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Abstract 14 

While global warming has been evolving over several decades, in particular years there have 15 

been considerable deviations of global temperature from the underlying trend. These could be 16 

explained by climate variability patterns and, in particular, by the major interplays of 17 

atmospheric and oceanic processes that generate variations in the global climatic system. Here 18 

we show, in a simple and straightforward way, that a rhythm of the major ocean-atmosphere 19 

oscillations, such as the ENSO and IPO in the Pacific as well as the AMO in the Atlantic, is 20 

indeed meaningfully influencing the global mean annual temperature. We construct time 21 

series of residuals of the global temperature from the medium-term (5-year) running averages 22 

and show that these largely follow the rhythm of residuals of three basic ocean-atmosphere 23 

oscillation modes (ENSO, IPO and AMO) from the 5-year running averages. We find 24 
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meaningful correlations between analyzed climate variability and deviations of global mean 25 

annual temperature residuals that are robust across various datasets and assumptions and 26 

explain over 70% of the annual temperature variability in terms of residuals from medium-27 

term averages.  28 

 29 
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 32 

1. Introduction 33 

 34 

Essential factors driving the energy balance of the Earth and its mean surface temperature 35 

include: the solar radiation, properties of the atmosphere (content of greenhouse gases, dust 36 

and aerosols resulting from volcanic eruptions as well as natural and anthropogenic processes) 37 

and characteristics of the Earth’s surface, such as albedo (Trenberth et al., 2009). In addition, 38 

there are several patterns of unforced internal fluctuations in the ocean-atmosphere system 39 

that influence the climate (e.g. Mann et al., 2014; Mann and Park, 1994; Tsonis et al., 2005: 40 

Power et al., 1999; England et al., 2014; Henley & King, 2017 and many other studies). 41 

Increasing trend of mean global annual temperature has been noted over several 42 

decades, which IPCC (2013) has assessed as being extremely likely driven by anthropogenic 43 

activities. The most essential IPCC’s attribution statements have been getting stronger and 44 

stronger, from the first to the fifth IPCC assessment reports. Specifically, in the first two 45 

reports IPCC saw “little evidence” (IPCC, 1990), and then “discernible human influence” 46 

(IPCC, 1995). In the third, fourth and fifth report, the association of most of the recent 47 

warming and anthropogenic greenhouse gas concentration was assessed as likely (subjective 48 
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probability in excess of 66%), very likely (greater than 90%) and extremely likely (over 95%) 49 

in (IPCC, 2001, 2007 and 2013), respectively. 50 

Stanisławska et al. (2012, 2013) used evolutionary computation to hindcast global 51 

temperature based on a set of climate drivers and concluded that atmospheric concentration of 52 

greenhouse gases is a necessary ingredient of the modelling process, allowing reconstruction 53 

of the increasing temperature.  54 

Yet, in a particular year, there can be strong deviations from the warming trend of 55 

recorded global temperature that could be explained by climate variability patterns and, in 56 

particular, the major interplays of atmospheric and oceanic processes that generate variations 57 

in the global climatic system (e.g. Mann et al., 2014; Mann and Park, 1994; Tsonis et al., 58 

2005).  59 

We aim to investigate clear and easily identified links between residuals (deviations 60 

from medium-term, namely 5-year, running averages) of global temperature and climate 61 

variability indices. We show that the rhythm of major ocean-atmosphere oscillations (climate 62 

variability), such as the ENSO and IPO in the Pacific and the AMO in the Atlantic, is indeed 63 

influencing the global mean annual temperature.  64 

 65 

2. Data and methods 66 

 67 

2.1. Global mean temperature  68 

 69 

Global mean temperature “anomalies” (i.e. deviations from a long-term average for a 70 

reference period) are determined, on a regular basis, by several institutions in the UK, the 71 

USA and other countries. Table S1 in the Supplementary Material presents information on 72 

three time series of global mean temperature anomalies (land and ocean) used in this paper, 73 



4 

 

stemming from the Climatic Research Unit (CRU) of the University of East Anglia, as well as 74 

two agencies in the USA: National Oceanic and Atmospheric Administration (NOAA) and 75 

National Aeronautics and Space Administration (NASA). Table S1 contains information on 76 

the data owner and UPL address of the record, interval of data availability (being 1850-2019 77 

for HadCRUT4 record of CRU and 1880-2019 for NOAA and NASA series), time step 78 

(monthly for CRU and annual for the other two records), as well as the reference periods.  79 

 Different data records differ in several ways, including station coverage and reference 80 

intervals. The records are updated, reprocessed and enriched on a regular basis (cf. Brohan et 81 

al., 2006; Rayner et al., 2006; Harris et al., 2014).  82 

 83 

2.2. Climate variability indices 84 

 85 

Many climate variability indices have been proposed by different authors and used in their 86 

studies (see reviews in Kundzewicz et al., 2019b and Norel et al., 2020).  87 

The El Niño–Southern Oscillation (ENSO), associated with irregular, quasi-periodic 88 

(or else anti-persistent), variation of sea surface temperature (SST) and air pressure over the 89 

tropical Pacific Ocean is broadly recognized as the principal climate variability mode (Mc 90 

Phaden et al., 2006). However, there exists a plethora of various indices related to ENSO – a 91 

class of Niño indices and SOI (Southern Oscillation Index) that have been used by various 92 

authors (see Kaplan, 2011). Information on 12 different indices, summarized in Table S2, 93 

refers to data availability, reference period, and the URL address of the source. Many ENSO 94 

indices are similar (correlated or anti-correlated, for instance various Niño indices are 95 

correlated, while SOI indices are typically anti-correlated to Niño indices). All ENSO data 96 

used in this paper are available as monthly mean values, except for NOAA’s Oceanic Niño 97 

