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Part A 

Introduction to stochastic simulation  
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Schools of thought converging to stochastic simulation 

 

Monte Carlo method 

Theory of stochastic processes 

Time series analysis 

Systems analysis and control 
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Prehistory of Monte Carlo simulation 
 Georges Louis LeClerc (Comte de Buffon, French scientist; 1707-1788) became 

famous for “Buffon’s needle,” a method using needle tosses onto a lined background 
to estimate π (if line distance = needle length, π = 2 / Probability of crossing a line). 

 Galton (1890) invented a set of 3 modified dice to generate samples from a normal 
distribution. 

 “Student” (pseudonym of W.S. Gosset) in 1908 performed simulation experiments 
using 3000 cards (in 750 groups of size 4) to find the distribution of the t-statistic and 
of the correlation coefficient.  

 Tippett (1927): Published a table of random numbers: he took 41 600 digits at 
random from Census Reports and combined them by fours to give 10 400 numbers. 

 Mahalanobis 
(1934) published 
tables of random 
numbers from 
normal 
distribution (208 
sets of 50 
numbers each).  

[See more information 
in Stigler (2002).] 
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Prehistory of Monte Carlo simulation in hydrosystems 
 Hazen (1914): Proposed an empirical 

simulation technique and formed a synthetic 
time series by combining historical flow 
records of different rivers ‘spliced’ 
sequentially together.  

 Sudler (1927): Extended the work of Hazen 
by resampling from a sequence of historical 
river flows using cards, which he shuffled to 
form new sequences of data 

 Hurst (1951): Performed physical 
experiments to generate random numbers: 
o  Tossing 10 coins (sixpences) 1025 

times at a rate of 100 random numbers 
per 35 min; note that 10 binary digits 
are equivalent to about 3 decimal digits.  

o Shuffling and cutting a pack of 52 cards 
at a rate of 100 random numbers per 20 
min.  

Hazen’s graph of the reservoir storage-yield-
reliability relationship  
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Stanislaw Ulam, the solitaire and the conception of the 
Monte Carlo method 
 

Stanislaw Ulam (13 April 1909 
– 13 May 1984): Polish-
American mathematician; since 
1943 he worked in Los Alamos 
National Laboratory 
(Manhattan Project under 
leadership of Robert 
Oppenheimer) 
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Nicholas Metropolis and the “birth certificate” of the Monte 
Carlo method 
 

Nicholas Metropolis (11 June 
1915 – 17 October 1999): Greek-
American physicist; since April 
1943 he worked in the 
Manhattan Project in Los Alamos 



  D. Koutsoyiannis, Stochastic simulation of time irreversible processes 7 

Integration: Classical numerical method 
 In the numerical integration of a function f of a scalar variable u, a definite integral is 

approximated by the relationship (known as the trapezoidal rule): 

∫𝑓(𝑢)d𝑢 ≈ ∑ 𝑤𝑛𝑓 (
𝑛

𝑚
)

𝑚

𝑛=0

1

0

 (1) 

where m is a positive integer and wn denotes a weight, equal to 1/2𝑚 for the 
endpoints 𝑛 = 0 and 𝑛 = 𝑚, and equal to 1/𝑚 for all intermediate n. 

 Likewise, in the numerical integration of a function of a vector variable of size s in the 
space 𝐼𝑠 ∶=  [0, 1]𝑠, the relationship becomes: 

∫𝑓(𝒖)d𝒖 ≈ ∑ … ∑ 𝑤𝑛1…𝑤𝑛𝑠𝑓 (
𝑛1
𝑚
,… ,

𝑛𝑠
𝑚
)

𝑚

𝑛𝑠=0

𝑚

𝑛1=0𝐼𝑠

 (2) 

 The computational nodes form a rectangular grid with equidistance 1/m. 
 Their number is Ν = (m + 1)s and the computational error is O(m-2) = O(N -2/s). 
 Consequently, for a specified acceptable error, N increases exponentially with s 

(curse of dimensionality). 
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Integration: The Monte Carlo method 
 In the Monte Carlo integration, the Ν points for the evaluation of f(u) are taken at 

random (rather than at the nodes of a grid) and the weight is 1/Ν, so that 
(Niederreiter, 1992): 

∫𝑓(𝒖)d𝒖 ≈
1

𝑁
∑ 𝑓(𝒙𝑛)

𝑁

𝑛=1𝐼𝑠

 (3) 

where 𝒙1, … , 𝒙𝑁 are independent random points over the space 𝐼𝑠. 

 For an arbitrary integration space B the relationship becomes:  

∫𝑓(𝒖)d𝒖 ≈
1

𝑁
∑ 𝑓(𝒙𝑛)𝑈𝐵(𝒙𝑛)

𝑁

𝑛=1𝐵

, 𝑈𝐵(𝒙𝑛)≔ {
1, 𝒙𝑛𝐵
0 𝒙𝑛𝐵

 (4) 

According to a classical statistical law, the computational error is 𝑂(𝛮−1/2). 

 Observation: The error does not depend on the dimensionality s. 
 Conclusion: Comparing the errors of the classical and Monte Carlo methods, we 

readily obtain that the latter is preferable when the dimensionality > 4 . 
 Remark: For large dimensionality s, e.g. > 20, the classical method is infeasible while 

the Monte Carlo is always feasible. 
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The Monte Carlo method is part of routine numerical 
modelling 
 The screen on the right 

shows how the 
Mathematica software 
implements various 
versions of the Monte 
Carlo method for 
numerical integration. 

 This is not just an 
additional option within 
a repertoire of available 
options; for high-
dimensional spaces it is 
the only possibility. 
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Archimedes’ constant π in Monte Carlo simulation 
 LeClerc’s Monte Carlo method to calculate π became 

popular among scientists and his experiment was 
later repeated by many, most famous of whom 
became the Italian Lazzarini for reporting in 1902 
an agreement up to sixth digit with just 3408 trials. 

 There are many other Monte Carlo algorithms to 
estimate π (one will appear in Koutsoyiannis, 2020). 
However, these are good only for fun, as much 
faster and much more accurate deterministic 
algorithms exist to calculate π.  

