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Abstract 21 

The analysis of hydrological hazards usually relies on asymptotic results of extreme value theory 22 

(EVT), which commonly deals with block maxima (BM) or peaks over threshold (POT) data 23 

series. However, data quality and quantity of BM and POT hydrological records do not usually 24 

fulfill the basic requirements of EVT, thus making its application questionable and results prone 25 

to high uncertainty and low reliability. An alternative approach to better exploit the available 26 

information of continuous time series and non-extreme records is to build the exact distribution 27 

of maxima (i.e., non-asymptotic extreme value distributions) from a sequence of low-threshold 28 

POT. Practical closed-form results for this approach do exist only for independent high-threshold 29 

POT series with Poisson occurrences. This study introduces new closed-form equations of the 30 

exact distribution of maxima taken from low-threshold POT with magnitudes characterized by an 31 

arbitrary marginal distribution and first-order Markovian dependence, and negative binomial 32 

occurrences. The proposed model encompasses and generalizes the independent-Poisson model 33 

and allows for analyses relying on significantly larger samples of low-threshold POT values 34 

exhibiting dependence, temporal clustering and overdispersion. To check the analytical results, 35 

we also introduce a new generator (called Gen2Mp) of proper first-order Markov chains with 36 

arbitrary marginal distributions. An illustrative application to long-term rainfall and streamflow 37 

data series shows that our model for the distribution of extreme maxima under dependence takes 38 

a step forward in developing more reliable data-rich-based analyses of extreme values.                   39 

1 Introduction 40 

The study of hydrological extremes is one of long history in research applied to design 41 

and management of water supply (e.g. Hazen, 1914) and flood protection works (e.g. Fuller, 42 

1914). Almost half a century after the first pioneering empirical studies, Gumbel (1958) provided 43 
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a general framework linking the theoretical properties of probabilities of extreme values (e.g. 44 

Fisher and Tippet, 1928) to the empirical basis of hydrological frequency curves. Since then, 45 

extreme value theory (EVT) applied to hydrological analyses has been a matter of primary 46 

concern in the literature (see e.g. Papalexiou and Koutsoyiannis, 2013; Serinaldi and Kilsby, 47 

2014 for detailed overview). EVT aims at modeling the extremal behavior of observed 48 

phenomena by asymptotic probability distributions, and observations to which such distributions 49 

are allegedly related should meet the following important conditions: 50 

1. They should resemble the samples of independent and identically distributed (i.i.d.) 51 

random variables. Then, extreme events arise from a stationary distribution and are 52 

independent of one another. 53 

2. Their number should be large. Defining how large their size should be depends on the 54 

characteristics of the parent distribution from which the extreme values are taken (e.g. the 55 

tail behavior) and the degree of precision we seek.  56 

Most of these assumptions, commonly made in classical statistical analyses, are hardly 57 

ever realized in hydrological applications, especially when studying extremes. Specifically, the 58 

traditional analysis of hydrological extremes is based on statistical samples that are formed by 59 

selecting from the entire data series (e.g. at the daily scale) those values that can reasonably be 60 

considered as realizations of independent extremes, e.g. annual maxima or peaks over a certain 61 

high threshold. Thus, many observations are discarded and the reduction of the already small size 62 

of common hydrological records significantly affects the reliability of the estimates 63 

(Koutsoyiannis, 2004a,b; Volpi et al., 2019). In addition, Koutsoyiannis (2004a) showed that the 64 

convergence to the asymptotic distributions can be extremely slow and may require a huge 65 
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number of events. Thus, a typical number of extreme hydrological events does not guarantee 66 

convergence in applications.  67 

Furthermore, the long-term behavior of the hydrological cycle and its driving forces 68 

provide the context to understand that correlations between hydrological samples not only occur, 69 

but they also can persist for a long time (see O’Connell et al., 2016 for a recent review). While 70 

Leadbetter (1974, 1983) demonstrated that distributions based on dependent events (with limited 71 

long‐term persistence at extreme levels) share the same asymptotic properties of distributions 72 

based on independent trials, there is evidence that correlation has strong influence on the exact 73 

statistical properties of extreme values and it slows down the already slow rate of convergence 74 

(e.g. Eichner et al., 2011; Bogachev and Bunde, 2012; Volpi et al., 2015; Serinaldi and Kilsby, 75 

2016). In essence, correlation inflates the variability of the expected values and the width of 76 

confidence intervals (CIs) due to information redundancy, and a typical effect is reflected in the 77 

tendency of hydrological extremes to cluster in space and time (e.g. Serinaldi and Kilsby, 2018 78 

and references therein). Moreover, focusing on extreme data values, such as annual maxima, 79 

hinders reliable retrieval of the dependence structure characterizing the underlying process 80 

because of sampling effects of data selection (Serinaldi et al., 2018; Iliopoulou and 81 

Koutsoyiannis, 2019). Then, correlation structures and variability of hydrological processes 82 

might easily be underestimated, further compromising the attempt to draw conclusions about 83 

trends spanning the period of records (see Serinaldi et al., 2018, for detailed discussion). In other 84 

words, the lately growing body of publications examining “nonstationarity” in hydrological 85 

extremes (see Salas et al., 2018 and references therein) may likely reflect time dependence of 86 

such extremes within a stationary setting, as observed patterns are usually compatible with 87 
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stationary correlated random processes (Koutsoyiannis and Montanari, 2015; Luke et al., 2017; 88 

Serinaldi and Kilsby, 2018). 89 

In classical statistical analyses of hydrological extremes, to form data samples we 90 

commonly use two alternative strategies referred to as “block maxima” (BM) and “peaks over 91 

threshold” (POT) methods. The former is to choose the highest of all recorded values at each 92 

year (for a given time scale, e.g. daily rainfall) and form a sample with size equal to the number 93 

of years of the record. The POT method is to form a sample with all recorded values exceeding a 94 

certain threshold irrespective of the year they occurred, allowing to increase the available 95 

information by using more than one extreme value per year (Coles, 2001; Claps and Laio, 2003). 96 

The fact that observed hydrological extremes tend to cluster in time increases the 97 

arguments towards the use of the POT sampling method, instead of block maxima approaches 98 

which tend to hide dependence (Iliopoulou and Koutsoyiannis, 2019). Such clustering reflects 99 

dependence (at least) in the neighboring excesses of a threshold, invalidating the basic 100 

assumption of independence made in classical POT analyses. Therefore, the standard approach in 101 

case studies is to fix a (somewhat subjective) high threshold, and then filter the clusters of 102 

exceedances so as to obtain a set of observations that can be considered mutually independent. 103 

Such a declustering procedure involves using empirical rules to define clusters (e.g. setting a run 104 

length that represents a minimum timespan between consecutive clusters, meaning that a cluster 105 

ends when the separation between two consecutive threshold exceedances is greater than the 106 

fixed run length) and then selecting only the maximum excess within each cluster (Coles, 2001; 107 

Ferro and Segers, 2003; Bernardara et al., 2014; Bommier, 2014). Declustering results in 108 

significant loss of data that can potentially provide additional information about extreme values. 109 
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In this paper, we aim to overcome these problems by investigating the exact distribution 110 

of correlated extremes. Hence, we can set considerably lower thresholds with respect to the 111 

standard POT analyses and avoid declustering procedures whose effectiveness is called into 112 

question if we do not account for the process characteristics. The proposed approach provides 113 

new insight into probabilistic methods devised for extreme value analysis taking into account the 114 

clustering dynamics of extremes, and it is consistent with the general principle of allowing 115 

maximal use of information (Volpi et al., 2019). 116 

In summary, hydrological applications have made wide recourse to asymptotes or 117 

limiting extreme value distributions, while exact distributions for real-world finite-size samples 118 

are barely used in stochastic hydrology because their evaluation requires the parent distribution 119 

to be known. However, the small size of common hydrological records (e.g. a few tens of years) 120 

and the impact of correlations on the information content of observed extremes cannot provide 121 

sufficient empirical evidence to estimate limiting extreme value distributions with precision. 122 

Therefore, we believe that non-asymptotic analytical models for extremes arising from correlated 123 

processes should receive renewed research interest (Iliopoulou and Koutsoyiannis, 2019).  124 

  This paper is concerned with a theoretical approach to the exact distribution of high 125 

extremes based on the pioneering work by Todorovic and Zelenhasic (1970), who proposed a 126 

general stationary stochastic model to describe and predict behavior of the maximum term 127 

among a random number of random variables in an interval of time [0, 𝑡] assuming 128 

independence. As verified in several studies mentioned above, to make a realistic stochastic 129 

model of hydrological processes, we are forced to confront the fact that dependence should 130 

necessarily be taken into consideration. The dilemma is that dependence structures make for 131 

realistic models, but also reduce the possibility for explicit probability calculations (i.e., 132 
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analytical derivations of joint probability distributions are more complicated than under 133 

independence). The challenge of this paper is to propose a stochastic model of extremes with 134 

dependencies allowing for acceptable realism, but also permitting sufficient mathematical 135 

tractability. In this context, short-range dependence structures, such as Pólya’s and Markov’s 136 

schemes, nicely make a trade-off between these two demands, when hydrological maxima satisfy 137 

Leadbetter’s condition of the absence of long-range dependence (Koutsoyiannis, 2004a).  138 

In the remainder of this paper, we first introduce a novel theoretical framework to model 139 

the exact distribution of correlated extremes in Section 2. In Section 3, we present a new 140 

generator, called Gen2Mp, of correlated processes with arbitrary marginal distributions and 141 

Markovian dependence, and use it to validate the theoretical reasoning described in Section 2. 142 

Then, Section 4 deals with case studies in order to test the capability of our model to reproduce 143 

the statistical behavior of extremes of long-term rainfall and streamflow time series from the real 144 

world. Concluding remarks are reported in Section 5. 145 

2 Theoretical framework 146 

We use herein the POT approach to analyze the extreme maxima, and assume the number 147 

of peaks (e.g., flood peak discharges or maximum rainfall depths) exceeding a certain threshold 148 

𝜉 and their magnitudes to be random variables. The threshold simplifies the study and helps 149 

focus the attention on the distribution tails, as they are important to know in engineering design 150 

(Papalexiou et al., 2013). In the following, we use upper case letters for random variables or 151 

distribution functions, and lower case letters for values, parameters or constants.  152 