Index (ONI), where 3-month running mean values are used.  98 
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The Interdecadal Pacific Oscillation (IPO) is another manifestation of the climate 99 

variability in the ocean-atmosphere system involving the Pacific Ocean. We use an IPO 100 

Tripole Index (TPI), associated with a distinct 'tripole' pattern of SST anomalies, based on the 101 

difference between the SST anomalies averaged over the Central Equatorial Pacific, the 102 

Northwest and Southwest Pacific (Henley et al., 2015). 103 

Yet another important mode of large-scale climate variability is the multi-decadal 104 

climate oscillation in the Atlantic (see Folland et al., 1984; Schlesinger and Ramankutty, 105 

1994, 1995; and Kerr, 2000). We used the monthly values of the Atlantic Meridional 106 

Oscillation (another name: Atlantic Multi-decadal Oscillation) index, i.e. the AMO index 107 

retrieved from https://www.esrl.noaa.gov/psd/data/correlation//amon.us.long.data. 108 

We also considered two other natural sources of climate variability, that is the solar 109 

activity and the volcanic eruptions. We retrieved the data on sunspot indices, SSN, from 110 

WDC-SILSO, Royal Observatory of Belgium, http://sidc.oma.be/silso/datafiles and data on 111 

Volcanic Eruptivity Index, VEI, from the portal 112 

https://www.ngdc.noaa.gov/hazard/volcano.shtml. 113 

 114 

2.3. Exploratory data analysis 115 

 116 

We used simple and robust tools that lend themselves well to the situation in hand. We first 117 

examined the global mean annual temperature records from three sources by considering 12 118 

shifted time intervals of 30-year length each, starting in 1880, each commencing with a 10-119 

year time step, i.e. 1880-1909, 1890-1919, …,, 1980-2009 and 1990-2019, as well as the total 120 

interval of 140 years, 1880-2019, common to all three datasets. We used linear regression for 121 

shifted 30-year intervals and for the complete period of 140 years. 122 

https://www.esrl.noaa.gov/psd/data/correlation/amon.us.long.data
http://sidc.oma.be/silso/datafiles
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Each time series of estimates of global annual temperature consists of 140 numbers. 123 

We also analyzed shifted 30-year windows. Here, the size of 30 numbers is at the verge of a 124 

condition of a small sample in statistics. Yet, this approach makes it possible to demonstrate 125 

changes. 126 

In order to achieve good fit to the temperature data, while keeping simplicity, we used 127 

the annual time series from the medium-term (5-year) running averages of global temperature 128 

anomalies for the time interval 1880-2019.  129 

We examined residuals, i.e. deviations of temperature values in an individual year 130 

from the running averages and we searched for links of these with time series of residuals of 131 

climate variability indices from the medium-term (5-year) running averages (based on 132 

monthly data).  133 

In brief, our approach follows the spirit of exploratory data analysis. We let the data 134 

speak for themselves by looking carefully at the raw numbers. We tried to read the pattern 135 

that is present in the records and search for links that can be unveiled by simple tools.  136 

 137 

3. Results 138 

 139 

3.1. Increase of global mean temperature 140 

 141 

The fact that global mean temperature has been dynamically increasing is commonly known, 142 

despite some skepticism or controversy about the causes, natural or anthropogenic 143 

(Kundzewicz et al., 2019a, 2020). Figure S1 illustrates three time series of annual global 144 

mean temperature anomalies stemming from different sources (NASA; NOAA; CRU). Table 145 

1 shows the rates of change (corresponding to linear regression) of annual global temperature 146 

for shifted 30-year intervals and for the whole examined interval (1880-2019), common for 147 
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three time series. It also shows the values of the coefficient of determination (R
2
) between the 148 

time [in years] and the time series of temperature anomalies, which, as expected, increases 149 

with increasing (positive or negative) trend.  150 

Up to 1950-1979 the trends have been alternating between positive and negative. Later 151 

the trends have been consistently positive. If we assess the increasing trends of the 30-year 152 

periods, i.e. 1950-1979, 1960-1989, 1970-1999, 1980-2009, and 1990-2019, by classical 153 

statistics, in which annual values are regarded as independent samples, then these trends turn 154 

out to be statistically significant (at the 0.05 level); also statistically significant turns out to be 155 

the decreasing trend over 1880-1909. However, in can be readily seen that there is no 156 

independence among the annual values, while it has been shown that neglecting dependence 157 

substantially overestimates the statistical significance and downplays uncertainty 158 

(Koutsoyiannis, 2003; Cohn and Lins, 2005; Koutsoyiannis and Montanari, 2007; Hamed, 159 

2008). For this reason, we avoid associating our findings with statistical significance and we 160 

prefer to focus on the rate of temperature increase. During the last 30-year period, 1990-2019, 161 

this latter has been much higher than in any earlier interval and amounts to between 1.78 and 162 

2.10 °C per 100 years, where these two values correspond to the data of CRU and NASA, 163 

respectively. As seen in Table 1, over the entire period of records, the trend values vary 164 

between 0.68 °C per 100 years for the CRU data set to 0.74 °C per 100 years for the NASA 165 

and NOAA data sets. 166 

Next, we calculated deviations of temperature anomaly in any given year from the 167 

annual time series from the medium-term (5-year) running averages of global temperature -168 

anomalies for the time interval 1880-2019. They are illustrated in Fig. S2.  169 

 170 
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3.2. Climate variability indices vs global temperature  171 

 172 

3.2.1. ENSO indices 173 

Some authors demonstrated evidence of a link between the El Niño–Southern Oscillation 174 