 Reitwiesner (1950) calculated by a deterministic 
algorithm, running on the ENIAC computer, the first 2035 decimal digits of π. 
Metropolis et al. (1950) examined their randomness, an exercise made thereafter 
many times showing that the digits of π have no apparent pattern and pass tests for 
statistical randomness. 

 Dodge (1996) promoted an idea opposite to LeClerc’s: that the digits of π form a 
“Natural Random Number Generator”. 

 Since January 2019, 31.4 trillion digits of π are known (found by the Chudnovsky 
algorithm*; equivalent to ~100 million books, 1000 pages each—note, the British 
Library has 25 million books) and thus can serve as a basis for any simulation 
experiment. However, simple random generators are more economic and convenient.  

* https://cloud.google.com/blog/products/compute/calculating-31-4-trillion-digits-of-archimedes-constant-on-google-cloud 

https://www.metablake.com/pi
.swf 
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Memorable moments in the history of stochastics 

    

Ludwig Boltzmann 

(1844 –1906, Universities of 
Graz and Vienna, Austria, and 
Munich, Germany) 

George D. Birkhoff  

(1884 – 1944; 
Princeton, Harvard, 
USA)  

Aleksandr Khinchin 

(1894 – 1959; Moscow 
State University, 
Russia) 

Andrey N. Kolmogorov  

(1903 – 1987; Moscow State 
University, Russia) 

1877 Explanation of the 
concept of entropy in 
probability theoretic context.  

1884/85 Introduction of the 
notion of ergodic* systems 
which however he called 
“isodic”  

* The term is etymologized from 
Greek words but which ones 
exactly is uncertain (options: (a) 
έργον + οδός; (b) έργον + είδος; 
(c) εργώδης; see Mathieu, 1988). 

1931 Discovery of 
the ergodic 
(Birkhoff–
Khinchin) theorem 

1933 Purely measure-
theoretic proof of the 
ergodic (Birkhoff–
Khinchin) theorem 

1934 Definition of 
stationary stochastic 
processes and 
probabilistic setting of 
the Wiener-Khinchin 
theorem relating 
autocovariance and 
power spectrum  

1931 Introduction of the terms 
process to describe change of a 
certain system and stationary to 
describe a probability density 
function that is unchanged in time 

1933 Definition of the concepts of 
probability & random variable 

1937-1938 Probabilistic 
exposition of the ergodic 
(Birkhoff–Khinchin) theorem 
and stationarity  

1947 Definition of wide sense 
stationarity 
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The foundation of stochastics by the Moscow School of 
Mathematics 
 Kolmogorov (1931) introduced the term stochastic process, identifying “process” with 

“change”.* He also used the term stationary to describe a probability density function 
that is unchanged in time.  

 Kolmogorov (1933) introduced the definition of probability (founded on measure 
theory) in an axiomatic manner based on three fundamental concepts (a triplet called 
probability space) and four axioms (non-negativity: normalization, additivity and 
continuity at zero). 

 Khinchin (1934) gave a more formal definition of a stochastic process and stationarity.  
 Kolmogorov (1938) gave a concise presentation of the concepts: 

[…] a stationary stochastic process […] is a set of random variables 𝑥𝑡 depending 
on the parameter t, −∞ < 𝑡 < +∞, such that the distributions of the systems 
(𝑥𝑡1 , 𝑥𝑡2 , … , 𝑥𝑡𝑛) and (𝑥𝑡1+𝜏, 𝑥𝑡2+𝜏, … , 𝑥𝑡𝑛+𝜏) coincide for any 𝑛, 𝑡1, 𝑡2, … , 𝑡𝑛 and τ. 

                                      
* Kolmogorov cited Bachelier (1900; French mathematician) as having already used stochastic processes but Bachelier did not use 
that name. The Greek adjective “stochastic[os/e]” was used by Greek philosophers, including Plato and Aristotle, and was 
transplanted to the international scientific vocabulary by Jacob Bernoulli, in his famous book Ars Conjectandi (written in Latin in 
1684-89 but published after his death, in 1713). The term was revived by Bortkiewicz (1917; Russian economist and statistician of 
Polish ancestry) and also by Slutsky (1925, 1928a,b, 1929; Ukrainian/Russian/Soviet mathematical statistician and economist.). It 
appears that the prevalence in USSR of the more sophisticated term “stochastic” (over the equivalent term “random”) must have 
been related to political and ideological reasons (incongruence with the dialectic materialism): models beyond strict deterministic 
were considered with a priori suspicion (Mazliak, 2018). 
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The onset of Time Series Analysis by economists 
 Perhaps the first definition of a time series was given by Bailey (1929) (American 

statistician): 
A time series is a series of observations taken at different times and recorded with the 
time at which they were taken. 

 Ten years earlier, W.M. Persons (1919) (American economist), in studying the 
problem “When to buy or sell”, he introduced analysis of time series, which he called 
statistical series, and asserted that they: 

result from the combination of four elements: secular trend, seasonal variation, 
cyclical fluctuation, and a residual factor. [Trap 1] 

 He also proposed methods for “Eliminating secular trends” and “Eliminating seasonal 
variation”. [Trap 2] 

 Slutsky (1927) (Ukrainian/Russian/Soviet mathematical statistician and economist) 
demonstrated that what was regarded as cyclical component is nothing but a 
statistical artefact with no essential meaning (see e.g. Kyun and Kim 2006; Barnett, 
2006). 

 The decomposition of a time series to the remaining three components, trends, 
seasonal variation and residuals is popular even today.  

 Yule (1927) and Walker (1931) (both British statisticians), starting from an analysis 
of sunspot numbers, studied autoregressive processes and in particular their 
periodogram and autocorrelation properties. 
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The Uppsala school and the stochastic foundation of time 
series analysis 
 Wold (1938) (Norwegian-born econometrician and statistician with career in 

Sweden) proved that a time series (more precisely, a stochastic process) can be 
decomposed into a regular process (i.e., a process linearly equivalent to a white noise 
process) and a predictable process (i.e., a process that can be expressed in terms of its 
past values). 

 Whittle (1951, 1952, 1953) (New-Zealand-born mathematician and statistician) laid 
the mathematical foundation of autoregressive and moving average models in 
univariate and multivariate setting.  