If we consider only those peaks 𝑌𝑖 in [0, 𝑡] exceeding 𝜉, then we can define the strictly 153 

positive random variable  154 
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𝑍𝑖 = 𝑌𝑖 − 𝜉 > 0 (1) 

for all 𝑖 = 1, 2, … , 𝑛, where 𝑛 is the number of exceedances in [0, 𝑡]. Clearly, 𝑛 is a non-155 

increasing function of 𝜉 for a given 𝑡, but we assume herein that 𝜉 is a fixed constant.  156 

It is recalled from probability theory that, given a fixed number 𝑛 of i.i.d. random 157 

variables {𝑍𝑖}, the largest order statistic 𝑋 = max{𝑍1, 𝑍2, … , 𝑍𝑛} has a probability distribution 158 

𝐻𝑛(𝑥) fully dependent on the joint distribution function of {𝑍𝑖} that is 159 

𝐻𝑛(𝑥) = Pr{𝑍1 ≤ 𝑥, 𝑍2 ≤ 𝑥,… , 𝑍𝑛 ≤ 𝑥} = (𝐹(𝑥))
𝑛
 (2) 

In hydrological applications, it may be assumed that the number 𝑛 of values of {𝑍𝑖} in 160 

[0, 𝑡] (e.g. the number of storms or floods per year), whose maximum is the variable of interest 𝑋 161 

(e.g. the maximum rainfall depth or flood discharge), is not constant but it is a realization of a 162 

random variable 𝑁 (= 0, 1, 2, … ). Therefore, we are interested in the maximum term 𝑋 among a 163 

random number 𝑁 of a sequence of random variables {𝑍𝑖} in an interval of time [0, 𝑡].  164 

In the following, we attempt to determine the one-dimensional distribution function of 𝑋 165 

that is defined as 𝐻(𝑥) = Pr{𝑋 ≤ 𝑥}. Since the magnitude of exceedances 𝑍𝑖 and their number 𝑁 166 

are supposed to be random variables, Todorovic (1970) derived the distribution of the extreme 167 

maximum of such a particular class of stochastic processes as  168 

𝐻(𝑥) = Pr{𝑁 = 0} +∑Pr {⋂{𝑍𝑖 ≤ 𝑥} ∩ {𝑁 = 𝑘}

𝑘

𝑖=1

}

∞

𝑘=1

 (3) 

which represents the probability that all exceedances 𝑍𝑖 > 0 in [0, 𝑡] are less than or equal to 𝑥. 169 

If 𝑥 = 0, then 𝐻(0) = Pr{𝑁 = 0} is the probability that there are no exceedances in [0, 𝑡]. 170 
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Todorovic and Zelenhasic (1970) proposed the simplest form of the general model in eq. 171 

(3) for use in hydrological statistics, which is now the benchmark against which we measure 172 

frequency analysis of extreme events (e.g. Koutsoyiannis and Papalexiou, 2017). Its basic 173 

assumptions are that {𝑍𝑖} is a sequence of 𝑁 independent random variables with common parent 174 

distribution 𝐹(𝑥) = Pr{𝑍𝑖 ≤ 𝑥}, and 𝑁 is a Poisson-distributed random variable independent of 175 

{𝑍𝑖} with mean 𝜆, i.e. Pr{𝑁 = 𝑘} = (𝜆𝑘 𝑘!⁄ ) exp(−𝜆). Then, recalling that ∑ 𝑦𝑘 𝑘!⁄∞
𝑘=0 =176 

exp(𝑦), eq. (3) becomes  177 

𝐻(𝑥) = ∑(𝐹(𝑥))
𝑘 𝜆𝑘

𝑘!
exp(−𝜆)

∞

𝑘=0

= exp (−𝜆(1 − 𝐹(𝑥))) (4) 

It can be shown that 𝐻(𝑥) ≈ 𝐻𝑛(𝑥) with satisfactory approximation (Koutsoyiannis, 2004a).  178 

As stated above, the derivation of eq. (4) includes strong assumptions, such as 179 

independence, and the purpose of this paper is to modify and test this equation under suitable 180 

dependence conditions.  181 

Firstly, we suppose that {𝑍𝑖} is a sequence of 𝑁 random variables with common parent 182 

distribution 𝐹(𝑥) = Pr{𝑍𝑖 ≤ 𝑥} and a particular Markovian dependence that give rise to the two-183 

state Markov-dependent process (2Mp, see next Section for further details). Specifically, we let 184 

the occurrences of the event {𝑍𝑖 ≤ 𝑥} evolve according to a Markov chain with two states, whose 185 

probabilities are: 186 

{
𝑝0 = Pr{𝑍𝑖 ≤ 𝑥}

𝑝1 = Pr{𝑍𝑖 > 𝑥} = 1 − 𝑝0
 (5) 

and the transition probabilities (see also Lombardo et al., 2017, appendix C) are:  187 



Accepted for publication in Water Resources Research 

10 

 

{
 

 
𝜋00 = Pr{𝑍𝑖 ≤ 𝑥|𝑍𝑖−1 ≤ 𝑥} = 𝑝0 + 𝜌1(1 − 𝑝0)

𝜋01 = Pr{𝑍𝑖 ≤ 𝑥|𝑍𝑖−1 > 𝑥} = 𝑝0(1 − 𝜌1)

𝜋10 = Pr{𝑍𝑖 > 𝑥|𝑍𝑖−1 ≤ 𝑥} = 1 − 𝜋00
𝜋11 = Pr{𝑍𝑖 > 𝑥|𝑍𝑖−1 > 𝑥} = 1 − 𝜋01

 (6) 

where 𝜌1 is the lag-one autocorrelation coefficient of the Markov chain.  188 

It follows that, for the process {𝑍𝑖}, the probability of the state {𝑍𝑛 ≤ 𝑥} at a given time 𝑛 189 

depends solely on the state {𝑍𝑛−1 ≤ 𝑥} at the previous time step 𝑛 − 1. Then, for a fixed number 190 

of exceedances 𝑁 = 𝑛, the Markov property yields:  191 

Pr{𝑍𝑛 ≤ 𝑥|𝑍𝑛−1 ≤ 𝑥,… , 𝑍1 ≤ 𝑥} = Pr{𝑍𝑛 ≤ 𝑥|𝑍𝑛−1 ≤ 𝑥} (7) 

Applying the chain rule of probability theory to the distribution function of the maximum term 192 

𝑋, 𝐻𝑛(𝑥) = Pr{𝑍1 ≤ 𝑥, 𝑍2 ≤ 𝑥,… , 𝑍𝑛 ≤ 𝑥}, we obtain 193 

𝐻𝑛(𝑥) = Pr{𝑍𝑛 ≤ 𝑥|𝑍𝑛−1 ≤ 𝑥}⋯Pr{𝑍2 ≤ 𝑥|𝑍1 ≤ 𝑥} Pr{𝑍1 ≤ 𝑥} (8) 

From the above it follows that 𝐻𝑛(𝑥) can be determined in terms of the conditional probabilities 194 

Pr{𝑍𝑖 ≤ 𝑥|𝑍𝑖−1 ≤ 𝑥} and the parent univariate distribution function 𝐹(𝑥) = Pr{𝑍𝑖 ≤ 𝑥}. As the 195 

random variables {𝑍𝑖} are identically distributed, they correspond to a stationary stochastic 196 

process, and then the function Pr{𝑍𝑖 ≤ 𝑥|𝑍𝑖−1 ≤ 𝑥} is invariant to a shift of the origin. In this 197 

case, 𝐻𝑛(𝑥) is determined in terms of the second-order (bivariate) distribution 𝐻2(𝑥) =198 

Pr{𝑍1 ≤ 𝑥, 𝑍2 ≤ 𝑥} = Pr{𝑍2 ≤ 𝑥|𝑍1 ≤ 𝑥}𝐹(𝑥) and the first-order (univariate) parent 199 

distribution 𝐹(𝑥). Indeed, from eq. (8) we obtain 200 

𝐻𝑛(𝑥) = 𝐹(𝑥) (
𝐻2(𝑥)

𝐹(𝑥)
)

𝑛−1

=
(𝐹(𝑥))

2

𝐻2(𝑥)
(
𝐻2(𝑥)

𝐹(𝑥)
)

𝑛

 (9) 

It can be easily shown that eq. (9) reduces to eq. (2) in case of independence, i.e. 𝐻2(𝑥) =201 

(𝐹(𝑥))
2
. 202 
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Secondly, we assume that exceedances {𝑍𝑖} have positively correlated occurrences 203 

causing a larger variance than if they were independent, i.e. the occurrences are overdispersed 204 

with respect to a Poisson distribution, for which the mean is equal to the variance. Therefore, we 205 

assume that the random number of occurrences 𝑁 in a specific interval of time [0, 𝑡] follows the 206 

negative binomial distribution (e.g. Calenda et al., 1977; Eastoe and Tawn, 2010), which allows 207 

adjusting the variance independently of the mean. The negative binomial distribution (known as 208 

the limiting form of the Pólya distribution, cf. Feller, 1968, p. 143) is a compound probability 209 

distribution that results from assuming that the random variable 𝑁 is distributed according to a 210 

Poisson distribution whose mean 𝜆𝑗 varies randomly following a gamma distribution with shape 211 

parameter 𝑟 > 0 and scale parameter 𝛼 > 0, so that its density is 212 

𝑔(𝜆𝑗) =
𝜆𝑗
𝑟−1

Γ(𝑟)𝛼𝑟
exp(−

𝜆𝑗

𝛼
) (10) 

Then, the probability distribution function of 𝑁 conditional on 𝛬 = 𝜆𝑗  is  213 

Pr{𝑁 = 𝑘|𝛬 = 𝜆𝑗} =
𝜆𝑗
𝑘

𝑘!
exp(−𝜆𝑗) (11) 

We can derive the unconditional distribution of 𝑁 by marginalizing over the distribution of 𝛬, 214 

i.e., by integrating out the unknown parameter 𝜆𝑗 as 215 

Pr{𝑁 = 𝑘} = ∫ Pr{𝑁 = 𝑘|𝛬 = 𝜆𝑗} 𝑔(𝜆𝑗) d𝜆𝑗

∞

0

 (12) 