(ENSO) and large-scale temperature (Yulaeva and Wallace, 1994; Tourre and White, 1995; 175 

Tsonis et al., 2005; Thompson et al., 2009). We look into these links for updated records from 176 

three sources, reaching to 2019. Many ENSO (or SOI) types of indices have been used in 177 

literature, hence, we examine a set of them in our search for a link with global temperature.  178 

Careful optical comparison of time series illustrated in Figs 1a and 1b makes it 179 

possible to conclude that often the signs of residuals  from 5-year running mean of 180 

temperature (CRU) and of Equatorial SOI index characterizing ENSO are in counterphase for 181 

an individual year (there is a positive residual for one series and a negative for another one). 182 

However, the amplitude can largely differ – there can be a small value of one series and a 183 

large one for another one in a particular year.  184 

The Niño indices have longer temporal coverage than the Equatorial SOI index, as the 185 

data start at 1879. Time series of residuals from 5-year running mean of temperature (NASA) 186 

and of Niño 3 index are illustrated in Fig. 2. The signs of both series of residuals are often in 187 

phase for an individual year, yet the amplitude can differ.  188 

Table 2 presents values of the coefficient of determination (R
2
) between time series of 189 

residuals from 5-year running mean of temperature anomalies (land and ocean) and residuals 190 

from 5-year running mean of various ENSO indices. The values of R
2
 are fairly high. Except 191 

for EMI, the values for all 11 ENSO indices and for all three time series of global temperature 192 

are between 0.400 and 0.590. Optimal selection of the starting month of the 12-month moving 193 

average of various ENSO indices warrants highest value of the coefficient of determination. 194 

Justification for trying different starting months is provided by the fact that, if seen at the 195 
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monthly time scale, there appears to be a time lag of a few months between ENSO and its 196 

effect on global temperature. To capture this lag on the annual scale we need to modify the 197 

starting (and ending) month of a year. 198 

For the CRU temperature deviations the highest value of R
2
 (0.590) was noted for 199 

Equatorial SOI index, for NOAA temperature data – for Equatorial SOI Indonesia index 200 

(0.575) and for NASA data – for Niño 3 index (0.509). Selection of the optimal starting 201 

month of the 12-month moving average of various ENSO indices is illustrated in Table S3 for 202 

an example of residuals from 5-year running mean of various ENSO indices: Equatorial SOI 203 

Indonesia and Niño 3 index and residuals from 5-year running mean of temperature anomalies 204 

(land and ocean) (after CRU and NASA). Even if the R
2
 values for July-June and August-July 205 

are the highest, nearly all 12 selections lead to reasonably strong links. 206 

  207 

3.2.2. IPO 208 

There are literature hints that the Interdecadal Pacific Oscillation (IPO) can be associated with 209 

variability in large-scale temperature (England et al., 2014; Henley & King, 2017). 210 

We searched for links between residuals from 5-year running mean values of the IPO 211 

TPI index and those of the global annual mean temperature (land and ocean). 212 

The values of the coefficient of determination (R
2) for “best” selection of 12-month 213 

moving average of residuals from 5-year running mean of the IPO TPI index (September-214 

August) and residuals from 5-year running mean of global temperature anomalies (land and 215 

ocean) are: 0.493 for NOAA, 0.469 for CRU and 0.454 for NASA. 216 

 217 

3.2.3. AMO 218 

 219 
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Some authors demonstrated evidence of a link between the Atlantic Meridional Oscillation 220 

(another name: Atlantic Multi-decadal Oscillation) index, i.e. the AMO index and large-scale 221 

temperature (van der Werf and Dolman, 2014, Nagy et al., 2017, Frajka-Williams et al., 222 

2017). We searched for links between residuals from 5-year running mean values of the AMO 223 

index and those of the global annual mean temperature (land and ocean) for 1882-2016 (Fig. 224 

3). We used all three sources of temperature data (NASA; NOAA, CRU). Comparing Fig. 225 

3a,b,c and Fig. 3d we can conclude that often the sign of residuals of global mean temperature 226 

(from each of the three sources, in Figs 3a,b,c) and the sign of the residuals of the AMO index 227 

(Fig. 3d) are the same for an individual year. However, the amplitude of residuals of 228 

temperature and of the AMO index can largely differ.  229 

The values of the coefficient of determination (R
2) for “best” selection of 12-month 230 

moving average of residuals from 5-year running mean of the AMO index and  of global 231 

temperature anomalies (land and ocean) for 1882-2016, are: 0.418 for NOAA, 0.389 for CRU 232 

and 0.373 for NASA.  233 

 234 

3.2.4. Joint consideration of climate variability indices 235 

 236 

As shown in sections 3.2.1, 3.2.2 and 3.2.3, links have been found between time series of 237 

residuals from 5-year running mean of temperature and of particular ENSO indices as well as 238 

of temperature and of IPO and AMO indices. Therefore, joint consideration of pairs of 239 

climate variability indices was undertaken. Results presented in Table 3 demonstrate that the 240 

value of coefficient of determination are higher than when considering only one oscillation 241 

pattern, ENSO or AMO. Since various ENSO indices are available, we considered 12 of them 242 

in calculations, noting high R
2
 values for all ENSO indices, ranging from 0.454 to 0.698. 243 
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For temperature data from different sources, the highest values of R
2
 were noted for 244 

SOI NOAA index, equal to 0.698, 0.697 and 0.607, for CRU, NOAA and NASA, 245 

respectively. These results indicate that, with appropriate selection of indices and with 246 

reference to medium-term temperature fluctuation, a large proportion, nearly 70%, of the 247 

annual variability of the latter is explained by the ENSO and AMO evolution.  248 