 Later, in their influential book, Box and Jenkins (1970) named these models with 
acronyms such as AR(p), MA(q), ARMA(p,q), ARIMA(p,d,q); they became popular with 
these names and have been also known as Box-Jenkins models (cf. Stigler’s law of 
eponymy; Stigler, 2002) 

 A useful extension of these models to apply to processes with long-range 
dependence was proposed by Hosking (1981). These are made by replacing the 
integer parameter d in ARIMA(p,d,q) with a real one (fractional differencing) and 
are usually termed ARFIMA(p,d,q). 
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The onset of time series modelling in hydrology 
 Barnes (1954), in designing a reservoir in Australia, used a table of random numbers 

from normal distribution to generate a 1000-year sequence of synthetic annual data. 
 Thomas and Fiering (1962) generated flows correlated in time. 
 Beard (1965) and Matalas (1967) generated concurrent flows at several sites. 
 Chow (1969), and Chow and Kareliotis (1970) systematized the use of time series 

models (in particular—and using their terminology—moving average models, sum of 
harmonics models and autoregression models) and highlighted their value in the 
economic planning of water supply and irrigation projects. 

 It seems that hydrologists have followed (and today still do) the “Time Series School” 
rather than the more rigorous “Stochastic School”. 
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Problems with the “Time Series School” 
 The term time series is ambiguous, sometimes denoting a a series of observations as in 

the original definition of Bailey (1929) or a realization of a stochastic process, and 
other times denoting the stochastic process per se. 
[Note: Here the term is used with the first meaning, a series of numbers, not of random 
variables.] 

 Time series analysis separated from the stochastic theory may be meaningless. 
Popular computer programs have made calculations easy and fast, but numerical 
results may mean nothing if we are ignorant of stochastics. 

 With the exception of AR(1) and ARMA(1,1), time series models are too artificial 
because, being complicated discrete-time models, they do not correspond to a 
continuous time process, while natural processes typically evolve in continuous time.  

 Their identification, typically based on the estimation of the autocorrelation function 
from data, usually neglects estimation bias and uncertainly, which in stochastic 
processes (as opposed to purely random processes) are often tremendous (Lombardo 
et al., 2014). 

 Today they are unnecessary as synthetic series from a process with any arbitrary 
autocorrelation structure can be easily generated otherwise (see below). 
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Problems with the “Time Series School” (2) 
 From their onset, time series models (excepting AR(1) and ARMA(1,1)), have been 

tightly associated with a large number of parameters and they usually become over-
parameterized and thus not parsimonious. These parameters are estimated from data, 
which usually are too few to support a reliable estimation. 

 In Whittle’s (1952) words:  
There is, of course, nothing special with the autoregressive scheme; we could equally 
well graduate with a high-order moving average, and there are many other 
possibilities. […] In practice, however, the autoregressive graduation has the 
advantage that the estimated residual sum of squares can be written down 
directly in terms of the observations […] without the need to solve explicitly for the 
estimates of the ‘a’ coefficients. [Trap 3] 
… 
It is, of course, not possible to estimate an infinite number of parameters from a 
finite sample, but the series of a coefficients must converge, and by considering 
sufficiently many coefficients we should be able to obtain an arbitrarily good 
approximation to the real process. [Trap 4] 

 This is similar to fitting a distribution function using observations to estimate many 
moments thereof, without using a parametric expression for the distribution (cf. 
Lombardo et al., 2014, “Just two moments”.)  

 Today we know how to (a) use a parsimonious model structure and separate it from 
parameters and (b) calculate model coefficients theoretically (not estimate from data). 
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Problems with the “Time Series School” (3) 
 The decomposition of a time series to components, trends, seasonal variation and 

residuals, is popular even today. 
 In particular trend analysis of hydroclimatic processes is more fashionable today than 

ever before. 
 However it should be noted that: 

o A meaningful definition of a trend has never been given. 
o It is hardly conceivable how time per se could be regarded as an explanatory 

variable in a complex process and what is the logical basis in expressing the 
statistics of a process as a deterministic function of time.  

o Accumulation of data series with long time spans has shown that, what have 
been regarded as trends, are mostly parts of long term fluctuations (and in 
accord to Slutsky’s work, they could also be regarded as statistical artefacts).  

o Hurst’s (1951) and Kolmogorov’s (1940) works provide a scientific basis to 
model what has been regarded as trends in the context of stationary stochastic 
processes. 

 In addition, “deseasonalization” (in Persons’s original terminology “Eliminating 
seasonal variation”) is a delusion; we can hardly remove seasonality in the 
multivariate distribution of a stochastic process (what we typically do is in the 
marginal distribution). 



  D. Koutsoyiannis, Stochastic simulation of time irreversible processes 19 

Notes on optimization and control of hydrosystems 
 “It is amazing how many are unaware that the primary reason for feedback in 

control is uncertainty” (Bennett, 1996). 
 The best way to describe uncertainty is provided by stochastics. 
 Linear programming methods are extremely effective but they presuppose linear 

equations which are hardly the case in hydrosystems. The stochastic variants of 
linear programming are rather naïve and not quite useful (except for simple sub-
problems). 

 Dynamic programming methods are good for problems that can be divided into 
sequential stages but this is a special case not often met in hydrosystems. The 
stochastic extensions of these methods presuppose drastic assumptions that 
oversimplify system dynamics and may make the results irrelevant to real system. 

 Optimization and control problems in hydrosystems are characterized by: 
o uncertainty in terms of inputs, with peculiar stochastic behaviour; 
o nonlinearity with respect to dynamics, operation constraints and objectives; 
o nonconvexity in terms of objective functions and constraints, so that numerous 

local optima appear very often; 
o hysteresis and storage effects which demand to express the performance 

measure (objective function) in a global manner (not on an instantaneous basis);  
o many variables yet demanding a parsimonious representation; 
o multiobjective setting (involving several performance criteria). 

 Question: Can we construct a generic methodology for such problems?  
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A general methodological scheme for hydrosystems 
Mathematically, 
hydrosystem engineering 
and management problems 
include two sub-problems: 

An integration problem to 
find a performance measure 
of the hydrosystem, 
J(μ, λ) = E[L(z(x(μ, ω), λ))] 
[Note: expectation means 
integration.] 

A constrained optimization 
problem, in which we seek 
the hydrosystem operation 
parameters λ that optimize 
the performance J(μ, λ). 