Substituting eqs. (10) and (11) into eq. (12), we have 216 

Pr{𝑁 = 𝑘} =
1

𝑘! Γ(𝑟)𝛼𝑟
∫ 𝜆𝑗

𝑟+𝑘−1 exp (−𝜆𝑗 (
𝛼 + 1

𝛼
))d𝜆𝑗

∞

0

 (13) 
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Recalling that the gamma function is defined as Γ(𝑧) = ∫ 𝑥𝑧−1 exp(−𝑥) d𝑥
∞

0
, then multiplying 217 

and dividing eq. (13) by (𝛼 (𝛼 + 1)⁄ )𝑟+𝑘 and integrating by substitution, we obtain after 218 

algebraic manipulations 219 

Pr{𝑁 = 𝑘} = (
𝛼

𝛼 + 1
)
𝑘 Γ(𝑟 + 𝑘)

𝑘! Γ(𝑟)
(

1

𝛼 + 1
)
𝑟

 (14) 

To summarize, we specialize the general model in eq. (3) for the following conditions: 220 

1. {𝑍𝑖} is a sequence of 𝑁 correlated random variables with 2Mp dependence and common 221 

parent distribution 𝐹(𝑥) = Pr{𝑍𝑖 ≤ 𝑥}. 222 

2. 𝑁 is a negative binomial random variable independent of {𝑍𝑖} with mean 𝜇 = 𝑟𝛼 and 223 

variance 𝜎2 = 𝑟𝛼(𝛼 + 1) 224 

Under the above assumptions, from eq. (3) we can derive the conditional distribution function of 225 

the maximum 𝑋 as 226 

𝐻(𝑥|𝜆𝑗) = Pr{𝑁 = 0|𝛬 = 𝜆𝑗} +∑Pr {⋂{𝑍𝑖 ≤ 𝑥}

𝑘

𝑖=1

} Pr{𝑁 = 𝑘|𝛬 = 𝜆𝑗}

∞

𝑘=1

 (15) 

where for {𝑍𝑖} of 2Mp 227 

Pr {⋂{𝑍𝑖 ≤ 𝑥}

𝑘

𝑖=1

} =
(𝐹(𝑥))

2

𝐻2(𝑥)
(
𝐻2(𝑥)

𝐹(𝑥)
)

𝑘

 (16) 

Substituting eqs. (11) and (16) in eq. (15), we obtain  228 

𝐻(𝑥|𝜆𝑗) = exp(−𝜆𝑗) +
(𝐹(𝑥))

2

𝐻2(𝑥)
∑(

𝐻2(𝑥)

𝐹(𝑥)
)

𝑘
𝜆𝑗
𝑘

𝑘!
exp(−𝜆𝑗)

∞

𝑘=1

 (17) 

Then, adding and subtracting the term  ((𝐹(𝑥))
2
𝐻2(𝑥)⁄ ) exp(−𝜆𝑗)  yields 229 
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𝐻(𝑥|𝜆𝑗) = exp(−𝜆𝑗) −
(𝐹(𝑥))

2

𝐻2(𝑥)
exp(−𝜆𝑗) +

(𝐹(𝑥))
2

𝐻2(𝑥)
∑(

𝐻2(𝑥)

𝐹(𝑥)
)

𝑘
𝜆𝑗
𝑘

𝑘!
exp(−𝜆𝑗)

∞

𝑘=0

 (18) 

and thus 230 

𝐻(𝑥|𝜆𝑗) = exp(−𝜆𝑗) −
(𝐹(𝑥))

2

𝐻2(𝑥)
exp(−𝜆𝑗) +

(𝐹(𝑥))
2

𝐻2(𝑥)
exp(−𝜆𝑗 (1 −

𝐻2(𝑥)

𝐹(𝑥)
)) (19) 

which is the conditional distribution function of the maximum term 𝑋 among a Poisson-231 

distributed random number 𝑁 with gamma-distributed mean 𝛬 = 𝜆𝑗 of 2Mp random variables 232 

{𝑍𝑖} in an interval of time [0, 𝑡]. It can be shown that eq. (4) is easily recovered assuming 233 

independence, i.e. 𝐻2(𝑥) = Pr{𝑍1 ≤ 𝑥, 𝑍2 ≤ 𝑥} = (𝐹(𝑥))
2
 and 𝛬 = 𝜆 is a fixed constant. 234 

The unconditional distribution of 𝑋 is derived by substituting eqs. (14) and (16) into eq. 235 

(3) as follows 236 

𝐻(𝑥) = (
1

𝛼 + 1
)
𝑟

+
(𝐹(𝑥))

2

𝐻2(𝑥)
(

1

𝛼 + 1
)
𝑟

∑(
𝐻2(𝑥)

𝐹(𝑥)
)

𝑘

(
𝛼

𝛼 + 1
)
𝑘 Γ(𝑟 + 𝑘)

𝑘! Γ(𝑟)

∞

𝑘=1

 (20) 

Then, adding and subtracting the term  ((𝐹(𝑥))
2
𝐻2(𝑥)⁄ ) /(𝛼 + 1)𝑟  and denoting by (𝑟)𝑘 =237 

Γ(𝑟 + 𝑘) Γ(𝑟)⁄  the Pochhammer’s symbol (Abramowitz and Stegun, 1972, p. 256) yields  238 

𝐻(𝑥) = (
1

𝛼 + 1
)
𝑟

(1 −
(𝐹(𝑥))

2

𝐻2(𝑥)
+
(𝐹(𝑥))

2

𝐻2(𝑥)
∑

(𝑟)𝑘
𝑘!

(
𝛼𝐻2(𝑥)

(𝛼 + 1)𝐹(𝑥)
)

𝑘∞

𝑘=0

) (21) 

Since 𝛼𝐻2(𝑥) ((𝛼 + 1)𝐹(𝑥))⁄ ∈ [0, 1) and 𝑟 > 0 is a real number, then this series is known as a 239 

binomial series (Graham et al., 1994, p. 162), and, setting 𝑦 = 𝛼𝐻2(𝑥) ((𝛼 + 1)𝐹(𝑥))⁄ , it 240 

converges to (1 − 𝑦)−𝑟 = ∑
(𝑟)𝑘

𝑘!
(𝑦)𝑘∞

𝑘=0 , thus  241 
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𝐻(𝑥) = (𝛼 + 1)−𝑟 (1 −
(𝐹(𝑥))

2

𝐻2(𝑥)
+
(𝐹(𝑥))

2

𝐻2(𝑥)
(1 −

𝛼𝐻2(𝑥)

(𝛼 + 1)𝐹(𝑥)
)

−𝑟

) (22) 

which is the unconditional distribution of the extreme maximum 𝑋. The parameters of the model 242 

in eq. (22) are 𝛼 and 𝑟 along with those of the models chosen for both the parent distribution, 243 

𝐹(𝑥), and the bivariate distribution 𝐻2(𝑥) (see Sect. 4 for further details). 244 

In the case of independence, where 𝐻2(𝑥) = (𝐹(𝑥))
2
, eq. (22) reduces to  245 

𝐻(𝑥) = (1 + 𝛼(1 − 𝐹(𝑥)))
−𝑟

 (23) 

As shown in later examples and case studies, eq. (22) yields probabilities of non-exceedance that 246 

are systematically larger than those under independence, i.e. 𝐻dep(𝑥) > 𝐻indep(𝑥).  247 

3 Gen2Mp: An Algorithm to Simulate the Two-State Markov-Dependent Process (2Mp) 248 

with Arbitrary Marginal Distribution 249 

To check the performance of our stochastic model for correlated extremes, we need to 250 

simulate a random process {𝑍𝑖} with any marginal distribution and Markovian dependence. 251 

Nevertheless, we must better clarify what the “Markovian dependence” refers to here. As stated 252 

in the previous Section, we assume that a Markov chain with two states (which may represent for 253 

example flood or no flood, dry or wet year, etc.) governs the excursions above/below any level 254 

(threshold) 𝑥 of the process {𝑍𝑖} (see e.g. Fernández and Salas, 1999). We refer to this process as 255 

2Mp (Volpi et al. 2015).  For such a process, the Markov property is valid because the 256 

probability of the state {𝑍𝑛 ≤ 𝑥} at a given time 𝑛 depends solely on the state {𝑍𝑛−1 ≤ 𝑥} at the 257 

previous time step 𝑛 − 1, i.e., Pr{𝑍𝑛 ≤ 𝑥|𝑍𝑛−1 ≤ 𝑥,… , 𝑍1 ≤ 𝑥} = Pr{𝑍𝑛 ≤ 𝑥|𝑍𝑛−1 ≤ 𝑥}.  258 
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One can be tempted to use the classical AR(1) (first-order autoregressive) model to 259 

simulate the 2Mp. However, this is not appropriate in general, as we show in the following by a 260 

numerical experiment that provides insights into an effective simulation strategy. Let us define 261 

the random variable 𝑆𝑗 in such a way that for 𝑗 = 1, 2, …, it is 262 

Pr{𝑆𝑗 = 𝑗} = Pr{𝑍𝑗 ≤ 𝑥, 𝑍𝑗−1 ≤ 𝑥,… , 𝑍1 ≤ 𝑥} (24) 

Then, by definition of conditional probability, we may write e.g. for 𝑗 = 3 263 

Pr{𝑍3 ≤ 𝑥|𝑍2 ≤ 𝑥, 𝑍1 ≤ 𝑥} =
Pr{𝑍3 ≤ 𝑥, 𝑍2 ≤ 𝑥, 𝑍1 ≤ 𝑥}

Pr{ 𝑍2 ≤ 𝑥, 𝑍1 ≤ 𝑥}
=
Pr{𝑆3 = 3}

Pr{𝑆2 = 2}
 (25) 

In our case the Markov property yields 264 

Pr{𝑍3 ≤ 𝑥|𝑍2 ≤ 𝑥, 𝑍1 ≤ 𝑥} = Pr{𝑍3 ≤ 𝑥|𝑍2 ≤ 𝑥} =
Pr{𝑆2 = 2}

Pr{𝑆1 = 1}
 (26) 

where Pr{𝑆2 = 2} = Pr{𝑍2 ≤ 𝑥, 𝑍1 ≤ 𝑥} = Pr{𝑍3 ≤ 𝑥, 𝑍2 ≤ 𝑥} because {𝑍𝑖} is stationary. From 265 

eqs. (25) and (26), it is easily understood that we seek a modelling framework for which the ratio   266 

rt𝑗(𝑥) = Pr{𝑆𝑗+1 = 𝑗 + 1} Pr{𝑆𝑗 = 𝑗}⁄  should be constant for every 𝑗, depending solely on the 267 

value of the threshold 𝑥. In order to show that this is generally not valid for AR(1) processes, we 268 

compute such a ratio from a sequence of 100000 random numbers generated by a standard 269 