Joint consideration of ENSO and IPO TPI links with temperature, for 11 ENSO 249 

indices (EMI excluded) gave R
2
 values ranging from 0.454 to 0.612 (Table S4). Likewise, 250 

joint consideration of IPO TPI and AMO links with temperature gave R
2
 values at the level of 251 

0.632 for NOAA, 0.590 for CRU and 0.575 for NASA.   252 

Finally, joint consideration of a triplet: ENSO, IPO TPI, and AMO, with temperature 253 

gave R
2
 values at the level up to 0.707 for NOAA, 0.706 for CRU and 0.614 for NASA 254 

(Table S5). Hence, more than 70% of the medium-term annual variability of temperature is 255 

explained by the ENSO, IPO TPI, and AMO evolution.  256 

Guided by the principle of parsimony (Occam’s razor) it may be questioned whether 257 

three explanatory variables (ENSO, IPO TPI, and AMO) are preferred over two (ENSO and 258 

AMO), once the third variable did not result in a major improvement of the value of R
2
 (0.707 259 

as opposed to 0.698).  260 

 261 

3.2.5. Sunspot and volcanic track 262 

 263 

For completeness, we also examined the strength of links of 5-year running mean of 264 

temperature anomalies and the characteristics of two other mechanisms of climate variability - 265 

the activity of the Sun, the principal driver of Earth´s climate and the volcanic eruptions. The 266 

former was expressed by sunspot numbers (SSNs), while the latter – by the Volcanic 267 

Eruptivity Index, VEI (see Newhall and Self, 1982 and Mason et al., 2004). For correlation, 268 
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annual sums of sunspot numbers were used, while the values of VEI from 4 to 6 were 269 

transformed to volume according to Newhall and Self (1982) (see also 270 

https://www.ngdc.noaa.gov/nndc/DescribeField.jsp?dataset=102557&s=77&field_name=HA271 

Z.VOLCANO_EVENT.VEI) and monthly sums were used as annual values. We found that 272 

R
2
 values for both annual SSN and VEI were very low: from 0.01 to 0.02 for annual sum for 273 

previous year for SSN and for 0.009 to 0.004 for annual sum of volcanic volume for the same 274 

year. Joint consideration of SSN and VEI also did not dramatically improve the value of R
2
 275 

(from 0.02 to 0.03). 276 

Interesting interplay of volcanic eruption and ocean-atmosphere oscillation can be 277 

illustrated at an example of the year 1992, when the global temperature residual was negative 278 

and quite strong, while the value of the ONI NOAA FMA index was positive and high, and 279 

that of AMO was slightly negative. Drop of global temperature despite a warm El Niño phase 280 

can be interpreted as a possible climatic effect of eruption of the Pinatubo Volcano on 15 June 281 

1991. However, this interplay is not captured by linear statistical models as indicated by the 282 

low R
2 

of linear regression.  283 

 284 

4. Concluding remarks 285 

 286 

It is commonly recognized that global warming has been unabated over several decades. 287 

However, in individual years there are strong deviations of global temperature from the 288 

underlying tendency that could be explained by climate variability patterns. Essential can be 289 

the major interplays of atmospheric and oceanic processes that generate variations in the 290 

global climatic system.  291 

 In this paper, we attempted to demonstrate, in a straightforward yet persuading way, 292 

that a rhythm of the major ocean-atmosphere oscillations (climate variability), such as the 293 

https://www.ngdc.noaa.gov/nndc/DescribeField.jsp?dataset=102557&s=77&field_name=HAZ.VOLCANO_EVENT.VEI
https://www.ngdc.noaa.gov/nndc/DescribeField.jsp?dataset=102557&s=77&field_name=HAZ.VOLCANO_EVENT.VEI
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ENSO and IPO in the Pacific and the AMO in the Atlantic, is indeed influencing the global 294 

mean annual temperature. We found links between time series of residuals from 5-year 295 

running mean of temperature (land and ocean) and of particular ENSO indices. The R
2
 values 296 

are fairly high. Except for EMI, the values for all remaining 11 ENSO indices and for all three 297 

time series of global temperature ranged from 0.400 to 0.590. 298 

 We also found links between time series of residuals from 5-year running mean of 299 

temperature and of IPO TPI or AMO indices, with R
2
 values for various temperature data 300 

sources ranging from 0.454 to 0.493 for IPO TPI and from 0.373 to 0.418 for AMO. 301 

Therefore joint consideration of links between time series of residuals from 5-year 302 

running mean of temperature and various pairs of the three: ENSO, IPO TPI, and AMO 303 

indices was undertaken and the R
2
 values were found to be higher than when considering only 304 

one oscillation pattern. For ENSO and NAO pair, the R
2
 values for all 12 various ENSO 305 

indices and for all three time series of global temperature reached 0.698, indicating that a 306 

large proportion, nearly 70%, of the medium-term annual variability of temperature is 307 

explained by the ENSO and AMO evolution. For ENSO and IPO TPI pairs, the R
2
 values 308 

reached 0.612, while 0.632 for AMO and IPO TPI.  309 

The joint consideration of a triplet: ENSO, IPO TPI, and AMO improved the overall 310 

performance a little bit, with R2 reaching 0.707 311 

Our results on links between ocean-atmosphere oscillation and global temperature, for 312 

