annual, SPARTA [Tsoukalas et al., a, e] for the 
monthly, and CMARTA (Chapter 5) for the daily one. 

The multi-temporal simulation capabilities of the integrated scheme were evaluated on basis of 
two simulation studies, one that regarded the generation of rainfall and runoff synthetic time 
series at a single location (section 7.4), and another that involves the synthesis of daily rainfall 
at four locations (Appendix D). As showed, the model reproduced with accuracy the 
characteristics of the underlying hydrometeorological processes, which exhibit substantial 
differences among processes and across scales and seasons. Key requirements in these studies 
were: 

• the reproduction of a wide range of target distribution functions, varying across 
processes, scales and seasons; 

• the simultaneous simulation of intermittent and/or continuous processes (e.g., daily 
rainfall and runoff), exhibiting significant correlations; 

• the preservation of target short-term and long-term auto-dependence structures, at the 
annual scale, as well as the daily scale, on seasonal basis; 

• the preservation of target season-to-season correlations at the monthly scale; 

• the preservation of target lag- cross-correlations at all scales. 

One can observe that in the above bucket list we make repeated use of term target, in order to 
highlight the multidimensional role of the user. Actually, before employing simulations, there 
are several critical modelling decisions to make, regarding the assignment of suitable 
distribution functions and correlation structures to the processes of interest (this also involves 
the selection of time scales to represent, thus the configuration of the puzzle). This flexibility 
may offer significant advantages. For instance, in this specific study, the careful selection of the 
daily distribution models resulted to resembling the heavy-tailed behavior of the observed daily 
extremes. We remind that the reproduction of extremes was not set as explicit requirement by 
the model, thus making this surprisingly outcome a promising topic for further research. 

The model performance at even finer temporal scales (i.e., hourly) was demonstrated through 
a disaggregation example (section 7.5), where we employed NDA for the synthesis of hourly 
rainfall realizations that are consistent with the observed daily data. Similarly to the first study, 
the model faithfully reproduced the target behavior of the hourly process, simultaneously 
ensuring consistency with the daily scale. Moreover, it reproduced with accuracy important 
statistical properties of rainfall (expressed in terms of L-moments) at intermediate scales. 
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Above all, this study highlighted the scale-free character of NDA, as well as its ability to handle 
hydrological disaggregation problems.  

Arguably, the potential applications of our puzzle-type approach extend beyond the realm of 
hydrometeorological time series generation (or disaggregation). Essentially, it is a general-
purpose stochastic simulation scheme. Depending on the synthesis of the puzzle pieces (i.e., 
chain of NDAs), as well as the underlying decisions of each NDA (in terms of target marginal 
distributions and correlation structures), it is possible to apply the method for the simulation 
of a widely extended range of processes, geophysical and socioeconomic. 

Beyond simulation, other applications of NDA may concern downscaling or disaggregation 
problems, which requires a) replacing the corresponding higher-level simulation model with 
the realizations provided by global or regional climate models, and b) identifying the marginal 
and stochastic properties of the lower-level model, using, e.g., in-situ gauging stations, regional 
information, and/or scaling laws. 

Eventually, the proposed approach can be employed within broader Monte Carlo experiments, 
to provide long synthetic input data to deterministic simulation models. Given that the type 
and number of processes to simulate, as well as their temporal resolution, is dictated by the 
deterministic model, a major computational challenge arises. In particular, the repetitive 
sampling within NDA imposes a bottleneck, when applied to high-dimensional multivariate 
problems and/or long-term simulations at fine time scales. Potential remediation to this 
technical problem may be the use of parallel computing or the model implementation in low-
level programming languages. 

Regarding the modelling framework per se, potential future research may focus on two 
interesting aspects that have been revealed in the two case studies. The first involves the 
reproduction of extremes within synthetic data, while the second is the validation of the model 
behavior at intermediate time scales, on the basis of additional simulation studies, using 
multiple configurations at several time scales. 

As a closure, this Chapter, by building-upon, as well as by merging the new developments of 
Chapter 4-6, into an integrated scheme, concludes the contributions of this Thesis to the 
stochastic modelling and simulation of hydrometeorological processes. The developed models 
and simulation schemes (Chapter 4-7) can overcome many of the limitations encountered in 
other state-of-the-art methods (see the review of section 2.3 and Chapter 3), and provide the 
means for a more accurate and realistic representation of hydrometeorological processes 
(hence input uncertainty). 

Interesting research topics for future research regard, a) the investigation of NDA performance, 
in even lower (than hourly) temporal levels (e.g., disaggregation of hourly rainfall to -minute 
series), b) the exploration of the effect of employing different adjusting procedures, and c) the 
handling of the computational challenge (imposed by repetitive sampling) that arises in high-
dimensional multivariate problems (e.g., using parallel computing or implementation in low-
level programming languages). 

As mentioned earlier, and often due to the typical size of historical data, which is not (neither 
will ever be) sufficient to extract safe conclusions about the long-term performance of a system, 
these time series can (and should) be used as input in a variety of risk-related water-system 
studies to represent the input (hydrometeorological) uncertainty, and it is anticipated to 
improve the quality of their outcomes, due to more accurate representation of the input 
processes. However, as discussed in section 1.3, the use of long stochastic inputs (regardless 
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the data generation model) in combination with simulation models and/or optimization 
techniques unwillingly pose a barrier in the practical application in simulation-optimization 
frameworks, since the required computational effort is increased by orders of magnitude. The 
following two Chapters, aim to address this important issue by developoning suitable 
methodologies and algorithms, that can address challenging optimization problems at a 
fraction of time that is required by other state-of-the-art methods (e.g., evolutionary 
algorithms). 
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8  
MULTI-OBJECTIVE OPTIMIZATION ON A BUDGET: EXPLORING 
SURROGATE MODELLING FOR ROBUST MULTI-RESERVOIR RULES 
GENERATION UNDER HYDROLOGICAL UNCERTAINTY § 

PREAMBLE 
Next research steps (Chapter 8 and 9) regard the practical implementation of the new 
developments in modelling and simulation of hydrometeorological processes (Chapter 4-7), in 
uncertainty-aware water-system optimization problems (i.e., simulation-optimization 
frameworks driven by stochastic inputs). This challenge is related to the excessive 
computational budget imposed by both the use of long synthetic time series to represent the 
input uncertainty, and the use of objective functions that entail time expensive simulation 
models; which become the norm since the requirements for more detailed (hence expensive) 
models are increasing. Particularly, this Chapter considers the problem of handling time 
expensive multi-objective problems on a budget, under the prism of developing long term 
operation rules for multi-reservoir systems. This is a complicated task due to the number of 
decision variables, the non-linearity of system dynamics, and the computational effort 
required, which imposes barriers to the exploration of the solution space. These challenges are 
addressed by (a) employing a parsimonious multi-objective parameterization-simulation-
optimization (PSO) framework, which incorporates hydrological uncertainty through 
stochastic simulation and allows the use of probabilistic objective functions and (b) by 
investigating the potential of multi-objective surrogate-based optimization (MOSBO) to 
significantly reduce the resulting computational effort. Three MOSBO algorithms are 
compared against two multi-objective evolutionary algorithms. Results suggest that MOSBOs 
are indeed able to provide robust, uncertainty-aware operation rules much faster, without 
significant loss of neither the generality of evolutionary algorithms nor of the knowledge 
embedded in domain-specific models. 

This Chapter is structured as follows: section 8.1 introduces the problem, while section 8.2 and 
8.3 present the overall methodology and the study area respectively. Next, section 8.4 and 8.5 
regard the benchmarking and the experimental setup of the algorithms’ performance 
respectively. Section 8.6 present the key results and findings, and finally section 8.7 concludes 
the Chapter.   

                                                        
§ Based on: 

Tsoukalas, I., and C. Makropoulos (b), Multiobjective optimisation on a budget: Exploring surrogate 
modelling for robust multi-reservoir rules generation under hydrological uncertainty, Environ. Model. Softw., 69, 
–, doi:./j.envsoft.... 
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8.1 INTRODUCTION 
Water reservoirs and the associated hydrosystems often serve multiple purposes including, 
inter alia, flood control, irrigation, water supply, restoration, navigation, recreation, 
hydropower generation, etc. The operation of a reservoir system involves a complex decision 
making process that strives to balance many variables and (often conflicting) objectives, aiming 
mostly at the quantification (and if possible minimization) of risk and uncertainty [Oliveira 
and Loucks, ]. The conflicting nature of the different objectives makes this decision process 
a classic multiobjective optimization problem as demonstrated in Haimes, [], seeking to 
derive optimal management strategies against various performance measures such as reliability 
of supply, cost minimization and environmental protection. Optimizing this decision process 
is complicated due to the existence of non-linear and interdependent parameters and processes, 
[Vink and Schot, ]. 

A common way to address this is the coupling of simulation models and multiobjective 
evolutionary optimization (MOEA) algorithms [Nicklow et al., ], typically yielding a set of 
efficient (Pareto-optimal) solutions. The solutions can then be used as a negotiation tool for 
decision makers, through the explicit representation of the objectives’ tradeoff [Makropoulos 
and Butler, ] without having to embed a priori preferences in the decision process. 
Extensive reviews of MOEA schemes and their applications in water resources are available in 
the literature [e.g., Savic and Walters, ; Efstratiadis and Koutsoyiannis, ; Nicklow et 
al., ; Reed et al., ]. The ubiquity of MOEA approaches is justified by the generic nature 
and global search capabilities of these algorithms [Coello Coello et al., ; Zhou et al., ], 
but this choice results in a significant number of iterations needed to reach an adequate 
approximation of the Pareto front [Brockhoff and Zitzler, ]. The number of iterations, the 
large decision space, the complexity of the fitness landscape and the long simulation time 
required by the physical models to evaluate each instance of the objective function are major 
drawbacks when dealing with real-world applications, where computational time is necessarily 
limited [Maier et al., ]. This is especially true in cases, such as hydrosystem optimization, 
where performance (and hence optimal operation) is significantly affected by long-term 
hydrological uncertainties, primarily hydrological variability, which can adequately be 
addressed by using stochastic simulation (see Chapters 4-7, as well as [Koutsoyiannis, b]), 
i.e., the generation and use of synthetic time series (typically - years) whose statistical 
properties are consistent with historical data, to drive the simulation-optimization process and 
hence generate risk-based, robust operation rules. As discussed earlier in section 1.1 and 1.3, 
driving the simulation-optimization process with very long time series affects the computation 
burden of each and every evaluation of the objective function and drastically increases 
computation burden. 

The current Chapter, builds on a parameterization-simulation-optimization (PSO) framework 
initially proposed by Koutsoyiannis and Economou [] to derive optimal reservoir operation 
rules. Although the PSO approach has already been implemented in single objective problem 
formulations [e.g., Nalbantis and Koutsoyiannis, ; Koutsoyiannis et al., ; Momtahen 
and Dariane, ; Celeste and Billib, ], little work has been done up to date on using the 
PSO with multiple objectives. Here we extend the capabilities of the PSO method towards 
multi-objective optimization, while incorporating hydrological uncertainty (also advocated in 
Maier et al. []) into the optimizer using probabilistic objective functions, through 
stochastic simulation to improve the robustness of the resulting rules. To address the issue of 
computational practicability that ensues from the adopted stochastic simulation approach, we 
investigate the use of surrogate-based optimization (SBO) techniques (see section 1.3, as well 
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as Chapter 9), and specifically we explore the applicability of three multi-objective surrogate-
based optimization (MOSBO) algorithms, and compare them against the well-known and 
extensively used algorithm NSGAII [Deb et al., ] as well as the more recently proposed 
SMS-EMOA [Beume et al., ]. An extensive benchmarking exercise is then undertaken to 
derive conclusions about the effectiveness and the efficiency of the MOSBO algorithms [Razavi 
et al., a] as well as the robustness of the overall methodology. The proposed methodology 
is tested in the optimization of the multi-reservoir hydrosystem of Nestos in Northern Greece. 

8.2 METHODOLOGY 

8.2.1 Overall conceptual approach 

This Chapter introduces a multi-objective extension of the PSO framework for the efficient (in 
terms of both time and Pareto front generation) optimization of multiple reservoirs’ operation 
maximizing two conflicting objectives related to hydropower generation. The main advantage 
of the PSO [Koutsoyiannis and Economou, ] compared to other similar methods, based on 
implicit stochastic optimization (ISO) and explicit stochastic optimization (ESO), is on the one 
hand its parameter-parsimonious character and its ability to incorporate the hydrological 
uncertainty and on the other hand, the simple operation rules that it provides, which are well 
suited for real world operators [Celeste and Billib, ], thus bridging a gap between 
theoretical developments and real world applications [Yeh, ; Simonovic, ; Labadie, 
; Celeste and Billib, ]. 

The methodological steps of our approach are presented in Figure 8.1 and summarized below: 

) Representation of the main hydrological components (precipitation, evapotranspiration, 
inflow) through stochastic simulation, using stochastic simulation models that generate long 
synthetic time series able to capture and reproduce the statistical properties of the historical 
sample. The synthetic time series are used in step  to simulate the hydrosystem. 

) Parameterization of the management policy (operation rules) of the reservoirs system via a 
small number of parameters 𝜃, 𝛽 (decision variables). 

) Simulation of the hydrosystem (in this case with WEAP) using the stochastically generated 
synthetic time series to drive the simulation and implementing the parameters that define 
management policy. 

) Definition of appropriate objective function(s) that express the desired performance 
metric(s). In this case, two objective functions related to hydro-energy characteristics have been 
employed and used in the optimization process (step ). 

) Optimization to derive the best management policies (in view of the two objective functions) 
using  MOSBO and  MOEA algorithms (in Matlab and R environment). 

) Algorithms’ performance benchmarking using appropriate performance indicators and 
methods. 
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Figure 8.1 | Schematic representation of the conceptual approach. 

The parameterization of the management policy (operation rules) of the reservoirs system (step 
) requires determining the appropriate decision variables that describe the hydrosystem’s 
function. Typically, these variables express the release from the reservoirs and must be in a 
simple enough form to be understood by the system operators. Following an Occam’s razor 
approach, we assign for each hydropower reservoir 𝑖 a single variable 𝜃   referring to a constant 
monthly hydropower production target (GWh). During the simulation this target 𝜃   is 
translated into a minimum required discharge flow that has to pass through the turbines to 
produce the energy target 𝜃  . The upper bound of variables 𝜃   is set to the maximum theoretical 
hydropower capacity of the turbines. The lower bound of variables 𝜃   is zero, to account for a 
null hydropower production target. A second variable, termed the reduction variable 𝛽, is 
applied uniformly to all reservoirs to simulate periods with low hydropower demands such as 
the period October-April. In order to simulate this demand variability, the constant monthly 
hydropower production targets 𝜃   are multiplied by 𝛽 for low hydropower demand periods. 
The lower bound of 𝛽 is zero, which when multiplied the constant hydropower target 𝜃   results 
in zero hydropower target for certain months. The upper bound is one, meaning that 
hydropower target is constant and equal to 𝜃  . The purpose of 𝛽 is to reduce the hydropower 
production targets during specific months (here October-April) and thus increase the 
hydropower potential available during the rest of the year (here May-Sept) when the demand 
is higher. Hence, for a hydrosystem consisting of n hydropower reservoirs, the total number of 
decision variables equals to 𝑛	 + 	( (n values for the 𝜃 parameter plus the uniformly applied 
variable 𝛽). At every time-step, the energy target is translated to volume of water that passes 
through the turbines to achieve the specified hydropower target. Since hydropower generation 
is related to the current volume of the reservoir and the turbine efficiency, the release volume 
varies every month. This parsimonious parameterization can be easily implemented at most 
reservoir simulation models (here using WEAP). 

Two probabilistic performance metrics were introduced to shape the objective functions (step 
). The first is the maximization of the monthly guaranteed energy produced from the multi-
reservoir system for a given reliability (e.g., reliability 𝑎 = @@%), for the whole simulation 
period (i.e., Eq. (8.1)). This measure is also known as firm energy [Hamlet et al., ; Larson 
and Larson, ; Efstratiadis et al., ]. The second metric is the maximization of the 
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monthly firm power for a certain period (i.e., Eq. (8.2)) (in our case the period of May-
September, where demands for hydropower are higher in Greece). The objective functions are 
non-linear, non-continuous and non-differentiable due to the probabilistic approach. These 
two performance metrics define two different operational policies. The first one ensures the 
stability of energy production for a given reliability level. The second performance metric 
describes a policy where the guaranteed energy production is maximized only in a period of 
interest, such as the summer period. The overall probabilistic approach (probabilistic 
constraints) used to calculate the objective functions accounts for the hydrological uncertainty 
of the inflows to the reservoirs (which is the main uncertainty in such cases) and thus, we 
argued, provides more robust, uncertainty-aware operation rules. 

 
𝐎𝐛𝐣𝐞𝐜𝐭𝐢𝐯𝐞	𝟏:max{EÆ} 

𝐬. 𝐭. : 𝑎 = 𝑃(𝐸$ > EÆ) =
𝑛�

𝑛�È� = @@% 
(.) 

where, 𝐸$ = ∑ 𝐸$³
 â(

  , 𝐸$ is the hydropower energy time series for given 𝜃   and 𝛽, for	𝑡 =
(, … , 𝑛�È� , where 𝑛�È�  is the total number of time-steps for all months and all years in 
simulation. While, 𝑖 = (, … ,ℎ, ℎ denotes the number of hydropower reservoirs. 𝐸Æ  denotes the 
firm energy of the system for the whole year, and 𝑎 the desired reliability (=), calculated 
simply by dividing 𝑛�  and 𝑛�È� , where 𝑛� is the number of time-steps that exceed 𝐸$ > 𝐸Æ  and 
𝑛�È�  is the total number of time-steps in 𝐸$. 

 
𝐎𝐛𝐣𝐞𝐜𝐭𝐢𝐯𝐞	𝟐:max{Eg} 

𝐬. 𝐭. : 𝑎 = 𝑃l𝐸�
g > Egn =

𝑛g

𝑛g�È� = @@% 
(.) 

where, 𝐸�
g = ∑ 𝐸�

g; ³
 â( , 𝐸�

g is the hydropower energy time series for given 𝜃   and 𝛽, for 𝑡 =
(, … , 𝑛g�È� , where 𝑛g�È�  is the total number of time-steps only for high demand months (here 
May-Sept) during the entire simulation, while 𝑖 = (,… , ℎ, where ℎ denotes the number of 
hydropower reservoirs. 𝐸g  denotes the firm energy of the system for the high demand period 
(here May-Sept), and 𝑎 is the desired reliability (=), calculated simply by dividing 𝑛g  and 
𝑛g�È� , defined as the number of the time-steps that exceed 𝐸�

g > 𝐸g and the total number of 
time-steps in 𝐸�

g respectively. Note, that parameters 𝜃   and 𝛽 enter the equation indirectly, 
through 𝐸$ and 𝐸�

g. 

8.2.2 Models and tools 

For the simulation of the hydrosystem (in step ) a widely used water management model, the 
Water Evaluation and Planning System (WEAP3) was used. To enable a two-way 
communication between the simulation and optimization models (step ) a coupling was 
established through the COM-API4 function of WEAP as discussed in Tsoukalas and 
Makropoulos [, a]. 

                                                        

3 http://www.weap.org 
4 Component Object Model Application Programming Interface 
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For the stochastic simulation of key hydrological variables (in step ) synthetic time series of 
 years were generated using the Castalia software [Efstratiadis et al., b]5. Castalia is a 
multivariate stochastic simulation tool developed for the study of monthly hydrological 
variables such as rainfall, evapotranspiration and inflow. It generates synthetic time series on 
the basis of historical data, that reproduce the statistical properties (mean value, standard 
deviation, skewness, lag- autocorrelation and lag- cross-correlation coefficients) of the 
observed data sets. Furthermore, Castalia reproduces the long-term persistence of hydrological 
processes, also known as Hurst-Kolmogorov dynamics [Koutsoyiannis, b], in both annual 
and inter-annual scale, as well as the periodicity in infra-annual scale and intermittent behavior 
on daily scales. In this work,  years of monthly synthetic rainfall, evapotranspiration and 
inflow time series were generated, based on historical time series available for the periods -
 and -. Unfortunately, longer historical time series that would result to more 
representative statistics were not available for this hydrosystem. We note that the use of Castalia 
in this Chapter is supported by the fact that the focus is in the investigation of surrogate 
modelling techniques (i.e., MOSBO algorithms in particular) to handle computationally 
expensive simulation-optimization problems. In an operational context, it could be preferable 
to employ the stochastic modelling and simulation approach of Chapter 4-7, since it overcomes 
many of limitations of the current synthetic data generation schemes.  

Nonetheless, the synthetic datasets generated were used as inputs to WEAP to drive each 
simulation. Although, the use of synthetic time series leads to more robust solutions that 
incorporate hydrological uncertainty into the operational policy design it also results in much 
longer simulation times and hence significantly increases computational effort. For instance, 
for synthetic monthly time series of  years the model needs approximately  sec for a single 
simulation run on a . GHz Intel Core i processor with  GB of RAM, running on Windows 
 Operating System. By contrast, a typical multiobjective evolutionary algorithm requires an 
order of   iterations to adequately approximate the Pareto front. Consequently, the whole 
process would last  hours, which makes it unrealistic. 

To address this issue, we replaced the typical multiobjective evolutionary algorithms with 
MOSBO algorithms and their performance was assessed. Specifically, we used the following 
surrogate-based (MOSBO) algorithms (see section 8.2.4): ParEGO [Knowles, ], SUMO 
[Gorissen et al., ] and SMS-EGO [Ponweiser et al., ]. Their performance has been 
evaluated for various configurations related to the maximum number of function evaluations 
allowed. That is because the computational time needed by the MOSBO to construct and search 
(optimize) the metamodel is minimal. e.g., the total computational time needed to construct a 
metamodel of  samples and then search (optimize) it is less than  sec. This effort compared 
to  sec required by the simulation model (WEAP) is negligible and thus can be ignored. 
The performance of the  MOSBOs has been benchmarked against the well-known NSGAII 
algorithm [Deb et al., ] and the recently proposed SMS-EMOA algorithm [Beume et al., 
], using performance indicators and methods proposed by Razavi et al. [a], 
Asadzadeh and Tolson [] and Matott et al. [] (see section 8.4). 

8.2.3 Fundamentals of SBO algorithms 

The basic concept of SBO methods is to replace most of the expensive simulations with much 
less expensive surrogate models within the optimization cycle. Examples can be found in 

                                                        
5 See also the R language implementation, i.e., CastaliaR package [Tsoukalas et al., c]. 
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literature [e.g., Queipo et al., ; Yan and Minsker, , ; Forrester et al., ; Knowles 
and Nakayama, ; Kleijnen, ; Gorissen et al., ; Keating et al., ; Santana-
Quintero et al., ; Jin, ]. In SBO, most evaluations are performed with the surrogate 
model, while the expensive model is used periodically within the optimization process to 
improve the accuracy of the results. The nature of the true function is not known a priori. 
Therefore, the selection of the most appropriate surrogate model is a challenging and critical 
task for the optimization process [Santana-Quintero et al., ]. The basic stages of SBO are 
described in Figure 8.2 below and briefly discussed in the following paragraphs. 

 
Figure 8.2 | Flowchart of the surrogate-based optimization process. 

8.2.3.1 Initial sampling plan 

SBO attempts to develop a (surrogate/inexpensive) model approximator able to capture the 
response of the expensive model for a limited number of optimally selected data points. The 
first step of the SBO procedure is therefore to select these points, using a sampling plan (also 
termed initial design) and evaluate them with the expensive model. The sampling plan is 
usually implemented with Design of Experiments (DoE) methods, which aim to maximize the 
amount of information gained from a limited number of sample points. Typically, the samples 
need to spread across the design space in order to capture global trends. DoE methods include 
Latin Hypercube Sampling (LHS), Orthogonal Array Design (OAD) and Uniform Design 
(UD) [Giunta et al., ]. 