For both sub-problems 
stochastic simulation 
methods offer a feasible and 
consistent solution. 

Parameter space, θ

Parameters of 
hydrological 

inputs, μ

Parameters of 
hydrosystem, 

λ
Uncertainty
modelled as 

randomness, ω   

1. Stochastic model of inputs (stochastic hydrological simulation)

Hydrological inputs (e.g. river flow, rainfall), x := x(μ, ω)

2. Transformation model (hydrosystem simulation)

System outputs (e.g. flood, water availability), z(x(μ, ω), λ)

3. Estimation of the performance measure (e.g. reliability, cost)

Sample performance measure of the system, L(z(x(μ, ω), λ))

4. Ensemble average (or time average in steady state simulation)

Performance measure of system,  J(θ) := E[L(z(x(μ, ω), λ))] So
u
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Parameterization – simulation – optimization in 
hydrosystem control problems 
 Parameterization constitutes a parsimonious (low-dimensional) representation of the 

system control; for specific examples see:  
o Koutsoyiannis and Economou (2003) for toy examples supporting the theory; 
o Nalbantis and Koutsoyiannis (1997) for an algebraic parameterization; 
o Giuliani et al., (2014a,b) for a parameterization based on universal 

approximators such as Artificial Neural Networks and Radial Basis Functions.  
 The representation of the system operation per se can be as complex as required, 

thus not making reductions in the faithful representation of its dynamics.  
 The objective functions, as well as possible constraints and penalty functions, are 

evaluated faithfully by performing detailed Monte Carlo simulation, considering the 
entire system structure with all its components. Therefore, any type of uncertainty 
and risk is naturally incorporated into the simulation. Then optimal control is 
attained by optimizing the objective function by a nonlinear optimization procedure, 
which is made possible because the low dimensionality of the search space.  

 Till now this methodology has been applied on large timescales. If it is to be applied 
for small ones, what are the main differences in terms of the required simulation?  
o Reply: Characteristic behaviours of hydrological inputs include: intermittency, 

high autocorrelation as a result of both long-range dependence and 
roughness (fractality), high skewness, and time irreversibility.  
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Part B 

Time’s arrow and time irreversibility  
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Time line of time’s arrow 
 Time irreversibility in physics goes back to 1807, when Fourier established the 

equation of heat conduction (Fourier 1822), which are not symmetric with respect to 
past and future directions of time, unlike those of Newtonian mechanics.  

 Fourier was followed by Thomson and Maxwell, while Clausius (1850, 1854, 1865) 
laid the foundation for the second law of thermodynamics, introduced the concept 
(and the term) of entropy and connected time irreversibility with the second law.  

 Boltzmann (1877) explained the concept of entropy in probability theoretic context, 
and penetrated into the concept of irreversibility, on which he had a productive 
debate with Planck (Hollinger and Zenzen 1985).  

 The term “time’s arrow” was introduced by Eddington (1928):  

I shall use the phrase ‘time’s arrow’ to express this one-way 
property of time which has no analogue in space. It is a 
singularly interesting property from a philosophical 
standpoint. We must note that: (1) It is vividly recognized by 
consciousness. (2) It is equally insisted on by our reasoning 
faculty, which tells us that a reversal of the arrow would render 
the external world nonsensical. (3) It makes no appearance in 
physical science except in the study of organization of a 
number of individuals. Here the arrow indicates the direction of 
progressive increase of the random element. 

Sir Arthur Stanley 
Eddington (1882 –1944) 
English astronomer, 
physicist, and 
mathematician 
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Time’s arrow in stochastics 
 A simple definition of time reversibility is provided in the framework of stochastics: 

A stochastic process x(t) at (continuous) time t, with nth order distribution function 

𝐹(𝑥1, 𝑥2, … , 𝑥𝑛; 𝑡1, 𝑡2, … , 𝑡𝑛)  ≔ 𝑃{𝑥(𝑡1) ≤ 𝑥1, 𝑥(𝑡2) ≤ 𝑥2, … , 𝑥(𝑡𝑛) ≤ 𝑥𝑛} (5) 

is time-symmetric or time-reversible if its joint distribution does not change after reflection 
of time about the origin, i.e., if for any n, 𝑡1, 𝑡2, … , 𝑡𝑛−1, 𝑡𝑛, 

𝐹(𝑥1, 𝑥2, … , 𝑥𝑛; 𝑡1, 𝑡2, … , 𝑡𝑛) = 𝐹(𝑥1, 𝑥2, … , 𝑥𝑛; −𝑡1, −𝑡2, … , −𝑡𝑛)  (6) 

If times 𝑡𝑖  are equidistant, i.e. 𝑡𝑖 − 𝑡𝑖−1 = 𝐷, this can be also written as:  

𝐹(𝑥1, 𝑥2, … , 𝑥𝑛−1, 𝑥𝑛; 𝑡1, 𝑡2, … , 𝑡𝑛−1, 𝑡𝑛) = 𝐹(𝑥1, 𝑥2, … , 𝑥𝑛−1, 𝑥𝑛; 𝑡𝑛, 𝑡𝑛−1, … , 𝑡2, 𝑡1) (7) 

 A process that is not time-reversible is called time-asymmetric, time-irreversible 
or time-directional. 

 A time reversible process is also stationary (Lawrance, 1991). 
 If a process x(t) is Gaussian (i.e., all its finite dimensional distributions are 

multivariate normal) then it is reversible (Weiss, 1975). The consequences are: (a) a 
directional process cannot be Gaussian; (b) a discrete-time ARMA process (and a 
continuous-time Markov process) is reversible if and only if it is Gaussian. 

 This relationship of Gaussianity and reversibility holds for scalar (univariate) 
stochastic processes only. A vector (multivariate) process can be Gaussian and 
irreversible at the same time. A multivariate Gaussian linear process is reversible if 
and only if its autocovariance matrices are all symmetric (Tong and Zhang, 2005). 
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Is time irreversibility visible? 
 Is it visible in two time 

series plotted together? 
o What is the 

relationship with 
causality? 

 Is it visible in a single 
time series?  
o What is the 

relationship with 
skewness? 

 If we increase the time 
scale of observation, will 
irreversibility be visible 
in a single time series?  
o What is the 

relationship with 
the central limit 
theorem? 