Gaussian AR(1) model with lag-one correlation equal to 0.85. In particular, we calculate four 270 

ratios (𝑗 = 1,… , 4) for various threshold values 𝑥𝑘 (𝑘 = 1,… , 100) selected randomly over the 271 

entire range of the standard Gaussian distribution. Then, as the ratio values depend on the 272 

threshold, for each 𝑥𝑘 we “standardize” the results by taking the absolute difference between 273 

each ratio rt𝑗(𝑥𝑘) and its mean 𝜇rt(𝑥𝑘) computed over 𝑗 = 1,… , 4, i.e. 274 
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𝜇rt(𝑥𝑘) = (1 4⁄ )∑ rt𝑗(𝑥𝑘)
4
𝑗=1 , then dividing all by 𝜇rt(𝑥𝑘); hence, we obtain the relative 275 

difference 𝑒𝑗(𝑥𝑘) = |(rt𝑗(𝑥𝑘) − 𝜇rt(𝑥𝑘)) 𝜇rt(𝑥𝑘)⁄ |.  276 

We seek a model with a particular Markovian dependence so that 𝑒𝑗(𝑥) = 0 for all 𝑗 and 277 

𝑥. In Fig. 1, we show the boxplots depicting the variability of (percent) 𝑒𝑗(𝑥𝑘) over all threshold 278 

values 𝑥𝑘 with 𝑗 = 1,… , 4. In the left panel, we display the results for the AR(1) model 279 

described above. In contrast it can be noted that 𝑒𝑗(𝑥𝑘) values are not only significantly different 280 

from zero (especially if compared with results shown in the right panel of Fig. 1, based on 281 

simulation algorithm described below), but their variability also changes strongly with the index 282 

𝑗. Then, we conclude that AR(1) models are not appropriate for our purposes. As shown later, 283 

despite sharing similar dependence structures (see Fig. 2), Gen2Mp outperforms AR(1) in terms 284 

of 𝑒𝑗(𝑥) = 0. 285 

 286 

Figure 1. Box plots of four (𝑗 = 1,… , 4) relative differences  𝑒𝑗(𝑥𝑘) = |(rt𝑗(𝑥𝑘) − 𝜇rt(𝑥𝑘)) 𝜇rt(𝑥𝑘)⁄ | for various 287 

threshold values 𝑥𝑘 (𝑘 = 1,… , 100) selected at random from the parent (standard Gaussian) distribution, where 288 

rt𝑗(𝑥) = Pr{𝑆𝑗+1 = 𝑗 + 1} Pr{𝑆𝑗 = 𝑗}⁄  and 𝜇rt(𝑥𝑘) = (1 4⁄ )∑ rt𝑗(𝑥𝑘)
4
𝑗=1 . The red line inside each box is the 289 
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median and the box edges are the 25th and 75th percentiles of the samples. The left panel depicts results for AR(1) 290 

model, while right panel shows boxplots of synthetic data from Gen2Mp algorithm. 291 

3.1 Description of the Gen2Mp simulation algorithm  292 

We introduce herein a new generator, which enables the Monte Carlo materialization of a 293 

2Mp with any arbitrary marginal distribution. It is worth stressing that the theoretical 294 

considerations discussed above result in a conceptually simple simulation algorithm, whose 295 

scheme consists of an iteration procedure with the following steps:  296 

a) We start by generating two sequences {𝑎𝑖}𝑖=1
𝑛  and {𝑏𝑖}𝑖=1

𝑛  of 𝑛 independent random 297 

numbers with the same arbitrary distribution but conditional on being higher ({𝑎𝑖}𝑖=1
𝑛 ) or 298 

lower ({𝑏𝑖}𝑖=1
𝑛 ) than the median.  299 

b) Then, we generate the series {𝑐𝑖}𝑖=1
𝑛  sampled from i.i.d. Bernoulli random variables 300 

taking values 1 and 0 with probability 𝑝 and (1 − 𝑝), respectively. 301 

c) The events {𝑐𝑖 = 1} in the Bernoulli series determine the alternation between the two 302 

states of our target process, i.e. higher (state 1) and lower (state 2) than the median. In 303 

other words, the series {𝑐𝑖}𝑖=1
𝑛  determines the “holding times” before our process 304 

switches (jumps) from a state to the other one, because we assume that the state remains 305 

the same up to the “time” when there comes a state change {𝑐𝑖 = 1}. We can now 306 

simulate the state-of-generation sequence {𝑑𝑖}𝑖=1
𝑛  taking values 1 when the state of our 307 

process is higher than the median (i.e., {𝑎𝑖}𝑖=1
𝑛 ) and 2 otherwise (i.e., {𝑏𝑖}𝑖=1

𝑛 ).  308 

d) Consequently, the sequence {𝑑𝑖}𝑖=1
𝑛  is a sample of a Markov chain {𝐷𝑖} with state space 309 

{1, 2}. Since the holding times of each state are completely random, the state probabilities 310 

are Pr{𝐷𝑖 = 1} = Pr{𝐷𝑖 = 2} = 0.5. On the other hand, as the jumps arrive randomly 311 
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according to the Bernoulli process, the transition probabilities are 312 

Pr{𝐷𝑖 = 1|𝐷𝑖−1 = 2} = Pr{𝐷𝑖 = 2|𝐷𝑖−1 = 1} = 𝑝 and Pr{𝐷𝑖 = 1|𝐷𝑖−1 = 1} =313 

Pr{𝐷𝑖 = 2|𝐷𝑖−1 = 2} = 1 − 𝑝. Therefore, the dependence structure of {𝑑𝑖}𝑖=1
𝑛  is 314 

completely specified in terms of the lag-one autocorrelation coefficient 𝜌1 = 1 − 2𝑝 (see 315 

e.g. Lombardo et al., 2017). 316 

e) We can now obtain the target correlated sequence {𝑧𝑖}𝑖=1
𝑛  as follows:  317 

𝑧𝑖 = {
𝑎𝑖     if 𝑑𝑖 = 1
𝑏𝑖     otherwise

 (27) 

f) As the resulting sequence {𝑧𝑖}𝑖=1
𝑛  generally does not satisfy the properties of the process 318 

we are interested in, we must subdivide each of the cases “> median” and “< median” 319 

into two subcases. Specifically, we generate the i.i.d. sequences {𝑎𝑖
′}𝑖=1
𝑛 , {𝑏𝑖

′}𝑖=1
𝑛  and 320 

{𝑎𝑖
′′}𝑖=1
𝑛 , {𝑏𝑖

′′}𝑖=1
𝑛  conditional on being, respectively, “ > 75th percentile”, “(median, 75th 321 

percentile)”, (25th percentile, median) and “ < 25th percentile”. Then we generate other 322 

two Bernoulli series {𝑐𝑖
′}𝑖=1
𝑛  and {𝑐𝑖

′′}𝑖=1
𝑛  with same parameter as above, and consequently 323 

derive the corresponding state-of-generation sequences {𝑑𝑖
′}𝑖=1
𝑛  (taking values 1 when the 324 

state of our process is higher than the 75th percentile, and 2 if it belongs to the interval 325 

(median, 75th percentile)) and {𝑑𝑖
′′}𝑖=1
𝑛  (taking values 1 when the state belongs to the 326 

interval (25th percentile, median), and 2 if it is lower than the 25th percentile). We can 327 

now obtain the target correlated sequence {𝑧𝑖}𝑖=1
𝑛  as follows:  328 

𝑧𝑖 =

{
 

 
𝑎𝑖
′     if 𝑑𝑖 = 1 and  𝑑𝑖

′ = 1

𝑏𝑖
′     if 𝑑𝑖 = 1 and  𝑑𝑖

′ = 2

𝑎𝑖
′′    if 𝑑𝑖 = 2 and 𝑑𝑖

′′ = 1

𝑏𝑖
′′    if 𝑑𝑖 = 2 and 𝑑𝑖

′′ = 2

 (27’) 
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g) We continue to subdivide until the relative difference 𝑒𝑗(𝑥𝑘) converges to zero for any 𝑗. 329 

In any subdivision step, we follow the same procedure as that described above with a 330 

fixed parameter 𝑝, until a convergence threshold is achieved (here, a mean absolute error 331 

equal to 0.002 for 𝑒𝑗(𝑥𝑘) is used in the numerical examples below, which is obtained 332 

after 9 subdivision steps for 𝑝 = 0.06). 333 

3.2 Numerical simulations  334 

We show some Monte Carlo experiments assuming the standard Gaussian probability 335 

model as parent distribution, but it can be changed to any distribution function. We generate a 336 

correlated series of 100000 standard Gaussian random numbers using Gen2Mp with parameter 337 

𝑝 = 0.06. Such a parameter completely determines the dependence structure of the 2Mp process. 338 

For 0 < 𝑝 < 0.5 the process is positively correlated, while it reduces to white noise for 𝑝 = 0.5. 339 

For 0.5 < 𝑝 < 1 we get an anticorrelated series. The particular value of 𝑝 = 0.06 is chosen in 340 

order to have the dependence structure of the generated series similar to that of the AR(1) model 341 

with lag-one correlation equal to 0.85 (see Fig. 2). Such a value of 𝑝 has been determined 342 

numerically exploiting the fact that the dependence structure of the generated series is closely 343 

related (showing slight downward bias) to that of the Markov chain {𝐷𝑖} defined above, whose 344 

lag-one autocorrelation is 𝜌1 = 1 − 2𝑝 (see Fig. 2). Then, to a first approximation, we start 345 

assuming 𝜌1 = 0.85, and progressively increase it until the dependence structures of the 2Mp 346 

and AR(1) match. 347 
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 348 

Figure 2. Comparison of the empirical autocorrelation functions (EACFs) resulting from time series generated by 349 