8.2.3.2 Surrogate models 

With the initial points selected, the next step is to construct the appropriate surrogate model to 
approximate the expensive simulator. Typical surrogate models include polynomials [Sudret, 
2008; Crestaux et al., ], Radial Basis Functions (RBFs) [Mugunthan et al., 2005; Regis and 
Shoemaker, a; Shoemaker et al., ], Artificial Neural Networks (ANNs), Support Vector 
Machines [SVMs - Dibike et al., ; Zhang et al., ] and Kriging [Sacks et al., 1989; Santner 
et al., ]. ANN, in particular, have been used extensively in water resources research [e.g., 
Broad et al., ; May et al., ; Behzadian et al., ; Fu et al., , ]. Khu et al. 
[], examined various applications of evolutionary computation based surrogate models to 
augment or replace the conventional use of numerical simulation and optimization within the 
context of hydro-informatics. Key issues of surrogate models for multiobjective optimization 
are presented and discussed in Razavi et al. [b]. They also reported that surrogate models 
are not suitable for optimization problems with many decision variables, mainly due to the 
large search space and the number of samples required to adequately sample the objective space 
[Razavi et al., b]. Techniques that are able to handle high dimension problems are 
presented in Shan and Wang []. 
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In our work, this issue was addressed using the PSO parsimonious approach to keep the 
number of decision variables fairly small. In the work presented here Kriging is used as the 
surrogate model of choice. Kriging is based on the idea that a value of a random field at an 
unobserved location can be statistically interpolated using observations at nearby locations. 
The method was originally proposed by Krige [] and applied by Sacks et al. [] to 
approximate computer experiments. Kriging is a widespread surrogate model capable of 
approximating deterministic noise-free data, in our case deterministic computer experiments 
(simulations), and has adequately performed in challenging tasks [Jones et al., ]. The 
mathematical background of Kriging is presented in [Santner et al., ; Forrester et al., ]. 
Kriging consists of two terms: 

 𝑌(𝒙) = 𝑓(𝒙) + 𝑍(𝒙)	 (.) 

where 𝑓(𝒙) is a regression function and 𝑍(𝒙) is a Gaussian process with a mean of zero and 
nonzero covariance. There exists a variety of Kriging techniques, including simple Kriging, 
ordinary Kriging, universal Kriging, etc. The difference of the various methods is the form of 
the regression function. Jones et al. [] suggested the use of ordinary Kriging whenever there 
is no rationalization to indicate a suitable trend function, and this suggestion is adopted in our 
work. This implies that 𝑓(𝒙) is not a function, but a constant term. 

Given n samples of 𝒙( ) = �𝑥(
((), … , 𝑥­

(()� ∈ ℝ­ , each with dimension 𝑑 and a response 𝒚 =

{𝑦((), … , 𝑦(ô)}
Ï
	the following pairs exist, l𝒙( ), 𝑦( )n for 𝑖 = (, … , 𝑛. The covariance of 𝑍(𝒙) is 

given by, Cov{𝑍l𝒙( )n,𝑍l𝒙(Ø)n} = 𝜎)𝛹l𝒙( ), 𝒙(Ø)n where, 𝛹(∙,∙) is a correlation function. The 
choice of correlation function is vital to create an accurate Kriging model regardless of the 
Kriging method. A commonly used correlation class, known as generalized exponential 
correlation function, is defined by: 

 𝛹l𝒙( ), 𝒙(Ø)n = expR−á 𝜃³[𝑥³
( ) − 𝑥³

(Ø)[
gÍ

­

³â(

S , 𝜃³ ≥ ;, 𝑝³ ∈ [(,)] (.) 

where 𝜽 = [𝜃(, … ,𝜃­] and 𝒑 = [𝑝(,… , 𝑝­] are the hyperparameters of correlation function. It 
is noted that this type of correlation class depends only on the Euclidian distance, with the 
correlation being inversely proportional to the distance. These parameters guide the rate and 
the shape of this relationship: Particularly, parameters 𝒑 determine the initial drop in 
correlation as distance increases. When 𝒑 is equal to  we have the popular Gaussian 
correlation function, which considers that the data follow a continuous and smooth surface. 
Lower values of 𝒑 are more suitable for rough response surfaces as they permit a more 
significant variance in function values for closer points (Figure 8.3b). Figure 8.3a depicts the 
influence of parameters 𝜽 (or width), showing how far a sample point's impact extends. These 
parameters are convenient as they describe the amount of variation in each dimension ℎ. High 
values of 𝜃³ represent a non-linear behavior in dimension ℎ, with similar points having 
significantly diverse responses. On the other hand low values of 𝜃³ indicate a more linear 
behavior in dimension ℎ. 
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Figure 8.3 | Behavior of generalized exponential correlation function (univariate case; for simplicity 
the index i is ommited) with, (a) varying 𝜃 and fixed 𝑝 = ) and (b) with varying 𝑝 and fixed 𝜃 = (. 

This study focuses on the use of Gauss correlation function (i.e., 𝒑 = ) in Eq. (8.4)). The 
correlation function 𝛹(∙,∙) is parameterized by a set of hyperparameters 𝜽 = [𝜃(, . . ,𝜃­], whose 
identification is achieved using a Maximum Likelihood Estimation (MLE) method, in which 
the negative concentrated log-likelihood needs to be minimized [Forrester et al., ; 
Couckuyt et al., ]. 

8.2.3.3 Infill criteria 

Once the surrogate model(s) has been constructed, the next design samples need to be 
evaluated. Infill criteria (also known as sample selection techniques or update strategies) aim 
to extract as much information as possible from the (cheap) surrogate and thus determine the 
next sample site (locating potential points) to be evaluated by the expensive simulator. These 
samples can be used to improve the accuracy and validate the performance of the surrogate. 
The iterative process of using infill criteria is known as adaptive sampling or active learning. 
There is a variety of strategies to design this process, including inter alia random, density, error 
based, and balanced exploration-exploitation strategies [e.g., Sasena et al., ; Forrester and 
Keane, ; Wagner et al., ; Zaefferer et al., ]. In this work we focus on balanced 
exploration-exploitation strategies, and some of them are described below. 

.... Infill strategies for single objective optimization 

Two popular criteria which ensure a balance between exploitation and exploration are 
Probability of Improvement (PoI) and Expected Improvement (EI). Both of them became 
popular by the work of Jones et al. [] where they were implemented in a single objective 
SBO algorithm (EGO). PoI denotes the probability of a sample 𝒙 to lead to an improvement 
over the current minimum observed value 𝑦Î ô  (calculated with the expensive function). By 
considering 𝑦C(𝒙), the prediction of Kriging, as a realization of a Gaussian random variable with 
variance �̂�)(𝒙), the variance of kriging prediction, the probability of improvement 𝐼 = 𝑦Î ô −
𝑦C(𝒙) upon 𝑦Î ô  is calculated as: 

 𝑃[𝐼(𝒙)] =
(

�̂�(𝒙)√)𝜋
õ exp ~−l𝐼 − 𝑦C(𝒙)n

)
� /)�̂�)(𝒙)d𝐼

;

st
			 (.) 

Therefore 𝑃[𝐼(𝒙)] is the cumulative density function of 𝒙 and can be calculated using the error 
function as: 
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 𝑃[𝐼(𝒙)] = Φ�
𝑦Î ô − 𝑦C(𝒙)

�̂�(𝒙) � =
(
)
ç( + erf '

𝑦Î ô − 𝑦C(𝒙)
�̂�(𝒙)√)

(è	 (.) 

The EI extends the definition of PoI and calculates the amount of improvement expected for a 
given	𝒙 and not only the PoI. The calculation of EI is shown below, where Φ(∙), 𝜑(∙)and �̂�(𝒙) 
denote the Gaussian cumulative distribution function and probability density function, as well 
as Kriging error, respectively: 

 

𝐸[𝐼(𝒙)]

= a(𝑦Î ô − 𝑦C(𝒙))Φ�
𝑦Î ô − 𝑦C(𝒙)

�̂�(𝒙) � + �̂�(𝒙)𝜑 �
𝑦Î ô − 𝑦C(𝒙)

�̂�(𝒙) � , if	�̂�(𝒙) > ;

;, if	�̂�(𝒙) = ;
 (.) 

The ParEGO algorithm, used in this work, uses this single objective EI of an augmented 
Tchebycheff aggregation. Further details about this approach are given in a next section. 

.... Infill strategies for multi-objective optimization 

When dealing with multi-objective optimization problems a common practice is to aggregate 
the objective functions and use a single objective version of PoI or EI [Knowles, ]. Multi-
objective versions of PoI and EI based on Euclidian distance have also been proposed [Keane, 
; Forrester and Keane, ]. Emmerich et al. [] recently proposed a hypervolume-
based EI criterion. 

In our work we applied the strategy proposed by Couckuyt et al. [] implemented in the 
SUMO toolbox [Gorissen et al., ] which is based on an efficient method of calculation of 
hypervolume-based PoI and EI criteria. Here we adopt the hypervolume-based PoI criterion as 
described by [Couckuyt et al., ]. 

In order to define the concept of the hypervolume-based PoI criterion the multiobjective 
version of PoI needs to be defined. For notation reasons the output of each of 𝑚 Kriging models 
(and thus objectives) can viewed as independent Gaussian variables, 𝑌Ø(𝒙) where 𝑗 = (,… ,𝑚. 
Hence: 

 𝑌Ø(𝒙) = 𝒩 ~𝜇Ø(𝒙), �̂�Ø)(𝒙)� , for	𝑗 = (,… ,𝑚 (.) 

Considering that given n points 𝐗 = [𝒙(, … , 𝒙ô]Ï exist in d dimensions, a Pareto set P can be 
derived, consisting of 𝜈 <= 𝑛 non-dominated solutions. 

 𝐏 = [𝑓(𝒙(∗), … , 𝑓(𝒙Ó∗)] (.) 

where	𝑓(𝒙 ∗)	is a vector that contains the objective function values for the corresponding input 
𝒙 ∗, 𝑖 = (,… , 𝜈. Generally, the Probability of Improvement over the Pareto set that a point 𝒙 
can yield is calculated as [Couckuyt et al., ]: 

 𝑃[𝐼(𝒙)] = õ #𝜑Ø{𝑌Ø}d𝑌Ø

Î

Øâ(�∈�	
 (.) 
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The basic concept of multiobjective PoI is to evaluate the probability of point 𝒙 to yield an 
objective function value located in a region A. Thus, A can be the non-dominated area of the 
objective space. In order to evaluate the multiobjective PoI, one has to decompose the area A 
in q rectangular cells; this yields a finite summation of contributing terms (Figure 8.4b). Thus 
P[I(x)] is transformed to: 

 𝑃[𝐼(𝒙)] = á±#l𝜑Ø{𝑢Ø�} − 𝜑Ø{𝑙Ø�}n
Î

Øâ(

É

�â(

 (.) 

where [𝒍�, 𝒖�] are the lower and upper bounds of each q cells. There are numerous approaches 
to calculate the hypervolume (i.e. the space within the aforementioned bounds) [e.g., Fleischer, 
; Beume, ; Beume et al., ; Bringmann and Friedrich, ; Bader et al., ]. The 
SUMO toolbox implements the Walking Fish Group (WFG) algorithm [While et al., ] 
which was originally introduced by Fleischer [] which is deemed faster for practical 
optimization problems. 

So far we have defined the concept of multiobjective PoI, yet in order to derive a hypervolume-
based PoI criterion the hypervolume-based improvement function needs to be defined. Here 
we adopt the Hypervolume metric (HV) [Zitzler and Thiele, ; Zitzler et al., ]. The 
hypervolume HV(P) of a given Pareto set P essentially measures how much volume the non-
dominated set P dominates relative to a reference point r (termed anti-ideal). The reference 
point r should be dominated by every point of the Pareto set. The HV value is proportional to 
the quality of the Pareto set P. Another essential and interesting notion is hypervolume 
contribution (HVcon), which measures the contribution of a point p to the overall Pareto set P. 
Therefore, HVcon can be used to define an improvement function. It should be noted that HVcon 

does not require normalization of the objective space [Knowles, ]. Figure 8.4 depicts the 
concepts of HV and HVcon, as well as the integration area A of the hypervolume-based PoI 
which is decomposed into smaller cells by a binary partitioning procedure [Couckuyt et al., 
].  

 𝐼(𝐩,𝐏) = ·𝐻(𝐏 ∪ {𝐩}) − 𝐻(𝐏), if	𝐩	is	not	dominated	by	𝐏
;, otherwise  (.) 

 
Figure 8.4 | Graphical representation of hypervolume and hypervolume contribution. a) The light grey 
depicts the hypervolume of the Pareto set (non-dominated region) b) The dark grey depicts the 
exclusive (contribution) hypervolume of a point p (adopted from: [Couckuyt et al., ]). 
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Having defined an improvement function we are able to specify a hypervolume-based PoI 
criterion which is derived by multiplying 𝐼(𝝁,𝑷) and 𝑃[𝐼(𝒙)]. It should be noted that the 
integration area A of 𝑃[𝐼(𝒙)] corresponds to the non-dominated region, and thus 
the	𝑃vÙ[𝐼(𝒙)] can be calculated in closed-form. Area A can be derived from the same set of 
cells used to evaluate 𝑃[𝐼(𝒙)] [Couckuyt et al., ] (see Figure 8.4b). These observations are 
formulated in Eq. (8.13) and (8.14), where 𝝁 = {𝜇((𝒙),… , 𝜇�(𝒙)} is a vector that contains the 
surrogate model’s (Kriging) mean predictions: 

 𝑃vÙ[𝐼(𝒙)] = Rá±Vol(𝜇, 𝑙�, 𝑢�)
É

�â(

S𝑃[𝐼(𝒙)] (.) 

where, 

 Vol(𝜇, 𝒍, 𝒖) = Ú#l𝑢Ø − max	(𝑙Ø, 𝜇Ø(𝒙))n
Î

Øâ(

, if	𝑢d > 𝜇Ø	for	𝑗 = (, . . , 𝑚

;, otherwise

 (.) 

8.2.3.4 Model assessment and validation 

In order to assess the quality of the surrogate model, and hence its prediction capabilities, an 
error estimation method needs to be specified. The most common method is cross-validation 
(CV), according to which training data are divided into q equally sized subsets. An iterative 
procedure of q iterations then begins. In each iteration one subset is removed and the model is 
fitted to the remaining data. For every iteration the excluded subset has the role of the 
validation set and hence it is used to calculate a selected error measure. The general model error 
is computed using the q error measures obtained (e.g., is the average error of q models). The 
parameters that yield the minimum general model error are then selected. In CV, most if not 
all of the available data are used. If the mean square error (MSE) is selected as the error measure 
the following equation is used: 

 errÛÜ<TÝ =
(
𝑞á

(𝑦  − 𝑦C ))
É

 â(

 (.) 

where, 𝑦   is the real function values and 𝑦C   is the predicted value of sample 𝒙   of the surrogate 
model constructed without the use of l𝒙 , 𝑦 n. Cross-validation is a reliable method particularly 
when the use of a separate validation set is computationally expensive. 

8.2.4 The deployed MOSBO algorithms 

The ParEGO algorithm 

The ParEGO algorithm was introduced by Knowles [] and is an global optimization 
algorithm for expensive multi-objective optimization problems. ParEGO is essentially a multi-
objective conversion of EGO [Jones et al., ], making use of scalarizing weight vectors at 
each step. The algorithm is based on the Design and Analysis of Computer Experiments 
(DACE) model [Sacks et al., ]. ParEGO uses DACE (i.e., Kriging) to fit previously 
evaluated points and uses the fitted model to locate interesting (i.e. potentially better) new 
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points to visit subsequently. One of the advantages of DACE, which is used in both EGO and 
ParEGO, is that a confidence interval of prediction is available and used to guide the search. 
The iterative process of ParEGO is shown in the flow chart of Figure 8.5. An initial set of 
solutions is generated using the Latin Hypercube design [Press et al., ] and evaluated with 
the expensive simulation function (in our case WEAP). Then the objectives are aggregated 
using Tchebycheff function (see below) and the initial DACE model is generated by fitting these 
solutions. The algorithm then tries to predict a trial solution which is most likely to improve 
the best fit found so far. An internal genetic algorithm (GA) is used to find the solution that 
maximizes Expected Improvement (EI) and to update the solution set of points evaluated by 
the expensive function. The DACE model is then updated and the next iteration begins. 

 
Figure 8.5 | ParEGO algorithm flowchart. 

In order to solve multi-objective problems, the algorithm updates the weighting between the 
objectives using the non-linear Tchebycheff function (i.e., Eq. (8.16)) as suggested by Knowles 
[] which combines m objectives to a single objective, thus gradually building up the whole 
Pareto front. The Tchebycheff function is described below: 

 𝑓𝝀(𝒙) = maxdâ(= 	 ~𝜆Ø𝑓Ø(𝒙)� + 𝜌á 𝜆Ø𝑓Ø(𝒙)
Î

Øâ(

 (.) 

where 𝑓Ø(𝒙) and 𝜆Ø (𝑗 = (,), . . , 𝑚) are the jth normalized objective values with respect to the 
known (or estimated) limits of the cost space, so that each cost function and its weight lie in 
the range [,], and ρ is typically set equal to . [Knowles, ]. In order to gradually build 
the whole Pareto front a weight vector λ is drawn uniformly at random from the set of evenly 
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distributed vectors defined by, Λ =

·𝝀 = (𝜆(, 𝜆), … ,𝜆Î)/ ∑ 𝜆ØÎ
Øâ( = (∀𝑗, 𝜆Ø ∈ �;,

(
�
	 , … , (¡à,	with |Λ| = ~𝑠 + 𝑘 − (𝑘 − ( �, so the choice 

of 𝑠 determines the total number of the weight vectors [Knowles, ]. 

The SUrrogate MOdeling Toolbox 

The SUrrogate MOdeling (SUMO) Toolbox6 [Gorissen et al., ] is capable of building global 
surrogate models of a given data source (data set, external code, script). The toolbox supports 
a variety of DoE techniques (Latin Hypercube, etc.), surrogate model types (e.g. Kriging, SVMs, 
RBF, ANN, etc.) and also includes several optimization algorithms (particle swarm 
optimization, simulated annealing, genetic algorithm, etc.) to optimize surrogate model 
parameters (hyperparameters), such as the parameters of the Gauss correlation function. 
Moreover, it includes model selection (cross validation, leave-out set, etc.) and sample (infill 
criteria) selection methods (including random, error based, density based, expected 
improvement and hypervolume PoI, etc.). Each component of SUMO is configured through 
an XML file. The basic workflow of SUMO used in this work is as follows: ) initial sampling 
with DoE (Latin Hypercube design) and evaluation with expensive function; ) building of 
models for each objective (with ordinary Kriging in our case); ) determination of the next 
design sample using appropriate infill criteria (in our case the hypervolume-based PoI criterion 
has been chosen as described in section 8.2.3.3.2); ) evaluating of the design sample and 
updating the non-dominated set of points, ) iteration between steps - until the stopping 
criteria are satisfied (in our case when a maximum number of function evaluations is reached). 

The SMS-EGO algorithm 

SMS-EGO is a surrogate based multiobjective algorithm originally proposed by [Ponweiser et 
al., ]. The key idea of the algorithm is to utilize a hypervolume-based criterion termed 
hypervolume contribution HVcon. In order to evaluate potential solutions, the algorithm uses 
the lower conditional bound (LCB) criterion as suggested by [Emmerich et al., ]: 

 𝑦Cáâ$(𝒙) = 𝑦C(𝒙) − 𝑎�̂�(𝒙) (.) 

where, 𝑦C(𝒙), �̂�(𝒙) and 𝑎 are the Kriging prediction, error and a weight factor respectively. The 
value of 𝑎 can be derived by a user defined confidence probability given by 𝑃¶ =
l( − )Φ(𝛼)n

Î
 as suggested by Emmerich et al. [] and Ponweiser et al. []. 

Furthermore, SMS-EGO applies additive ε-dominance [Zitzler et al., ] in order to ensure 
good distribution of the Pareto set. Therefore, if a potential point 𝑦Cáâ$ is dominated or ε-
dominated, a penalty value 𝑝 is assigned. If it is non-dominated, the hypervolume contribution 
will be calculated and the point with the higher HVcon value will be chosen for evaluation with 
the expensive function (simulator). 

 𝑝 = á Ú−( +# �( + ~𝑦Cáâ$,Ø − 𝑦Cd
( )��

Î

Øâ(

, if	𝑦C( ) ≤ 𝑦Cáâ$

;, otherwise�C())∈𝐏

 (.) 

                                                        
6 http://www.sumowiki.intec.ugent.be 
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The use of LCB allows the algorithm to explore unvisited areas (high variance) without 
requiring integration over the objective space as opposed to other strategies [Couckuyt et al., 
, ]. 

8.3 THE STUDY AREA: THE HYDRO-SYSTEM OF NESTOS, GREECE 
The Nestos basin, with a total area of , km, is a trans-boundary basin which extends 
between Bulgaria ( share) and Greece [Paraskevopoulos – Pangaea, 1994]. Nestos is the 
second largest river in Thrace River Basin District and one the major rivers in Greece (Figure 
8.7). It flows from Mount Rila in Bulgaria (a region with the highest altitude of the Balkans, 
about . m) and has a total length of  km of which  are in Greek territory. Nestos 
flows into Greece  

Figure . 

from the plateau of Nevrokopi of Drama. The river forms a natural boundary between Bulgaria 
and Greece for a few kilometers. The river flows into the Sea of Thrace, forming a large delta 
area about  km. It is worth mentioning that the Nestos estuary is an area protected by the 
Ramsar Convention and is part of the NATURA  network. 

 
Figure 8.7 | Geographical representation of the river basin Mesta / Nestos [Skoulikaris et al., ]. 

The first dam constructed in the region was Toxotes (-). It is an irrigation dam with 
a length of  meters located in the neck of the estuary and diverts the quantities of water to 
the east (city of Xanthi) and western bank (city of Kavala) of the main stream of the river. The 
first feasibility study of the Toxotes dam was undertaken in  [YDE, ]. Later on, during 
- a feasibility study was undertaken for the construction of three more upstream 
dams. Construction began ten years later (mid-’s) based on an interim agreement with 
Bulgaria on minimum incoming water quantities in Greece. In  an agreement was signed 
with Bulgaria to allow at least  of the total river flow to reach Greece. The initial plan of the 
feasibility study was to build  hydroelectric power stations (serially) with the first two of them 
reversible (pump-storage). These stations are the Thysavros ( MW), the Platanovryssi ( 
MW) and the Temenos station ( MW). These projects are multi-purpose, providing water 
for irrigation and potable water to small towns and industrial areas, and for energy production. 
The hydroelectric plant of the Thysavros reservoir is at the head of the system and provides 
scaling, while controlling the annual runoff of the river. However, the overall project has not 
been completed yet due to lack of funds: two reservoirs have been constructed so far (Thysavros 
and Platanovryssi). The third dam, Temenos, remains unconstructed [Skoulikaris et al., ] 
but privatization policies have recently revived interest in its completion. In our study we 
include Temenos and explore the performance of the complete hydrosystem. 
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The hydrosystem was modeled (Figure 8.8 using WEAP. The calibration of the hydrosystem 
was successfully undertaken during a previous study [Tsoukalas and Makropoulos, , 
a] yielding a Nash-Sutcliffe coefficient equal to .. WEAP doesn’t have a built-in 
module to simulate pump-storage processes; As this is an important functionality for the 
Nestos hydrosystem, pump storage was simulated using dummy demand nodes (D and D) 
with the appropriate connectivity (Figure 8.8, inside the circle). In order to define the 
maximum monthly turbine/pump discharge of the reservoirs it was assumed that the 
hydroelectric plants operate  hours a day as turbines (energy production) and  hours as 
pumps (consumption). Parameters in D and D that control the volume of water used in the 
pump-storage process were assumed to equal their maximum discharge capacity. The reason 
behind that is the fact that the pump-storage contributes significantly to the produced 
hydropower energy and the (monthly) simulation time-step is not able to depict clearly the 
variations in the storage volume of the reservoirs due to pump-storage. Irrigation water 
demand is significant downstream the Toxotes reservoir (Table 8-1) and a constant 
environmental flow requirement is set to  m/s by legislation. The demand priorities of 
environmental flow, irrigation and hydropower production were set to ,  and , respectively. 

WEAP uses a linear programming solver to allocate the available water resources across the 
hydrosystem. The objective of the LP solver is to maximize satisfaction of demands, subject to 
demand priorities, mass balances and other constraints. This routine ensures a physically-
consistent description of the hydrosystem and the satisfaction of all constraints. 

Table 8-1 | Present and future irrigation demand below Toxotes reservoir. 

Month/Demand (m3/s) Apr May Jun Jul Aug Sept 
Delta 11.5 15.7 18.5 20.9 20.0 13.0 
Xanthi (future) 5.7 7.8 9.2 10.4 10.0 6.5 

The parametric rule discussed earlier tries to identify optimal 𝜃   and 𝛽 (where i is the number 
of hydroelectric reservoirs). To implement this parameterization within WEAP the build-in 
model parameter “Energy Demand” that can be specified at each reservoir was used. Therefore, 
in this case study we had four () decision variables. More specifically for low energy demand 
months (October-April), “Energy Demand” was set to 𝜃   multiplied by the reduction coefficient 
𝛽 and for remaining year (May-Sept) it was set to 𝜃   without any reduction coefficient applied. 
For example, to implement θ1 =  and β = . for Reservoir , the reservoir’s “Energy Demand” 
parameter was set to  GWh for October-April and to  GWh for May-Sept. This yields a 
workable and simple operation rule, provided of course that 𝜃   and 𝛽 are selected after an 
optimization process accounting for the hydrological variability of inflows over the longer run. 
It should be noted that the current operation of the reservoirs does not follow specific rules and 
is based mostly on ad hoc expert judgment. Hence, unfortunately, no meaningful comparison 
of current practice versus optimization results can take place. 



MULTI-OBJECTIVE OPTIMIZATION UNDER UNCERTAINTY  

Page | 174 

 
Figure 8.8 | Hydrosystem modelled in WEAP and detail (inside the circle) of simulation of pump-
storage. Symbol (�) represents the catchments, (�) represents the demand nodes, (⊗) represents in-
stream flow requirements, (") represents the river, (�) represents river nodes or junctions and (p) 
represents the reservoirs. 