 

0

20

40

60

80

1000

100

200

300

400

500

01/03/2017 01/05/2017 01/07/2017 01/09/2017

P
re

ci
p

it
at

io
n

 in
te

n
si

ty
 (

m
m

/h
)

D
is

ch
ar

ge
 (

m
³/

s)

Discharge
Precipitation

0

20

40

60

80

1000

100

200

300

400

500

01/03/201701/05/201701/07/201701/09/2017

P
re

ci
p

it
at

io
n

 in
te

n
si

ty
 (

m
m

/h
)

D
is

ch
ar

ge
 (

m
³/

s)

Discharge
Precipitation

Precipitation and discharge for a six-month period for the USGS site North 
Branch Potomac River Near Cumberland, MD, USA 



  D. Koutsoyiannis, Stochastic simulation of time irreversible processes 26 

Stochastic quantification of time irreversibility 
The time asymmetry of a process 
is studied through the differenced 
process, i.e.: 

�̃�𝜏
(𝜅)
≔
𝑥𝜏𝜅 − 𝑥(𝜏−1)𝜅

𝜅
 (8) 

in discrete time τ and discrete 
time scale κ. 

This has mean zero and variance 

�̃�(𝜅) ≔ var [�̃�𝜏
(𝜅)
] =

2𝑣𝜅
𝜅2

 (9) 

with 𝑣𝜅 ≔ 𝑐0 − 𝑐𝜅 denoting the 
structure function of the original 
process 𝑥𝜏 where 𝑐𝜅 is the 

autocovariance. Then the time 
asymmetry is quantified by the 
skewness coefficient:  

�̃�s(𝜅) ≔
�̃�3(𝜅)

(�̃�(𝜅))
3/2

 (10) 

or by the probability: 

𝑃−
(𝜅) ≔ 𝑃 {�̃�

𝜏
(𝜅) ≤ 0} = �̃�(0) (11) 

Two synthetic time series generated by maximizing time irreversibility 
properties of a process restricted to be marginally Gaussian (N(3, 1)) with 
lag-one autocorrelation 0.5. Solution 1 maximizes the skewness of the 
differenced process. Solution 2 maximizes the frequency that the 
differenced process has a negative value, without taking into account the 
skewness. In both series the frequency that the differenced process has 
negative values is 0.94. The coefficients of skewness of the differenced 
processes for series 1 and 2 are 4.10 and 3.34, respectively. 
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Exploration: turbulence 
A long series of nearly isotropic 
grid turbulence provides a view 
of the structure of a process at 
the finest time scales. We use part 
of grid data of turbulence from 
the Corrsin Wind Tunnel at a high 
Reynolds number (Kang et al. 
2003), namely the series of 
velocity along the flow direction 
at the first of the probes, which 
we averaged for time scale of D = 
50 μs, thus forming a time series 
with length 600 000.  

The skewness of the original 
process becomes zero at a scale 
of about 0.05 s, while the 
differenced process still has 
positive values (and thus time 
irreversibility) at time scales up 
to about 0.1 s.  
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Exploration: wind speed 
Here we study wind data at the much 
larger, yet very fine, time scale of 0.1 s. 
We use part of the data recorded at a 
10 Hz resolution for a period of one 
month by a sonic anemometer on a 
meteorological tower located at 
Beaumont KS (Doran, 2011). Namely 
we use 71 998 data values for the 
period starting at 1999-10-11 20:30 
UTC (perhaps 6 h earlier in local time) 
and ending 2:30 h later.  

Neither remarkable skewness nor 
time directionality are observed, a 
finding consistent with the previous 
example of turbulent velocity, as now 
the minimum time scale is 0.1 s.  
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Exploration: temperature 
Here we study the temperature 
measurements at the same site as in 
the wind speed and the same period, 
from the same data set as above.  

The plot of the time series shows an 
interesting time directionality (or 
dependence) with decreasing 
variability with the increase of time. 
However, we may conjecture that 
this behaviour is local, related to the 
diurnal temperature cycle.  

Even in this part of the series both 
state asymmetry and time 
asymmetry cease at time scales of 
100 s or more. It is interesting, 
though, that for time scales smaller 
than that the skewness of the original 
process is positive, while that of the 
differenced is negative. 
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Exploration: precipitation 
The precipitation time series 
already seen in p. 25 is further 
studied here at the hourly scale. 
Diurnal cycle is found to be 
marked and is treated by 
standardising by hourly 
coefficients (Koutsoyiannis 
2019a).   

The un-differenced transformed 
process has a very high 
coefficient of skewness (~12), 
but in the differenced one the 
skewness and thus the 
irreversibility is rather 
negligible. 
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Exploration: streamflow 
The streamflow time series already seen in p. 25 is further studied here at the hourly 
scale. The annual cycle is found to 
be marked and is treated by 
standardising by monthly 
coefficients (Koutsoyiannis 2019a).  

The skewness coefficients of the 
original and differenced processes 
after the transformation are 2.98 
and 10.99, respectively, for the 
hourly scale (not very different 
from those before the 
transformation).  

The latter value indicates strong 
irreversibility and its attenuation is 
rather slow, requiring about 100 h 
or 4 days to cease. This means that 
irreversibility is relevant for flood 
simulations on operational time 
scales, and can only be neglected on 
the monthly time scale and beyond.  
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Part C 

A generic stochastic generator for time 

irreversible (and reversible) processes 
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Fundamental assumptions connecting stochastics with data 
• Central to the notion of a stochastic process are the concepts of stationarity and 

nonstationarity, two widely misunderstood and broadly misused concepts (Montanari 
and Koutsoyiannis, 2014; Koutsoyiannis and Montanari, 2015). Their definitions apply 
only to stochastic processes (e.g., time series cannot be stationary, nor nonstationary).  

• Stationarity is also related to ergodicity, which in turn is a prerequisite to make inference 
from data, that is, induction.  

• If the system that is modelled in a stochastic framework has deterministic dynamics then 
a stationary system is also ergodic and vice versa, and a nonstationary system is also 
non-ergodic and vice versa. (Mackey 1992, p. 52) 

• If the system dynamics is stochastic, then ergodicity and stationarity do not 
necessarily coincide. However, recalling that a stochastic process is a model (not part of 
the real world), we can always device a stochastic process that is ergodic. 