ENSO, IPO TPI and AMO, are robust across the various global temperature datasets 313 

stemming from three institutions. The notion of robustness can be extended for 12 various 314 

definitions of ENSO indices, for all of which meaningful correlations with residuals of global 315 

temperature were found.  316 

This communication demonstrates clear and easily understandable links between 317 

residuals of global temperature and ENSO, IPO and AMO indices of climate variability. Our 318 
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approach follows the spirit of exploratory data analysis. We succeeded in reading the pattern 319 

that is present in the data and unveiled interesting links.  320 

The simplicity of the methodology in our study is its major strong point. According to 321 

our knowledge, no one has followed a similar methodology. The variety of indices we 322 

studied, as well the combinations thereof in pairs and triplet, is another point of novelty of our 323 

study. Other authors had done studies on links to one oscillation index, quite a long time ago, 324 

so that the studied records terminated one, two or three decades earlier than ours (extending 325 

until 2019). This update to the present time is an additional noteworthy contribution, 326 

particularly because it includes interesting periods such as the “hiatus” (Cowtan & Way, 327 

2014; England et al., 2014; Karl et al., 2015) and the post-hiatus recent years, the warmest on 328 

record. We have linked the dots that are readily available, in a transparent and reproducible 329 

way, locating general behaviours applicable on the entire record, rather than specific patterns 330 

of subperiods (e.g. the “hiatus”). In our opinion, our results are persuading, easy to understand 331 

and to reproduce, and of relevance and interest to the broad scientific community. A final 332 

remarkable feature of our study is that we let the data speak for themselves, without 333 

introducing a subjective distortion by data transformation, let alone by using models. In our 334 

opinion, this has augmented the power of our results. 335 

Implicitly, the study points to a research direction that recognizes the importance of the data 336 

over models. The exploration of the data can identify patterns that should then be used as 337 

benchmarks for models, in the sense that the models should mimic or reproduce those 338 

patterns. Deterministic models would be useful to explain those patterns, possibly providing a 339 

causation frame, but before explanation a model should be able to reproduce them. Even for 340 

establishing a causation frame, the results of this study would be useful. For example, the time 341 

lags identified between temperature and the ocean-atmosphere oscillations provide a 342 

dominant direction of causality. Once a deterministic model proves consistent with the 343 
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patterns identified by the exploratory data analysis, it could possibly be used operationally, 344 

e.g. for future prediction. But even in the absence of such a deterministic model, the high 345 

coefficients of determination that have been identified could possibly enable other types of 346 

prediction, such as stochastic or computational intelligence methods. These questions would 347 

be addressed in future research.    348 

 349 

Acknowledgements 350 

 351 

ZWK and IP wish to acknowledge financial support from the project: “Interpretation of 352 

Change in Flood-Related Indices based on Climate Variability” (FloVar) funded by the 353 

National Science Centre of Poland (project number 2017/27/B/ST10/00924). The co-authors 354 

would also like to acknowledge the data sources, as mentioned in the section on Data 355 

availability. DK is thankful to ZWK and IP for the invitation to contribute to this research, 356 

even though he did not participate in the project and he did not receive any financial support. 357 

The co-authors kindly acknowledge useful and constructive reviews of two anonymous 358 

reviewers that helped us in improving the paper and presentation of the material. 359 

 360 

Author contributions. ZWK conceived the study and drafted the skeleton of the paper. IP 361 

and DK modified and enriched the ideas of ZWK. IP and DK conducted the calculations. All 362 

three co-authors discussed the results and edited the manuscript. 363 

 364 

Competing interests. There are no competing interests. 365 

 366 



16 

 

Data availability. Data on global temperature and on ENSO indices, available in open access 367 

sources, were retrieved from sites listed in tables S1 and S2, respectively and in the links 368 

shown in the text.  369 

 370 

 371 

References 372 

 373 

Brohan, P., Kennedy, J. J., Harris, I., Tett, S. F. B. and Jones, P. D. (2006) Uncertainty estimates in regional and 374 

global observed temperature changes: A new dataset from 1850. J. Geophys. Res. 111, D12106. 375 

doi:10.1029/2005JD006548 376 

Cohn, T. A., Lins, H. F. (2005) Nature’s style: Naturally trendy. Geophys. Res. Lett. 32, L23402, 377 

doi:10.1029/2005GL024476  378 

Cowtan, K., Way, R. G. (2014) Coverage bias in the HadCRUT4 temperature series and its impact on recent 379 

temperature trends. Quarterly Journal of the Royal Meteorological Society 140(683): 1935-1944. 380 

https://doi.org/10.1002/qj.2297 381 

England, M. H., Mcgregor, S., Spence, P., Meehl, G. A., Timmermann, A., Cai, W., Gupta, A.S., McPhaden, 382 

M.J., Purich, A., Santoso, A. (2014) Recent intensification of wind-driven circulation in the Pacific and the 383 

ongoing warming hiatus. Nature Climate Change 4(3): 222-227. https://doi.org/10.1038/nclimate2106 384 

Folland, C. K., Parker, D. E., Kates, F. E. (1984) Worldwide marine temperature fluctuations 1856-1981. Nature 385 

310(5979): 670-673.  386 

Frajka-Williams, E., Beaulieu, C., Duchez, A. (2017) Emerging negative Atlantic Multidecadal Oscillation index 387 

in spite of warm subtropics. Scientific Reports 7:11224. doi: 10.1038/s41598-017-11046-x 388 

Hamed, K. H. (2008) Trend detection in hydrologic data: The Mann-Kendall trend test under the scaling 389 

hypothesis. Journal of Hydrology 349(3–4): 350-363. doi:10.1016/j.jhydrol.2007.11.009 390 