8.4 BENCHMARKING THE ALGORITHMS’ PERFORMANCE 
Contrary to single-objective optimization, comparing multi-objective optimization algorithms 
is more complicated due to the fact that the outcome is an approximation of the Pareto front 
consisting of many different solutions. A possible way to address this problem is to condense 
performance into scalar metrics – also known as performance indicators. A comprehensive 
review of performance indicators was recently presented by Zitzler et al. []. In earlier work, 
Zitzler et al. [] argue that some of the most typical features that performance indicators 
have to assess are: a) the precision of the solutions in the set, i.e. how well they approximate the 
ideal Pareto front; b) the number of solutions contained in the final Pareto-optimal set and c) 
the spread and distribution of the solutions. Following this rationale, we chose two indicators 
to compare the optimization algorithms in this work: the hypervolume indicator and the unary 
ε-indicator. Both of them are briefly described in the following paragraphs. 

Furthermore, in order to accurately benchmark the performance of MOSBO and MOEA, some 
basic concepts of the methodology proposed by Razavi et al. [a], Asadzadeh and Tolson 
[] and Matott et al. [] were adopted: Due to the stochastic nature of MOSBO and 
MOEA, multiple independent runs of each algorithm are utilized. The performance indicators 
are then calculated for each run. For each performance indicator the empirical cumulative 
distribution function (CDF) is calculated to depict the probability of obtaining an equivalent 
or better solution. The concept of stochastic dominance [Levy, ] is then utilized. 
Specifically, the first degree of stochastic dominance (SD) is used to compare the CDFs of the 
algorithms [Matott et al., ; Razavi et al., a; Asadzadeh and Tolson, ]. To explain 
this, consider the comparison of two algorithms A and B, with CDFs ΦΑ and ΦΒ based on a 
performance metric m, such that smaller values of m are preferred. SD of A over B applies only 
if  for all m. The SD does not apply when the CDFs are crossed. In order to 
statistically assess the differences between the CDFs, the non-parametric Mann–Whitney U 
test (MWU) is used. The null hypothesis of the MWU test is that data in ΦΑ and ΦΒ are samples 
from continuous distributions with equal medians. The confidence level of the MWU test was 
set to . Finally, to visualize results from multiple runs, the empirical attainment function 
(EAF) proposed by da Fonseca et al. [] is employed which describes the probabilistic 
distribution of the outcomes obtained by a MOOA. The functionality and the properties of the 
EAF are also briefly described next. 

( ) ( )A Bm mF ³F
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8.4.1 Hypervolume indicator 

The hypervolume indicator (HV) was first proposed by Zitzler and Thiele [], who called it 
S-metric. The HV essentially measures how much volume a non-dominated set P dominates 
relative to a reference point r (anti-ideal). The reference point r should be dominated by every 
point of the Pareto set. This indicator has become popular due to its ability to depict the 
accuracy and the spread of the approximation set. The choice of the reference point r is crucial 
due to the fact that the contribution of extreme points essentially depends on it [Knowles and 
Corne, ]. 

In this work we consider the normalized hypervolume ratio indicator (NHVR) which is the HV 

in the normalized objective space [,], divided by the HV of the true (optimal or reference) 
Pareto front. In our work the true Pareto front was not available and thus a reference (ideal) 
Pareto front was created compiling data from all optimization runs. The reference point 
selected is the maximum of the jth objective shifted by a = . In other words, for 𝑚 objectives, 
we defined a vector 𝒇 = [𝑓(, 𝑓(,… , 𝑓Î] with 𝑓Ø = maxØ + 𝑎lmaxØ −minØn, 𝑗 ∈ {(, . . ,𝑚}, 
where maxØ	and minØrepresent the maximum and minimum of the jth objective respectively. 

8.4.2 Unary ε-indicator (epsilon indicator) 

This indicator (Iε) was first proposed by Zitzler et al. [], aiming to identify the minimum 
distance between a given approximation of the Pareto set and the true or a benchmark Pareto 
front. In this case the objectives are also normalized in [,] space before calculating the 
indicator. Lower values of the Iε indicate that the approximation set is closer to the reference 
front (our case it is the same as in NHVR). A detailed description of Iε is also included in 
[Fonseca et al., ]. 

8.4.3 Empirical attainment function  

The Empirical Attainment Function (EAF) was originally proposed by da Fonseca et al. []. 
Later on, Zitzler et al. [] investigated in depth the properties of the EAF, while Fonseca et 
al. [] formalized the problem of its computation and proposed efficient algorithms for two 
and three dimensional computation. The key concept of the EAF is to calculate the probability 
that an algorithm will dominate an arbitrary point in the objective space at one run. Because of 
the stochastic nature of evolutionary algorithms there is no guarantee that the algorithm will 
achieve the same Pareto front at each run. A key advantage of the EAF is that the whole Pareto 
can be observed, therefore strong and weak areas of the front can be easily identified. Using 
color gradients, the EAF depicts the relative number of times that each region of the objective 
space is dominated. In our work we used an R package tool7 [López-Ibánez et al., ] which 
also provides the ability to compare two algorithms in a single plot using the differential 
empirical attainment function (Diff-EAF), which was particularly useful for our purposes. Diff-
EAF expresses the probability that a point in the solution space is dominated by only one of the 
compared algorithms. Therefore, Diff-EAF depicts the difference of two EAFs in a single graph. 
Thus, one can visually distinguish which algorithm performs better in certain regions of the 
objective space. 

                                                        
7 available from http://iridia.ulb.ac.be/~manuel/eaftools 
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8.5 EXPERIMENTAL SETUP 
In order to evaluate and compare the performance of ParEGO, SMS-EGO and SUMO, each 
algorithm was run multiple times. The configuration of the ParEGO, SMS-EGO and SUMO 
parameters was based on Knowles [], Ponweiser et al. [] and Couckuyt et al. [] 
respectively, and it was attempted to keep them as similar as possible for comparison purposes. 
Experimental setup similarities include the initial population sample (set to ), the DoE 
method (Latin hypercube), and finally the surrogate models (ordinary Kriging). The 
hyperparameters of the models were optimized in all cases using GAs. The main difference 
between the algorithms regards the infill criteria strategy. ParEGO uses the Tchebycheff 
function, aggregates the objectives into a single objective, and then uses the EI criterion. SMS-
EGO uses the hypervolume contribution in combination with LCB and a penalty function for 
dominated solutions. SUMO uses the hypervolume-based PoI criterion to locate promising 
samples. All MOSBO algorithms were tested with Gauss correlation functions for the Kriging 
models, and for  and  function evaluations (FE). 

The NSGAII and SMS-EMOA were used as benchmark algorithms. For that purpose,  
independent optimization runs were performed for both algorithms for ,  and   FE. 
An additional  independent optimization runs were performed for   FE and another  for 
  FE in order to evaluate the performance of MOEAs for larger numbers of FE (in these 
last cases  runs were impractical due to the excessive computational time required). The 
parameter settings used for NSGAII are similar to those proposed by Deb’s KANGAL web page. 
The population size was set to  and the maximum generation number was set accordingly to 
the maximum FE allowed. The same setup was used for SMS-EMOA. A summary of the 
optimization runs and configurations applied in this work is presented in Table 8-2. 

Table 8-2 | Summary of optimization runs and configurations. 

Algorithm Correlation 
function Initial population size Function Evaluations (Optimization runs) 

ParEGO Gauss 54 200(10), 400(10) 
SMS-EGO Gauss 54 200(10), 400(10 
SUMO Gauss 54 200(10), 400(10) 
NSGAII - 50 200(10), 400(10),1000(10), 2000(5), 5 000(2) 
SMS-EMOA - 50 200(10), 400(10),1000(10), 2000(5), 5 000(2) 

8.6 RESULTS AND DISCUSSION 

8.6.1 Comparison and benchmarking results 

The average performance of the applied MOSBO and MOEA algorithms in our case based on 
the selected performance indicators is presented in Figure 8.9 for each investigated 
configuration (computational budget). This figure depicts the superiority of MOSBO 
algorithms over MOEAs in few FE (, ). In both cases, all MOSBOs manage to attain 
larger values of NHVR compared to MOEAs, and simultaneously achieve lower values of Iε. It 
seems that beyond the  FE the performance of the MOEAs improves substantially and 
finally reaches the MOSBOs’ performance (at around   to   FE). Further FE ( -
 ) have the potential to lead to MOEAs to outperform MOSBOs. This is further discussed 
in a following paragraph where MOSBO algorithms with  and  FE are compared with 
MOEAs with larger computational budget. 
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Figure 8.9 | Average performance of algorithms for various computational budgets. 

Furthermore, Figure 8.10 presents the empirical CDFs of all MOSBOs and MOEAs for  
and  FE, as well as the CDFs of MOEAs for   FE. It is observed that for  and  FE 
all MOSBOs stochastically dominate MOEAs in both NHVR and Iε. 

 
Figure 8.10 | Empirical CDF of all MOSBO and MOEA for  and  function evaluations; also 
the CDFs of MOEA for  function evaluation are depicted. 

Comparison between equal budgets 

Table 8-3 summarizes the results of all algorithms for  and  FE and presents some key 
statistics. In Table 8-4 the algorithms are ranked according to their performance, with regards 
to the NHVR and Iε. As anticipate the top three ranks are occupied by the MOSBO algorithms. 
The CDFs of the MOSBOs intersect, hence stochastic dominance (SD) does not apply. In order 
to rank the algorithms, the following procedure was applied: the preferred algorithm is the one 
with the highest median in the case of NHVR and the one with the lowest median in the case 
of Iε. The alternative algorithm is the one with the highest P-value in the Mann–Whitney U 
test (MWU) when compared with the preferred algorithm. 

Furthermore, Diff-EAF plots depict the best (upper line) and the worst (lower line) EAF of a 
pair of algorithms. The median EAF (dotted line in the middle) of each algorithm is plotted. 
For example, the worst empirical attainment function (EAF) represents the smallest objective 
space that was captured from all runs and for each pair of algorithms. Table 8-4 also presents 
the P-values from the MWU test for all pairs. The high P-values indicate the acceptance of the 
null hypothesis (i.e. that data are samples from continuous distributions with equal medians). 
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In most of the cases the P-values are above . (confidence level ). The MWU test illustrates 
that the medians of the algorithms do not differ significantly. In the case of  FE there is a tie 
between SUMO and ParEGO, with Iε indicating that the preferred algorithm is ParEGO and 
NHVR indicating SUMO. However, the high P-values (in both cases) suggest that there is no 
significant difference between the medians. Therefore, the performance of all MOSBO in  
FE could be assumed equivalent with very small differences. In the case of  FE both NHVR 
and Iε agree that the preferred algorithm is SUMO. Also in this case the P-values are high, 
except when comparing SUMO and ParEGO, where the P-value is less than .. This warrants 
further exploration as discussed below. 

Table 8-3 | Results summary for  and  function evaluations. 

Hypervolume indicator 
Budget Statistic ParEGO SMS-EGO SUMO SMS-EMOA NSGAII 

200 

Average 0.902 0.904 0.906 0.836 0.830 
Median 0.901 0.899 0.912 0.837 0.843 
St. dev. 0.014 0.025 0.034 0.037 0.038 
Max 0.931 0.937 0.957 0.913 0.879 
Min 0.878 0.859 0.850 0.785 0.774 

400 

Average 0.920 0.926 0.938 0.844 0.843 
Median 0.917 0.927 0.941 0.848 0.852 
St. dev. 0.012 0.016 0.025 0.039 0.036 
Max 0.945 0.951 0.966 0.901 0.887 
Min 0.902 0.897 0.882 0.788 0.790 

Epsilon indicator 
Budget Statistic ParEGO SMS-EGO SUMO SMS-EMOA NSGAII 

200 

Average 0.111 0.130 0.134 0.194 0.184 
Median 0.120 0.130 0.126 0.198 0.160 
Std 0.023 0.037 0.068 0.068 0.076 
Max 0.133 0.186 0.251 0.306 0.306 
Min 0.060 0.065 0.042 0.069 0.101 

400 

Average 0.104 0.121 0.106 0.191 0.179 
Median 0.111 0.116 0.094 0.177 0.160 
St. dev. 0.026 0.039 0.062 0.070 0.070 
Max 0.133 0.187 0.251 0.355 0.282 
Min 0.059 0.053 0.042 0.119 0.101 

Table 8-4 | Comparison of MOSBO and MOEA under equal budget. 
 Iε NHVR 

Alg/Budget 200 400 200 400 
Preferred1 ParEGO SUMO SUMO SUMO 

Alternative2 SUMO ParEGO SMS-EGO SMS-EGO 
Third3 SMS-EGO SMS-EGO ParEGO ParEGO 

P-value12 0.571 0.623 0.910 0.104 
P-value13 0.186 0.345 0.623 0.031 
P-value23 0.791 0.427 0.999 0.308 
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As mentioned before the differential empirical attainment function (Diff-EAF) was used to 
provide a comprehensive visualization of the results and identify areas where an algorithm 
outperforms another. For the sake of limited space Diff-EAF plots are presented only for 
configurations with  FE. Diff-EAF uses color gradients to express the probability that a 
point in the solution space is dominated by only one of the compared algorithms. We used gray 
scale to distinguish the areas in the objective space where each algorithm performs better. Dark 
grey areas indicate high probability that this algorithm dominates that area and respectively 
light grey to white areas indicate the opposite. Furthermore, Diff-EAF plots depict the best 
(upper line) and the worst (lower line) EAF of a pair of algorithms. The median EAF (dotted 
line in the middle) of each algorithm is plotted. For example, the worst empirical attainment 
function (EAF) represents the smallest objective space that was captured from all runs and for 
each pair of algorithms. Figure 8.11 depicts the Diff-EAF of the ParEGO algorithm as 
compared to SMS-EGO for  FE. The only difference between these two algorithms is the 
infill criteria used. SMS-EGO outperforms ParEGO in all of the objective space (dark areas in 
Figure 8.11, right plot) except in a small region in the upper left side and in the lower right side 
(dark areas in Figure 8.11, left plot). This probably occurs due to the weights in the Tchebycheff 
aggregation function used by ParEGO which provide a greater exploration power at the edges 
of the design space. The median EAF of both algorithms provide good approximation sets. The 
worst EAF can be also seen as the guaranteed approximation set. However, the spread between 
median and best surface in the case of ParEGO could be considered large as compared to other 
configurations examined in this work. Figure 8.12 represents the Diff-EAF of ParEGO and 
SUMO algorithms. The plots depict a superiority of the SUMO algorithm in almost all of the 
objective space (dark areas in Figure 8.12, right plot). Once again, the ParEGO is dominating 
larger areas towards the edges (as in Figure 8.11). In this case the median EAF of SUMO 
exhibits better performance than ParEGO, dominating a larger space, especially in the middle 
of the front (where the more balanced, realistic solutions tend to lie). It is interesting to note 
that all algorithms, exhibit a small weakness to capture the left and right extremes as compared 
to their best EAF. Figure 8.13 compares the SMS-EGO and SUMO algorithms. Also, in this 
configuration both median EAF seems to perform well in the central area of objective space. A 
minor superiority (grey area values) of SUMO can be observed throughout the objective space. 
This is also depicted in the performance statistics presented in Table 8-3. Nevertheless, both 
algorithms provide good results considering the small spread between best and median EAF 
and the small number of FE. 

 
Figure 8.11 | EAF difference plot for ParEGO and SMS-EGO for  function evaluations. 
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Figure 8.12 | EAF difference plot for ParEGO and SUMO for  function evaluations. 

 
Figure 8.13 | EAF difference plot for SMS-EGO and SUMO for  function evaluations. 

It seems clear that all MOSBO algorithms examined in this work manage to yield better results 
than MOEAs in the case of  and  FE as underpinned by the statistics (Table 8-3) and 
the CDF plots (all MOSBOs stochastically dominate the MOEAs) of the performance indicators 
NHVR and Iε. 

Comparison between unequal budgets 

Subsequently, we compare the performance of MOSBOs for  and  FE against the 
MOEAs for   FE. A comparison among the MOEAs is initially performed to indicate the 
preferred algorithm. Then, both MOEAs (  FE) are compared with all MOSBO algorithms 
( and  FE) in terms of NHVR and Iε. Furthermore, auxiliary Diff-EAF plots are used to 
infer the performance of the algorithms. Table 8-5 compares the performance of MOEAs with 
  FE budget. In the case of NHVR, SMS-EMOA stochastically dominates NSGAII but has 
a P-value around . (which is very close to the preferred confidence level), and its median and 
the average values (Table 8-6) are higher than those of the NSGAII. Hence, in terms of the 
NHVR indicator the preferred algorithm is the SMS-EMOA. In the case of Iε, the CDFs of the 
algorithms cross and hence stochastically domination does not apply. The median and the 
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average (Table 8-6) of the SMS-EMOA are lower (better) than NSGAII. Therefore, the SMS-
EMOA should also be considered the preferred algorithm for Iε. It has to be noted that the P-
value in this case is significantly large and indicates high probability of null hypothesis 
acceptance. This comparison is also visually validated using the Diff-EAF plot (Figure 8.14) 
where no areas in the objective space exist clearly showing an algorithm extremely 
outperforming the other. 

Table 8-5 | Comparison of MOEAs for   function evaluations. 
 Iε NHVR 
Preferred SMS-EMOA SMS-EMOA 
Stoch. Dom. No Yes 
P-value 0.623 0.104 

Table 8-6 | Results summary for   function evaluations. 

Budget Statistic Hypervolume indicator Epsilon indicator 
SMS-EMOA NSGAII SMS-EMOA NSGAII 

1000 

Average 0.887 0.875 0.147 0.155 
Median 0.894 0.885 0.144 0.148 
St. dev. 0.025 0.024 0.043 0.044 
Max 0.912 0.904 0.225 0.247 
Min 0.850 0.831 0.098 0.100 

 
Figure 8.14 | EAF difference plot for SMS-EMOA and NSGAII for   function evaluations. 

Subsequently, in order to compare the performance of MOSBOs (with  and ) and 
MOEAs with   FE the following procedure was used: firstly, we check for stochastic 
dominance (SD) across pairs. If SD applies then the preferred algorithm is the one that 
dominates the other, and the P-value of the MWU test is calculated to infer significance. If the 
CDFs of the algorithms cross, then the preferred algorithm is determined by the median, and 
the P-value of the MWU test is also calculated. Table 8-7 summarizes the results of those 
comparisons. 

When comparing the ParEGO and SMS-EGO with  evaluation functions against the 
NSGAII with   FE, the former stochastically dominate the NSGAII with compatible P-
values with regards to Iε. Interestingly, SUMO does not stochastically dominate NSGAII, yet it 
demonstrates a lower median and a compatible P-value. This can be explained by the fact that 
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the CDFs of the algorithms cross at probability , hence this could be an outlier. In the case 
of the NHVR metric, all MOSBOs stochastically dominate NSGAII and achieve P-values lower 
than ., outlining their superiority. When comparing the MOSBOs with  evaluation 
functions against the SMS-EMOA with   FE, the former stochastically dominate, yet with 
large (incompatible) P-values with regards to the Iε metric. The higher P-values indicate also 
the advantage of SMS-EMOA over NSGAII. Finally, when the NHVR metric is examined all 
MOSBOs stochastically dominate SMS-EMOA and achieve low P-values (<.). 

Table 8-7 | Comparison of MOSBO and best MOEA under different budgets. 

 Indicator Iε NHVR   
MOSBO/MOEA budget 200/1000 400/1000 200/1000 400/1000 

MOSBO/ MOEA Algorithm NSGAII SMS-
EMOA NSGAII SMS-EMOA NSGAII SMS-EMOA NSGAII SMS-

EMOA 

SUMO 
Preferred SUMO SUMO SUMO SUMO SUMO SUMO SUMO SUMO 
Stoch. Dom. No No No No Yes Yes Yes Yes 
P-value 0.212 0.427 0.021 0.045 0.045 0.121 <0.001 <0.001 

SMS-EGO 
Preferred SMS-

EGO 
SMS-
EGO SMS-EGO SMS-EGO SMS-EGO SMS-EGO SMS-

EGO 
SMS-
EGO 

Stoch. Dom. Yes Yes Yes Yes Yes Yes Yes Yes 
P-value 0.307 0.520 0.090 0.273 0.014 0.185 <0.001 <0.001 

ParEGO 
Preferred ParEGO ParEGO ParEGO ParEGO ParEGO ParEGO ParEGO ParEGO 
Stoch. Dom. Yes Yes Yes Yes Yes No Yes Yes 
P-value 0.007 0.053 0.004 0.038 0.006 0.345 <0.001 <0.001 

For the sake of limited space differential empirical attainment function (Diff-EAF) plots are 
going to be presented only for SUMO with  FE compared to SMS-EMOA with   FE 
(Figure 8.15) since SUMO was the preferred algorithm for  FE (Table 8-4) and SMS-
EMOA the preferred MOEA for   FE (see Table 8-5). Figure 8.15) depicts that SUMO is 
able to dominate SMS-EMOA in all the objective space and with high probability values (dark 
grey areas). This inference is also validated by the results shown in Table 8-3, Table 8-6 and 
Table 8-7. 

 
Figure 8.15 | EAF difference plot for SMS-EMOA and SUMO for different computational budget: 
  and  function evaluations respectively. 
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To sum up, the performance of MOSBOs for  FE yielded better results in terms of 
performance indicators when compared with MOEAs for much higher FE ( ). For 
example, SUMO achieves better results in both NHVR and Iε than SMS-EMOA using  
lower computational budget (as visually confirmed in the Diff-EAF plot). It has to be noted 
that even when comparing the performance of MOSBOs and MOEAs with  and   FE 
budget respectively (a significant difference in terms of computational burden) the MOSBOs 
again yield better results (Table 8-3, Table 8-6 and Table 8-7). Yet, it should be clear that the 
selection of the benchmarking algorithm is critical [Razavi et al., b] to any discussion on 
issues of superiority or not of an algorithm due to impact on relative performance. 

Finally, as discussed before, MOEAs were also run for computational budgets of   and 
  FE. For those budgets  and  replicates has been generated respectively. More replicates 
would be preferable, but this was not possible due to the high computational time needed for 
the simulation: one simulation (function evaluation) in WEAP required  sec. Therefore, 
in these cases the stochastic dominance and statistical test cannot be used. The performance 
assessment is only based on statistics presented in Table 8-3 and Table 8-8. 

When comparing MOSBOs (with  FE) against the MOEAs (with   and   FE), the 
latter outperformed the former in terms of the median value. In the case of the NSGAII the 
differences are small: MOSBOs NHVR median values range from .-. as compared to 
the . and . NSGAII values (for the   and   respectively); MOSBOs Iε median 
values range from .-. as compared to the . and . NSGAII values (for the   
and   respectively). When comparing MOSBOs with the SMS-EMOA these differences are 
larger (SMS-EMOA achieves median NHVR ./., and median Iε ./., for   
and   FE respectively). 

Finally, when comparing MOSBOs (with  FE) against the MOEAs (with   and   
FE). ParEGO, SMS-EGO and SUMO yield median NHVR ., ., . and median Iε 
., ., . respectively. In this case the performance of median NHVR of NSGAII for 
  and   FE is outperformed by SMS-EGO and SUMO, though ParEGO is close behind. 
When comparing the Iε the MOSBOs manage to outperform NSGAII only for   FE with 
very small differences. As compared to SMS-EMOA however, only SUMO manages to compete 
and only in terms of NHVR. In the case of median NHVR, SMS-EMOA achieves better results 
than ParEGO and SMS-EGO and equal to SUMO. This is, however, not the case when 
comparing the median of Iε. In this case the differences are larger and all MOSBO are 
outperformed by SMS-EMOA. Figure 8.16 summarizes the results and depicts the 
performance of SUMO with a budget of  FE relative to MOEAs with larger budgets. 

From these results it is inferred that MOSBOs with  FE depict similar performance to 
MOEAs with   FE. Thus, the efficiency of MOSBOs presents an upper limit of 
approximately  (= -/ ). 
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Figure 8.16 | Comparison of SUMO with MOEA for   and   function evaluations. Blue 
diamond represents the median of each column. In left panel (NHVR) higher values are preferred. In 
the right panel (Ιε) lower values are preferred. 

Table 8-8 | Results summary for   and   function evaluations. 

Budget Statistic Hypervolume indicator Epsilon indicator 
SMS-EMOA NSGAII SMS-EMOA NSGAII 

2000 

Average 0.943 0.911 0.079 0.140 
Median 0.941 0.920 0.063 0.117 
Std 0.010 0.028 0.026 0.066 
Max 0.960 0.930 0.122 0.251 
Min 0.932 0.863 0.059 0.092 

5000 

Average 0.958 0.922 0.047 0.083 
Median 0.958 0.922 0.047 0.083 
Std 0.009 0.012 0.011 0.015 
Max 0.964 0.931 0.055 0.094 
Min 0.952 0.914 0.040 0.072 

8.6.2 Results for the case study 

The MOSBO algorithms, after demonstrating their adequate performance through the 
benchmarking exercise discussed above, where applied for the optimization of the Nestos 
hydrosystem. Figure 8.17 illustrates the results in terms of the optimization of the energy-
related operation rules. The figure presents results from the upper left (Ulp) and the lower right 
points (Lrp) of the best Pareto front. Table 8-9 presents the variables and objective function 
values from these operation rules. The operation rules are in simple form and can be easily 
translated to real decisions and thus applied by the reservoir system operators. For instance, θ1 
in Lrp is translated to . GWh set as a target of energy production for the period May-Sept 
and . × .=. GWh for Oct-Apr. 