Gen2Mp {𝑧𝑖}𝑖=1
𝑛  and the Markov chain {𝑑𝑖}𝑖=1

𝑛  with parameter 𝑝 = 0.06, and by AR(1) model with lag-one 350 

correlation equal to 0.85. 351 

Then, even though Gen2Mp and the classical AR(1) algorithms generate time series 352 

exhibiting analogous dependence structures, the former significantly outperforms the latter in 353 

terms of 𝑒𝑗(𝑥) = 0, as shown in Fig. 1 (right panel). Furthermore, we generate an independent 354 

series of 100000 standard Gaussian random numbers as a benchmark using classical generators 355 

(e.g. Press et al., 2007). As it can be noticed from the probability-probability (PP) and quantile-356 

quantile (QQ) plots in Fig. 3, the marginal distribution of the final dependent series 357 

(corresponding to a 2Mp) is the same as that of the benchmark series. In summary, the important 358 

achievement is that Gen2Mp does not alter the parent distribution, but it only induces time 359 

dependence in a Markov chain sense. 360 
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 361 

Figure 3. Probability–Probability plot (left) and Quantile–Quantile plot (right) comparing the marginal distribution 362 

of a benchmark series (i.i.d. standard Gaussian random numbers) to that of the correlated series generated using 363 

Gen2Mp. 364 

Focusing on the frequency analysis of maxima, we investigate the distribution of the 365 

maximum term 𝑋 among a random number 𝑁 of a sequence of standard Gaussian random 366 

variables {𝑍𝑖}. Specifically, we assume that 𝑁 follows a negative binomial distribution in eq. 367 

(14), while the variables {𝑍𝑖} form a 2Mp stochastic process. Based on such hypotheses, in the 368 

previous Section we derived the corresponding theoretical probability distribution function 369 

𝐻(𝑥) = Pr{𝑋 ≤ 𝑥} given by eq. (22). To check this numerically, we generate the random 370 

numbers {𝑛𝑘}𝑘=1
𝑚  (where 𝑚 = 450) from the negative binomial distribution with parameters 371 

𝑟 = 4 and 𝛼 = 25, then we form the target sample {𝑥𝑘}𝑘=1
𝑚  by taking the maximum of 𝑚 non-372 

overlapping sequences of 𝑛𝑘 consecutive random numbers {𝑧𝑖}𝑖=1
𝑛𝑘 . We allow two different 373 

dependence structures for {𝑧𝑖}𝑖=1
𝑛𝑘 . In the first case we assume that {𝑧𝑖}𝑖=1

𝑛𝑘  are sampled from i.i.d. 374 

random variables; while in the second case {𝑧𝑖}𝑖=1
𝑛𝑘  are sampled from a 2Mp stochastic process 375 

with parameter 𝑝 = 0.06, which is simulated by Gen2Mp.  376 
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Results in the form of PP plots are depicted in Fig. 4. In the left panel, we show the 377 

independent case, and it can be noticed how the empirical distribution of {𝑥𝑘}𝑘=1
𝑚  is closely 378 

matched by eq. (23), i.e. the PP plot (blue line) follows a straight line configuration oriented 379 

from (0, 0) to (1, 1). In other words, when {𝑍𝑖} are i.i.d. eq. (23) proves to be a good model for 380 

the theoretical distribution of 𝑋. 381 

In the right panel of Fig. 4, we show the dependent case where the joint probability 382 

𝐻2(𝑥) = Pr{𝑍𝑛 ≤ 𝑥, 𝑍𝑛−1 ≤ 𝑥} in eq. (22) is determined numerically. Clearly, if we apply eq. 383 

(23) to the correlated sample {𝑥𝑘}𝑘=1
𝑚 , then the corresponding plot (blue line) shows a marked 384 

departure from the 45° line (i.e., the line of equality). By contrast, the theoretical distribution that 385 

we propose in eq. (22) reasonably models the empirical distribution of correlated maxima 386 

{𝑥𝑘}𝑘=1
𝑚  in all respects (see black line). Therefore, when the {𝑍𝑖} belong to 2Mp eq. (22) (black 387 

line) largely outperforms eq. (23) (blue line) in modelling the extreme maxima 388 

 389 

Figure 4. Probability–Probability plots of the maximum term 𝑋 among a (negative binomial) random number 𝑁 of a 390 

sequence of i.i.d. (left panel) and 2Mp (right panel) standard Gaussian random variables {𝑍𝑖}. 391 
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4 Applications to Rainfall and Streamflow Data 392 

In order to provide some insights into the capability of the proposed methodology to 393 

reproduce the statistical pattern of observed hydrological extremes, the datasets used in the 394 

applications comprise long-term daily rainfall and streamflow time series with no missing values 395 

or as few as possible, to fulfil the requirements of POT analyses. In more detail, we use three 396 

daily precipitation time series recorded by rain gages located at Groningen (north-eastern 397 

Netherlands), Middelburg (south-western Netherlands) and Bologna (northern Italy) respectively 398 

ranging from 1847 to 2017 (171 years, no missing values), from 1855 to 2017 (163 years, no 399 

missing values) and from 1813 to 2018 (206 years, only three missing values). Raw data, 400 

retrieved through the Royal Netherlands Meteorological Institute (KNMI) Climate Explorer web 401 

site, are available at https://climexp.knmi.nl/data/bpeca147.dat (accessed on 26 October 2019) 402 

for Groningen station, at https://climexp.knmi.nl/data/bpeca2474.dat (accessed on 26 October 403 

2019) for Middelburg station and at https://climexp.knmi.nl/data/pgdcnITE00100550.dat 404 

(accessed on 26 October 2019) for Bologna station in the period 1813-2007 (see Klein Tank et 405 

al., 2002; Menne et al., 2012). For the most recent period, 2008-2018, daily data for Bologna 406 

station are provided by the Dext3r public repository (http://www.smr.arpa.emr.it/dext3r/) 407 

(accessed on 26 October 2019) of the Regional Agency for Environmental Protection and Energy 408 

(Arpae) of Emilia Romagna, Italy (retrieved and processed by Koutsoyiannis for the book: 409 

Stochastics of Hydroclimatic Extremes, in preparation for 2020). 410 

Furthermore, we analyze one daily streamflow time series of the Po River recorded at 411 

Pontelagoscuro, northern Italy (see Montanari, 2012 for further details). The data series, 412 

spanning from 1920 to 2017 (98 years, no missing values), is made publicly available by Prof. 413 

Alberto Montanari at 414 

https://climexp.knmi.nl/data/bpeca147.dat
https://climexp.knmi.nl/data/bpeca2474.dat
https://climexp.knmi.nl/data/pgdcnITE00100550.dat
http://www.smr.arpa.emr.it/dext3r/
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https://distart119.ing.unibo.it/albertonew/sites/default/files/uploadedfiles/po-pontelagoscuro.txt 415 

(accessed on 26 October 2019) for the period 1920-2009, while the remainder (2010-2017) has 416 

been retrieved through the Dext3r repository. 417 

Since it has been shown that seasonality affects the distribution of hydrological extremes 418 

(Allamano et al., 2011), our analyses are performed on a seasonal basis; we distinguish four 419 

seasons, each consisting of three months such that the autumn comprises September, October, 420 

and November. Winter, spring, and summer are defined similarly. We prefer not to use 421 

deseasonalization procedures to avoid possible artifacts that may affect the results.  Furthermore, 422 

as daily rainfall and streamflow processes exhibit very different marginal distributional 423 

properties, all recorded values exceeding a certain threshold are transformed to normality by 424 

normal quantile transformation (NQT) for the sake of comparison (Krzysztofowicz, 1997). In 425 

practice, observed exceedances {𝑧𝑖}𝑖=1
𝑛  are transformed to 𝜓𝑖 = Φ−1(𝐹𝑛(𝑧𝑖)), where Φ−1 is the 426 

quantile function of the standard Gaussian distribution and 𝐹𝑛 is the Weibull plotting position of 427 

the ordered sample. In addition, all datasets used in this study have been preprocessed by 428 

removing leap days, because the February 29th was already removed from all leap years of the 429 

1920-2009 Po river discharge dataset. 430 

We now investigate the frequency analysis of observed hydrological maxima. For each 431 

season of any dataset, we use for example the value of the threshold corresponding to the 5th 432 

percentile (excluding zeros for rainfall datasets for simplicity, but we checked that results do not 433 

vary considerably if we include zeros), whose exceedances {𝑧𝑖} are normalized to {𝜓𝑖} for each 434 

sample. As stated in Sect. 1, we are interested in the statistical behavior of the maximum term 𝑋 435 

among a random number of equally distributed random variables (i.e., belonging to a certain 436 

season) in an interval of time (we assume one year). Then, first we form the POT samples for 437 

https://distart119.ing.unibo.it/albertonew/sites/default/files/uploadedfiles/po-pontelagoscuro.txt
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each year of the record, consisting of 𝑚 (i.e., number of years) sequences of threshold excesses 438 

{𝜓𝑖}𝑖=1
𝑛𝑘  each of size 𝑛𝑘 (for 𝑘 = 1,… ,𝑚); second we form the sample of annual extremes 439 

{𝑥𝑘}𝑘=1
𝑚  by taking the maximum of each POT series. In other words, {𝑥𝑘}𝑘=1

𝑚  is a sample of 440 

annual maxima of size 𝑚 (i.e., the number of years of the given dataset) taken from annual POT 441 

series of size 𝑛𝑘 (i.e., the number of exceedances in the k-th year for the considered season). It 442 

follows that the sample size used in classical BM analysis is 𝑚, while that used in our approach 443 

is ∑ 𝑛𝑘
𝑚
𝑘=1 . As detailed below, all parameter values (see, e.g., Tables 1 and 2) are estimated from 444 

the POT series by maximum likelihood method. 445 

We compare the empirical distribution of 𝑋 to the theoretical probability distribution 446 

function 𝐻(𝑥) = Pr{𝑋 ≤ 𝑥} given by eq. (4) (i.e., the classical method) assuming Poisson 447 

occurrences of independent exceedances, and by eq. (22) (i.e., the proposed method) assuming 448 

negative binomial occurrences of 2Mp exceedances. Parameters of Poisson and negative 449 

binomial distributions are derived through a process of maximum likelihood estimation from the 450 

annual counts {𝑛𝑘}𝑘=1
𝑚  for each season of each dataset. To a first approximation, we assume 451 

statistical independence of {𝑛𝑘}𝑘=1
𝑚  by checking that, for each dataset, the empirical 452 

autocorrelations between the numbers of exceedances of subsequent years are negligible (not 453 

shown). Furthermore, we assume that the joint probability of exceedances 𝐻2(𝑥) =454 

