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Tests to identify the stochastic structure of each process

Figure 1: Fitting errors between various Markov processes and 
an HK process (H=0.9).

Figure 2: Comparison between ranges of confidence intervals 
of various Markov processes and an HK process (H=0.9). 
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Source: Dimitriadis et al., 2016.

Figure 1: Fitting errors between various Markov processes and 
an HK process (H=0.9).

Figure 3: Fitting errors between various HK processes and a 
Markov process (ρ=0.9).

Figure 2: Comparison between ranges of confidence intervals 
of various Markov processes and an HK process (H=0.9). 

Figure 4: Comparison between ranges of confidence intervals of 
various HK processes and a Markov process (ρ=0.9). 
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Classification by Koppen

Map 1: Classification of stations by Koppen and selection of the highest quality station for each class and sub-class 
(Source: Sotiriadou et al., 2016).



An example of the river discharge process

H = 0.62

Map 2: Spatial distribution of river discharge stations and estimation of Hurst coefficient (Source: Markonis et al., 2016).



Examples of stations around the globe with high quality-data 
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Figure 5: Temperature records from station located in Dallas, USA Figure 6: Dew point records from station located in Dallas, USA 
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Figure 5: Temperature records from station located in Dallas, USA 
(Source: Lerias et al., 2016)

Figure 6: Dew point records from station located in Dallas, USA 
(Source: Lerias et al., 2016).

Figure 7: Wind speed records from station located in Winter 
Trail, Alaska (Source: Deligiannis et al,, 2016).

Figure 8: Precipitation records from station located in North-
East Australia (Source: Sotiriadou et al., 2016).



HK stochastic structure for examined stations
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Figures 9-12: Empirical and modelled HK process for the examined stations of previous section, respectively for each process.



Predictions intervals for the 30-year mean of examined stations
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Figures 13-16: Prediction intervals of the 30-year mean for the examined stations of previous sections, respectively for each process.



Predictions errors for the 30-year mean (overall)
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Figures 17-20: Overall prediction errors of the 30-year mean for each examined process and for a white noise, Markov and HK model.



Comments and Conclusions
The main quest of our work is to investigate the long-term persistence of the examined 
processes and in what degree we can describe the climatic variability of these processes in 
annual scale, using just three parameters, these are the mean, standard deviation and Hurst 
coefficient and with the (over safety) assumption that the 30-year scaled process is normally 
distributed and stationary.

Overall, we estimate that for the :

�Temperature process (Η≈0.75), the prediction error for 73% of stations is lower than 10%.

�Dew point process (Η≈0.7, the prediction error for 80% of stations is lower than 10%.

�Wind process (Η≈0.73), the prediction error for 71% of stations is lower than 10%.Wind process (Η≈0.73), the prediction error for 71% of stations is lower than 10%.

�Precipitation process (Η≈0.67) and river discharges (Η≈0.62), the prediction error for 86% of 

stations is lower than 20%.

For more details about the analysis and further discussion on the 

climatic variability and long-term persistence please visit our 

poster session HS7.4 (Change in climate, hydrology and society) on

Friday 22 Apr., 17:30–19:00 / Hall A (posters A-127 to A-131).
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Temperature and dew point (selected stations)
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Temperature (empirical Hurst coefficient)
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et al., 2016.Source: Lerias et al., 2016.



Precipitation (empirical Hurst coefficient)

Source: Sotiriadou et al., 2016.



Precipitation (prediction intervals)

Source: Sotiriadou et al., 2016.



Wind (prediction intervals)

Source: Deligiannis et al., 2016.