Table 8-9 | Operation rules Ulp and Lrp. 

Operational rule θ1 θ2 θ3 β Obj. 1 Obj. 2 
Ulp 28.43 10.80 8.27 0.00 37.24 123.59 
Lrp 52.42 11.57 2.74 0.94 72.85 77.84 

Figure 8.17 depicts the rationale behind the objective functions used in this work. The average 
monthly energy is distinguished between firm and secondary energy. Firm energy is the 
guaranteed energy and secondary is the excess of energy generated each month. The simulation 
of Lrp illustrates constant firm energy each month, as well as some excess of secondary energy. 
This is also depicted in the energy-duration curve of Lrp where the energy exceeds  GWh for 
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 of time. In the case of Ulp the firm energy for the selected time period ( reliability) is 
considerably greater, close to  GWh with  GWh guaranteed energy for the remaining 
months. This is also shown in the corresponding energy-duration curve where there is a leap 
for about  of the time. Such behavior was anticipated because Lrp and Ulp favor objective 
functions  and , respectively; therefore, they advocate two contradictory operation policies. 

 
Figure 8.17 | Energy-duration curves and monthly energy characteristics of the case study for the 
upper left point (Ulp) and Lower right point (Lrp) of the best Pareto front. 

8.7 SUMMARY 
This Chapter presented a multi-objective version of the parameterization-simulation-
optimization (PSO) framework which is able to incorporate hydrological uncertainty (through 
stochastic simulation) and thus develop uncertainty-aware reservoir operation rules. The 
multi-objective version of PSO is able to handle multiple and conflicting criteria. Hence, it 
represents different and conflicting operational policies without the need for decision makers 
to a priori express their preferences. Visualizing the objectives’ tradeoffs is particularly useful 
and can be used as a negotiation tool for further decision making between different 
stakeholders in reservoir management (e.g., energy and water companies, farmers and 
municipalities). 

Furthermore, we presented a comparative study of the potential for using multi-objective 
surrogate-based optimization methods (MOSBOs) in multi-reservoir management, by 
benchmarking three MOSBOs against two well-known MOEAs. Different experiments with 
regards to computational budget were investigated yielding very promising results for the 
MOSBOs. Results suggest that MOSBOs are able to adequately reproduce Pareto fronts, 
without significant damage to the problem detail or their ability to identify robust, 
(uncertainty-aware in the context described earlier) operational policies. Furthermore, we have 
demonstrated the potential of MOSBO algorithms to perform well even under significant 
computational budget restrictions (of as few as - function evaluations) comparing 
favorably to more standard MOEAs with higher computational budget (e.g.  -  
function evaluations), achieving efficiencies of - in terms of computational time for the 
same (or even better) results. This indicates their usefulness in addressing realistic problems 
where, as in the case of multi-reservoir operation management, a key barrier to properly 
incorporating uncertainty is the excessive computational burden. If MOSBOs are indeed able 
to alleviate much of this burden, as suggested in this Chapter, they have a significant role to 
play in guaranteeing reliability in real-world applications within a highly uncertain climatic 
and socio-economic context. An input uncertainty, that, in an arguably non-Gaussian world, 
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can potentially be better captured using the novel models and schemes of Chapter 4-7. In this 
vein, and motivated by these encouraging findings, in Chapter 9 we step forward, and conclude 
the research developments of this Thesis, by introducing a novel surrogate-enhanced global 
optimization algorithm, that combines both, surrogate-based modelling approaches, as well as 
different, global and local, optimization approaches (evolutionary search, simulated annealing, 
downhill simplex), into a single algorithm.
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9  
SURROGATE-ENHANCED EVOLUTIONARY ANNEALING SIMPLEX 
ALGORITHM FOR EFFECTIVE OPTIMIZATION OF WATER RECOURCES 
PROBLEMS ON A BUDGET § 

PREAMBLE 
This Chapter is motivated by the promising findings of Chapter 8 and the fact that typical water 
resources optimization problems involve an objective function that presumes the use of a 
simulation model and the subsequent evaluation of its outputs. Long simulation times, which 
may arise due to uncertainty incorporation or time expensive simulation models, may pose 
significant barriers to the procedure. Often, to obtain a solution within a reasonable time, the 
user has to substantially restrict the allowable number of function evaluations, thus terminating 
the search much earlier than required. As shown earlier, a promising strategy to address these 
shortcomings is the use of surrogate modelling techniques. Here we introduce the Surrogate-
Enhanced Evolutionary Annealing-Simplex (SEEAS) algorithm that couples the strengths of 
surrogate modelling with the effectiveness of the evolutionary annealing-simplex method. 
SEEAS combines three different optimization approaches (evolutionary search, simulated 
annealing, downhill simplex). Its performance is benchmarked against other surrogate-based 
algorithms in several test functions and two water resources applications (model calibration, 
reservoir management). Results reveal the significant potential of using SEEAS in challenging 
optimization problems on a budget. 

This Chapter is structured as follows: section 9.1, through a literature, provides an introduction 
to the problem of time expensive optimization methods. Section 9.2 describes the prosed 
algorithm. Section 9.3 concerns the established benchmarking protocol, devised to assess the 
performance of the algorithms. Section 9.4 to 9.6, describe and present the benchmarking 
results based on three distinct problems, i.e., mathematical test functions (section 9.4), a 
hydrological calibration problem (section 9.5), and a multi-reservoir management problem 
(section 9.6). Finally, section 9.7 summarizes the key findings of this Chapter.  

                                                        
§ Based on: 

Tsoukalas, I., P. Kossieris, A. Efstratiadis, and C. Makropoulos (), Surrogate-enhanced evolutionary 
annealing simplex algorithm for effective and efficient optimization of water resources problems on a budget, 
Environ. Model. Softw., 77, –, doi:./j.envsoft.... 
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9.1 INTRODUCTION 
This Chapter introduces the Surrogate-Enhanced Evolutionary Annealing-Simplex algorithm 
(SEEAS), which is a novel global surrogate-based optimization (SBO) method, focused on 
time-expensive functions. Our motivation arises from challenging simulation-optimization 
problems that are commonly found in water resources problems (see section 1.1 and 1.3), and 
they impose, in the everyday practice, very limited computational budgets, e.g., of few hundred 
function evaluations. SEEAS has been designed for typical hydrological optimization problems, 
i.e., decision-making and calibration, suffering from different peculiarities and complexities, 
which are in turn reflected in the different geometry of the associated response surfaces. 

For convenience, we consider that all criteria are aggregated in a single objective function 
representing a global performance measure of the system (an alternative approach would 
require the formulation of a multiobjective function and the identification of acceptable 
tradeoffs among conflicting criteria, which is not the case here). We also assume that all internal 
constraints (i.e., constraints associated with the system dynamics) are handled through the 
simulation model [e.g., Koutsoyiannis and Economou, ], while any additional external 
constraints, which are usually associated with decision-making problems, are embedded in the 
objective function, typically as penalty terms. Under this premise, the combined simulation-
optimization problem is formalized as the determination of the global optimum (for 
convenience, minimum) of a nonlinear objective function 𝑓(𝒙), where 𝑓(∙) represents the 
simulation model and 𝒙 is the vector of control variables. The search space is a hypervolume, 
since the unique constraints of the problem are the lower and upper bounds of parameters. As 
𝑓(𝒙) is a black-box function, its analytical expression as well as its derivatives are not available, 
which prohibits the use of gradient-based optimization. Given also that, due to uncertainties 
and complexities of the system, 𝑓(𝒙) is non-convex, and thus multimodal (i.e., it contains 
multiple local optima), derivative-free methods [e.g., Rios and Sahinidis, ] combined with 
stochastic search approaches are essential to solve this so-called global optimization problem. 

Surrogate-based optimization (SBO) methods, often termed response surface approaches go 
back to ’s [Blanning, ], have been popularized since the pioneering work by Jones et al. 
[], who developed the Efficient Global Optimization (EGO) algorithm. EGO uses Kriging 
as surrogate model and an acquisition function (named Expected Improvement), in order to 
locate potential good samples that should be evaluated through expensive simulation functions 
[Sacks et al., ; Jones et al., ]. Later, Sasena et al. [] implemented and investigated 
various acquisition functions for EGO. Literature also reports multi-objective versions of EGO 
[e.g., Knowles, ; Ponweiser et al., ; Couckuyt et al., ]. 

Beyond Kriging, other commonly used surrogate models are Radial Basis Functions [RBFs - 
Powell, ; Buhmann, ], polynomials [Myers and Montgomery, ], artificial neural 
networks, and support vector machines [Cortes and Vapnik, ; Dibike et al., ]. The use 
RBFs within the context of evolutionary algorithms was popularized after the publication Regis 
and Shoemaker []. Other typical examples of RBFs are the Multistart Local Metric 
Stochastic RBF (MLMSRBF) and the ConstrLMSRBF, which handles inequality constraints 
[Regis and Shoemaker, a; Regis, ]. Additionally, Regis [] and Tang et al. [] 
proposed hybridizations of the particle swarm optimization algorithm [Kennedy and Eberhart, 
] that use RBFs to assist the search. Shoemaker et al. [] developed an evolutionary 
algorithm that uses an RBF approximation and benchmarked its performance against several 
test problems, with dimensions ranging from -D to -D. Finally, Regis and Shoemaker [] 
developed the DYnamic COordinate Search (DYCORS) that uses Response Surface models to 
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handle high-dimensional expensive optimization problems. DYCORS was benchmarked 
against other RBF-based algorithms in a variety of test problems, ranging from -D to -D. 

Comprehensive reviews of surrogate-based optimization methods can be found in the broader 
optimization literature [e.g., Jin, , ; Forrester and Keane, ], while Razavi et al. 
[b] summarize the use of surrogate modelling techniques in water resource systems, also 
classifying the existing meta-modelling frameworks. The literature reports several successful 
applications in time-demanding hydrological problems [e.g., Broad et al., ; Mugunthan et 
al., ; Mugunthan and Shoemaker, ; Zou et al., ; Regis and Shoemaker, b; 
Kourakos and Mantoglou, ; Drosou et al., ; Tsoukalas et al., a, b; Kossieris et 
al., ; Tsoukalas and Makropoulos, b, a; Tegos et al., ], highlighting their 
potential to alleviate the computational burden that accompanies simulation-optimization 
problems. 

SEEAS is built upon the Evolutionary Annealing-Simplex (EAS) method [Efstratiadis and 
Koutsoyiannis, ], which is a hybrid scheme combining global and local search strategies 
and assisted by a RBF surrogate model. SEEAS uses an external archive to maintain all visited 
solutions in order to formulate, update and exploit the surrogate model during search. There 
are also some improvements in the key core of EAS, regarding the simplex transitions and the 
mutation operator. SEEAS is compared and benchmarked against the original version of EAS 
and three state-of-the-art optimization algorithms (see section 9.3.3). Namely, the Dynamic 
Dimension Search (DDS) [Tolson and Shoemaker, ], the MLMSRBF [Regis and Shoemaker, 
b], and DYCORS [Regis and Shoemaker, ]. Evaluations are made on the basis of  
mathematical problems (i.e., six test functions for two alternative dimensions, -D and -D), 
a hydrological calibration problem with  parameters, configured with both real and synthetic 
data, and a multi-reservoir management problem with  decision variables, using synthetic 
inflows of  years length. The use of synthetic data is one of the novelties of our testing 
framework. Moreover, most of the known surrogate-based schemes have been only evaluated 
in calibration problems and not in time-demanding water management applications, with few 
exceptions [e.g., Razavi et al., b; Tsoukalas and Makropoulos, a, b]. The results 
of this extended analysis are very encouraging, since the proposed method is effective and 
efficient, in terms of locating a satisfactory solution as close as possible to the global optimum, 
within reasonable computational time, and outperforms the other examined approaches, in 
almost all tests. 

9.2 OPTIMIZATION METHODOLOGY 

9.2.1 Evolutionary Annealing-Simplex 

EAS8 is a heuristic, population-based global optimization technique, originally developed by 
Efstratiadis and Koutsoyiannis [], that couples the strength of simulated annealing in 
rough search spaces along with the efficiency of the downhill simplex method [Nelder and 
Mead, ] in smoother spaces. Its key idea is the introduction of an external variable T, which 
plays a role similar to temperature in a real-world annealing process and determines the degree 
of randomness of the search procedure. This is expressed through a stochastic term that is 
relative to temperature and is added to the initial objective function f(x), thus getting a modified 
function g(x) = f(x) ± uT (where u is a vector of uniformly distributed random numbers). 

                                                        
8 EAS and SEEAS are available online at: http://www.itia.ntua.gr/en/softinfo// 
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Search is based on an evolving population of feasible points, where critical decisions are driven 
by the modified function. The genetic operators are either quasi-stochastic geometric 
transformations, inspired by the downhill simplex method, or fully-probabilistic transitions 
(mutations). As search proceeds, the system temperature reduces according to an adaptive 
annealing cooling schedule, and all transitions become more deterministic. 

EAS has been successfully employed in several hydrological applications [e.g., Rozos et al., ; 
Nalbantis et al., ; Kossieris et al., ; Efstratiadis et al., b]. It has been also 
incorporated within advanced modelling tools, i.e., Hydronomeas [Efstratiadis et al., ], 
Hydrogeios [Efstratiadis et al., ] and HyetosR [Kossieris et al., ] to solve challenging 
simulation-optimization problems. The original algorithm has been also adapted to handle 
multiobjective problems [Efstratiadis and Koutsoyiannis, ] and stochastic (i.e., noisy) 
objective functions [Kossieris et al., ]. Here we introduce an improved verison of EAS, 
called Surrogate-Enhanced Evolutionary Annealing-Simplex (SEEAS) algorithm, which is 
presented in detail herein. 

9.2.2 Surrogate-Enhanced Evolutionary Annealing-Simplex 

9.2.2.1 Overview of SEEAS algorithm 

The algorithm is a surrogate-enhanced extension of EAS in a way that builds, maintains and 
exploits surrogate modelling (SM) techniques that generate approximated response surfaces, 
which allow effectively guiding search towards promising areas of the real response surface. 
The model used is the RBF, which is a well-known interpolation technique (Figure 9.1, left). 
During the iterative procedure, the algorithm maintains an external archive of all visited points, 
already evaluated through the (expensive) objective function. This archive is used to update the 
SM, in an attempt to progressively provide more accurate approximations of the current region 
of interest (i.e. the area around the current best point). In SEEAS, the surrogate model has a 
double role. The first is providing new points that are added to the current population, and the 
second is assisting the genetic operators of the downhill simplex scheme to identify suitable 
directions across the search space (e.g., favorable slopes and new areas of attraction). 

In order to balance exploration (i.e., detailed sampling) and exploitation (i.e., blind use of SM), 
SEEAS uses a weighted metric, termed acquisition function (AF), which accounts for the 
predictions provided by the SM as well as the spread of all previously evaluated points (by 
means of a distance quantity). In opposite to common practices that use a standard expression 
of the AF with constant weights, in our approach the weights are dynamically adjusted, thus 
improving the efficiency of the algorithm. Details about the acquisition function (AF) are given 
in Section 9.2.2.3. 

SEEAS follows an iterative search procedure. At the end of each iteration cycle (or generation, 
according to the terminology of evolutionary theory), we obtain at least one new point that 
enters the population and replaces one of its existing members. A typical iteration cycle of 
SEEAS starts by fitting the surrogate model to the current population (initially, this population 
is randomly generated through Latin Hypercube Sampling, LHS). Next, we run an internal 
global optimization algorithm (particularly, the original version of EAS) across the surrogate 
response surface, using as objective the acquisition function (AF), in order to locate a candidate 
solution to enter the population (provided that this solution outperforms the current worst 
point). Thereafter, we follow a search procedure that is mostly based on the genetic operators 
of EAS, enhanced by surrogate-assisted steps in simplex-based transformations. 
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The general idea is to utilize the information gained by the SM, in order to enhance the current 
knowledge in the selection of simplex transitions. A characteristic example involving the 
reflection step is illustrated in Figure 9.1, right (for simplicity, we demonstrate the predictions 
of the surrogate model and not the AF). In the original version of EAS, after specifying the 
direction of reflection (defined by the difference between the worst vertex of the simplex and 
the centroid of all rest vertices), the algorithm employs a blind trial-and-error procedure, i.e., 
it generates subsequent random points along this direction and evolves according to their 
values. In this scheme, the original objective function is called whenever a new trial point is 
generated. Since the expansion continues as long as the function value improves, this procedure 
may be quite expensive, in terms of function evaluations. In opposite, in SEEAS we employ a 
candidate screening procedure using the SM, which allows making multiple trials with 
negligible computational cost and guiding search using all prior information. Similar screening 
is employed within all simplex transformations (except shrinkage), thus providing significant 
aid to the associated decisions. 

 
Figure 9.1 | Approximated surface (RBF) in a -D example (Ackley function) using all available sample 
points (left panel). The right panel demonstrates a randomly selected simplex and the modified 
surrogate-enhanced reflection movement using candidate points on the line formed from the simplex 
centroid and the maximum reflection point. The simplex is reflected at the candidate point with the 
minimum function value. 

9.2.2.2 Surrogate model (RBF) 

SEEAS implements the Radial Basis Function (RBF) interpolation method [Powell, ; 
Buhmann, ], and more specifically the RBF with cubic basis functions and linear 
polynomial tail. This is a commonly used surrogate model of proven effectiveness, as reported 
in numerous studies [e.g., Mugunthan et al., ; Regis and Shoemaker, b, a; 
Shoemaker et al., ; Müller and Shoemaker, ]. 

The computational procedure of RBF is the following. Given Ns samples x ∊ Rn with response 
y, we get the pairs (xi, yi). The prediction s(x) of RBF model at sample point x is given by: 

 𝑠(𝒙) = á𝜆  	𝜑l,|𝒙 − 𝒙 |,n + 𝑝(𝒙)
å�

 â(

 (.) 

where λi ∊ R, φ is a basis function of the form φ(r) = r, ||.|| is the Euclidean distance (norm) 
and p(x) is a polynomial tail of the form p(x) = bΤx + a, where b = (b, …, bn)T and a ∊ R. The 
model parameters λ, b, and a are determined by solving the linear system: 
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where Φ is an Ns × Ns matrix with elements φij = φ(||xi – xj||), P is a Ns × (n + ) matrix, the ith 

row of which is (, xi
T), λ = (λ, …, λNs)T, c = (b, …, bn, a)T, and y = (y, …, yNs)T. We mention 

that the matrix of Eq. (.) is invertible if and only if Rank(P) = n +  [Powell, ]. 

9.2.2.3 Acquisition function 

Acquisition functions (AF) are well-established techniques, aiming to balance exploration-
exploitation in surrogate-based optimization algorithms [e.g., Sasena et al., 2002; Forrester and 
Keane, ]. SEEAS implements a novel scheme, in which the weights are automatically 
adjusted during the iterative process, according to the current number of function evaluations 
and the maximum allowed number of evaluations. 

Consider a set of Ns points, 𝒙�
Ø , with known response value, f(𝒙�

Ø), and another set of Nc points 
𝒙Æ  , with approximated response values s(𝒙Æ  ). These are conventionally called candidate points, 
in the sense that they are used within infilling or internal search procedures, e.g., selection of 
the most appropriate reflection point in the graphical example of Figure 9.1. The acquisition 
function is estimated as follows: 

Step A. Standardize the approximated response values of all candidate solutions by setting 
s*(𝒙Æ  ) = [s(𝒙Æ  ) – smin]/[smax – smin], where smin and smax are the corresponding minimum and 
maximum values.  

Step B. Calculate the minimum Euclidean distance of each candidate point 𝒙Æ   from all 
previously evaluated points, 𝒙�

Ø , i.e., di = d*(𝒙Æ  ) = min ≤ j ≤ NS||𝒙Æ   – 𝒙�
Ø||, and standardize them by 

setting di
* = (di – dmin)/(dmax – dmin), where dmin and dmax are the corresponding minimum and 

maximum distances.  

Step C. Calculate the weighted value of AF for every candidate point using the formula: 

 AFc = 𝑤𝑠∗l𝒙Æ  n + (( − 𝑤)𝑑∗(𝒙Æ  ) (.) 

where w is a dimensionless weighting coefficient, ensuring balance between exploitation and 
exploration. To finalize the infilling routine, the candidate with the minimum AF value will be 
selected and assessed through the objective function. As mentioned before, the minimization 
of the AF across the surrogate search space is carried out through the original EAS algorithm. 

9.2.2.4 Detailed description of SEEAS 

Let f(x) be a nonlinear objective function in the feasible space xL ≤ x ≤ xU, where x is an n-
dimensional vector of continuous control variables (in practice, f(x) represents the 
performance measure of a simulation model). For convenience, we search for the global 
minimum of f(x), allowing a budget of MFE function evaluations. The algorithm uses two 
archives. The first is the population P[t], which is evolved during the search procedure (where t 
denotes the iteration cycle or generation), and the second is the so-called external archive A[t], 
which contains all visited points from the beginning of the optimization (t = ), including the 
members of the current population. Whenever a new point x is evaluated through the objective 
function f(x), it enters the archive A[t] (the archive may be updated several times within a 
generation). At the beginning of each new generation t, the surrogate model is re-evaluated by 
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considering the current elements of A[t]. The size of the population is m ≥ n +  (i.e., the 
minimum number of points required to fit a RBF with linear polynomial as well as to formulate 
a simplex in the n-dimensional space), and remains constant, while the size of the external 
archive progressively increases, thus ensuring more accurate approximations of the response 
surface and, consequently, more reliable predictions. The initial population P[] is generated via 
the Latin Hypercube Sampling (LHS) technique, which ensures satisfactory spread across the 
feasible space [Giunta et al., ]. Apparently, the initial archive A[] is identical to P[]. 

 
Figure 9.2 | Outline of SEEAS algorithm following the steps explained in section 9.2.2.4 (* denotes 
the use of the surrogate model within the associated simplex transformations). 

Similarly to EAS, the surrogate-enhanced algorithm also uses an auxiliary parameter, T[t], called 
temperature. The concept originates from simulated annealing, where the key role of 
temperature is ensuring balance between randomness and determinism. In SEEAS, 
temperature is dynamically adjusted (i.e., reduced) using empirical rules, considering the 
extreme values, 𝑓<c=

[�]  and 𝑓<>H
[�] , of the current population P[t], and a dimensionless progress 

index, defined as, 

 PI = log(FE) /log	(MFE) (.) 

where FE is the current number of function evaluations and MFE is the maximum allowable 
number of FE, which is a user-specified termination criterion. 

A typical iteration cycle of SEEAS, an outline of which is illustrated in Figure 9.2, comprises 
the following steps (generation index t is omitted for simplicity): 

Step 1. The interpolation surface s(x) is updated using the current information stored in the 
external archive A (i.e., all points evaluated so far through the original objective function). 

Step 2. The weighting coefficient of the AF is updated using the empirical formula: 

 𝑤 = max	(;.B8.min	(PI, ;.@8)) (.) 
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The above formula ensures that at the early stages of optimization, more weight is given to 
exploration (up to .), but gradually its contribution diminishes thus not exceeding .. 

Step 3. A new point xp is generated by minimizing AF, using the original version of EAS for 
internal optimization. The new point is evaluated through f(x) and replaces the worst point of 
the current population, if the latter is worse (higher) than f(xp). 

Step 4. A set of n +  points is randomly selected from the current population, in order to 
formulate the vertices of a simplex in the n-dimensional search space, symbolized S = [x, x, 
…, xn + ]. The elements of S are sorted such as f(x) corresponds to the best (lowest) and f(xn + ) 
to the worst value of the objective function. 

Step 5. From the subset [x, …, xn + ] we select a candidate point xw to be replaced in the 
population, based on the modified, quasi-stochastic objective function: 

 𝑔(𝒙) = 𝑓(𝒙) + 𝑢𝑇 (.) 

where u is a uniform random number in the interval [, ]. By adding the stochastic component 
u T to the objective function f(x), the algorithm behaves as in between random and downhill 
search. At the early stages of optimization, when temperature is still high, any point except for 
the best one can be replaced. On the other hand, in the limiting case T → , the actually worst 
point, i.e., xn + , is replaced, as considered in the original downhill simplex method. 

Step 6. A set of Nr trial points 𝒙Æ|�  are generated by reflecting the simplex according the formula: 

 𝒙Æ|� = 𝒈	 + 	(;.8	 + 	𝛿𝑘)	(𝒈	– 	𝒙ì)  (.) 

 where g is the centroid of the subset [x, …, xn + ] and δk is a scale coefficient equally spread in 
the interval [, ], thus δk = (k – )/(Nr – ), for k = , …, Nr. Among all candidates, we select 
the one that minimizes AF, which we will next call the reflection point, xr. The reflection point 
is evaluated on the basis of the objective function and enters the external archive. 