Pr{𝑍1 ≤ 𝑥, 𝑍2 ≤ 𝑥} in eq. (22) can be written in terms of the univariate marginal distribution 455 

𝐹(𝑥) (which is the standard normal in case of normal quantile transformation) and a bivariate 456 

copula that describes the dependence structure between the variables (Salvadori et al., 2007). 457 

Several bivariate families of copulas have been presented in the literature, allowing the selection 458 

of different dependence frameworks (Favre et al., 2004). For the sake of simplicity, we choose 459 

the following three types of copulas that have been in common use:  460 
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1. The Gaussian copula (Salvadori et al., 2007 pp. 254-256), which implies the elliptical 461 

shape of isolines of the pairwise joint distribution 𝐻2(𝑥) that in our case is given by a 462 

bivariate normal distribution 𝒩2(𝟎, 𝚺) with zero mean and covariance matrix 𝚺 =463 

(
1 𝜌
𝜌 1

), where the parameter 𝜌 is the average (over 𝑚 years) lag-one autocorrelation 464 

coefficient of the annual POT series {𝜓𝑖}. 465 

2. The Clayton copula (Salvadori et al., 2007 pp. 237-240), which exhibits upper tail 466 

independence and lower tail dependence (Salvadori et al., 2007 pp. 170-175), and in our 467 

case yields 468 

𝐻2(𝑥) = max((2𝐹(𝑥)
−𝛽 − 1)

−
1
𝛽 , 0) (28) 

where the parameter 𝛽 can be written in terms of the Kendall's tau correlation coefficient 469 

as 𝛽 = 2𝜏 (1 − 𝜏)⁄ , which is the average (over 𝑚 years) of lag-one Kendall's tau 470 

autocorrelation coefficient of the annual POT series {𝜓𝑖}. 471 

3. The Gumbel-Hougaard copula (Salvadori et al., 2007 pp. 236-237), which exhibits upper 472 

tail dependence and lower tail independence, and in our case yields 473 

𝐻2(𝑥) = exp(− (2(− ln(𝐹(𝑥)))
𝛽
)

1
𝛽
) (29) 

where the parameter 𝛽 is again written in terms of the Kendall's tau correlation 474 

coefficient as 𝛽 = 1 (1 − 𝜏)⁄ . 475 

 All parameter values for all seasons and datasets are reported in Table 1.  476 
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 477 

Figure 5. Probability–Probability plots of Groningen dataset of daily rainfall. The empirical distributions of 478 

maximum terms {𝑥𝑘}𝑘=1
𝑚  among annual exceedances of the 5th percentile threshold for winter (top left), spring (top 479 

right), summer (bottom left) and autumn (bottom right) seasons are compared to the corresponding theoretical 480 

distributions assuming both Poisson (P) occurrences (with parameter 𝜆) of independent exceedances (eq. 4), and 481 

negative binomial occurrences (with parameters 𝑟 and 𝛼) of correlated exceedances (eq. 22) with pairwise joint 482 

distribution described by the Gaussian (N), Clayton (C, eq. 28) and Gumbel (G, eq. 29) copulas, with parameters 𝜌 483 

and 𝜏 as detailed in the text. All parameter values are reported in Table 1. 484 
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 485 

Figure 6. Same as Fig. 5 for Middelburg dataset of daily rainfall.  486 

 487 

Figure 7. Same as Fig. 5 for Bologna dataset of daily rainfall. 488 

In Figs. 5-7 we may observe that for all daily rainfall datasets the magnitudes of extreme 489 

events taken from excesses of a low threshold (the 5th percentile of the nonzero sample) can be 490 
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considered independent and identically distributed, and this is consistent with the results shown 491 

in the literature using different approaches (see e.g. Marani and Ignaccolo, 2015; Zorzetto et al., 492 

2016; De Michele and Avanzi, 2018). In addition, we may notice that the classical model of POT 493 

analyses assuming Poisson occurrences (see eq. (4)) seems to be appropriate to study rainfall 494 

extremes. Analogous considerations obviously apply to higher thresholds (not shown). Our 495 

model of correlated extremes in eq. (22) is capable of capturing such a behavior with precision. 496 

After showing the results with daily rainfall, we also analyze rainfall records at finer time 497 

resolution (hourly scale) whose correlation can be stronger than that pertaining to daily data. To 498 

this end, we use hourly rainfall data of “Bologna idrografico” station for the period 1990-2013 499 

provided by the Dext3r repository (23 years full coverage, while the entire 2008 is missing). We 500 

checked that such hourly rainfall data aggregated at the daily scale are consistent with the daily 501 

data recorded in the same period by Bologna station above (not shown). 502 

 503 

Figure 8. Same as Fig. 5 for Bologna dataset of hourly rainfall. 504 
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Comparing Figs. 7 and 8, it is noted that extremes of hourly rainfall data are more 505 

affected by correlation than daily data (see e.g. winter and autumn seasons, respectively top left 506 

and bottom right panels). This is also the case if we consider the same period of record (1990-507 

2013) for both datasets (not shown). Then, we may conclude that low thresholds can be used for 508 

classical POT analyses (assuming independence) of rainfall time series at the daily scale (or 509 

above), while further investigations of different datasets are required to describe the impact of 510 

dependence on the extremal behavior of the rainfall process at finer time scales.  Besides, other 511 

interesting future analyses could investigate the extremes of areal rainfall, as for example 512 

weather radar data will become more reliable and will accumulate in time providing samples 513 

with lengths adequate enough to enable reliable investigation of the probability distribution of 514 

areal rainfall (Lombardo et al., 2006a,b; Lombardo et al., 2009).  515 

By contrast, results change significantly when analyzing extremes of streamflow time 516 

series. In fact, we present a case study that shows how models assuming independence among 517 

magnitudes of extreme events prove to be inadequate to study the probability distribution of 518 

discharge maxima. 519 
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 520 

Figure 9. Same as Fig. 5 for the Po River dataset of daily discharge. 521 

In Fig. 9, we show the PP plots of the distribution of extreme maxima taken from annual 522 

exceedances of the 5th percentile thresholds for the four seasons of the Po River discharge 523 

dataset, recorded at Pontelagoscuro station. Contrary to the rainfall case studies, the classical 524 

model assuming independent magnitudes with Poisson (P) occurrences shows marked departures 525 

from the 45° line. The theoretical distribution is usually much lower than its empirical 526 

counterpart, meaning that, under the popular assumption of independent extremes, the theoretical 527 

probability of an extreme event of given magnitude being exceeded is significantly higher than 528 

the corresponding observed frequency of exceedance. Fig. 9 shows that our 2Mp model of 529 

correlated extremes outperforms the widely used independent model. In particular, the 530 

distribution of maxima that has a Gumbel copula seems to be more consistent with observed 531 

extreme values, denoting dependence in the upper tail of the bivariate distribution 𝐻2(𝑥) =532 

Pr{𝑍1 ≤ 𝑥, 𝑍2 ≤ 𝑥} (Schmidt, 2005). In summary, daily streamflow extremes may exhibit 533 
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noteworthy departures from independence which are consistent with a stochastic process 534 

characterized by a 2Mp behavior and upper tail dependence. 535 

Table 1. Parameters values for all normalized case studies detailed in the text: 𝜆 for Poisson (P) occurrences (eq. 4); 536 

𝑟 and 𝛼 for negative binomial occurrences (eq. 22); 𝜏 for Clayton (C) and Gumbel (G) copulas (eqs. 28-29); 𝜌 for 537 

Gaussian copula. 538 

Station 
Parameter / 

Season 
Winter Spring Summer Autumn 

Groningen 

𝜆 50.04 41.56 45.04 50.05 

𝑟 76.24 73.15 150.54 164.94 

𝛼 0.66 0.57 0.30 0.30 

𝜏 0.08 0.04 0.02 0.1 

𝜌 0.10 0.05 0.04 0.13 

Middelburg 

𝜆 48.41 40.00 38.42 47.16 

𝑟 35.71 40.22 35.47 61.68 

𝛼 1.36 0.99 1.08 0.76 

𝜏 0.09 0.04 0.02 0.09 

𝜌 0.12 0.06 0.02 0.14 

Bologna daily 

𝜆 20.92 25.39 16.59 24.67 

𝑟 7.20 22.57 20.98 21.14 

𝛼 2.91 1.13 0.79 1.17 

𝜏 0.03 0.02 -0.05 -0.01 

𝜌 0.05 0.02 -0.06 0.01 

Bologna hourly 

𝜆 127.59 128.87 54.09 129.74 

𝑟 5.27 14.14 4.55 12.32 

𝛼 24.22 9.12 11.90 10.53 

𝜏 0.43 0.30 0.17 0.33 

𝜌 0.54 0.38 0.20 0.41 

Pontelagoscuro 

𝜆 85.48 87.40 87.39 86.41 

𝑟 67.02 136.59 81.95 245.15 

𝛼 1.28 0.64 1.07 0.35 

𝜏 0.82 0.81 0.84 0.84 

𝜌 0.92 0.92 0.94 0.93 

The above results are also evident if we compare theoretical and empirical distributions 539 

of streamflow maxima by plotting their quantiles against each other. We use real values for this 540 

example (i.e., we do not apply the normal quantile transformation to the data series); therefore, 541 

empirical quantiles equal the observed annual maxima. Theoretical quantiles referring to eqs. (4) 542 

and (22) (the latter specializes for Gaussian, Clayton and Gumbel copulas) are computed by 543 

numerically solving for the root of the equation 𝐻(𝑥) − 𝑝 = 0 for a given probability value, 𝑝 544 
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(i.e., the Weibull plotting position of observed annual maxima), assuming the classical 545 

generalized Pareto (GPD) with zero lower bound as parent distribution of threshold excesses:  546 