Reminder of definitions 

Following Kolmogorov (1931, 1938) and Khinchin (1934), a process is stationary if its 
statistical properties are invariant to a shift of time origin, i.e. the processes x(t) and 
x(t΄) have the same statistics for any t and t΄.  

Based on the ergodic theorem (Birkhoff, 1931; Khinchin, 1933; see also Mackey, 1992, p. 
54), a stochastic process x(t) is ergodic if the time average of any (integrable) function 
g(x(t)), as time tends to infinity, equals the true (ensemble) expectation E[g(x(t))], i.e., 

lim𝑇→∞
1

𝑇
∫ 𝑔 (𝑥(𝑡)) 𝑑𝑡 = E[𝑔(𝑥(𝑡))]
𝑇

0
. 
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Some principles and interpretations about natural processes 
that are modelled as stochastic processes 
 There are two distinguishable characteristics visible at different time scales. 
 Local behaviour: As time scale tends to zero there may be smoothness (or roughness). 
 Global behaviour: As time scale tends to infinity there may be persistence (or 

antipersistence) related to several mechanisms of change acting on different time scales. 
 Roughness and persistence cause or amplify positive autocorrelation. Smoothness and 

antipersistence cause or amplify negative autocorrelation. Note though that as time scale tends 
to zero, the autocorrelation should always be positive, regardless of smoothness or 
antipersistence. 

 Autocorrelation is not memory; it is not a cause but a consequence of change mechanisms.  
 It is more intuitive to use variance than autocorrelation to describe change. The variance of the 

averaged process as a function of time scale of averaging, is termed climacogram: 

𝛾(𝑘) ≔ var [
𝑋(𝑘)

𝑘
] , 𝑋(𝑡) ≔ ∫ 𝑥(𝜉)d𝜉

𝑡

0
  (12) 

 The following expression of a climacogram defines a model appropriate for many applications: 
the filtered Hurst-Kolmogorov process with Cauchy-type (FHK-C) climacogram: 

𝛾(𝑘) = 𝜆(1 + (𝑘 𝛼⁄ )2𝑀)
𝐻−1

𝑀   (13) 

where α and λ are scale parameters with dimensions of [t] and [x2], and M, H are dimensionless 
parameters with values in (0,1). M (for Mandelbrot) characterizes the smoothness (fractality) of 
the process and H (for Hurst) characterizes the global behaviour or persistence. 
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Climacogram and entropy production 
 The conditional variance (conditional climacogram) once past and present are known 

is 

𝛾C(𝑘) ≈ 𝜀(𝛾(𝑘) – 𝛾(2𝑘)) (14) 

where ε is a constant determined 
from asymptotic properties of the 
process (Koutsoyiannis, 2017). 

 The entropy production (vis. 
production of uncertainty) in 
logarithmic time, conditional on 
known past and present, is 
expressed as a function of the log-
log derivative (LLD) of the 
conditional variance, 𝛾C

#(𝑡): 

𝜑C(𝑡) = 1 +½ 𝛾C
#(𝑡) (15) 

 Smooth and persistent processes 
yield the highest entropy 
production. 
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Other second-order stochastic tools and their relationships 
to climacogram 
 Autocovariance function, c(h) for time lag h, defined as 

𝑐(ℎ): =  cov[𝑥(𝑡), 𝑥(𝑡 +  ℎ)] =
1

2
 
d2(ℎ2𝛾(ℎ))

dℎ2
 (16) 

 Power spectrum (also known as spectral density), s(w) for frequency w, defined as the 
Fourier transform of the autocovariance function, i.e., 

𝑠(𝑤) ≔ 4∫ 𝑐(ℎ) cos(2π𝑤ℎ) dℎ
∞

0
  

𝑐(ℎ) = ∫ 𝑠(𝑤) cos(2π𝑤ℎ) d𝑤
∞

0
,   𝛾(𝑘) = ∫ 𝑠(𝑤) sinc2(π𝑤𝑘) d𝑤

∞

0
  

(17) 

 Structure function (also known as semivariogram or variogram), 

𝑣(ℎ) ≔
1

2
var[𝑥(𝑡) − 𝑥(𝑡 + ℎ)] = 𝛾0 − 𝑐(ℎ) (18) 

 Climacospectrum, ζ(k), for time scale k: 

𝜁(𝑘) ≔
𝑘(𝛾(𝑘) − 𝛾(2𝑘))

ln 2
=
𝑘 𝛾C(𝑘)

𝜀 ln 2
 (19) 

This resembles the power spectrum and combines the asymptotic behaviours of the 
climacogram and the structure function. 
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The generic generator 
 Any stationary stochastic process 𝑥𝜏 can be generated by the moving average 

scheme (Koutsoyiannis 2000): 

𝑥𝜏 = ∑ 𝑎𝑗𝑣𝜏−𝑗
𝐽
𝑗=−𝐽   (20) 

where 𝑎𝑗 are weights to be calculated from the autocovariance function, 𝑣𝑗  is white 

noise averaged in discrete-time and J is a large integer (theoretically, 𝐽 = ∞). 

 The autocovariance is given by the convolution expression:  

𝑐𝜂 = ∑ 𝑎𝑗𝑎𝜂+𝑗
𝐽
𝑗=−𝐽   (21) 

 Given the stochastic model, the weights 𝑎𝜂 can be calculated from its second-order 

characteristics by the following explicit relationship (Koutsoyiannis, 2019b):  

𝑎𝜂 = ∫ √2e2πi(𝜃(𝜔)−𝜂𝜔)√𝑠d(𝜔)

1/2

−1/2

d𝜔 (22) 

where ω denotes frequency, 𝑠d(𝜔) is the power spectrum of the discrete-time 
representation of the process (see below) and 𝜃(𝜔) is any arbitrary odd real 
function.  

☺ Notice the appearance of 2,1/2, √2, e, π, i (imaginary unit) in equation (22).  
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The generic generator (2) 
 The equations: 

𝑥𝜏 = ∑ 𝑎𝑗𝑣𝜏−𝑗

𝐽

𝑗=−𝐽

,    𝑎𝜂 = ∫ √2e2πi(𝜃(𝜔)−𝜂𝜔)√𝑠d(𝜔)

1/2

−1/2

d𝜔 (20) & (22) 

define the asymmetric moving average (AMA) scheme, which can be used in any 
problem of stochastic simulation of time irreversible and reversible processes.  