Harris, I., Jones, P. D., Osborn, T. J., Lister, D. H. (2014) Updated high-resolution grids of monthly climatic 391 

observations – the CRU TS3.10 Dataset. International Journal of Climatology 34(3): 623-642. 392 

https://doi.org/10.1002/qj.2297
https://doi.org/10.1038/nclimate2106
https://en.wikipedia.org/wiki/Nature_(journal)
https://www.ncbi.nlm.nih.gov/pubmed/?term=Frajka-Williams%20E%5BAuthor%5D&cauthor=true&cauthor_uid=28894211
https://www.ncbi.nlm.nih.gov/pubmed/?term=Beaulieu%20C%5BAuthor%5D&cauthor=true&cauthor_uid=28894211
https://www.ncbi.nlm.nih.gov/pubmed/?term=Duchez%20A%5BAuthor%5D&cauthor=true&cauthor_uid=28894211
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5593924/
https://dx.doi.org/10.1038%2Fs41598-017-11046-x


17 

 

Henley, B. J., King, A. D. (2017) Trajectories toward the 1.5°C Paris target: Modulation by the Interdecadal 393 

Pacific Oscillation. Geophysical Research Letters 44(9), 4256-4262. https://doi.org/10.1002/2017GL073480 394 

IPCC (Intergovernmental Panel on Climate Change) (1990) Climate Change: The IPCC Scientific Assessment 395 

(edited by Houghton, J. T., Jenkins, G. J. and Ephraums, J. J.). Report prepared for Intergovernmental Panel on 396 

Climate Change by Working Group I. Cambridge University Press, Cambridge, U.K., New York, NY, USA and 397 

Melbourne, Australia. 398 

IPCC (1995) Climate Change 1995 - The Science of Climate Change (edited by Houghton, J. T., Meira Filho, L. 399 

G., Callander, B. A., Harris, N., Kattenberg A. and Maskell, K.). Contribution of Working Group I to the Second 400 

Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 401 

UK and New York, NY, USA.  402 

IPCC (2001) Climate Change 2001: The Scientific Basis (edited by Houghton, J. T., Ding, Y., Griggs, D. J., 403 

Nouger, M., van der Linden, P. J., Dai, X., Maskell, K. and Johnson, C. A.). Contribution of the Working Group 404 

I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University 405 

Press, Cambridge, UK and New York, NY, USA.  406 

IPCC (2007) Climate Change 2007: The Physical Science Basis (edited by Solomon, S., Qin, D., Manning, M., 407 

Chen, Z., Marquis, M., Averyt, K.B., Tignor, M.and Miller, H. L.) Contribution of Working Group I to the 408 

Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 409 

Cambridge, UK and New York, NY, USA.  410 

IPCC (2013) Climate Change 2013: The Physical Science Basis (edited by Stocker, T. F., Qin, D., Plattner, G.-411 

K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V. and Midgley P. M.). Contribution of 412 

Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge 413 

University Press, Cambridge, UK and New York, NY, USA.  414 

Kaplan, A. (2011) Patterns and indices of climate variability. In: State of the Climate in 2010. Bull. Amer. 415 

Meteor. Soc. 92(6): S20-S26.  416 

Karl, T. R., Arguez, A., Huang, B., Lawrimore, J. H., McMahon, J. R., Menne, M. J., Peterson, T.C., Vose, R.S. 417 

and Zhang, H.-M. (2015) Possible artifacts of data biases in the recent global surface warming hiatus. Science 418 

348(6242): 1469-72. https://doi.org/10.1126/science.aaa5632 419 

Kerr, R. C. (2000) A North Atlantic climate pacemaker for the centuries. Science 288(5473): 1984-1985.  420 

https://doi.org/10.1002/2017GL073480
https://doi.org/10.1126/science.aaa5632
https://en.wikipedia.org/wiki/Science_(journal)


18 

 

Koutsoyiannis, D. (2003) Climate change, the Hurst phenomenon, and hydrological statistics. Hydrological 421 

Sciences Journal 48(1): 3–24, doi:10.1623/hysj.48.1.3.43481 422 

Koutsoyiannis, D., Montanari, A. (2007) Statistical analysis of hydroclimatic time series: Uncertainty and 423 

insights. Water Resources Research, 43(5): W05429, doi:10.1029/2006WR005592 424 

Kundzewicz, Z. W., Matczak, P., Otto, I. M., Otto, P. E. (2020) From “atmosfear” to climate action. 425 

Environmental Science and Policy 105(2020): 75-83. 426 

Kundzewicz, Z. W., Painter, J., Kundzewicz, W. J. (2019a) Climate change in the media: Poland’s 427 

exceptionalism. Environmental Communication 13(3): 366-380. https://doi.org/10.1080/17524032.2017.1394890 428 

Kundzewicz, Z.W., Szwed, M., Pińskwar, I. (2019b) Climate variability and floods-A global review. Water 429 

11(7): 1399. 430 

Mann, M. E., Park, J. (1994) Global modes of surface temperature variability on interannual to century time 431 

scales. J. Geophys. Res. 99, 25819-25833. 432 

Mann, M. E., Steinman, B. A., Miller, S. K. (2014) On forced temperature changes, internal variability, and the 433 

AMO. Geophysical Research Letters 41(9), 3211-3219. https://doi.org/10.1002/2014GL059233@10.1002 434 

Mason, B. G., Pyle, D. M., Oppenheimer, C. (2004) The size and frequency of the largest explosive eruptions on 435 

Earth. Bull. Volcanol. 66(8): 735-748. doi: 10.1007/s00445-004-0355-9 436 

McPhaden, M. J., Zebiak, S. E., Glantz, M. H. (2006) ENSO as an Integrating Concept in Earth Science. Science 437 