𝐹(𝑥) =

{
 

 1 − (1 + 𝛾
𝑥

𝜎
)
−
1
𝛾
     for 𝛾 ≠ 0

1 − exp (−
𝑥

𝜎
)          otherwise

 (30) 

where 𝛾 is the shape parameter and 𝜎 is the scale parameter, which we estimate through the 547 

maximum likelihood method applied to the entire POT series of each season.  548 

In Fig. 10, QQ plots of Po river discharge for the spring season are shown when varying 549 

the threshold 𝜉 (from the 5th, 𝑄5, to the 75th, 𝑄75, percentiles) to form POT series. It can be 550 

noticed that for low thresholds there is a shift in variance between theoretical (i.e., derived from 551 

eq. (22) with Gumbel copula) and empirical quantiles, namely the variance of theoretical annual 552 

maxima underestimates its empirical counterpart. This can be due to the fitting performance of 553 

the marginal generalized Pareto, which does not reproduce well the tail behavior of observed 554 

data (not shown). Fig. 10 shows that increasing the threshold value helps focus the attention on 555 

the distribution tail to better capture the behavior of maxima. This is also the case if we compare 556 

streamflow quantiles resulting from our model with those estimated through “classical” 557 

Generalized Extreme Value (GEV) distribution fitted to the observed annual maxima. All 558 

parameter values are reported in Table 2. We note that the three GEV parameters are estimated 559 

on 𝑚 = 98 data points, while the five parameters of our model in eq. (22) (𝛼, 𝑟, 𝜏 or 𝜌, and the 560 

two parameters of the GPD with zero lower bound) are estimated on ∑ 𝑛𝑘
𝑚
𝑘=1  data, which are 561 

8565, 6759, 4497, and 2253 for 𝑄5, 𝑄25, 𝑄50, 𝑄75, respectively. 562 

As threshold increases evidence of persistence is progressively reduced as expected, but, 563 

we also note in Fig. 10 that the theoretical quantiles derived from the classical independent 564 
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Poisson method always show a shift in mean with respect to observed maxima (i.e., under 565 

independence, theoretical streamflow quantiles systematically and significantly overestimate 566 

observed streamflow maxima).  567 

 568 

Figure 10. Quantile–Quantile plots of Po river discharge (m
3
/s) for spring season. The observed maximum terms 569 

among annual peaks over the 5th percentile (top left), 25th percentile (top right), 50th percentile (bottom left) and 570 

75th percentile (bottom right) thresholds are compared to the corresponding theoretical quantiles. In all cases, we 571 

assume the Generalized Pareto as parent distribution of daily streamflow (with shape 𝛾 ∈ ℝ, scale 𝜎 > 0 and 572 

threshold 𝜉 > 0 parameters), and compute quantiles specializing eq. (22) for Poisson (P) occurrences (with 573 

parameter 𝜆, eq. 4) of independent exceedances, and for negative binomial occurrences (with parameters 𝑟 and 𝛼) of 574 

correlated exceedances with pairwise joint distribution described by the Gaussian (N), Clayton (C) and Gumbel (G) 575 

copulas, with parameters 𝜌 and 𝜏 as detailed in the text. We also plot theoretical quantiles from GEV distribution 576 

(with shape 𝜒 ∈ ℝ, scale 𝜃 > 0 and location 𝜇 > 0 parameters) fitted to the observed annual maxima. All parameter 577 

values are reported in Table 2. 578 

To summarize, our model provides a closed-form expression of the exact distribution for 579 

dependent hydrological maxima, which is capable of capturing the behavior of observed 580 
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extremes of long-term hydrological records. In particular, while rainfall extremes do not seem to 581 

be significantly affected by correlation at the daily scale so that the classical Poisson model can 582 

be appropriate for use in POT analyses of daily rainfall time series, the influence of correlation is 583 

prominent in the streamflow process at the daily scale and it is important to preserve in 584 

simulation and analysis of extremes.  585 

Table 2. Parameters values for all models used in the QQ plots of Fig. 10. 586 

Model 
Parameter / 

Threshold 
Q5 Q25 Q50 Q75 

Generalized Pareto 

𝛾 -0.10 -0.03 -0.05 -0.03 

𝜎 1220.16 1044.03 1065.80 998.06 

𝜉 653.00 998.00 1410.00 2133.00 

Poisson 𝜆 87.40 68.97 45.89 22.99 

Negative Binomial 
𝑟 136.59 5.89 1.74 0.71 

𝛼 0.64 11.71 26.45 32.22 

Clayton & Gumbel 

copulas 
𝜏 0.82 0.76 0.63 0.48 

Gaussian copula 𝜌 0.91 0.86 0.75 0.61 

GEV 

𝜒 -0.11 -0.11 -0.08 -0.07 

𝜃 1463.94 1463.94 1399.01 1273.31 

𝜇 3309.91 3309.91 3369.76 3739.46 

5 Conclusions 587 

The study of hydrological extremes faces the chronic lack of sufficient data to perform 588 

reliable analyses. This is partly related to the inherent nature of extreme values, which are rare by 589 

definition, and partly related to the relative shortness of systematic records from hydro-590 

meteorological gauge networks. The limited availability of data poses serious problems for an 591 

effective and reliable use of asymptotic results provided by EVT. 592 

Alternative methods focusing on the exact distribution of extreme maxima extracted from 593 

POT sequences of random size over fixed time windows have been proposed in the past. 594 

However, closed-form analytical results were developed only for independent data with Poisson 595 
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occurrences. Even though these assumptions may be sufficiently reliable for high-threshold POT 596 

values, this type of data still generates relatively small sample size. In order to better exploit the 597 

available information, it can be convenient to consider lower thresholds. However, the effect of 598 

lower thresholds is twofold: on the one side the sample size increases, but on the other side the 599 

hypotheses of independent magnitudes and Poisson occurrences of POT values are no longer 600 

reliable. 601 

In this study, we have introduced closed-form analytical formulae for the exact 602 

distribution of maxima from POT sequences that generalize the classical independent model, 603 

overcoming its limits and enabling the study of maxima taken from dependent low-threshold 604 

POT values with arbitrary marginal distribution, first-order Markov dependence structure, and 605 

negative binomial occurrences, and tested real data against this hypothesis. Even though the 606 

framework can be further generalized by introducing arbitrary dependence structures and models 607 

for POT occurrences, first-order Markov chains and negative binomial distributions provide a 608 

good compromise between flexibility and the possibility to obtain simple ready-to-use formulae. 609 

In this respect, it should be noted that our model of correlated extremes can cover a sufficient 610 

range of cases. We have shown that the modulation of the lag-one autocorrelation coefficient of 611 

the annual sequences of POT values (i.e. the Markov chain parameter) gives a set of extremal 612 

distributions that include the empirical distribution of maxima for rainfall data series, and for 613 

highly correlated low-threshold discharge POT series.  On the other hand, the negative binomial 614 

model is a widely used and theoretically well-established model for occurrences exhibiting 615 

clustering and overdispersion, which are common characteristics of POT events resulting from 616 

persistent processes, such as river discharge. 617 



Accepted for publication in Water Resources Research 

37 

 

The relationship between our model and its classical independent version (i.e. eqs. (22) 618 

and (4)) along with results of the case studies show that distribution of extreme maxima under 619 

dependence yields probabilities of exceedance that are systematically lower than those under 620 

independence, and are also consistent with traditional approaches (GEV), based on extreme 621 

value theory, applied to long annual maxima series. 622 

Finally, we stress that our model of the exact distribution of correlated extremes requires 623 

knowledge or fitting of a bivariate distribution (and therefore its univariate marginal 624 

distribution). In particular, while the extremal behavior of the rainfall process does not seem to 625 

be significantly affected by dependence at the daily scale so that the classical Poisson model can 626 

be appropriate for use in POT analyses of daily rainfall time series, the influence of correlation is 627 

prominent in the streamflow process at the daily scale and it appears also in the rainfall process 628 

at the hourly scale. Then, it is important to account for such dependence in the extreme value 629 

analyses, which are crucial to hydrological design and risk management because critical values 630 

can be less extreme and more frequent than expected under the classical independent models. 631 

Comparing the Gaussian, Clayton and Gumbel bivariate copulas, describing different 632 

dependence structures, and the standard Gaussian and Generalized Pareto marginal distributions, 633 

we found that the distribution of maxima that has a Gumbel copula seems to be more consistent 634 

with streamflow extreme values, denoting dependence in the upper tail of the bivariate 635 

distribution. However, these aspects require further investigation form both theoretical and 636 

empirical standpoints, and will be the subject of future research. In the spirit of the recent 637 

literature on the topic, we believe that the present study will contribute to develop more reliable 638 

data-rich-based analyses of extreme values. 639 



Accepted for publication in Water Resources Research 

38 

 

Acknowledgments 640 

All data used in this study are freely available online, as described in Section 4 above. The 641 

associate editor, an eponymous reviewer, Geoff Pegram, and two anonymous reviewers are 642 

gratefully acknowledged for their constructive comments that helped to substantially improve the 643 

paper. We also thank Alessio Domeneghetti for providing the first author with detailed 644 

information on the Dext3r public repository. 645 

References 646 

Abramowitz, M., and Stegun, I. A. (1972). Handbook of Mathematical Functions with Formulas, 647 

Graphs, and Mathematical Tables, 9th printing. New York: Dover. 648 

Allamano, P., Laio, F., and Claps, P. (2011). Effects of disregarding seasonality on the 649 

distribution of hydrological extremes. Hydrology and Earth System Sciences, 15, 3207-650 

3215. 651 

Bernardara, P., Mazas, F., Kergadallan, X., & Hamm, L. (2014). A two-step framework for over-652 

threshold modelling of environmental extremes. Natural Hazards and Earth System 653 

Sciences, 14(3), 635-647. 654 

Bogachev, M. I., and Bunde, A. (2012). Universality in the precipitation and river runoff. EPL 655 

(Europhysics Letters), 97(4), 48011. 656 

Bommier, E. (2014). Peaks-Over-Threshold Modelling of Environmental Data. U.U.D.M. 657 

Project Report 2014:33, Department of Mathematics, Uppsala University. 658 

Calenda, G., Petaccia, A., and Togna, A. (1977). Theoretical probability distribution of critical 659 

hydrologic events by the partial-duration series method. Journal of Hydrology, 33(3-4), 660 

233-245. 661 



Accepted for publication in Water Resources Research 

39 

 