 The sequence of 𝑎𝜂 given by equation (22):  

 consists of real numbers, despite the expression involving complex numbers;  
 reproduces precisely the required autocovariance function (equation (21)); and  
 is easy and fast to calculate using the fast Fourier transform (FFT). 

 Equation (22) gives not a single solution, but a variety of infinitely many ones, all of 
which preserve exactly the second-order characteristics of the process. 
 A particular solution is characterized by the chosen function 𝜃(𝜔).  
 Even assuming 𝜃(𝜔) = 𝜃0 = constant, again there are infinitely many solutions. 
 This enables preservation of additional statistics, e.g. those related to time 

asymmetry.  
 In addition, we always have several options related to the distribution of the white 

noise 𝑣𝜏 (which in general is not Gaussian), thus enabling preservation of moments 

of any order (Koutsoyiannis, 2018; Dimitriadis and Koutsoyiannis, 2018). 
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Computational algorithm (not involving data at this phase) 
1. From the continuous-time stochastic model, expressed through its climacogram 𝛾(𝑘), we 

calculate its autocovariance function in discrete time (assuming time step D): 

𝑐𝑗 =
(𝑗+1)2𝛾(|𝑗+1|𝐷)+(𝑗−1)2𝛾((|𝑗−1|𝐷)

2
− 𝑗2𝛾(|𝑗|𝐷)  (23) 

(This step is obviously omitted if the model is already expressed in discrete time through its autocovariance function.) 

2. We choose an appropriate number of coefficients J that is a power of 2 and use the FFT to 
calculate the discrete-time power spectrum and the frequency function 𝐴R(𝜔) for an array of 
𝜔𝑗 = 𝑗 𝑤0, 𝑗 = 0,1, … , 𝐽, 𝑤0 ≔ 1 𝐽𝐷⁄ : 

𝑠d(𝜔𝑗) = 2𝑐0 + 4∑ 𝑐𝜂
𝐽
𝜂=1 cos(2π𝜂𝜔𝑗),   𝐴

R(𝜔𝑗) = √2𝑠d(𝜔𝑗)  (24) 

3. We choose 𝜃(𝜔) and form the arrays (vectors) 𝑨R and 𝑨I, both of size 2J indexed as 0, … , 2𝐽 –  1, 
with the superscripts R and I standing for a real and an imaginary vector, respectively:  

[𝑨R]𝑗 = {

𝐴R(𝜔𝑗) cos(2π𝜃(𝜔𝑗))

4𝐽
, 𝑗 = 0,… , 𝐽

[𝑨R]2𝐽−𝑗 , 𝑗 = 𝐽 + 1,… ,2𝐽 − 1
  (25) 

[𝑨I]𝑗 =

{
 

 
𝐴R(𝜔𝑗) sin(2π𝜃(𝜔𝑗))

4𝐽
, 𝑗 = 0, … , 𝐽 − 1

0 𝑗 = 𝐽

−[𝑨I]2𝐽−𝑗 . 𝑗 = 𝐽 + 1,… ,2𝐽 − 1

  (26) 

4. We perform (inverse) FFT on vectors 𝑨R and 𝑨I, and get the real part of the result for 𝑗 = 0,… , 𝑞, 
which is precisely the sequence of 𝑎𝜂 .   
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Ease of application 

 

The method is easily implemented in any computational environment; this example is 
for a common spreadsheet—available online, http://www.itia.ntua.gr/1975/. 

http://www.itia.ntua.gr/1975/ 

http://www.itia.ntua.gr/1975/
http://www.itia.ntua.gr/1975/


  D. Koutsoyiannis, Stochastic simulation of time irreversible processes 41 

From genericity to special cases 
Generic case: Asymmetric 
moving average scheme 
(AMA). 

Special cases 

 𝜃(𝜔) = 0 ⇒: Symmetric 
moving average (SMA), 
𝑎−𝜂 = 𝑎𝑛 

 𝜃(𝜔) = 1/4 : 
Antisymmetric moving 
average (ANTAMA), 

𝑎−𝜂 + 𝑎𝑛 =
√2𝑠d(0)

2𝐽+1
≈

2√
𝛾𝐽

(2𝐽+1)
≈ 0 (for large J)  

 Ordinary backward AMA 
(OBAMA): 𝑎𝜂 = 0 for all 

𝜂 < 0 (but it is not always 
easy to find which 𝜃(𝜔) 
produces this case). 
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Time asymmetry 
 Assuming that 𝑣𝜏 has variance 1 and skewness coefficient 𝐶S𝑣 , we will have: 

var[𝑥𝜏] = ∑ 𝑎𝑗
2𝐽

𝑗=−𝐽 ,   𝜇3[𝑥𝜏] = ∑ 𝑎𝑗
3 𝐶S𝑣

𝐽
𝑗=−𝐽 ,   𝐶S ≔

𝜇3[𝑥𝜏]

(var[𝑥𝜏])
3/2 =

∑ 𝑎𝑗
3 

𝐽
𝑗=−𝐽

(∑ 𝑎𝑗
2𝐽

𝑗=−𝐽 )
3/2 𝐶S𝑣  (27) 

 For the differenced process we have: 

�̃�𝜏 ≔ 𝑥𝜏 − 𝑥𝜏−1 = ∑ (𝑎𝑗 − 𝑎𝑗−1)𝑣𝜏−𝑗
𝐽
𝑗=−𝐽   (28) 

with 𝑎−𝐽−1 = 0. Thus its skewness will be: 

�̃�S ≔
𝜇3[�̃�𝜏]

(var[�̃�𝜏])
3/2 =

∑ (𝑎𝑗−𝑎𝑗−1)
3
 

𝐽
𝑗=−𝐽

(∑ (𝑎𝑗−𝑎𝑗−1)
2𝐽

𝑗=−𝐽 )
3/2 𝐶S𝑣  (29) 

 The ratio: 

�̃�S

𝐶S
=

∑ (𝑎𝑗−𝑎𝑗−1)
3
 

𝐽
𝑗=−𝐽

(∑ (𝑎𝑗−𝑎𝑗−1)
2𝐽

𝑗=−𝐽 )
3/2

(∑ 𝑎𝑗
2𝐽

𝑗=−𝐽 )
3/2

∑ 𝑎𝑗
3 

𝐽
𝑗=−𝐽

  (30) 

primarily depends on 𝜃(𝜔). The case 𝜃(𝜔) = 0, i.e. the SMA, results in complete time 
symmetry. However, a constant 𝜃(𝜔) = 𝜃0 ≠ 0 (appropriately chosen) can make the 
ratio �̃�S 𝐶S⁄  as high as we wish, thus enabling preservation of time asymmetry.  