314: 1740-1745. 438 

Nagy, M., Petrovay, K., Erdélyi, R. (2017) The Atlanto‑ Pacific multidecade oscillation and its imprint on the 439 

global temperature record. Climate Dynamics 48:1883-1891.  440 

Newhall, C. G., Self, S. (1982) The volcanic explosivity index (VEI) an estimate of explosive magnitude for 441 

historical volcanism. J. Geophys. Res. 87(C2): 1231-1238. doi: 10.1029/JC087iC02p01231 442 

Norel, M., Kałczyński, M., Pińskwar, I., Krawiec, K., Kundzewicz, Z. W. (2020)  Climate variability indices – a 443 

guided tour. Earth System Science Data (submitted, in review). 444 

Power, S., Casey, T., Folland, C., Colman, A., Mehta, V. (1999) Inter-decadal modulation of the impact of 445 

ENSO on Australia. Climate Dynamics 15(5), 319-324. https://doi.org/10.1007/s003820050284 446 

https://doi.org/10.1080/17524032.2017.1394890
https://doi.org/10.1002/2014GL059233@10.1002
https://pl.wikipedia.org/wiki/DOI_(identyfikator_cyfrowy)
https://pl.wikipedia.org/wiki/DOI_(identyfikator_cyfrowy)


19 

 

Rayner, N. A. Brohan, P., Parker, D. E., Folland, C. K., Kennedy, J. J., Vanicek, M., Ansell, T. J., Tett S. F. B. 447 

(2006) Improved analyses of changes and uncertainties in sea surface temperature measured in situ since the 448 

mid-nineteenth century: The HadSST2 data set. Journal of Climate 19: 446-469. 449 

Schlesinger, M. E., Ramankutty, N. (1994) An oscillation in the global climate system of period 65-70 years. 450 

Nature 367(6465): 723-726.  451 

Schlesinger, M. E., Ramankutty, N. (1995) Is the recently reported 65- to 70-year surface-temperature oscillation 452 

the result of climatic noise? Journal of Geophysical Research 100: 13767-13774. 453 

Stanisławska, K., Krawiec, K., Kundzewicz, Z. W. (2012) Modeling global temperature changes with genetic 454 

programming. Computers & Mathematics with Applications 64: 3717-3728. 455 

Stanisławska, K., Kundzewicz, Z. W., Krawiec, K. (2013) Hindcasting global temperature by evolutionary 456 

computation. Acta Geophysica 61(3): 732-751. 457 

Thompson, D. W. J., Wallace, J. M., Jones, P. D., Kennedy, J. J. (2009) Identifying signatures of natural climate 458 

variability in time series of global-mean surface temperature: Methodology and insights. Journal of Climate 22: 459 

6120-6141. 460 

Tourre, Y. M., White, W. B. (1995) ENSO signals in global upper-ocean temperature. Journal of Physical 461 

Oceanography 25: 1317-1322.  462 

Trenberth, K. E., Fasullo, J. T., Kiehl, J. (2009) Earth's global energy budget. Bull. Am. Meteorol. Soc. 90: 311-463 

323. 464 

Tsonis, A. A., Elsner, J. B., Hunt, A. G., Jagger, T. H. (2005) Unfolding the relation between global temperature 465 

and ENSO. Geophysical Research Letters 32: L09701. 466 

van der Werf, G. R., Dolman, A. J. (2014) Impact of the Atlantic Multidecadal Oscillation (AMO) on deriving 467 

anthropogenic warming rates from the instrumental temperature record. Earth System Dynamics 5: 375-382. 468 

Yulaeva, E., Wallace, J. M. (1994) The signature of ENSO in global temperature and precipitation fields derived 469 

from the microwave sounding unit. Journal of Climate 7: 1719-1736. 470 

https://en.wikipedia.org/wiki/Nature_(journal)
http://apps.webofknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=1&SID=Q2uFCCtQBZLR9xVuccg&page=1&doc=2
http://apps.webofknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=1&SID=Q2uFCCtQBZLR9xVuccg&page=1&doc=2
https://scholar.google.com/citations?user=Qz6ac5AAAAAJ&hl=pl&oi=sra
https://scholar.google.com/citations?user=4KH6Ve8AAAAJ&hl=pl&oi=sra
https://scholar.google.com/citations?user=4Hme0r8AAAAJ&hl=pl&oi=sra
https://scholar.google.com/citations?user=ZZyNM0cAAAAJ&hl=pl&oi=sra
https://journals.ametsoc.org/doi/abs/10.1175/2009JCLI3089.1
https://journals.ametsoc.org/doi/abs/10.1175/2009JCLI3089.1
https://journals.ametsoc.org/doi/abs/10.1175/1520-0485(1995)025%3C1317%3AESIGUO%3E2.0.CO%3B2
https://journals.ametsoc.org/doi/abs/10.1175/1520-0442(1994)007%3C1719:TSOEIG%3E2.0.CO;2
https://journals.ametsoc.org/doi/abs/10.1175/1520-0442(1994)007%3C1719:TSOEIG%3E2.0.CO;2


2 

 

Table 1. Change in global mean temperature in °C / 100 years, and values of coefficient of 15 

determination (R
2
) between the time [in years] and time series of annual global mean 16 

temperature anomalies, for shifted 30-year intervals and for the whole examined interval.  17 

 18 

Time 

interval 

Source for global mean temperature anomalies (land and ocean)  

NASA  NOAA CRU 

Change  

(°C / 100 

years) 

R
2
 

Change  

(°C / 100 

years) 

R
2
 

Change  

(°C / 100 

years) 