Step 7. If f(xr) < f(xw), we replace xw by xr in the population and move to steps a or b, 
according to the outcome of its comparison with the current best vertex, i.e., f(xr) < f(x). 
Otherwise, we move to step , to decide whether xr should be accepted or withdrawn, thus 
seeking another candidate. 

Step 8a. If f(xr) < f(x), the vector xr – x defines a direction of minimization. We remark that 
the detection of downhill slopes in high-dimensional spaces of complex geometry is not an 
often case. This makes essential to take advantage in order to accelerate the search procedure, 
by employing a sequence of Ne trial expansion steps through the recursive formula: 

 𝒙Æí� = 𝒈+ 𝛿�(𝒙| − 𝒈) (.) 

where δk is a scale coefficient given by δk = δk –  + (k – )/(Ne – ), for k = , …, Ne. The expansion 
continues as long as the AF value is improved (or until reaching the bounds of the feasible 
space). The optimal (in terms of AF) trial point, xe, is kept in the external archive and replaces 
xr in the current population, provided that f(xe) < f(xr). In that case, the algorithm moves to step 
 to finalize the cycle. 

Step 8b. If f(xr) > f(x), we attempt detecting a promising solution in the neighborhood of x, 
by employing Nc trial contractions of the simplex in the interval between the centroid and the 
reflection point, according to the formula: 
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 𝒙ÆÆ� = 𝒈	 + 	 (;.)8	 + 	;.8𝛿�)	(𝒙î	– 	𝒈) (.) 

where δk = (k – )/(Nc – ), for k = , …, Nc. The optimal (in terms of AF) trial point, xc, is kept 
in the external archive and replaces xr in the current population, provided that f(xc) < f(xr). In 
that case, the algorithm moves to step  to finalize the generation cycle. 

Step 9. If f(xr) > f(xw), we use the modified objective function (Eq. (9.7)) to decide whether 
employing inside contraction of the simplex, thus seeking for a potential local optimum, or 
expanding towards a non-optimal (i.e., uphill) direction, in an attempt to escape from the 
current area of attraction. In this respect, if g(xr) > g(xw) we move to step a, otherwise we 
move to step b. 

Step 10a. We reject xr and implement Nc trial inside contractions of the simplex in the interval 
between the centroid and the worst point, according to the formula: 

 𝒙ÆÆ� = 𝒈	– 	(;.)8	 + 	;.8𝛿�)	(𝒈	– 	𝒙î) (.) 

where δk = (k – )/(Nc – ), for k = , …, Nc. The optimal (in terms of AF) trial point, xc, is kept 
in the external archive and replaces xw in the current population, provided that f(xc) < f(xw). 
Otherwise, the simplex shrinks towards the best vertex x, such as: 

 𝑥�,  = ;.8(𝒙( 	+	𝒙 )	for	𝑖	 = 	), … , 𝑛	 + 	( (.) 

We remark that the above transformation is the sole evolving mechanism of the algorithm 
allowing the simultaneous generation of multiple points; particularly, n new points are 
generated that replace all previous vertices in the current population. This can be considered 
as milestone of the search procedure, in the sense that a local minimum, lying in the 
neighborhood of x, has been surrounded. This is the time to reduce the temperature of the 
optimization system by a reduction factor ψ. In contrast to EAS, where ψ is a constant 
parameter of the annealing cooling schedule, usually taking values into the interval .–., 
in its surrogate-enhanced version ψ is automatically adjusted to also account for the progress 
index PI, using the following expression: 

 𝜓	 = 	max	((	– 	PI, ;.8;) (.) 

The threshold of . prohibits a fast reduction of temperature and therefore maintains enough 
randomness within decisions, which in turn prohibits early convergence to local optima. After 
reducing T, the iteration cycle is finalized (step ). 

Step 10b. The reflection point xr is accepted although being worse than xw. Next, Nu uphill (i.e., 
maximization) movements are performed using the same formula with multiple expansion 
(Eq. (.)), in an attempt to pass the hill and discover adjacent regions of attraction. This 
geometrical transformation was introduced by Pan and Wu [], to facilitate the simplex 
escaping from local minima. Similarly to previous steps, we use the AF to determine the 
optimum uphill point, xu. If f(xu) < f(xr), this point is kept in the external archive and replaces 
xr in the current population, while the algorithm moves to step  to finalize the generation 
cycle. Otherwise, none of the simplex transformations results to a better solution than the worst 
vertex xw, thus the last option is to attempt a pure stochastic generator, referred to as mutation 
(step ). 
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Step 11. We seek a random point out of the typical range of the current population, defined on 
the basis of the mean, μP, and standard deviation, σP, of all members of P. In this respect, we 
generate a normally-distributed point xm out of the interval [μP – σP, μP + σP], which is accepted 
if f(xm) < f(xr). Otherwise, we account for a user-specified mutation probability pm in order to 
accept or not the randomly generated point, xm, and replacing xr in the current population. 
Anyway, since xm is evaluated through the objective function, it enters the external archive. 

Step 12. Considering the new member (or members, in the particular case of simplex 
shrinkage) of the population, we re-evaluate the current minimum, xmin, and maximum, xmax, 
and their function values, fmin and fmax. We also re-evaluate the current number of function 
evaluations, FE, and check whether this hasn’t exceeded the termination criterion, MFE. 
Finally, we re-evaluate the temperature so that T ≤ ξ(fmax – fmin), where ξ ≥  is a user-specified 
parameter of the annealing schedule, usually set between  to . This restriction prevents T 
taking extremely high values, which would deteriorate the efficiency of SEEAS, as far as search 
would become too random. 

To run the algorithm, it is essential providing values for all input arguments, which are the 
number of desirables steps within different simplex transitions (Nr, Ne, Nc, Nu), the mutation 
probability pm, and the adjusting factor ξ of the annealing cooling schedule. Recommended 
values, also used in all next benchmarking tests, are Nr = Ne = Nc = Nu = , pm = . and ξ = . 
These values were determined on the basis of extended investigations within the development 
of SEEAS, and they have been also validated through the sensitivity analysis of section 9.4.4. 

9.3 BENCHMARKING METHODOLOGY 

9.3.1 Benchmarking protocol 

To assess the performance of SEEAS we compared it with the original version of EAS as well as 
three state-of-the-art optimization algorithms, which are synoptically presented in section 
9.3.3. Two of the benchmark algorithms, i.e., DYCORS (DYnamic COordinate Search) and 
MLMSRBF (Multistart Local Metric Stochastic RBF), are surrogate-assisted, while EAS and 
DDS (Dynamic Dimension Search) do not employ surrogate models through search. 

A variety of test problems were examined, theoretical as well as real-world. Briefly, the hereafter 
called benchmarking suite includes six mathematical test functions, formulated with  and  
control variables, a hydrological calibration problem with real and synthetic data, and a time-
expensive multi-reservoir management problem (× + × +  =  problems, in total). 

To ensure fair comparison and safely infer about the performance of the algorithms we 
attempted to ensure as much as similar configurations, as summarized in Table 9-1. In all 
problems we employed multiple independent runs, using the same population size and the 
same random generation technique, i.e., LHS. The population size was set equal to 
m = (n + ), as recommended by Regis and Shoemaker [b], [], where n is the problem 
dimension (i.e., the number of control variables). We remark that other researchers relate the 
initial population size (also referred to as design of experiment, DoE) to the available 
computational budget, quantified in terms of MFE, in order to design a more detailed 
metamodel; for instance, Razavi et al. [b] suggest that m = max[(n + ), . MFE]. 
However, in our tests we avoided associating m with MFE, in order to investigate the impacts 
of the problem dimension to the performance of the examined algorithms. Furthermore, we 
preferred saving resources for the evolutionary procedure, instead of spending a non-negligible 
part of our budget to the initial DoE. 
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Each problem but the last was solved considering two alternative computational budgets, MFE 
( and ). We run all tests with two different budgets (instead of the maximum of them) 
since all examined algorithms (except EAS) involve parameters depending on MFE (in 
particular, SEEAS uses the progress index PI, defined in eq. (), within the annealing cooling 
schedule). Finally, for the three surrogate-based methods (SEEAS, DYCORS, MLMSRBF) we 
employed the same metamodel (RBF with cubic basis functions and linear polynomial tail), 
thus ensuring similar computational effort for building, updating and exploiting the RBF 
[Razavi et al., a]. We remark that in real-world problems the effort of the optimization 
routines (including metamodel fitting) is much less than the effort of simulation, and therefore 
the runtime of the overall search procedure is practically relative to MFE. 

All computations were implemented in MATLAB mathematical environment using a . GHz 
Intel Core i processor with  GB of RAM, running on Windows  OS. For the SEEAS method 
we employed the typical input arguments given in section 9.2.2.4, while for the other 
algorithms, i.e., EAS, DDS, MLMSRBF and DYCORS, we used the default values suggested in 
the associated articles [Efstratiadis and Koutsoyiannis, ; Regis and Shoemaker, a, ; 
Tolson and Shoemaker, ]. 

Table 9-1 | Configuration of benchmarking suite. 

Problem Algorithms 

Number 
of control 
variables, 

n 

Max. 
function 

evaluations 
(MFE) 

Independent 
Runs with 

random initial 
populations 

Population 
size 

Surrogate 
model 

(metamodel) 

Test functions All 15 500, 1000 30 32 

RBF with 
cubic 
basis 

functions 
and linear 

polynomial 
tail 

Test functions All 30 500, 1000 30 62 
Model 
calibration with 
real data 

All 11 500, 1000 30 24 

Toy calibration 
with synthetic 
data 

All 11 500, 1000 30 24 

Multireservoir 
management 
problem 

SEEAS, 
DYCORS, 
MLMSRBF 

20 500 10 42 

9.3.2 Performance evaluation approach 

Following the ideas of Razavi et al. [a] and Matott et al. [], after implementing all runs 
for each specific optimization problem solved with a specific algorithm, we plotted the 
cumulative distribution function (CDF) of the optimal values of f(x) obtained within the 
specific budget. In order to quantify the probability of attaining an equal or better solution, we 
used the concept of stochastic dominance (SD), introduced by Levy [], to compare the 
CDFs of the algorithms. Let ΦΑ and ΦΒ be the CDFs of algorithms A and B, respectively. 
Assuming the minimization of a random quantity q, we assume that A dominates B if 
ΦΑ(q)> ΦB(q) for all q, and vice versa. On the contrary, if the two CDFs are intersected at some 
point qu, then SD is not applicable. In this case, we evaluated the median point, i.e., the one 
with  probability of exceedance, and considered as better the algorithm with the best 
performance at this point. In fact, to ensure that the difference of the two algorithms at the 
point of interest is statistically significant, we employed the non-parametric Mann–Whitney 
U-test [MWU - Mann and Whitney, ]. The null hypothesis of the MWU test is that data 
in ΦΑ and ΦΒ are samples from continuous distributions with equal medians. The confidence 
level of the MWU test was set to . 
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9.3.3 Brief description of benchmarking optimization algorithms 

9.3.3.1 Dynamically Dimensioned Search (DDS) 

Dynamically Dimension Search9 (DDS), is a stochastic, single-solution based algorithm, 
developed by Tolson and Shoemaker [] to locate near-optimal solutions with few function 
evaluations. DSS is designed to search globally at the early stages and more locally when 
approaching a user-specified number of maximum function evaluations (MFE). It evolves by 
perturbing the current best solution in randomly selected dimensions, using an evolutionary 
operator based on the normal distribution. The probability of selecting a dimension to perturb 
is proportional to the current number of function evaluations and MFE. The transition from 
global to local search is employed by dynamically reducing the number of perturbed 
dimensions. In the literature are reported several successful applications of DDS [e.g., Tolson 
et al., 2009; Razavi et al., , a; Matott et al., ; Regis and Shoemaker, ]. 

9.3.3.2 Multistart Local Metric Stochastic RBF algorithm (MLMSRBF) 

Regis and Shoemaker [a] developed the Multistart Local Metric Stochastic RBF10 
(MLMSRBF), which is surrogate-assisted optimization algorithm that can be considered as 
extension of DDS. The first step is the implementation of the initial DoE to fit the surrogate 
model (particularly, RBF), which evolves by perturbing the current best point (similar to DDS), 
using normal distribution with zero mean and a specified covariance matrix. Additionally, in 
order to locate promising candidates, the algorithm uses a metric that balances the RBF 
prediction and the minimum distance from previously evaluated points (this is similar to the 
acquisition function introduced in .., but with constant weights). The global character of 
the algorithm is further enhanced by implementing multiple DoEs. This multistart strategy is 
enabled only if the algorithm appears to have been trapped to a local minimum. The authors, 
demonstrated the efficiency of MLMSRBF in several benchmark problems, including  
multimodal test functions and a -dimensional groundwater bioremediation problem. We 
note that, groundwater problems are particularly demanding, due to the numerous constraints 
and the typical non-linear nature of the employed objective functions [e.g., Karatzas and 
Pinder, , ]. The literature are also reported other successful applications of the 
MLMSRBF method [e.g., Mugunthan et al., ; Mugunthan and Shoemaker, ; Regis and 
Shoemaker, ]. 

9.3.3.3 DYnamic COordinate Search-Multistart Local Metric Stochastic RBF (DYCORS-
LMSRBF) 

The DYCORS framework was recently proposed by Regis and Shoemaker [] for surrogate-
based optimization of high-dimensional expensive functions. The authors presented two 
versions, DYCORS-LMSRBF and DYCORS-DDSRBF11. The former is extension of LMSRBF 
and the latter is a surrogate-assisted DDS (here we use DYCORS-LMSRBF that performed 
slightly better than DYCORS-DDSRBF). DYCORS employs a strategy similar to DDS by 
dynamically and probabilistically reducing the number of perturbed dimensions until reaching 
the MFE. In order to generate trial candidate points (on the selected/perturbed dimensions) 

                                                        
9 https://github.com/akamel/Dynamic-Dimension-Search  
10 https://courses.cit.cornell.edu/jmueller/ or http://people.sju.edu/~rregis/pages/software.html  
11 https://courses.cit.cornell.edu/jmueller/  
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the algorithm uses a normal distribution with zero mean and standard deviation σn, but this 
does not remain constant, since σn is dynamically adjusted to control the range of perturbation. 
Moreover, DYCORS-LMSRBF is cycling through a set of weights in order to balance 
exploration and exploitation of the surrogate model. The authors assessed the performance of 
the two algorithms against several optimization schemes in a variety of test problems, among 
which a -D hydrological calibration problem. 

9.4 TEST FUNCTIONS 

9.4.1 Setup of optimization problems 

The first suite of benchmark problems involves the optimization of six well-known 
mathematical problems (test functions), combining two alternative formulations in terms of 
number of variables (n =  and ), and two algorithmic configurations in terms of MFE ( 
and ). This setting allowed for assessing the performance of the algorithms against 
increasing levels of dimensionality and increasing computational budget. Considering two 
alternative dimensions and two computational budgets, we configured four different problems 
for each test function, i.e.,  optimization problems in total. According to the benchmarking 
protocol explained in section 9.3.1, for all problems, we employed  independent runs, thus 
randomly changing the initial population of each search experiment. The population size of all 
algorithms we set equal to  and , for the -D and -D formulations, respectively. 

Table 9-2 summarizes the main characteristics of the examined test functions, which represent 
search spaces of different complexity. Two of them (Sphere and Zakharov) are unimodal, while 
the rest are multimodal (Ackley, Griewank, Rastrigin, Levy). In all cases the global minimum 
is known and equal to zero. The analytical expression of the test functions and the bounds of 
their variables are given in the Appendix of Tsoukalas et al. []. 

Table 9-2 | Summary characteristics of test functions (see also the Appendix of Tsoukalas et al. 
[]). 

 

 

9.4.2 Statistical evaluation of optimal solutions 

An initial assessment of the performance of the five examined algorithms was made on the 
grounds of mean and standard deviation of the best function values obtained from each 
optimization set (i.e.,  independent runs of the algorithm). The closest to zero is the mean 
and the lowest the standard deviation indicates that the algorithm reaches the theoretical 
optimum with high accuracy and reliability. 

The statistical superiority of SEEAS is exhibited in all problem configurations, as shown in 
Table 9-3 and Table 9-4, for problem dimensions n =  and , respectively. Specifically, for 
the -D formulation (Table 9-3), SEEAS achieves the best performance (i.e., the lowest mean) 
in three out of six (OF, OF, OF) and four out of six problems (OF, OF, OF, OF), for 
MFE =  and , respectively. By doubling the dimensionality of the test functions to 
n = , thus significantly increasing the complexity of the associated optimization problems, 
SEEAS outperforms the other algorithms in four out of six (OF, OF, OF, OF) and three 

Problem Test function Response surface properties 
OF1 Sphere Unimodal and convex 
OF2 Ackley Multimodal with many local minima 
OF3 Griewank Multimodal with many regularly distributed local minima 
OF4 Zakharov Unimodal with a plate-shaped valley 
OF5 Rastrigin Multimodal with many local minima 
OF6 Levy Multimodal with many local minima and parabolic valleys 
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out of six problems (OF, OF, OF), for MFE =  and , respectively (Table 9-4). 
Considering all alternative configurations, SEEAS is optimal for  out of  problems, 
DYCORS and EAS are optimal for  out of , and DDS is optimal for  out of . MLMSRBF 
does not outperform in none of the  test problems.  

As expected, the increase of computational budget from  to  improves the performance 
of all algorithms. In general, the most significant improvement is achieved by EAS and DDS, 
which is reasonable since these algorithms are not surrogate-assisted, thus they are by 
definition designed to proceed slower than the other schemes. The convergence behavior of the 
algorithms is further investigated in next section. 

It is also worth mentioning that all algorithms exhibit poor performance against functions OF 
(Zakharov) and OF (Rastrigin), since they fail locating satisfactory solutions for the given 
budgets. In particular, the plate-shaped valley of Zakharov function makes extremely difficult 
fitting metamodels, which degenerates to hyperplane with practically zero slopes. It is not 
surprising that EAS ensures the best solutions, although these are still far from the theoretical 
optimum. EAS has been designed to also handle flat response surfaces, which are often met in 
water management optimization problems. On the other hand, DDS is the algorithm that 
generally ensures the best solution of the Rastrigin problem. Again, this is not surprising, since 
the search space of this function is extremely rough, with multiple local minima, thus the most 
stochastic of all schemes is expected to be the most efficient. 

Table 9-3 | Mean and standard deviation of best solutions in -D test problems (optimal results are 
highlighted). 

MFE Test function EAS DDS SEEAS  DYCORS MLMSRBF 
Mean StDev Mean StDev Mean StDev Mean StDev Mean StDev 

500 
 

OF1 1.938 0.978 0.852 0.479 0.002 0.001 0.002 0.001 0.019 0.014 
OF2 7.159 1.723 6.025 1.314 0.812 0.233 0.809 0.372 2.231 0.658 
OF3 7.682 2.997 2.626 1.269 0.538 0.118 0.885 0.084 1.085 0.052 
OF4 39.434 14.894 137.447 52.366 59.144 28.023 158.669 47.788 150.411 49.875 
OF5 86.245 14.148 24.887 7.081 46.268 15.359 38.958 12.340 45.920 18.803 
OF6 1.905 0.877 0.681 0.314 0.203 0.105 1.208 1.406 1.344 2.129 

1000 

OF1 0.378 0.177 0.150 0.079 0.001 0.001 0.001 0.000 0.011 0.007 
OF2 3.523 0.936 3.847 0.528 0.437 0.208 0.607 0.092 1.862 0.556 
OF3 2.444 1.061 1.505 0.299 0.368 0.140 0.809 0.082 1.040 0.037 
OF4 26.828 17.895 97.541 38.226 41.290 26.639 121.266 36.925 121.359 37.730 
OF5 59.735 17.012 11.233 3.136 29.733 12.838 33.585 13.490 35.784 11.031 
OF6 0.767 0.292 0.234 0.104 0.124 0.060 0.536 0.860 0.524 0.863 

Table 9-4 | Mean and standard deviation of best solutions in -D test problems (optimal results are 
highlighted). 

MFE 
Test 

function EAS DDS SEEAS  DYCORS MLMSRBF 

 Mean StDev Mean StDev Mean StDev Mean StDev Mean StDev 

500 
 

OF1 4.305 1.163 9.516 2.737 0.019 0.006 0.083 0.034 0.739 0.708 
OF2 9.923 1.160 12.872 1.329 1.878 0.301 4.297 3.721 6.193 4.362 
OF3 17.866 3.455 38.398 12.050 0.782 0.118 1.265 0.079 3.459 1.927 
OF4 117.821 28.757 562.145 113.230 173.240 44.185 472.815 90.897 575.424 174.073 
OF5 228.693 18.442 132.149 24.567 122.658 19.427 112.046 23.076 165.437 46.846 
OF6 6.338 2.652 15.823 5.481 0.659 0.184 3.407 2.540 7.326 10.944 

1000 

OF1 2.529 0.933 2.112 0.791 0.006 0.004 0.011 0.004 0.358 0.177 
OF2 6.516 0.845 7.670 0.924 1.206 0.297 1.085 0.168 3.643 1.103 
OF3 8.836 2.617 8.273 2.679 0.549 0.093 1.020 0.026 2.420 0.713 
OF4 94.598 20.317 412.238 118.573 151.472 54.097 403.812 93.081 491.425 146.097 
OF5 198.335 16.587 71.598 15.028 98.371 19.505 85.267 22.956 134.864 39.193 
OF6 2.683 0.736 3.921 2.215 0.443 0.126 4.213 5.440 2.865 4.583 
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9.4.3 Evaluation of convergence behavior 

In order to further investigate the convergence behavior of the algorithms, we plotted the 
average (out of  trials) value of the best point found so far against the number of function 
evaluations (Figure 9.3-Figure 9.8). Each figure refers to a specific test function and comprises 
four charts, for the alternative configurations (two dimensions × two MFE). 

In most cases, SEEAS exhibits the faster convergence, evidently because the expansion 
mechanisms supported by the metamodel (which provides enhanced overview of the surface 
geometry), allow implementing steep downhill transitions. In general, the great advantage of 
the simplex-based transitions is the indirect use of the concept of gradient, which favors quick 
location of regions of attraction of local optima. This is of particular importance in 
computational expensive problems, where the algorithm should quickly detect promising 
descent directions. In fact, SEEAS is found superior to the other two surrogate-assisted 
algorithms (DYCORS and MLMSRBF) in all problems, except for Rastrigin. The most 
impressive case is the Levy problem, where SEEAS locates a very good solution after the first 
one hundred of function evaluations (Figure 9.9a), while the mean best value found by other 
algorithms so far is even two orders of magnitude higher. Similar are the results for the 
Griewank function (Figure 9.9b), which could be interpreted as a rough, multimodal version 
of sphere. A plausible explanation for this is the combined effect of the knowledge gained by 
the metamodel, which easily recognizes the spherical structure of Griewank, and the simplex-
based operators, using approximations of the gradient of the function. 

An interesting conclusion is that, regarding SEEAS, the increase of the computation budget has 
mild effects in the improvement of the mean best solution. This is another evidence of the 
suitability of SEEAS for extremely time-demanding optimization problems, in which the 
desirable number of function evaluations should be minimal. 

 

 
Figure 9.3 | Convergence curves for test function OF (Sphere) with  (a, b) and  variables (c, d), 
with MFE= (a, c) and MFE= (b, d). 
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Figure 9.4 | Convergence curves for test function OF (Ackley) with  (a, b) and  variables (c, d), 
with MFE= (a, c) and MFE= (b, d). 

 

 
Figure 9.5 | Convergence curves for test function OF3 (Griewank) with 15 (a, b) and 30 variables (c, 
d), with MFE=500 (a, c) and MFE=1000 (b, d). 
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Figure 9.6 | Convergence curves for test function OF (Zakharov) with  (a, b) and  variables (c, 
d), with MFE= (a, c) and MFE= (b, d). 

 

 
Figure 9.7 | Convergence curves for test function OF (Rastrigin) with  (a, b) and  variables (c, 
d), with MFE= (a, c) and MFE= (b, d). 
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Figure 9.8 | Convergence curves for test function OF (Levy) with  (a, b) and  variables (c, d), 
with MFE= (a, c) and MFE= (b, d). 

 
Figure 9.9 | Initial part of convergence curves up to  function evaluations, for test functions Levy 
(a) and Griewank (b), for the case of MFE= and  variables. 

9.4.4 Sensitivity analysis against input parameters of SEEAS 

As mentioned in section 9.2.2.4, SEEAS requires determining several input arguments, in 
terms of step parameters Nr, Ne, Nc and Nu, mutation probability pm, and adjusting factor ξ of 
the annealing cooling schedule. In order to investigate the sensitivity of SEEAS against the 
default values adopted so far (i.e., Nr = Ne = Nc = Nu = , pm = . and ξ = ), we employed  
independent runs of the tests functions (for n =  variables and MFE = ), assigning 
different values to its input parameters. The configurations and summary statistics, in terms of 
means and standard deviation of the optimal solution of each set of optimizations, are given in 
to Table 9-5-Table 9-7. 