Claps, P., and Laio, F. (2003). Can continuous streamflow data support flood frequency 662 

analysis? An alternative to the partial duration series approach. Water Resources 663 

Research, 39(8), 1216. 664 

Coles S. (2001). An Introduction to Statistical Modeling of Extreme Values, Springer Series in 665 

Statistics, Springer, London. 666 

De Michele, C., and Avanzi, F. (2018). Superstatistical distribution of daily precipitation 667 

extremes: A worldwide assessment. Scientific reports, 8, 14204. 668 

Eastoe, E. F., and Tawn, J. A. (2010). Statistical models for overdispersion in the frequency of 669 

peaks over threshold data for a flow series. Water Resources Research, 46(2). 670 

Eichner, J. F., Kantelhardt, J. W., Bunde, A., and Havlin, S. (2011). The statistics of return 671 

intervals, maxima, and centennial events under the influence of long-term correlations. In 672 

J. Kropp & H.-J. Schellnhuber (Eds.), Extremis (pp. 2–43). Berlin, Heidelberg: Springer. 673 

Favre, A. C., El Adlouni, S., Perreault, L., Thiémonge, N., and Bobée, B. (2004). Multivariate 674 

hydrological frequency analysis using copulas. Water Resources Research, 40(1). 675 

Feller, W. (1968). An Introduction to Probability Theory and Its Applications, vol. I, 3rd edition, 676 

London-New York-Sydney-Toronto, John Wiley & Sons. 677 

Fernández, B., and Salas, J. D. (1999). Return period and risk of hydrologic events. I: 678 

mathematical formulation. Journal of Hydrologic Engineering, 4(4), 297-307. 679 

Ferro, C. A., and Segers, J. (2003). Inference for clusters of extreme values. Journal of the Royal 680 

Statistical Society: Series B (Statistical Methodology), 65(2), 545-556. 681 

Fisher, R., & Tippett, L. (1928). Limiting forms of the frequency distribution of the largest or 682 

smallest member of a sample. Mathematical Proceedings of the Cambridge 683 

Philosophical Society, 24(2), 180-190. 684 



Accepted for publication in Water Resources Research 

40 

 

Fuller, W. E. (1914). Flood flows. Transactions of the American Society of Civil Engineers, 77, 685 

564-617. 686 

Graham, R. L., Knuth, D. E., and Patashnik, O. (1994). Concrete Mathematics: A Foundation for 687 

Computer Science, 2nd ed. Reading, MA: Addison-Wesley. 688 

Hazen, A. (1914). The storage to be provided in impounding reservoirs for municipal water 689 

supply. Transactions of the American Society of Civil Engineers, 77, 1539-1669. 690 

Klein Tank, A.M.G. et al. (2002). Daily dataset of 20th‐century surface air temperature and 691 

precipitation series for the European Climate Assessment. International Journal of 692 

Climatology, 22(12), 1441-1453. 693 

Koutsoyiannis, D. (2004a). Statistics of extremes and estimation of extreme rainfall: I. 694 

Theoretical investigation. Hydrological Sciences Journal, 49(4), 575–590. 695 

Koutsoyiannis, D. (2004b). Statistics of extremes and estimation of extreme rainfall: II. 696 

Empirical investigation of long rainfall records. Hydrological Sciences Journal, 49(4), 697 

591–610. 698 

Koutsoyiannis, D., and Montanari, A. (2015). Negligent killing of scientific concepts: the 699 

stationarity case. Hydrological Sciences Journal, 60(7-8), 1174-1183. 700 

Koutsoyiannis, D., and Papalexiou, S.M. (2017). Extreme rainfall: Global perspective, Handbook 701 

of Applied Hydrology, Second Edition, edited by V.P. Singh, 74.1–74.16, McGraw-Hill, 702 

New York. 703 

Krzysztofowicz, R. (1997). Transformation and normalization of variates with specified 704 

distributions. Journal of Hydrology, 197(1-4), 286-292. 705 

Iliopoulou, T., and Koutsoyiannis, D. (2019). Revealing hidden persistence in maximum rainfall 706 

records. Hydrological Sciences Journal, doi: 10.1080/02626667.2019.1657578. 707 



Accepted for publication in Water Resources Research 

41 

 

Leadbetter M. R. (1974). On extreme values in stationary sequences. Zeitschrift für 708 

Wahrscheinlichkeitstheorie und Verwandte Gebiete, 28, 289–303. 709 

Leadbetter M. R. (1983). Extremes and local dependence in stationary sequences. Zeitschrift für 710 

Wahrscheinlichkeitstheorie und Verwandte Gebiete, 65, 291–306. 711 

Lombardo, F., Volpi, E., Koutsoyiannis, D., and Serinaldi, F. (2017). A theoretically consistent 712 

stochastic cascade for temporal disaggregation of intermittent rainfall. Water Resources 713 

Research, 53(6), 4586-4605. 714 

Lombardo, F., Montesarchio, V., Napolitano, F., Russo, F., and Volpi, E. (2009). Operational 715 

applications of radar rainfall data in urban hydrology. In Proceedings of a symposium on 716 

the role of hydrology in water resources management, Capri, Italy, October 2008. (pp. 717 

258-265). IAHS Press. 718 

Lombardo, F., Napolitano, F., & Russo, F. (2006a). On the use of radar reflectivity for estimation 719 

of the areal reduction factor. Natural Hazards and Earth System Sciences, 6(3), 377-386. 720 

Lombardo, F., Napolitano, F., Russo, F., Scialanga, G., Baldini, L., and Gorgucci, E. (2006b). 721 

Rainfall estimation and ground clutter rejection with dual polarization weather 722 

radar. Advances in Geosciences, 7, 127-130. 723 

Luke, A., Vrugt, J. A., AghaKouchak, A., Matthew, R., and Sanders, B. F. (2017). Predicting 724 

nonstationary flood frequencies: Evidence supports an updated stationarity thesis in the 725 

United States. Water Resources Research, 53(7), 5469-5494. 726 

Marani, M., and Ignaccolo, M. (2015). A metastatistical approach to rainfall extremes. Advances 727 

in Water Resources, 79, 121-126. 728 



Accepted for publication in Water Resources Research 

42 

 

Menne, M. J., Durre, I., Vose, R. S., Gleason, B. E., and Houston, T. G. (2012). An overview of 729 

the global historical climatology network-daily database. Journal of Atmospheric and 730 

Oceanic Technology, 29(7), 897-910. 731 

Montanari, A. (2012). Hydrology of the Po River: looking for changing patterns in river 732 

discharge. Hydrology and Earth System Sciences, 16, 3739-3747. 733 

O’Connell, P. E., Koutsoyiannis, D., Lins, H. F., Markonis, Y., Montanari, A., and Cohn, T. 734 

(2016). The scientific legacy of Harold Edwin Hurst (1880–1978). Hydrological Sciences 735 

Journal, 61(9), 1571-1590. 736 

Papalexiou, S. M., and Koutsoyiannis, D. (2013). Battle of extreme value distributions: A global 737 

survey on extreme daily rainfall. Water Resources Research, 49, 187-201. 738 

Papalexiou, S. M., Koutsoyiannis, D., and Makropoulos, C. (2013). How extreme is extreme? An 739 

assessment of daily rainfall distribution tails. Hydrology and Earth System Sciences, 17, 740 

851-862. 741 

Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (2007). Numerical recipes 742 

3rd edition: The art of scientific computing. Cambridge University Press. 743 

Salas, J. D., Obeysekera, J., & Vogel, R. M. (2018). Techniques for assessing water 744 

infrastructure for nonstationary extreme events: a review. Hydrological Sciences Journal, 745 

63(3), 325-352. 746 

Salvadori, G., De Michele, C., Kottegoda, N. T., & Rosso, R. (2007). Extremes in nature: an 747 

approach using copulas. Vol. 56. Springer Science & Business Media. 748 

Schmidt, R. (2005). Tail dependence. In Statistical Tools for Finance and Insurance (pp. 65-91). 749 

Springer, Berlin, Heidelberg. 750 



Accepted for publication in Water Resources Research 

43 

 

Serinaldi, F., and Kilsby, C. G. (2014). Rainfall extremes: Toward reconciliation after the battle 751 

of distributions. Water Resources Research, 50(1), 336-352. 752 

Serinaldi, F., and Kilsby, C. G. (2016). Understanding persistence to avoid underestimation of 753 

collective flood risk. Water, 8(4), 152. 754 

Serinaldi, F., and Kilsby, C. G. (2018). Unsurprising Surprises: The Frequency of Record‐755 

breaking and Overthreshold Hydrological Extremes Under Spatial and Temporal 756 

Dependence. Water Resources Research, 54(9), 6460-6487. 757 

Serinaldi, F., Kilsby, C. G., and Lombardo, F. (2018). Untenable nonstationarity: An assessment 758 

of the fitness for purpose of trend tests in hydrology. Advances in Water Resources, 111, 759 

132-155. 760 

Todorovic, P. (1970). On some problems involving random number of random variables. The 761 

Annals of Mathematical Statistics, 41(3), 1059–1063. 762 

Todorovic, P., and Zelenhasic, E. (1970). A stochastic model for flood analysis. Water Resources 763 

Research, 6(6), 1641–1648.  764 

Volpi, E., Fiori, A., Grimaldi, S., Lombardo, F., and Koutsoyiannis, D. (2015). One hundred 765 

years of return period: Strengths and limitations. Water Resources Research, 51(10), 766 

8570-8585. 767 

Volpi, E., Fiori, A., Grimaldi, S., Lombardo, F., and Koutsoyiannis, D. (2019). Save 768 

hydrological observations! Return period estimation without data decimation. Journal of 769 

Hydrology, 571, 782-792. 770 

Zorzetto, E., Botter, G., and Marani, M. (2016). On the emergence of rainfall extremes from 771 

ordinary events. Geophysical Research Letters, 43(15), 8076-8082. 772 


	Key Points:
	Abstract
	1 Introduction
	2 Theoretical framework
	3 Gen2Mp: An Algorithm to Simulate the Two-State Markov-Dependent Process (2Mp) with Arbitrary Marginal Distribution
	3.1 Description of the Gen2Mp simulation algorithm
	3.2 Numerical simulations
	4 Applications to Rainfall and Streamflow Data
	5 Conclusions
	Acknowledgments
	References