R
2
 

1880-1909 -0.58 0.1933 -0.64 0.2449 -0.52 0.1769 

1890-1919 -0.45 0.1159 -0.27 0.0429 -0.03 0.0007 

1900-1929 0.23 0.0330 0.36 0.0795 0.71 0.2443 

1910-1939 1.00 0.5275 1.00 0.5339 1.27 0.6354 

1920-1949 1.20 0.5088 1.25 0.4963 1.06 0.6129 

1930-1959 0.32 0.0550 0.35 0.0531 0.28 0.0620 

1940-1969 -0.42 0.1196 -0.42 0.0964 -0.25 0.055 

1950-1979 0.44 0.1472 0.44 0.1234 -0.04 0.0009 

1960-1989 1.27 0.5592 1.20 0.5157 0.69 0.2471 

1970-1999 1.69 0.6952 1.69 0.6984 1.71 0.6856 

1980-2009 1.68 0.7215 1.55 0.7165 1.78 0.7589 

1990-2019 2.10 0.8085 1.98 0.7859 1.72 0.7373 

Whole 

available 

period 

0.74 0.7456 0.74 0.7663 0.68 0.7748 

 19 
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Table 2. Highest values of coefficient of determination (R
2
) between time series of residuals 20 

from 5-year running mean of temperature and of various ENSO indices. Temperature data 21 

stem from three sources: NASA; NOAA, CRU. The highest value of R
2
 are marked in bold. 22 

ENSO index 

residuals from  

5-year running 

mean 

Source of data for temperature anomalies 

NASA NOAA CRU 

12-month 

moving 

average 

R
2 

12-month 

moving 

average 

R
2 

12-month 

moving 

average 

R
2 

SOI CRU Aug-Jul 0.400 Sep-Aug 0.439 Sep-Aug 0.419 

SOI NOAA Jul-Jun 0.468 Sep-Aug 0.536 Sep-Aug 0.566 

SOI AU Sep-Aug 0.410 Sep-Aug 0.449 Sep-Aug 0.433 

Equatorial SOI Jul-Jun 0.507 Aug-Jul 0.574 Aug-Jul 0.590 

Equatorial SOI 

Indonesia 

Jul-Jun 0.506 Jul-Jun 0.575 Jul-Jun 0.583 

Equatorial SOI 

Eastern Pacific 

Jul-Jun 0.426 Aug-Jul 0.478 Sep-Aug 0.493 

Niño 1.2 Jul-Jun 0.425 Jul-Jun 0.454 Jul-Jun 0.464 

Niño 3.4 Sep-Aug 0.507 Oct-Sep 0.546 Sep-Aug 0.532 

Niño 3 Aug-Jul 0.509 Sep-Aug 0.553 Sep-Aug 0.541 

Niño 4 Oct-Sep 0.479 Oct-Sep 0.511 Oct-Sep 0.504 

EMI Oct-Sep 0.159 Oct-Sep 0.153 Oct-Sep 0.160 

ONI NOAA JFM 0.409 FMA 0.478 FMA 0.498 

 23 

 24 
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Table 3. Highest values of R
2
 between time series of residuals from 5-year running mean of 25 

temperature (land and ocean), of particular ENSO indices (as indicated) and of AMO index 26 

(12-month average: Jan-Dec). Temperature data stem from three sources: NASA; NOAA, 27 

CRU. The highest value of R
2
 are marked in bold. 28 

ENSO index 

residuals from 

5-year running 

mean 

Source of data for temperature anomalies 

NASA 

 

NOAA 

 

CRU 

 

12-month 

moving 

average 

R
2 

12-month 

moving 

average 

R
2 

12-month 

moving 

average 

R
2 

SOI CRU Sep-Aug 0.534 Nov-Oct 0.597 Oct-Sep 0.563 

SOI NOAA Dec-Nov 0.607 Dec-Nov 0.697 Dec-Nov 0.698 

SOI AU Sep-Aug 0.536 Nov-Oct 0.598 Oct-Sep 0.565 

Equatorial SOI Sep-Aug 0.575 Nov-Oct 0.664 Nov-Oct 0.660 

Equatorial SOI 

Indonesia 

Jul-Jun 0.578 Jan-Dec 0.688 Dec-Nov 0.668 

Equatorial SOI 

Eastern Pacific 

Sep-Aug 0.557 Nov-Oct 0.628 Nov-Oct 0.617 

Niño 1.2 Aug-Jul 0.515 Aug-Jul 0.571 Aug-Jul 0.557 

Niño 3.4 Oct-Sep 0.580 Nov-Oct 0.652 Nov-Oct 0.611 

Niño 3 Sep-Aug 0.576 Oct-Sep 0.643 Sep-Aug 0.611 

Niño 4 Nov-Oct 0.581 Nov-Oct 0.642 Nov-Oct 0.613 

EMI Jan-Dec 0.454 Jan-Dec 0.498 Jan-Dec 0.469 

ONI NOAA AMJ 0.572 AMJ 0.649 AMJ 0.637 

 29 
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a) 

 

b) 

 

Figure 1. Residuals from 5-year running mean of (a) temperature (CRU) [in 
o
C] and (b) 15 

Equatorial SOI index characterizing ENSO (Aug-Jul). 16 

 17 

 18 



3 

 

a) 

 

b) 

 

Figure 2. Residuals from 5-year running mean of temperature anomalies (NASA) [in °C] (a) 19 

and residuals from 5-year running mean of Niño 3 index (Aug-Jul) (b). 20 

 21 

a) 

 

b) 
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c) 

 

d) 

 

Figure 3. Residuals from 5-year running mean of global temperature anomalies, after NASA 22 

(a), NOAA (b), and CRU (c) and annual mean (Jan-Dec) of residuals from 5-year running 23 

mean values of the AMO index (d). 24 