The analysis justifies our recommendations for the input parameters of SEEAS. As shown in 
Table 9-5, the performance of the algorithm is significantly improved by increasing the 
common value of the step parameters from  to , while it is slightly improved by further 
increasing this value to . Actually, the simplex transitions are considerably assisted by using 
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the outcomes of the surrogate model within local search; however, it does not make sense 
calling the SM too many times, which introduces unnecessary computations with marginally 
only benefit. Regarding the mutation probability (Table 9-6), the algorithm provides almost 
identical results for pm values as low as . or ., yet its performance is deteriorated by 
increasing this probability up to .. This is also a non-surprising conclusion, since it is well-
known that in evolutionary algorithms the mutation operator should be occasionally called in 
order to avoid making search too random. Finally, the setup with ξ =  provides systematically 
better results compared to ξ = , while it exhibits either better or similar performance when the 
annealing cooling parameter increases up to ξ =  (Table 9-7). Nevertheless, a common 
outcome form the above investigations is the relatively low sensitivity of SEEAS against the 
examined configurations, for most of test problems. 

Table 9-5 | Mean and standard deviation of best solutions in 15-D test problems for MFE = 500, for 
different values of the four step parameters of SEEAS (for pm = 0.10 and ξ = 2). 

Test function Nr = Ne = Nc = Nu = 5 Nr = Ne = Nc = Nu = 20 Nr = Ne = Nc = Nu = 50 
Mean StDev Mean StDev Mean StDev 

OF1 0.002 0.001 0.002 0.001 0.001 0.001 
OF2 1.724 0.641 0.812 0.233 0.806 0.258 
OF3 0.714 0.15 0.538 0.118 0.504 0.133 
OF4 87.043 32.027 59.144 28.023 58.030 28.911 
OF5 51.299 21.579 46.268 15.359 45.101 13.634 
OF6 0.266 0.228 0.203 0.105 0.192 0.114 

Table 9-6 | Mean and standard deviation of best solutions in -D test problems for MFE = , for 
different values of mutation probability pm (for Nr = Ne = Nc = Nu =  and ξ = ). 

Test function pm = 0.05 pm = 0.10 pm = 0.30 
Mean StDev Mean StDev Mean StDev 

OF1 0.002 0.001 0.002 0.001 0.002 0.001 
OF2 0.895 0.345 0.812 0.233 0.994 0.480 
OF3 0.534 0.125 0.538 0.118 0.654 0.149 
OF4 61.071 21.639 59.144 28.023 61.876 29.762 
OF5 46.176 15.088 46.268 15.359 49.930 15.636 
OF6 0.226 0.088 0.203 0.105 0.277 0.095 

Table 9-7 | Mean and standard deviation of best solutions in -D test problems for MFE = , for 
different values of mutation probability pm and cooling parameter ξ (for Nr = Ne = Nc = Nu =  and pm 
= .). 

Test function ξ = 1 ξ = 2 ξ = 4 
Mean StDev Mean StDev Mean StDev 

OF1 0.003 0.002 0.002 0.001 0.002 0.002 
OF2 0.978 0.349 0.812 0.233 0.896 0.381 
OF3 0.759 0.141 0.538 0.118 0.894 0.172 
OF4 69.603 29.140 59.144 28.023 62.896 35.297 
OF5 66.730 15.871 46.268 15.359 45.403 17.132 
OF6 0.423 0.113 0.203 0.105 0.206 0.151 

9.4.5 Suitability assessment based on stochastic dominance 

For each problem and each algorithm, we illustrate the empirical CDFs, using the sample of  
best solutions found after the termination of the corresponding search procedures. Based on 
them, we calculated the medians of the CDFs (Table 9-8), and next employed the MWU test 
between the algorithms providing the best (lower) medians, to assess whether the obtained 
differences are significant. The results of all tests are summarized in Table 9-9. 

The outcomes of the MWU test are in full accordance with previous conclusions, and prove 
the statistical suitability of SEEAS. Considering the full set of problems, SEEAS is evaluated as 
preferred or equally good in  out of  cases. Next best method is DYCORS, which is preferred 
or equally good in  out of  cases. If we isolate the less beneficial subset, i.e., the formulation 
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with  decision variables under the lower computational budget (lower left panel of Table 
9-9), the superiority of SEEAS is even more evident. 

Table 9-8 | Median of best function values obtained from all algorithms. 

n Problem MFE = 500 MFE = 1000 
EAS DDS SEEAS DYCORS MLMSRBF EAS DDS SEEAS DYCORS MLMSRBF 

15 
 

OF1 1.457 0.684 0.002 0.002 0.012 0.380 0.131 0.001 0.001 0.008 
OF2 7.367 5.942 0.838 0.745 2.353 3.519 3.877 0.410 0.574 1.629 
OF3 7.446 2.312 0.513 0.921 1.088 2.211 1.400 0.360 0.819 1.027 
OF4 34.205 133.574 53.874 154.151 147.998 25.224 98.089 34.413 127.557 110.313 
OF5 85.223 24.714 45.061 37.912 37.696 58.926 10.813 31.808 32.644 34.522 
OF6 1.592 0.616 0.198 0.681 0.488 0.765 0.216 0.114 0.069 0.191 

30 

OF1 4.391 9.828 0.018 0.073 0.590 2.516 1.860 0.005 0.009 0.270 
OF2 9.844 13.110 1.918 3.144 4.725 6.579 7.831 1.170 1.108 3.438 
OF3 17.758 36.453 0.807 1.249 2.974 8.741 7.920 0.554 1.025 2.507 
OF4 114.878 540.070 168.695 456.956 570.266 95.274 386.140 147.120 409.986 465.057 
OF5 232.766 130.090 121.973 112.009 156.834 200.952 71.160 97.994 85.728 127.299 
OF6 5.264 15.496 0.630 2.075 2.302 2.458 2.918 0.431 2.762 1.412 

Table 9-9 | Summary results of MWU test to infer about the preferred algorithm. H-value indicates 
the rejection or not of the null hypothesis, i.e., if H = , the null hypothesis is not rejected. 

n Problem MFE = 500 MFE = 1000 
Preferred Alternative p-Value H Preferred Alternative p-Value H 

15 

OF1 SEEAS DYCORS 5.298E-01 0 SEEAS MLMSRBF 3.020E-11 1 
OF2 DYCORS SEEAS 3.478E-01 0 SEEAS DYCORS 1.492E-06 1 
OF3 SEEAS DYCORS 9.919E-11 1 SEEAS DYCORS 1.206E-10 1 
OF4 EAS SEEAS 3.034E-03 1 EAS SEEAS 9.883E-03 1 
OF5 DDS DYCORS 9.514E-06 1 SEEAS DYCORS 2.028E-07 1 
OF6 SEEAS MLMSRBF 3.644E-02 1 DYCORS SEEAS 6.952E-01 0 

30 

OF1 SEEAS DYCORS 3.020E-11 1 SEEAS DYCORS 2.154E-06 1 
OF2 SEEAS DYCORS 3.474E-10 1 DYCORS SEEAS 9.926E-02 0 
OF3 SEEAS DYCORS 3.020E-11 1 SEEAS DYCORS 3.020E-11 1 
OF4 EAS SEEAS 6.526E-07 1 EAS SEEAS 3.157E-05 1 
OF5 DYCORS SEEAS 5.746E-02 0 DYCORS DDS 1.988E-02 1 
OF6 SEEAS DYCORS 1.094E-10 1 SEEAS MLMSRBF 2.572E-07 1 

9.5 HYDROLOGICAL CALIBRATION 

9.5.1 Study area, simulation model and calibration setup 

Hydrological calibration is probably the most typical global optimization problem in water 
resources. Numerous studies have been published dealing with calibration and its 
shortcomings, arising from the multiple sources of uncertainty that govern all aspects of the 
parameter estimation procedure [Efstratiadis and Koutsoyiannis, ]. Here we investigated 
the calibration of a lumped simulation model, applied to Boeoticos Kephisos river basin, in 
Eastern Greece ( km). The basin extends over a heavily-modified karst system with 
multiple peculiarities, as result of complex interactions between surface and groundwater 
processes as well as human interventions, by means of surface and groundwater abstractions. 
This hydrosystem has been subject of comprehensive research, through alternative [Rozos et 
al., ; Efstratiadis et al., ; Nalbantis et al., ]. Monthly precipitation, potential 
evapotranspiration, runoff and groundwater abstraction data are available for a -year period 
(Oct.  to Sep. ), to be used as inputs in simulations. 

For the representation of the basin processes we applied a lumped version of Hydrogeios model 
[Efstratiadis et al., ]. The basin is vertically subdivided into three storage elements that 
represent interception, soil moisture and groundwater. The model estimates the main 
responses of the basin, i.e., actual evapotranspiration, surface and groundwater runoff and 
groundwater losses, using nine parameters and two initial conditions, i.e., the water levels of 
soil and groundwater tanks at the beginning of simulation. A brief description of the model 
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parameters and their feasible bounds assigned is given in Table 9-10. Based on the above data 
and tools, we formulated two optimization problems, using as objective function the well-
known Nash-Sutcliffe efficiency metric (NSE). The first one follows the typical calibration 
paradigm (i.e., inverse modelling), in which the model parameters are unknown and the model 
is fitted to the observed runoff of the basin. In the second formulation, also referred to as toy 
calibration, we considered the (arbitrary) parameter set shown in Table 9-10, which ensures a 
relatively high NSE value. Next, we run the model forward to obtain synthetic runoff time 
series, for the given parameters and the same hydrological inputs, and finally we used these 
synthetic runoff data to infer the model parameters. The key difference of the second approach 
is that since the theoretical values of model parameters are a priori known, the theoretical 
optimum is by definition one. On the contrary, in real-data calibrations both the value and the 
location of the global optimum are unknown. A plausible (but not certain) approximation of 
the maximum NSE is ., which was estimated by running EAS for multiple initial 
populations, allowing a reasonably large number of function evaluations (MFE = ). The 
key advantage of toy calibration is that the search procedure is not affected by structural and 
observation errors (i.e., both the model and the data are considered perfect), which allows fairly 
evaluating the performance of the optimization methods. In addition, since the value of the 
global optimum is by definition higher than is the case of real data, the optimization problem 
itself becomes harder to solve. Similarly to test functions, we assessed the performance of 
SEEAS against the other four algorithms assuming  independent runs and the typical 
computational budgets of  and  function evaluations (each evaluation involves the 
implementation of a full simulation, for given parameters). We underline that the current suite 
of problems is only regarded as a computational exercise, aiming to test the algorithms against 
challenging problems of real-world type. In an operational context, hydrological calibration is 
far from a blind optimization game, since it should also account for issues such as the model 
predictive capacity and the physical interpretation of the optimized parameters [Efstratiadis 
and Koutsoyiannis, ]. 

Table 9-10 | Model parameters, feasible bounds and values assigned for toy calibrations. 

9.5.2 Model calibration with unknown parameters 

Table 9-11 summarizes the statistical characteristics of the set of  optimal solutions found 
under the two budgets. SEEAS outperforms all other algorithms in terms of mean and median 
values of NSE. In particular, the mean optimal efficiency is . and ., for MFE =  and 
, respectively, while the medians are even higher (. and ., respectively). In 
addition, the variability of NSE values is the lowest among all algorithms. For comparison, EAS 
reaches a median efficiency of only ., for MFE = , but it is considerably increased up to 
., for MFE = . In this last case, the mean NSE is only ., due to the existence of 

Parameter Description and units Lower value Upper value Toy value 
r Interception capacity (mm) 0.010 100.0 13.0 
c Recession coefficient for direct runoff (-) 0.010 1.000 0.098 
k Soil capacity (mm) 5.0 600.0 506.7 
l Recession coefficient for interflow (-) 0.010 1.000 0.922 
κ Interflow threshold, as ratio of soil capacity (-) 0.010 1.000 0.945 
m Recession coefficient for percolation (-) 0.010 1.000 0.064 
φ Recession coefficient for baseflow (-) 0.010 1.000 0.031 
yB Threshold for baseflow generation (mm) 5.0 300.0 35.9 
ξ Recession coefficient for underground losses (-) 0.010 1.000 0.068 
s0 Initial soil moisture storage (mm) 0.0 600.0 5.1 
y0 Initial groundwater storage (mm)  5.0 300.0 111.2 
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some quite low values in the sample of  optimal solutions, which converge to a local optimum 
far from the global one. Finally, the statistical performance of the other three schemes (DDS, 
DYCORS, and MLMSRBF) is much less satisfactory, particularly under the restricted budget 
of  simulations. 

Table 9-11 | Statistical characteristics of NSE values obtained from all algorithms. 
Budget / 
Statistics 

MFE = 500 MFE = 1000 
EAS DDS SEEAS DYCORS MLMSRBF EAS DDS SEEAS DYCORS MLMSRBF 

Min 0.331 0.329 0.279 0.204 0.141 0.331 0.330 0.331 0.246 0.268 
Average 0.513 0.426 0.632 0.389 0.447 0.572 0.467 0.727 0.525 0.537 
StDev 0.176 0.174 0.172 0.171 0.205 0.200 0.193 0.078 0.185 0.190 
Median 0.448 0.331 0.714 0.306 0.369 0.719 0.331 0.747 0.505 0.651 
Max 0.753 0.766 0.763 0.753 0.752 0.764 0.762 0.769 0.755 0.752 

The above conclusions are further justified when comparing the convergence curves (Figure 
9.10 and the CDFs (Figure 9.11) of the five algorithms. It is shown that after  (for MFE = 
) or  (for MFE = ) simulations, SEEAS evolves much faster, thus locating much 
higher NSE values than other algorithms. The performance of EAS is also very satisfactory, 
given that it outperforms the other three state-of-the-art algorithms, two of which are also 
surrogate-assisted. Similarly, in terms of CDFs, in the low-budget scenario, SEEAS ensures NSE 
values greater than . in  out of  calibrations (Figure 9.11a). At the same problem, EAS 
performs better than other algorithms, particularly DDS, which is usually trapped to a remote 
local optimum. By increasing the computational budget to MFE = , SEEAS systematically 
dominates all other schemes, ensuring NSE values greater than . in / independent 
calibrations (Figure 9.11b). 

 
Figure 9.10 | Convergence curves for MFE =  (a) and MFE =  (b). 

 
Figure 9.11 | Empirical CDFs of best NSE values for MFE=  (a) and MFE =  (b). 
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9.5.3 Toy calibration with synthetic runoff 

As explained above, toy calibrations are more challenging, in the sense that the theoretical 
values of the model parameters are known, thus corresponding to unit efficiency. The 
outcomes of all associated tests, in terms of statistical characteristics of the best NSE value 
found so far, convergence curves and CDFs are shown in Table 9-12, Figure 9.12 and Figure 
9.13, respectively. 

Table 9-12 | Statistical characteristics of NSE values obtained from all algorithms. 

Budget / Statistics MFE = 500 MFE = 1000 
EAS DDS SEEAS DYCORS SRBF EAS DDS SEEAS DYCORS SRBF 

Min 0.527 0.525 0.400 0.376 0.343 0.527 0.526 0.662 0.438 0.462 
Average 0.688 0.694 0.787 0.641 0.640 0.793 0.742 0.963 0.679 0.735 
StDev 0.172 0.206 0.207 0.186 0.213 0.215 0.211 0.058 0.202 0.204 
Median 0.620 0.528 0.910 0.529 0.517 0.947 0.737 0.981 0.551 0.832 
Max 0.981 0.987 0.978 0.961 0.970 0.989 0.986 0.987 0.975 0.980 

The configuration of the calibration problem with synthetic runoff data further highlights the 
superiority of SEEAS against other algorithms. Specifically, the median NSE value found after 
only  simulations is ., while the next best value is only ., which is obtained through 
EAS. The increased computational budget ensures almost perfect calibrations (mean NSE = 
., median = .), with minimal variability (standard deviation .). For this budget, 
the median of EAS is also remarkably high (NSE = .). Furthermore, SEEAS outperforms 
all other algorithms from the early search steps. Actually, for MFE = , until the first ~ 
simulations DDS is competent, but then its improvement rate is significantly restricted. For the 
increased budget of  simulations, SEEAS is arguably the best option, while EAS remains 
very competent. At the / of the budget, SEEAS achieves efficiency values up to ., while 
EAS reaches values around .. Even more exciting are the CDF charts, particularly for MFE 
= ; in this case, SEEAS achieves NSE values greater than . in  out of  calibration 
trials, and the original EAS approach also provides NSE values greater than . in  out of  
trials. This indicates the remarkable reliability and robustness of the two algorithms, in contrast 
to other methods that generally fail to reach the known optimum in reasonable time, thus 
requiring multiple independent runs to ensure statistically good calibrations. 

 
Figure 9.12 | Convergence curves for MFE =  (a) and MFE =  (b). 
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Figure 9.13 | Empirical CDFs of best NSE values for MFE=  (a) and MFE =  (b). 

9.6 OPTIMIZATION OF MULTI-RESERVOIR SYSTEM PERFORMANCE 

9.6.1 Problem statement 

The second real-world test application involves the optimization of the operation of a multi-
reservoir system in North-Eastern Greece. The objective was the development of uncertainty-
aware operational rules that maximize the mean annual economic benefit of the system from 
energy production. The operation model of the hydrosystem is driven by synthetic hydrological 
data of  years length, thus drastically encumbering the computational time of simulation. 
In contrast to previous benchmarking tests, this problem is fully representative of real-world 
optimizations on a budget, given that a single function evaluation (i.e., a -year simulation) 
required ~ s. Due to time limitations, we compared SEEAS only against the two other 
surrogate-assisted algorithms, i.e., DYCORS and MLMSRBF. For each algorithm, we employed 
 independent optimizations, allowing  function evaluations (thus each optimization run 
required about . hours). 

9.6.2 The parameterization-simulation-optimization scheme 

The reservoir system extends along the downstream branch of Nestos, a transboundary river 
shared by Bulgaria and Greece. It comprises three serially-connected hydroelectric reservoirs 
(Thysavros  MW; Platanovryssi  MW; Temenos  MW) and a small irrigation reservoir 
at the outlet. The first two power plants are reversible, thus employing pumped-storage to 
maximize energy efficiency. The river flows are mostly regulated in the most upstream reservoir 
(Thysavros), while the rest of projects have limited storage capacity. 

The monthly operation of the system is represented by the well-known modelling tool 
WEAP [Yates et al., ]. Hydrological inputs are inflows to Thysavros, as well as rainfall 
and evapotranspiration over all reservoir areas. The configuration of the simulation problem is 
explained in the recent articles by Tsoukalas and Makropoulos [a, b], where are also 
provided further details about the study area and associated data. 

Since the size of historical hydrological data (-; -) is not sufficient to extract 
safe conclusions about the long-term performance of the system, we used instead synthetic time 
series of  years length that were generated through Castalia software [Efstratiadis et al., 
a]12. Castalia employs a multivariate stochastic simulation scheme to generate synthetic 

                                                        
12 See also the R language implementation, i.e., CastaliaR package [Tsoukalas et al., c]. 
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time series that reproduce the statistical properties of the parent historical data, at multiple 
temporal scales. In the specific study, in which the time step of simulation is monthly, the model 
preserves the observed means, standard deviations, skewness coefficients, first order 
autocorrelations and cross-correlations at the monthly and annual scales; it also reproduces the 
long-term persistence (Hurst-Kolmogorov dynamics) at the annual and over-annual scales, 
thus accounting for the changing behavior of hydroclimatic processes [Koutsoyiannis, b]. 
We note that the use of Castalia in this case study is supported by the fact that the focus is in 
the investigation of SEEAS (and two other algorithms) performance to handle computationally 
expensive simulation-optimization problems. In an operational context, it could be preferable 
to employ the stochastic modelling and simulation approach of Chapter 4-7, since it overcomes 
many of limitations of the current synthetic data generation schemes. 

The model decision variables were expressed in terms of energy targets, which are assigned to 
the associated system components, i.e., the three power plants (the two reversible). The targets 
refer to power production (forward operation of turbines) and consumption (backward 
operation, i.e., pumping). All targets were seasonally varying, considering four seasons per year, 
but they did not change over time (steady-state simulation). In this context, we parameterized 
the operation of the reservoir system through ( + ) ×  =  energy targets. The upper bound 
of target values was set equal to the installed capacity of the corresponding machine (turbine 
or pump), while all lower bounds were set zero. At each simulation step, for given (i.e., provided 
by the stochastic model) inflows and known initial conditions (reservoir storages), the model 
transforms energy targets to equivalent minimum flow constraints, thus forcing the model to 
pass the required amount of water to produce (or consume) the desired amount of energy. 

In the formulation of the optimization problem, we assessed the long-term performance of the 
system in terms of mean energy benefit from the three energy components. Based on a slight 
modification of the expression introduced by [Efstratiadis et al., 2012; Tsoukalas and 
Makropoulos, b], we evaluated the monthly benefit bi gained from each component i by: 

 𝑏  = 𝑐ï + 𝑒 ∗ + 𝑐® max(𝑒  − 𝑒 ∗, ;) + 𝑐`min(𝑒  − 𝑒 ∗, ;) − 𝑐ð𝑝   (.) 

where 𝑒 ∗  is the target energy that corresponds to the specific season of the year, 𝑒  and 𝑝   are 
the actual energy production and consumption (in the case of pumped-storage), which are 
estimated through the simulation model, 𝑐ï and 𝑐® are unit profits for firm and secondary 
energy production, respectively, 𝑐` is a unit penalty cost for energy deficits, and 𝑐ð is the unit 
pumping cost. The unit profit or cost values were set ., ., . and . /kWh, 
respectively. 

9.6.3 Results 

In Figure 9.14a are plotted the average convergence curves of the three algorithms, while in 
Figure 9.14b are illustrated the corresponding CDFs, estimated on the basis of optimal results 
obtained from  independent trials. Once again, SEEAS outperforms both DYCORS and 
MLMSRBF, considering the budget of  trials, although their differences are relatively small. 
Algorithms have almost similar behavior until ~ FE, but then SEEAS evolves faster. In terms 
CDFs, SEEAS stochastically dominates MLMSRBF which, in turn, dominates DYCORS. 

The two figures reveal the key peculiarity of reservoir optimization problems, which is the 
formulation of flat response surfaces, indicating low sensitivity of the system performance 
against the associated parameters. This is due to the existence of numerous constraints, physical 
and operational, which significantly restrict the flexibility of decisions. Generally, the decision 
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variables of water management models represent desirable quantities (by means of target 
storages, target abstractions, target flows, etc.) that may be infeasible across a wide range of the 
decision space. In such cases, the actual (i.e., simulated) decisions and the system performance 
are mainly determined by the system constraints, which in turn results to the formulation of 
extended valleys across the response surface. 

 
Figure 9.14 | Convergence curves (a) and empirical CDFs (b) for MFE = . 

9.7 SUMMARY 
This Chapter introduces a surrogate-enhanced extension of the evolutionary annealing-
simplex (EAS) method. This new scheme, called SEEAS, uses the RBF metamodel to assist the 
generating mechanisms of EAS and identify promising solutions with low computational cost. 

The effectiveness and efficiency of SEEAS have been demonstrated on the basis of a 
benchmarking suite comprising a variety of optimization problems, both theoretical and real-
world. All problems were examined with alternative formulations and different budgets. The 
performance characteristics of SEEAS (statistical characteristics of best solution found so far, 
convergence behavior, stochastic dominance), were compared against three other state-of-the-
art algorithms, as well as the original EAS algorithm. SEEAS outperformed all other methods 
in  out of  of theoretical problems (six functions with alternative configurations). 
Moreover, SEEAS was found superior in all real-world applications. Specifically, in hydrologic 
calibrations SEEAS showed consistency and robustness in locating near optimal solutions. In 
the first sub-case, using real runoff data, SEEAS located parameter sets with efficiency values 
larger than . in  out of  independent runs. Similarly, in the toy application with 
synthetic runoff, where the location of the optimum is a priori known, SEEAS ensured 
efficiency values larger than . in  out of  runs. Finally, in the optimization of the multi-
reservoir system, SEEAS also exhibited the best behavior. 

It is interesting mentioning that the two real-world applications are representative of the most 
typical global optimization problems in water resources. Both problems are very demanding, 
due to the complexity of their search space geometry. In particular, the goodness-of-fit 
measures used in calibrations generate highly irregular response surfaces with many local 
optima at all scales, in contrast to performance measures employed in water management 
problems, which usually compose extended smooth areas. A common characteristic of the two 
problems is the interactions between the model variables (or subsets of them), which is a major 
reason of multimodality (i.e., existence of multiple local optima with almost similar 
performance). The variety of generating mechanisms and quasi-stochastic transitions of 



. SUMMARY 

Page | 213 

SEEAS provide flexibility to handle search spaces with such peculiarities and so diverse 
geometry, while other algorithms seem to be less generic. 

A well-known shortcoming of hybrid optimization algorithms (also including SEEAS) is the 
need for defining a number of input arguments which may confuse and even discourage non-
experienced users. However, in the case of SEEAS, we recommend the use of generic values for 
the associated inputs, which have been specified after extended investigations. In fact, our 
analyses indicated that the algorithm is little sensitive against its input parameters, provided 
that reasonable values are assigned to them. This is also a strong evidence of the robustness of 
SEEAS. 