 It should be made clear that without skewness in the original process 𝒙𝝉 (e.g. in 
the case of Gaussian processes), there cannot be time asymmetry.  
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Case study – model fitting (data are used at this phase) 
 We use hourly streamflow data from the site USGS 01603000 North Branch Potomac 

River Near Cumberland, 2013-
2018. We treat seasonality by 
standardising by monthly 
coefficients (Koutsoyiannis 2019a).  

 We model 𝑥𝜏 as a FHK-C process; 

the fitting is impressively good with 
parameters M = 0.56 (slight 
smoothness), H = 0.6 (persistence), 
α = 160 h, λ = γ(0) = 1.01 (for the 
standardized process). The fitting 
shown in the figure was done in 
terms of the climacogram and the 
climacospectrum.  

 Additional parameters, quantifying 
the time and state asymmetry, are 
the skewness coefficients of �̃�𝜏 and 

𝑥𝜏 whose estimates are 10.99 and 

2.98, respectively—a ratio 
�̃�S 𝐶S⁄ = 3.69. 
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Case study – generation scheme (data are NOT used at this phase) 

 For the application we use the proposed method with constant 𝜃0 and with q = 1024. 
 The SMA case would result in zero skewness of the differenced process (time 

symmetry). 
 In the ANTAMA case the skewness tends to infinity, which indicates that the method 

does not have any upper limit of time irreversibility that it can handle.  
 Choosing 𝜃0 =
0.0638, we make the 
ratio of the skewness 
of �̃�𝜏 and 𝑥𝜏 equal to 

3.69, as required.  
 The coefficients a 

determined by direct 
application of the 
method are shown in 
the figure, along with 
the climacogram and 
the autocorrelation 
function of the 
original process.  0.001
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Case study – results 
Both visual inspection and comparison 
of quantified indices suggest good 
reproduction of the statistical 
behaviour, including time 
irreversibility.  
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AMA in forecast mode 
 The general belief is that: 

o Autoregressive (AR) models are better suited to forecast as they depend on past 
variables rather than on noise variables. 

o Among the moving average (MA) models, only the backward (i.e., OBAMA) 
schemes can be suitable for forecast, while the generic AMA scheme (including 
the special case of SMA) is not, because it involves convolutions for both positive 
and negative lags η.  

This is not correct though.  
 The forecast problem should be regarded as totally independent from the stochastic 

model per se; as an example we may consider the case of an AR(p) scheme used to 
approximate a process with long-range dependence. The value of p will be large, 
typically larger than the number (n) of known past observations (𝑝 > 𝑛). Therefore, 
the mathematical expression of the AR(p) as a  weighted sum of past values cannot be 
applied for forecast.  

 There is a general solution of the forecast problem (Koutsoyiannis, 2000), which can 
be applied for any type of linear model and hence for AMA. This calculates the 
prediction 𝑥𝜏 for any future time τ based, on the one hand, on any simulation 𝑥𝜏 
independent of the observations, and, on the other hand, on the observations �̂�, by: 

𝑥𝜏 = 𝑥𝜏 + 𝒄𝜏
T𝑪−1(�̂� − 𝒛), var[𝑥𝜏|�̂�] = 𝛾1 − 𝒄𝜏

T𝑪−1𝒄𝜏 (31) 

where 𝒛 ≔ [𝑥0, 𝑥−1, … , 𝑥−𝑛], �̂� ≔ [𝑥0, 𝑥−1, … , 𝑥−𝑛], 𝒄𝜏 ≔ cov[𝑥𝜏, 𝒛] and 𝑪 ≔ cov[𝒛, 𝒛].  
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Concluding remarks 
 Atmospheric processes, including turbulence, do not exhibit time irreversibility 

except for the finest time scales. The same applies to the rainfall process at scales 
above hourly. 

 Time asymmetry is prominent in the streamflow process at all scales below several 
days and it is important to preserve in stochastic simulations. 

 Classical time series models cannot preserve time asymmetry. 
 This offers another excellent opportunity to abandon classical time series models and 

thus escape from traps related to them. 
 The framework developed to tackle time asymmetry can be used in any simulation 

problem, and offers several advantages even for time symmetric processes.  
 The processes that exhibit time irreversibility cannot be Gaussian and linear at the 

same time. However, the framework developed can handle non-Gaussian process in 
an analytical manner through high-order moments (determined theoretically from 
the distribution, not estimated from the data). 

 The framework developed can also be used for making stochastic forecasts. 
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Main points of the proposed framework and its main 
differences from popular methods 
 A stochastic model is always required for any stochastic task, such as estimation, 

testing and synthesis. In stochastics there cannot be model-free, also known as 
nonparametric, methods.  

 The model needs to be parsimonious in order to be useful. Inflationary models, while 
giving an impression of a good fit, in fact entail (often hidden) high uncertainty. 

 As natural time runs continuously, the model needs to be formulated for continuous 
time to avoid the risk of making artificial constructs. The discrete-time representation 
(necessary in simulation), should be derived from the continuous-time one.  

 Second-order stochastic tools, such as autocovariance and power spectrum, are 
affected by discretization and the effect should always be accounted for. The 
climacogram is an exception, as it is not affected, and has some additional advantages 
(Dimitriadis and Koutsoyiannis, 2015) which make it the preferable tool in stochastic 
modelling. 

 Parameter estimation needs to consider statistical bias, which is present in all 
estimators except in that of the mean.  

 Awareness of stochastics (the mathematics of stochastic variables and processes), 
theoretical consistency and logical rigour are always necessary to avoid misleading or 
erroneous calculations, results and interpretations. 
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