Current research focuses on further improving the performance of SEEAS, by testing new 
simplex transformations and investigating other metamodels. Moreover, the authors are 
working towards extending SEEAS to handle noisy functions and developing a multi-objective 
version of the algorithm
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10  
CONCLUSIONS AND DISCUSSION  

The main aim of this Thesis is to provide innovative tools and methodologies for the realistic 
modelling and simulation of hydrometeorological processes (i.e., the generation of synthetic 
hydrometeorological time series with the desirable probabilistic and stochastic properties), and 
simultaneously tackle the additional computational effort, which arises when long synthetic 
time series are used to represent the input uncertainty in simulation-optimization frameworks. 
Thereby, eventually ensuring the practical implementation of uncertainty-aware water-system 
optimization problems. 

More specifically, the main objectives of this PhD Thesis are twofold: 

a) The development of novel non-Gaussian stochastic simulation models, able to account also 
for the other peculiarities typically encountered in hydrometeorological processes, such as, 
intermittency, auto- and cross- dependence, periodicity, as well as their scale-varying 
probabilistic and stochastic behavior (Chapter 4 to 7). 

b) The development of surrogate-based optimization methodologies and algorithms that can 
efficiently and effectively confront water-system simulation-optimization problems under 
uncertainty, i.e., when using stochastic inputs to drive the simulation-optimization procedure 
(Chapter 8 and 9). 

As K. Pearson remark in Notes on the History of Correlation [], the mathematics are not 
there for the joy of the analyst but because they are essential to the solution. In analogy to 
Pearson’s statement, in this Thesis, stochastic modelling and simulation, as well as optimization 
methods regard the mathematics and water-system problems are those requiring a solution. A 
solution that due to the critical nature of such systems, for human life and security, owes to be 
both uncertainty-aware and optimum. 

10.1 STOCHASTIC MODELLING AND SIMULATION OF HYDROMETEOROLOGICAL 
PROCESSES 

This Thesis, identified critical problems and constraints in existing simulation schemes which 
in turn motivated the quest for alternative simulation schemes. In this respect, the major 
contributions of this work are: 

a) The identification of an important flaw of linear stochastic models with non-Gaussian 
white noise; which can lead to bounded, and thus unrealistic and non-natural 
dependencies. 

b) The formal introduction in hydrology of the so-called Nataf’s joint distribution model 
(NDM); which to the best of author’s knowledge has been unknown to the hydrological 
community for years. NDM provides the theoretical basis for the description of the 
multivariate joint distribution of non-Gaussian random variables, as well as act as a main 
building block for the establishment of non-Gaussian conditional distribution and 
processes. 
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c) The extension of NDM for the derivation of non-Gaussian conditional distributions. 
d) The development of a computationally simple and efficient algorithm, based on a hybrid 

Monte Carlo procedure, that is used to approximate the so-called equivalent correlation 
coefficients; which are essential for any Nataf-based model. 

e) The formulation of general guidelines that regard the development of non-Gaussian Nataf-
based stochastic models, for univariate and multivariate, stationary and cyclostationary 
processes. 

f) The development of two Nataf-based models, termed Symmetric Moving Average (neaRly) 
To Anything (SMARTA) and Contemporaneous Multivariate Autoregressive (neaRly) to 
Anything (CMARTA), that are able to simulate univariate and multivariate stationary 
processes with any marginal distribution and autocorrelation structure. 

g) The extension of the notion of Nataf-based stationary processes to the cyclostationary case, 
and the introduction of Stochastic Periodic AutoRegressive To Anything (SPARTA) model, 
which hold outs the promise of simulating univariate and multivariate cyclostationary 
processes with arbitrary seasonally varying marginal distributions and correlations. 

h) The integration of the developed Nataf-based models within a multivariate, multi-scale 
disaggregation-based scheme, termed Nataf-based disaggregation to Anything (NDA), 
allowing the development of a modular stochastic simulation framework. This framework, 
enables the development of various configurations that can reproduce the desirable 
distributions and correlation structures at multiple time scales (e.g., as shown herein via 
two configurations, from annual to daily and from daily to hourly), and also cope for the 
unique peculiarities encountered in different scales (e.g., periodicity and intermittency in 
monthly and daily time scale respectively). 

What is the added value offered by Nataf-based stochastic models? 

The generation of long synthetic (hydrometeorological) time series that ideally resemble the 
marginal and joint properties of the parent information (e.g., observed records) is a prerequisite 
in many uncertainty-related hydrological studies, since they can be used as inputs and hence 
allow the propagation of natural variability and uncertainty to the typically deterministic water-
system models. For this reason, it has been for years, one of the main research topics in the field 
of stochastic hydrology. 

It can be argued, that the overall question is not just a technical issue, i.e., providing better 
stochastic models, but, in a more general context, revisiting the essentials of synthetic data 
generation. In particular, it is suggested moving from the preservation of a specific set of 
statistical characteristics, which are exclusively inferred from the observed data, to the 
preservation of a priori specified theoretical distributions and correlation structures that are 
hypothesized to be consistent with the anticipated probabilistic and stochastic behavior of the 
underlying processes. 

Distribution functions fully describe the behavior of random variables, hence their use within 
stochastic simulation models is a reasonably a more precise modelling approach. Theoretical 
correlation structures, allow modelling and description of the dependence (temporal or spatial) 
in a parsimonious manner and additionally provide advantages, such as enhanced model 
stability and incorporation of estimator’s bias. In both cases, it is also possible to take advantage 
of the numerous available large-scale regional studies and identify appropriate models for data-
scarce regions. 

The flexibility offered by the developed Nataf-based simulation schemes (particularly when 
integrated in a multi-scale simulation configurations, i.e., through NDA), can facilitate the 
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preservation of the typically non-Gaussian distribution of hydrometeorological processes and 
simultaneously cope for other common peculiarities (i.e., intermittency, auto- and cross-
dependence, periodicity, as well as their scale-varying probabilistic and stochastic behavior). 

Specifically, Nataf-based methods, allow modelling processes with continuous, discrete or 
mixed-type distributions (provided that their variance exists), as well as allow the selection of 
any the fitting method for the identification of their parameters; this in turn offers the means 
to exploit years of research and advances in statistical analysis of hydrometeorological 
variables/processes. Further to this, these models, can and should, be coupled with theoretical 
correlation structures thus parsimoniously identifying target dependencies to preserve, in time 
and space. 

It is stressed that blind use of stochastic models, with overconfidence on historical data, may 
create a distorted reality, thus feeding operational hydrological and water management studies 
with inconsistent synthetic inputs. In this vein, it is recommended to turn our efforts into the 
selection of the suitable distribution model, as well as the careful assessment of the sample 
statistics, with emphasis to high order moments and correlations that are prone to 
uncertainties. Therefore, the flexibility of the proposed schemes can contribute towards the 
establishment of a new paradigm in hydrological stochastics. 

Of course, the need and utility of non-Gaussian processes spans beyond the realm of hydrology 
and engineering, since it is widely acknowledged that such processes are omnipresent in many 
other scientific domains, such as, finance, biology, communication networks and operations 
research. The proposed non-Gaussian stochastic process models may find fertile ground of 
application also in such domains, and hopefully resolve existing issues and trigger new 
developments. It is also interesting to note that the developed schemes, after minimal 
modifications, can also be used for forecasting purposes, an arguably interesting topic for 
future research. 

10.2 OPTIMIZATION OF WATER-SYSTEM PROBLEMS UNDER UNCERTAINTY 
Increasing model requirements, in order to allow process descriptions at fine spatial and 
temporal resolutions, as well as incorporation of uncertainty (e.g., using stochastic inputs 
though the methods described in Chapter 4-7 of this Thesis), have substantially increased 
hardware requirements, in terms of computational resources and time (e.g., water-system 
models, and especially flood models are famous time-expensive simulation models). In this 
respect, surrogate-modelling techniques have gained significant attention, since they promise 
handling high-demanding optimization problems with a limited computational budget. 

This Thesis contributions on the field of water-system optimization under uncertainty can be 
summarized as follows, 

a) The extension of the parameterization-simulation-optimization (PSO) framework for 
water-systems management, to handle multiple objectives, as well its effective and efficient 
implementation on a budget through the use of multi-objective surrogate-based algorithms. 

b) The development of a surrogate-enhanced evolutionary optimization algorithm, termed 
SEEAS, capable of handling a variety of time-expensive, water-resources, global 
optimization problems. 
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What is the added value of employing surrogate-modelling techniques in typical simulation-
optimization problems? 

This type of methodologies and algorithms are specifically designed to confront optimization 
problems, which are omnipresent in engineering sciences, in a fraction of time that is required 
by other state-of-the-art methods (e.g., evolutionary algorithms), while not relying on 
increasing the hardware’s performance. Their utility is highlighted by the fact that simulation 
models requirements in computational time increase with a fast rate, therefore unwittingly 
pose a barrier to real-world applications of typical optimization methods, particularly when 
uncertainty needs to be explicitly embedded (i.e., using stochastic inputs). Such methods, 
ensure the practical implementation of research developments in the realm of stochastic 
modelling and simulation for uncertainty embedding within real-world engineering works, 
which this Thesis also contributes to. Beyond hydrology, fruitful applications domains are 
those of aerospace engineering and computational fluid dynamics, where a single simulation 
run of the model may require several hours or even days; a fact that prohibits the use of classical 
optimization methods. 

10.3 OVERALL CONCLUSIONS AND FUTURE RESEARCH 
Incorporating uncertainty within decision making (regardless of its origin) is, and 
unfortunately will probably remain, a fruitful topic of research for the foreseeable future. In 
principle, this is achieved by formulating Monte Carlo simulation-optimization experiments 
driven by stochastic inputs. Such constructs enable the conversion of deterministic systems 
(e.g., physical or conceptual) to stochastic ones, and hence allow the analysis of the system’s 
behavior in a probabilistic and risk-aware manner. 

The contributions of this Thesis to this paradigm are twofold: (i) developing novel stochastic 
modelling and simulation approaches (Chapter 4-7) for the input (hydrometeorological) 
processes, thus allowing their more accurate representation, and hence eventually improve the 
quality of the deterministic model’s outputs; (ii) developing novel surrogate-based methods 
(Chapter 8-9) to handle time expensive simulation-optimization problems, thus ensuring the 
operational and practical implementation of such frameworks without requiring extensive and 
expensive hardware infrastructure nor sacrificing the identification of optimum solutions. 

The combination of these new developments, can further contribute to the wide-spread 
implementation of uncertainty-aware frameworks, for the design, management and operation 
of complex systems, aiming to identify reliable and optimal engineering solutions for the 
protection of human life and society from low-frequency high-impact extreme events (e.g., 
floods and droughts). Currently, such frameworks, are typically employed within the domains 
of water resources and multi-reservoir systems, yet their use and utility in other systems is 
relatively unexplored. As such, future research, apart from further exploring, extending and 
improving the new developments presented herein (see the summary of each Chapter), may 
enable the development and application of uncertainty-aware frameworks for similarly critical 
(hence requiring uncertainty embedding) and, arguably more complex systems (typically 
simulated by time-expensive models), such as, urban water-systems and renewable energy 
systems. 
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A  
APPENDIX A 
A.1 THE UNIVARIATE CYCLOSTATIONARY THOMAS-FIERING MODEL 
Herein we present the mathematical background of the univariate cyclostationary Thomas-
Fiering (TF) model, also known as the univariate periodic autoregressive model of order  (i.e., 
PAR()), with Pearson type-III (𝒫III) white noise. Let 𝑥T,� be a cyclostationary (i.e., periodic) 
process with each season denoted by, 𝑠 = (,… , 𝑆, (, … ,𝑆, ( …, and period 𝑡, where 𝑆 denotes 
the total number of seasons (e.g., for a monthly model, 𝑆 = () and 𝑡 denotes the year). The 
process can also be expressed as, 𝑥T,ô where 𝑛 ∈ ℤB is the time index. In this form, the season 
𝑠 is obtained by, 𝑠 = 𝑛	mod(𝑆), while if 𝑛	mod(𝑆) = ;, then 𝑠 = 𝑆. Furthermore, the period 
𝑡 can be obtained by, 𝑡 = ( + (𝑛 − 𝑠)/𝑆. For convenience, we use the first formulation, also 
omitting the period index 𝑡. The generating mechanism of the model is: 

 𝑥� = 𝑎�𝑥�s( + 𝑏�𝜀� (A.) 

where 𝑎�, 𝑏� are seasonally-varying parameters and 𝜀� denotes an i.i.d. variate. The parameter 

𝑎� = Cov{𝑥�, 𝑥�s(}/Var{𝑥�s(} and 𝑏� = �Var{𝑥�} − 𝑎�)Var{𝑥�s(}. 

The statistical characteristics of the white noise 𝜀� term, which is generated through 𝒫III 
distribution, are related to those of the target process 𝑥� via the following relationships: 

 𝜇­W = 𝐸{𝜀�	} = 𝑏�s(	�𝐸{𝑥�} −	𝑎�𝐸{𝑥�s(}� (A.) 

 𝜎­W
) = 𝑉𝑎𝑟{𝜀�} = ( (A.) 

 𝐶T¯W = µE{𝜀�} = 𝑏�
sE	�µE{𝑥�} −	𝑎�E	µE{	𝑥�s(}� (A.) 

where	µE �𝜉� denotes the third central moment of an arbitrary random variable 𝜉, which in the 
case of 𝜀� coincides with its skewness coefficient since the model assumes unit variance. 
Furthermore, following the rationale of Chapter 3, the envelope function of the generation 
mechanism can be expressed as: 

 𝑥� ≥ 𝑎�𝑥�s( 	+ 𝑏�ℓ� (A.) 

for positive skewness (i.e., 𝒫III with b > ;), hence forming a lower boundary, and: 

 𝑥� ≤ 𝑎�𝑥�s( 	+ 𝑏�𝓋� (A.) 
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for negative skewness (i.e., 𝒫III with b < ;), hence forming an upper boundary. In the above, 
ℓ� and 𝓋� respectively denote the lower and upper supports of the distribution of the white 
noise at season s. We remark that similar derivations, yet much more complex, can be derived 
for other models that employ skewed white noise. 

A.2 SUPPLEMENTARY MATERIAL OF CHAPTER 3 
Table A-1 | Scenario-based summary of theoretical (see Table 3-1 of the main manuscript; section 
3.2—“The envelope behavior in the classical univariate AR(1) model”) and simulated (synthetically 
generated; using an AR() with 𝒫III white noise) statistics. 

Scenario Type Mean (μ) Variance (σ2) Skewness (Cs) Autocorrelation (ρ1) 

Scenario A Theoretical 0.50 1.00 1.00 0.20 
Simulated 0.46 0.93 1.05 0.20 

Scenario B Theoretical 0.50 1.00 2.00 0.20 
Simulated 0.54 1.06 2.07 0.18 

Scenario C Theoretical 0.50 1.00 4.00 0.20 
Simulated 0.50 0.91 3.48 0.21 

Scenario D Theoretical 0.50 1.00 1.00 0.40 
Simulated 0.46 0.97 0.91 0.34 

Scenario E Theoretical 0.50 1.00 2.00 0.40 
Simulated 0.49 1.11 2.09 0.45 

Scenario F Theoretical 0.50 1.00 4.00 0.40 
Simulated 0.46 1.01 4.89 0.45 

Scenario G Theoretical 0.50 1.00 1.00 0.60 
Simulated 0.42 0.97 0.88 0.64 

Scenario H Theoretical 0.50 1.00 2.00 0.60 
Simulated 0.48 1.04 2.20 0.62 

Scenario I Theoretical 0.50 1.00 4.00 0.60 
Simulated 0.48 0.93 4.22 0.57 

Scenario J Theoretical 0.50 1.00 1.00 0.80 
Simulated 0.50 1.09 0.75 0.82 

Scenario K Theoretical 0.50 1.00 2.00 0.80 
Simulated 0.45 0.97 2.11 0.81 

Scenario L Theoretical 0.50 1.00 4.00 0.80 
Simulated 0.55 1.08 4.24 0.81 
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Figure A.1 | Scenario-based (see Table 3-1 of the main manuscript; section 3.2—“The envelope 
behavior in the classical univariate AR(1) model”) comparison of synthetic (using the an AR() with 
𝒫III white noise) and theoretical autocorrelation function (ACF). The labels of each plot resemble the 
corresponding scenarios of the aforementioned table (see also Table A-1). 

Table A-2 | Summary of theoretical and simulated statistics for the first, zero-autocorrelated, 
bivariate AR() process with 𝒫III white noise, employed in section 3.2.3—“From the univariate to the 
multivariate AR(1) model” of the main text. 

Process Type Mean (μ) Variance (σ2) Skewness (Cs) Autocorrelation (ρ1) 

𝑥�Ë Theoretical 0.50 1.00 2.00 0.00 
Simulated 0.50 1.06 2.39 0.00 

𝑥�Ì Theoretical 0.50 1.00 2.50 0.00 
Simulated 0.51 1.14 2.95 0.00 

Theoretical cross-correlation (ρ0) = 0.80 | Simulated cross-correlation (ρ0) = 0.79 
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Table A-3 | Summary of theoretical and simulated statistics for the second, autocorrelated, bivariate 
AR() process with 𝒫III white noise, employed in section 3.2.3—“From the univariate to the 
multivariate AR() model” of the main text. 

Process Type Mean (μ) Variance (σ2) Skewness (Cs) Autocorrelation (ρ1) 

𝑥�Ë Theoretical 0.50 1.00 2.00 0.70 
Simulated 0.52 1.08 2.00 0.70 

𝑥�Ì Theoretical 0.50 1.00 2.50 0.50 
Simulated 0.52 1.11 2.51 0.51 

Theoretical cross-correlation (ρ0) = 0.80 | Simulated cross-correlation (ρ0) = 0.80 

Table A-4 | Monthly-based summary of historical and simulated (synthetically generated using an 
AR() with 𝒫III white noise) statistics of the real-world case study employed in section 3.3—“Real 
world case study” of the main text. 

Month Type Mean (μ) Variance (σ2) Skewness (Cs) Autocorrelation (ρ1) 

January Historical 167.89 33,973.86 3.89 0.69 
Simulated 166.12 35,044.58 3.92 0.70 

February Historical 179.50 32,317.25 3.95 0.66 
Simulated 177.10 32,538.62 4.28 0.66 

March Historical 172.07 13,773.37 2.69 0.75 
Simulated 173.37 13,608.23 2.68 0.75 

April 
Historical 172.47 10,253.59 4.04 0.74 
Simulated 171.62 10,502.08 4.28 0.74 

May Historical 107.83 4055.14 2.29 0.77 
Simulated 110.20 4368.32 2.31 0.77 

June Historical 50.86 591.95 1.59 0.64 
Simulated 51.26 604.55 1.58 0.63 

July Historical 31.13 177.42 2.19 0.45 
Simulated 31.06 176.04 2.17 0.45 

August Historical 24.00 96.04 2.41 0.47 
Simulated 23.96 94.83 2.35 0.47 

September Historical 24.86 492.39 5.99 0.63 
Simulated 24.42 432.84 5.57 0.63 

October 
Historical 51.77 8883.06 6.70 0.60 
Simulated 50.71 7905.46 6.26 0.60 

November Historical 114.63 24,332.88 3.49 0.61 
Simulated 111.69 23,039.17 3.63 0.61 

December Historical 197.14 68,785.55 4.87 0.62 
Simulated 193.85 63,948.33 4.53 0.61 
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Figure A.2 | Monthly-based comparison of empirical (historical), synthetic (using AR() with 𝒫III 
white noise), and theoretical autocorrelation functions (ACFs) of the real-world case study employed 
in section 3.3—“Real-world case study” of the main text. 
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APPENDIX B 

B.1 SUPPLEMENTARY MATERIAL OF CHAPTER 5 
The following figures (Figure B.1 – Figure B.6) complement the simulation studies 
(hypothetical and real-world) presented in Chapter 5. 

Figure B.1 regards section 5.6.1.2 “Simulation of multivariate processes” and illustrates the 
established dependence patterns (for a randomly selected realization) among the  processes 
(referred to as sites A-D) for time lag  (Figure B.1e, i, j, m, n, o) and for each process for time 
lag  (Figure B.1a, f, k, p). Finally, the upper triangular panels (b, c, d, g, h, l) of Figure B.1 
illustrate the relationship between equivalent, 𝜌. ,Ø  and target 𝜌 ,Ø  correlation coefficients among 
the four processes (i.e., all pairs of sites A-D). 

Figure B.2 regards section 5.7.1 “Simulation of multivariate annual streamflow processes” and 
compares the historical and simulated dependence patterns among the  variables for time lag 
 (Figure B.2e, i, j, m, n, o) and for each variable for time lag  (Figure B.2a, f, k, p). This 
assessment highlights the good agreement between the patterns of observed and synthesized 
data. Finally, the upper triangular panels (b, c, d, g, h, l) of Figure B.2 illustrate the relationship 
between equivalent, 𝜌. ,Ø and target 𝜌 ,Ø  correlation coefficients among the four processes. 

Figure B.3 - Figure B.6 regards section 5.7.2 “Simulation of univariate daily rainfall process”, 
and provide supplementary information on the resemblance of the target marginal 
distributions and auto-dependence structures. 

 

 



  B. SUPPLEMENTARY MATERIAL OF CHAPTER  

Page | 257 

 
Figure B.1 | The diagonal panels (a, f, k, p) depict, for a randomly selected realization, the dependence 
pattern of the synthetically generated data of each process (i.e., for each site) for time lag τ = . The 
lower triangular panels (e, i, j, m, n, o) illustrate the dependence pattern of the synthetically generated 
data among the  processes (i.e., for each pair of sites A-D) for time lag τ = . The upper triangular 
panels (b, c, d, g, h, l) present the established relationships between equivalent, 𝜌. ,Ø and target 𝜌 ,Ø  
correlation coefficients given the corresponding distributions of processes 𝑥�  	and 𝑥�

Ø  
(i.e., for each pair of sites A-D). 
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Figure B.2 | The diagonal panels (a, f, k, p) depict the dependence pattern of the observed and 
synthetically generated data of each process (i.e., for each station ID-) for time lag τ = . Furthermore, 
they depict the lag-, target l𝜌(

��®; n, simulated l𝜌C( n, and equivalent l𝜌.( n autocorrelation coefficients. 
The lower triangular panels (e, i, j, m, n, o) illustrate the dependence pattern of the observed and 
synthetically generated data among the processes (i.e., for each pair of stations ID-) for time lag τ = . 
Furthermore, they depict the lag-, target l𝜌;

 ,Øn, simulated l𝜌C;
 ,Øn, and equivalent l𝜌.;

 ,Øn cross-
correlation coefficients. The upper triangular panels (b, c, d, g, h, l) present the established relationships 
between equivalent, 𝜌. ,Ø and target 𝜌 ,Ø correlation coefficients given the corresponding marginal 
distributions of processes 𝑥�  	and 𝑥�

Ø  (i.e., for each pair of stations ID-). 
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Figure B.3 | Monthly-based comparison of empirical, simulated and theoretical distribution function 
of positive daily rainfall at Pavlos station (using the Weibull’s plotting position). The title of each plot 
contains the parameters of the 𝒢𝒢 distribution, as well as the historical (𝑝`) and simulated (�̂�`) values 
of probability dry. 



APPENDIX B   

Page | 260 

 
Figure B.4 | Monthly-based comparison of empirical, simulated and theoretical ACF of daily rainfall 
at Pavlos station. The title of each plot contains the parameters of the fitted auto-dependence structure 
(i.e., CAS). 
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Figure B.5 | Monthly-based illustration of the relationship between equivalent, 𝜌. and target 𝜌 
correlation coefficients for the mixed and 𝒢𝒢 distribution that regard daily rainfall simulation at Pavlos 
station. 
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Figure B.6 | Monthly-based comparison of empirical and simulated dependence pattern for time lag 
. The title of each plot depicts the lag-, target (𝜌(��®), simulated (𝜌C(), and equivalent (𝜌.() 
autocorrelation coefficients that regard daily rainfall simulation at Pavlos station. 
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C.1. THE MULTIVARIATE CONTEMPORANEOUS PAR(1) MODEL 
We briefly present the contemporaneous PAR() model with Pearson type-III (i.e., -
parameter Gamma) white noise (referred as PAR-PIII), for multivariate simulation of monthly 
time series (see Koutsoyiannis []). The model is able to preserve the essential statistics (i.e., 
mean, variance and skewness coefficient) as well as the lag- month-to-month correlations (i.e., 
autocorrelations) and the lag- cross-correlations between locations. Particularly, let 𝒙T,� =
{𝑥�,�( , … , 𝑥�,�Î }

Ï
 be a vector of m stochastically dependent processes at season 𝑠 =

(, . . , 𝑆, (, … ,𝑆, … with period 𝑡. For instance if 𝒙T,�  is a cyclostationary monthly process, then 
𝑆 = () and 𝑡 denotes the year. The process can also be expressed as, 𝒙T,ô where 𝑛 ∈ ℤB is the 
time index. In this form, the season 𝑠 is obtained by, 𝑠 = 𝑛	mod(𝑆), while if 𝑛	mod(𝑆) = ;, 
then 𝑠 = 𝑆. Furthermore, the period 𝑡 can be obtained by, 𝑡 = ( + (𝑛 − 𝑠)/𝑆. For 
convenience, we use the first formulation, also omitting the period index 𝑡. The models’s 
generating scheme is given by,  

 𝒙� = 𝑨�𝒙�s( + 𝑩�𝒘�  (C.) 

where 𝑨�, 𝑩� are seasonally-varying 𝑚 ×𝑚 parameter matrices and 𝒘� = {𝑤�(, … ,𝑤�Î}
Ï

 is a 
vector of independent random variables generated from Pearson type-III distribution. The 
matrices 𝑨�	are calculated as follows: 

 𝑨� = diag'
Cov{𝒙�(, 	𝒙�s(( }
Var{𝒙�s(( }

, … ,
Cov{𝒙�Î, 	𝒙�s(Î }
Var{𝒙�s(Î }

( (C.) 

while matrices 𝑩� are given by: 

 𝑩�𝑩�Ï = 𝑮� (C.) 

where, 

 𝑮� = Cov{𝒙�, 𝒙�} −	𝑨�	Cov[𝒙�s(, 𝒙�s(]	𝑨�Ï (C.) 

where Cov[𝝃,𝝍]	denotes the covariance of vectors 𝝃 and 𝝍, i.e., Cov �𝝃,𝝍� = E �~𝝃 −

E[𝝃]�~𝝍Ï − E[𝝍]Ï�¡. At each season s, the parameter matrix 𝑩� can be estimated either 
through typical decomposition techniques (e.g., Cholesky or singular value decomposition) or 
numerically approximated, e.g., through optimization approaches [Koutsoyiannis, ; 
Higham, ]. 



APPENDIX C   

Page | 264 

Regarding the white noise vector	𝒘�, its statistical structure is associated with the seasonal 
statistical characteristics of the parent process, through the following equations: 

 E{𝒘�} = 𝑩�s(�E{𝒙�} − 𝑨𝒔E{𝒙�s(}� (C.) 

 Var{𝒘�} = [(,… ,(]Ï (C.) 

 µE{𝒘�} = (𝑩�
(E))s(	�µE{𝒙�} −	𝑨�(E)	µE{	𝒙�s(}� (C.) 

where	𝑩�
(�) is a matrix whose elements are raised to power k while µE{𝒘�} and µE{	𝒙�} are 

vectors that denote the third central moments of 𝒘� and 𝒙� respectively. The white noise is 
produced by a suitable random number generator, in particular the Pearson type-III 
distribution, which can explicitly preserve E{𝒘�}, Var{𝒘�}	and	µE{𝒘�}. 

C.2. SUPPLEMENTARY MATERIAL OF CHAPTER 6 
The following figures (Figure C.1 – Figure C.5) and tables (Table C-1 – Table C-2) illustrate 
the performance of SPARTA for the case study of section 6.5.3 (multivariate time series 
simulation) for a long simulation period of   years. It is noted that in this case, the 
simulated negative values have not been truncated to zero since we want to validate the 
theoretical basis of the proposed scheme. The following highlight the solid theoretical 
background of SPARTA as well as its ability to exactly reproduce the desired marginal 
distributions and the statistics of interest. 

 
Figure C.1 | Comparison of monthly mean values, μ, of historical and synthetic data (simulation 
length:   years). 
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Figure C.2 | Comparison of monthly standard deviation values, σ, of historical and synthetic data 
(simulation length:   years). 

 
Figure C.3 | Comparison of monthly skewness values, Cs, of historical and synthetic data (simulation 
length:   years). 
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Figure C.4 | Comparison of month-to-month lag- correlations, ρ, of historical and synthetic data 
(simulation length:   years). 

 
Figure C.5 | Comparison of monthly lag- cross-correlations, ρ, between sites of historical and 
synthetic data (simulation length:   years). 
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Table C-1 | Parameters of PIII for historical and simulated data (from PAR-PIII and SPARTA-PIII); identified 
with the method of moments. 

Month/ Parameter 
Oct Nov Dec Jan Feb Mar Apr May June July Aug Sep 

Site A 

a (Hist.) 1.6 4.0 3.3 22.7 155.0 3.0 95.1 37.5 4.0 13.7 1.1 0.6 

a (SPARTA Sim.) 1.6 4.1 3.3 23.0 150.1 3.0 94.8 37.1 4.0 13.8 1.1 0.6 

a (PAR Sim.) 2.0 5.1 4.1 29.1 208.6 3.9 119.0 45.2 5.0 17.0 1.4 0.7 

b (Hist.) 10.8 24.1 61.0 14.1 5.0 34.9 2.8 3.4 4.1 1.1 3.5 6.6 

b (SPARTA Sim.) 10.9 24.0 60.8 14.1 5.0 35.2 2.8 3.5 4.1 1.1 3.5 6.6 

b (PAR Sim.) 9.7 21.4 54.6 12.5 4.3 30.9 2.5 3.1 3.7 1.0 3.1 5.9 

c (Hist.) 2.0 -22.4 -49.6 -210.2 -658.4 6.2 -176.2 -77.1 5.2 -2.4 6.2 5.8 

c (SPARTA Sim.) 2.2 -23.0 -50.0 -212.1 -646.2 6.8 -175.9 -76.4 5.2 -2.5 6.2 5.8 

c (PAR Sim.) 0.1 -34.3 -72.7 -252.3 -781.6 -7.4 -207.5 -89.9 3.4 -4.1 5.7 5.4 
 Site B 

a (Hist.) 2.5 128.6 6.7 45.5 11.1 44.1 13.5 25.5 18.7 0.9 7.2 5.4 

a (SPARTA Sim.) 2.5 134.3 6.8 45.6 11.3 44.7 13.8 25.0 18.5 0.9 7.0 5.4 

a (PAR Sim.) 3.2 174.0 8.4 57.3 14.4 57.8 16.5 32.1 23.2 1.1 9.0 6.5 

b (Hist.) 46.6 8.6 49.7 14.0 28.4 9.6 12.8 6.7 6.4 35.9 10.3 16.6 

b (SPARTA Sim.) 46.5 8.4 49.4 13.9 28.2 9.6 12.7 6.8 6.5 36.5 10.4 16.6 

b (PAR Sim.) 41.6 7.4 44.4 12.4 24.9 8.4 11.7 6.0 5.8 31.6 9.1 15.1 

c (Hist.) -17.2 -891.1 -121.9 -503.4 -171.2 -321.7 -76.4 -112.3 -85.5 -5.4 -41.1 -40.6 

c (SPARTA Sim.) -17.3 -914.9 -123.4 -504.4 -173.2 -324.2 -78.1 -110.9 -84.8 -5.0 -40.2 -40.6 
c (PAR Sim.) -30.9 -1071.8 -161.3 -581.6 -214.2 -382.4 -94.8 -133.3 -99.2 -9.3 -50.0 -49.8 

 Site C 

a (Hist.) 1.9 1.9 2.8 8.3 31.3 5.7 404.0 1018.5 3293.8 2140.8 55.2 3.0 

a (SPARTA Sim.) 1.9 1.9 2.9 8.3 30.4 5.7 459.8 942.6 3239.7 1708.3 53.4 3.1 

a (PAR Sim.) 2.3 2.4 3.6 10.6 40.3 7.8 427.9 1024.6 3179.6 3377.9 67.1 3.7 

b (Hist.) 7.2 18.5 26.8 12.7 5.6 13.7 -0.7 0.4 0.1 0.1 0.7 3.3 

b (SPARTA Sim.) 7.2 18.5 26.7 12.8 5.7 13.8 -0.7 0.5 0.1 0.1 0.7 3.3 

b (PAR Sim.) 6.5 16.4 23.7 11.3 5.0 11.8 -0.7 0.4 0.1 0.1 0.7 3.0 

c (Hist.) -2.5 1.5 -14.1 -52.5 -121.1 -19.8 340.2 -408.4 -372.9 -214.3 -32.2 -1.3 

c (SPARTA Sim.) -2.5 1.5 -14.3 -52.4 -118.6 -19.5 359.6 -391.6 -369.6 -190.2 -31.6 -1.4 

c (PAR Sim.) -3.9 -2.8 -23.8 -66.1 -144.8 -33.0 349.0 -410.2 -366.1 -272.2 -36.3 -2.5 
 Site D 

a (Hist.) 4.6 9.1 1.8 17.3 12.9 276.7 20.0 14.7 0.7 1.2 1.1 0.8 

a (SPARTA Sim.) 4.6 9.2 1.8 17.2 12.7 299.1 19.9 14.5 0.6 1.2 1.1 0.8 

a (PAR Sim.) 5.7 11.5 2.3 21.6 15.9 325.3 25.6 18.5 0.8 1.5 1.3 0.9 

b (Hist.) 29.9 24.8 77.2 19.4 16.7 2.5 7.9 7.8 29.5 18.9 26.6 48.8 

b (SPARTA Sim.) 29.8 24.6 77.6 19.5 16.8 2.4 8.0 7.8 29.7 18.9 26.5 48.7 

b (PAR Sim.) 26.7 22.0 68.5 17.4 15.0 2.3 7.0 6.9 26.3 17.3 24.4 44.5 

c (Hist.) -54.7 -66.3 15.6 -221.0 -113.0 -624.3 -98.4 -72.8 0.0 -6.8 -7.0 -3.1 

c (SPARTA Sim.) -55.0 -68.0 16.4 -220.6 -111.6 -652.0 -97.7 -71.9 0.1 -6.8 -7.1 -3.1 
c (PAR Sim.) -71.1 -94.6 -2.4 -261.1 -137.1 -681.8 -119.4 -86.9 -2.3 -9.0 -9.7 -6.8 
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Table C-2 | Root mean square error between the theoretical values, (i.e., the historical) and the 
distribution parameters of simulated data of PAR-PIII and SPARTA-PIII models (see Table C-1). 

Site/ Parameter Site A Site B Cite C Cite D 
a (SPARTA Sim.) 1.42 1.66 128.73 6.46 
a (PAR Sim.) 17.22 14.37 358.73 14.2 
b (SPARTA Sim.) 0.11 0.22 0.06 0.16 
b (PAR Sim.) 2.40 2.81 1.30 3.39 
c (SPARTA Sim.) 3.58 6.99 10.23 8.03 
c (PAR Sim.) 39.75 62.70 19.43 25.09 
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D.1 SUPPLEMENTARY MATERIAL OF SECTION 7.4 

 
Figure D.1 | Rainfall - Monthly-based summary of L-scale (L) as a function of aggregation scale k. 

 
Figure D.2 | Runoff - Monthly-based summary of L-scale (L) as a function of aggregation scale k. 
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Figure D.3 | Rainfall - Monthly-based summary of L-skewness (LCs) as a function of aggregation 
scale k. 

 
Figure D.4 | Runoff - Monthly-based summary of L-skewness (LCs) as a function of aggregation scale 
k. 
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Figure D.5 | Rainfall - Monthly-based summary of prob. dry (PD) as a function of aggregation scale k. 

 
Figure D.6 | Runoff - Monthly-based summary of prob. dry (PD) as a function of aggregation scale k. 
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D.2 MULTI-TEMPORAL SIMULATION OF MULTIVARIATE DAILY RAINFALL 
PROCESSES  

To further explore the capabilities of the NDA-based three-level configuration scheme of 
Chapter 7, we employ it for the synthesis of long daily rainfall time series (  years) at four 
locations. More specifically, the historical data13 concern four rain gauges located at Boeoticos 
Kephisos river basin, Eastern Greece. The historical data, that span from // to 
//, were obtained from the rainfall stations of Pavlos, Atalanti, Leivadia and Tithorea, 
which hereafter are referred to as site A, B, C and D respectively. See also, Efstratiadis et al. 
[a] for further details regarding the dataset. In this case, in order to account for the 
intermittent character of rainfall, at monthly and daily time scale, we employ the mixed, zero-
inflated, distribution model discussed in section 4.4. Its CDF reads, 

 𝐹j(𝑥) = 	 ·
	𝑝` ,																																											𝑥 ≤ ;
	𝑝` + (( − 𝑝`)𝐺j(𝑥), 𝑥 > ;  (D.) 

where, 𝑝`  denotes the probability of a dry interval (abbreviated as probability dry), i.e., 𝑝` ≔
𝑃l𝑥 ≤ 𝑥`n and 𝐺j stands for the distribution of amounts greater than the threshold 𝑥`, i.e., 
𝐺j ≔ 𝐹j|jBj� = 𝑃l𝑥 ≤ 𝑥,𝑥 > 𝑥`n. Herein it was assumed that 𝑥` ≔ ;, while 𝐺j  was obtained 
by fitting (using the L-moments method) both the Generalized Gamma (𝒢𝒢; Eq. (5.44)) and 
the Burr type-XII (ℬ𝓇XII; Eq. (5.41)) distributions and selecting the one that better describes 
that data at hand. 

Similar to the case study of section 7.4, we shall start the assessment of the model and 
presentation of the results from the annual time scale and subsequently move to the monthly 
and daily ones. Figure D.7 presents a summary of the simulation results at the annual time 
scale and verifies that the model was capable of preserving the target distribution functions and 
autocorrelation structure (i.e., CAS). It is noted that for demonstration purposes the 
parameters of CAS at the annual scale were manually set to 𝛽 = ; and 𝜅 = (.8 for all processes. 
Figure D.8 depicts the lag- cross-correlations among the four sites, which are all very well 
preserved by the model. 

                                                        
13 http://main.hydroscope.gr/  
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Figure D.7 | (a-d) Historical annual time series for sites A-D. (e-h) Empirical, simulated and 
theoretical distribution functions for sites A-D (using the Weibull’s plotting position) (i-l) Empirical, 
simulated and theoretical ACFs for sites A-D. (m-p) Synthetic annual time series (randomly selected 
window of   years). 

 
Figure D.8 | Comparison of historical and simulated lag- cross-correlations at the annual time scale. 

Moving to the monthly time scale, Figure D.9 provides a brief summary of the simulation 
results and highlights the ability of the three-level configuration to resemble the first three L-
moments (i.e., L-mean, L-scale and L-Skewness), as well as reproduce the moderate 
intermittent behavior of the rainfall data, mostly observed during the summer months. 
Furthermore, Figure D.10 and Figure D.11 compare the historical and simulated lag- month-
to-month correlations and the lag- cross-correlations of the monthly time scale respectively. 
Inspection of these graphs reveals that model closely resembles the target correlations in all 
cases. 
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Figure D.9 | Monthly-based comparison of monthly empirical and simulated L-Mean, L-Scale and L-
Skewness, as well as probability dry. 

 
Figure D.10 | Comparison of historical and simulated lag- month-to-month correlations for sites A-
D. 
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Figure D.11 | Comparison of monthly historical and simulated lag- cross-correlations for sites A-D. 

Figure D.12 to Figure D.15 provide a comparison among the monthly empirical, simulated 
and theoretical distribution functions (as well as their parameters) of all months for sites A-D. 
These figures highlight the ability of the model to preserve the target distribution functions (𝒢𝒢 
or ℬ𝓇XII) of the monthly time scale with notable accuracy. 

 
Figure D.12 | Monthly-based comparison of empirical, simulated and theoretical distribution 
functions at monthly time scale for site A (using the Weibull’s plotting position). The title of each 
subplot provides the selected distribution and its parameters, as well as the historical (𝑝`) and simulated 
(�̂�`) values of probability dry. 
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Figure D.13 | Monthly-based comparison of empirical, simulated and theoretical distribution 
functions at monthly time scale for site B (using the Weibull’s plotting position). The title of each 
subplot provides the selected distribution and its parameters, as well as the historical (𝑝`) and simulated 
(�̂�`) values of probability dry. 

 
Figure D.14 | Monthly-based comparison of empirical, simulated and theoretical distribution 
functions at monthly time scale for site C (using the Weibull’s plotting position). The title of each 
subplot provides the selected distribution and its parameters, as well as the historical (𝑝`) and simulated 
(�̂�`) values of probability dry. 
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Figure D.15 | Monthly-based comparison of empirical, simulated and theoretical distribution 
functions at monthly time scale for site D (using the Weibull’s plotting position). The title of each 
subplot provides the selected distribution and its parameters, as well as the historical (𝑝`) and simulated 
(�̂�`) values of probability dry. 

Regarding the daily time scale, Figure D.16 provides a quick summary of the simulation results 
in terms of reproducing some key summary daily statistics (L-Mean, L-Scale, L-Skewness and 
probability dry), while Figure D.17 presents a comparison among the daily historical and 
simulated lag- cross-correlation coefficients for sites A-D. As shown, the model reproduced 
the first three L-moments, as well as the historical probability dry with high accuracy, while it 
managed to satisfactory reassemble the lag- cross-correlation coefficients of all sites and for 
all months. The slight difference between the historical and simulated lag- cross-correlations 
can be attributed to the introduction of bias through the application of the proportional 
adjusting procedure. 

To further assess the ability of the scheme to reproduce the target marginal distributions at the 
daily time scale, Figure D.18 to Figure D.21 present a monthly-based comparison among the 
empirical, simulated and theoretical distribution functions for sites A-D, that highlight the 
potential of the model to reproduce not only the target summary statistics (i.e., L-moments and 
correlations), but the entire target distribution functions. Furthermore, regarding the 
reproduction of the auto-dependence structure at the daily time scale, Figure D.22 to Figure 
D.25 validate the capabilities of the scheme to resemble the target daily autocorrelation 
functions (i.e., the fitted CAS to the historical data) for all sites and months. In addition, to 
explore the performance of the model in the intermediate temporal scales (i.e., those between 
the monthly and daily time scale) we performed a similar analysis as the one presented in the 
previous case study. Figure D.26 to Figure D.29, Figure D.30 to Figure D.33 and Figure D.34 
to Figure D.37 depict a monthly-based summary of the L-Scale ~𝐿)

(�)�, L-Skewness ~𝐿��
(�)� and 

probability dry ~𝑃(�)� as a function of time scale 𝑘 respectively. 
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Figure D.16 | Monthly-based comparison of daily empirical and simulated L-Mean, L-Scale and L-
Skewness, as well as probability dry. 

 
Figure D.17 | Comparison of daily historical and simulated lag- cross-correlations for sites A-D. 
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Figure D.18 | Monthly-based comparison of empirical, simulated and theoretical distribution 
functions at daily time scale for site A (using the Weibull’s plotting position). The title of each subplot 
provides the selected distribution and its parameters, as well as the historical (𝑝`) and simulated (�̂�`) 
values of probability dry. 

 
Figure D.19 | Monthly-based comparison of empirical, simulated and theoretical distribution 
functions at daily time scale for site B (using the Weibull’s plotting position). The title of each subplot 
provides the selected distribution and its parameters, as well as the historical (𝑝`) and simulated (�̂�`) 
values of probability dry. 
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Figure D.20 | Monthly-based comparison of empirical, simulated and theoretical distribution 
functions at daily time scale for site C (using the Weibull’s plotting position). The title of each subplot 
provides the selected distribution and its parameters, as well as the historical (𝑝`) and simulated (�̂�`) 
values of probability dry. 

 
Figure D.21 | Monthly-based comparison of empirical, simulated and theoretical distribution 
functions at daily time scale for site D (using the Weibull’s plotting position). The title of each subplot 
provides the selected distribution and its parameters, as well as the historical (𝑝`) and simulated (�̂�`) 
values of probability dry. 
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Figure D.22 | Monthly-based comparison of empirical, simulated and theoretical autocorrelation 
function (ACF) at daily time scale for site A; the parameters of CAS are given on the title of each subplot. 

 
Figure D.23 | Monthly-based comparison of empirical, simulated and theoretical autocorrelation 
function (ACF) at daily time scale for site B; the parameters of CAS are given on the title of each subplot. 
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Figure D.24 | Monthly-based comparison of empirical, simulated and theoretical autocorrelation 
function (ACF) at daily time scale for site C; the parameters of CAS are given on the title of each subplot. 

 
Figure D.25 | Monthly-based comparison of empirical, simulated and theoretical autocorrelation 
function (ACF) at daily time scale for site D; the parameters of CAS are given on the title of each subplot. 
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Figure D.26 | Monthly-based summary of L-Scale (L) as a function of aggregation scale k for site A. 

 
Figure D.27 | Monthly-based summary of L-Scale (L) as a function of aggregation scale k for site B. 
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Figure D.28 | Monthly-based summary of L-Scale (L) as a function of aggregation scale k for site C. 

 
Figure D.29 | Monthly-based summary of L-Scale (L) as a function of aggregation scale k for site D. 
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Figure D.30 | Monthly-based summary of L-Skewness (LCs) as a function of aggregation scale k for site 
A. 

 
Figure D.31 | Monthly-based summary of L-Skewness (LCs) as a function of aggregation scale k for site 
B. 
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Figure D.32 | Monthly-based summary of L-Skewness (LCs) as a function of aggregation scale k for site 
C. 

 
Figure D.33 | Monthly-based summary of L-Skewness (LCs) as a function of aggregation scale k for site 
D. 
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Figure D.34 | Monthly-based summary of prob. dry (PD) as a function of aggregation scale k for site 
A. 

 
Figure D.35 | Monthly-based summary of prob. dry (PD) as a function of aggregation scale k for site 
B. 
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Figure D.36 | Monthly-based summary of prob. dry (PD) as a function of aggregation scale k for site 
C. 

 
Figure D.37 | Monthly-based summary of prob. dry (PD) as a function of aggregation scale k for site 
D. 
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Finally, in order to investigate the behavior of the three-level configuration regarding the 
simulation of daily extreme events, the series of historical and simulated annual rainfall 
maxima has been extracted and depicted as a function of the return period in Figure D.38. The 
plot also depicts the parameters of the fitted (using the L-moments method) to the historical 
data 𝒢ℰ𝒱 distribution (i.e., Eq. (7.6)). It is noted that Site B (i.e., the annual rainfall maxima 
obtained from Atalanti gauge) exhibited negative shape parameter (𝑎 = −;.;8;), which is not 
consistent from hydrological point of view, since it implies that the distribution is bounded 
from above. Thereby, for this site we fitted the Gumbel distribution (𝑎 = ;; in Eq. (7.6)). 
Regarding site B, visual inspection of Figure D.38, reveals that the scheme generates annual 
daily maxima with arguably heavier tails; a fact also confirmed by the shape parameter of the 
𝒢ℰ𝒱 distribution fitted to the simulated data. In this case, the identified 𝒢ℰ𝒱 parameters are 
for Site B~𝒢ℰ𝒱(𝑐 = >I.@>(, 𝑏 = 	(I.;@(, 𝑎 = 	;.;I?). As far it concerns the behavior of the 
extremes of sites A, C and D, the historical, simulated data are in better agreement, while the 
theoretical 𝒢ℰ𝒱 distribution (extracted from the historical data) has in both cases a positive 
value. Further to this, it is noted that the simulated annual daily maxima of sites A, C and D lie 
within the  confidence intervals (estimated using the parametric bootstrap method). The 
parameters of the fitted 𝒢ℰ𝒱 distribution to the simulated annual rainfall maxima are: Site 
A~𝒢ℰ𝒱(𝑐 = >B.B@I, 𝑏 = 	(?.8>@, 𝑎 = 	;.;BE), Site C~	𝒢ℰ𝒱(𝑐 = 8I.?)@, 𝑏 = 	(@.>B@, 𝑎 =
	;.(>E) and site D~𝒢ℰ𝒱(𝑐 = 8(.E?), 𝑏 = 	(I.?(I, 𝑎 = 	;.((I), which are relatively close 
(considering the associated large uncertainty) to those obtained from the historical maxima 
(see the titles of Figure D.38a-d). 

 
Figure D.38 | Empirical (•) and simulated (•) daily annual rainfall maxima of sites A-D, as a function 
of the return period. The solid red line (—) depicts the fitted to historical data Generalized Extreme 
Value (𝒢ℰ𝒱) distribution (parameters: location (c), scale (b) and shape (a)). The dashed blue line (− − −) 
represents the  confidence intervals (estimated using the parametric bootstrap method). 
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D.3 SUPPLEMENTARY MATERIAL OF SECTION 7.5 

 
Figure D.39 | Disaggregated hourly rainfall rainfall (non-zero) - monthly-based comparison of 
empirical, simulated and theoretical distribution functions (using the Weibull’s plotting position). The 
title of each subplot provides the selected distribution and its parameters, as well as the historical (𝑝`) 
and simulated (�̂�`) values of probability dry 

 
Figure D.40 | Disaggregated hourly rainfall - monthly-based comparison of empirical, simulated and 
theoretical autocorrelation function (ACF); the parameters of CAS are given on the title of each subplot. 
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Figure D.41| Disaggregated hourly rainfall - Monthly-based summary of L-mean (L) as a function 
of aggregation scale k. 

 
Figure D.42 | Disaggregated hourly rainfall - Monthly-based summary of L-scale (L) as a function 
of aggregation scale k. 
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Figure D.43 | Disaggregated hourly rainfall - Monthly-based summary of L-skewness (LCs) as a 
function of aggregation scale k. 

 
Figure D.44 | Disaggregated hourly rainfall - Monthly-based summary of prob. dry (PD) as a 
function of aggregation scale k. 
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Figure D.45 | Disaggregated hourly rainfall - Monthly-based summary of lag- autocorrelation 
coefficient (ρ) as a function of aggregation scale k. 
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