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Introduction

Water systems are essential for health, safety, and well-being. As
such, they are considered critical infrastructures (CIs) (McPherson
and Burian 2005) whose disruption of service can have significant
debilitating impacts. Contemporary water CIs are moving toward
cyber and physical integration, merging processes with computa-
tional systems to form cyber-physical systems (CPSs) (Lee 2008).
Water CIs inherit larger attack surfaces (Howard et al. 2005)

from the entanglement of cyber and physical layers, and additional
pressure is introduced to their strategic and tactical planning. Ad-
vanced cyberattacks are designed to infringe upon the physical do-
main through communication and/or computational infrastructures,
thereby evolving into cyber-physical threats. Increased functional-
ities related to the autonomous operation of subsystems, real-time
monitoring, and remote-control capabilities, designed to increase
efficiency, are becoming risk sources, exploited by adversaries to
disturb or even weaponize water supplies (Janke et al. 2014). In
this era, enhancing data-driven emergency preparedness and plan-
ning, to better comprehend and manage emerging risks, helps en-
sure safe and resilient water systems for communities (Ugarelli
et al. 2018).

Cyber-Physical Vectors in Risk Management

The intertwining of cyber and physical layers arguably increases
efficiency and accuracy by offering capabilities like remote real-
time control (RRTC) for pressure management (Giustolisi et al.
2017; Page et al. 2017), mitigation of combined sewer overflow
(CSO) (Garofalo et al. 2017) or extension of actuators’ lifespan
(Lund et al. 2018), and the detection of contamination (Wang et al.
2015) or leakages at the household level (Kossieris et al. 2014). On
the other hand, just as water CIs benefit from shifting to more in-
tegrated CPSs, so do potential adversaries by constantly adjusting
their tactics, techniques, and procedures (TTPs) (Johnson et al.
2016) to exploit the new cyber-physical domain. The European
Union’s (EU) Agency for Network and Information Security
(ENISA) has reported a shift in the threat landscape from individ-
uals to companies (ENISA 2019), while for the same period the
annual strategic report of the European Cybercrime Center (EC3)
identifies the convergence of cyber and terrorism (Europol 2018).
Access to a range of malwares and anonymization and encryption
tools or services through the Darknet enables even inexperienced
threat actors to exploit vulnerabilities and perform cyber-physical
attacks (CPAs) that go well beyond their actual know-how and
skills. Common misguided security perceptions over industrial
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control systems (Loukas 2015), broad geographical expansion of
CPSs (Konstantinou et al. 2015), and a rise in sophistication
(Rasekh et al. 2016) of malicious codes allow for a range of
manipulation and deception attacks.

According to the latest Verizon Data Breach Investigations
Report (DBIR) (Verizon 2019), 23% of the reported breaches in-
volved nation state- or state-affiliated actors and 28% leveraged
malware to establish or advance attacks. Relevant to those findings,
a technical alert by US-CERT (US-CERT 2018) revealed that since
at least March 2016 multiple US CIs, including water-sector CIs,
were strategically targeted by foreign government cyber actors
who, inter alia, gained access to industrial control systems (ICSs).
Compromised ICSs and unauthorized access over such systems can
go undetected for long periods, exposing water CIs and society to
significant risks. Such is the case of a company responsible for
supplying a number of neighboring counties, anonymized under
the pseudonym “Kemuri Water Company” (Verizon 2016), with
an unusual operation of remotely controlled assets lasting nearly
2 months. Attackers accessed the platform that supervised hundreds
of programmable logic controllers (PLCs), gaining control over and
altering the dosing of chemicals used for water treatment and the
water flow per se, compromising supply services. Another example
from the recent water-sector CPA history is the 2013 near-miss after
a successful supervisory control and data acquisition (SCADA)
hack of Bowman Dam in New York. As made public by the relevant
indictment, the attacker, who had repeatedly obtained data on
water levels, temperature and sluice status, had gained access to
the sluice remote control system as well. Fortunately, he was unable
to escalate his threat only because the dam’s sluice was discon-
nected for maintenance. A recent review on the sector’s incidents
by Hassanzadeh et al. (2020) reveals the diversity of attackers’
TTPs and resulting consequences. Officially disclosed or other-
wise, recent incidents or near-misses in water CIs have raised a
caution flag that should not be overlooked.

Proactive risk management calls for prevention and prepared-
ness, through structured multidisciplinary approaches for stress
testing (Galbusera et al. 2014; Licák 2006), against current and
future threats. Both the EU [CD 2008/114/EC, article 2(c)] and
the USA (US Department Homeland Security 2009) critical infra-
structure protection (CIP) frameworks recommend risk assessments
that follow the threat scenarios approach. The latter, considered the
drivers of emergency simulations (Grance et al. 2006), act as cata-
lysts that trigger the exploration of infrastructure exposure to risk
and inspire actions to protect against potential threats, up to weapo-
nization of supply (ASME-ITI 2009). To meet those objectives,
cyber-physical threat scenarios must address key threat character-
istics and explore multiple durations and escalations of events
under existing operating plans and available alternatives (Bouchon
et al. 2008), while rendering the adversary’s TTPs.

Toward Realistic Stress Testing

Stress tests are risk and safety assessment approaches designed to
associate the severity of a threat scenario with its impact on the
system or society, performing the core analysis required for the pre-
vention of risks and the preparedness of the CI (Galbusera et al.
2014). Physical, cyber, geographical, and logical interdependencies
within a system, as defined by Rinaldi et al. (2001), allow for
cascading effects to occur. For water CIs to prepare against events
that may cascade from the cyber to the physical layer and vice
versa, appropriate stress-testing environments are required that
can model those dynamics (Nikolopoulos et al. 2018). This has
triggered cyber-oriented research on developing virtual SCADA
environments and test vulnerabilities (Almalawi et al. 2013;

Chen et al. 2015; Davis et al. 2006; Fovino et al. 2010; Queiroz
et al. 2011; Siaterlis et al. 2013). In the water CI domain, the widely
accepted EPANET model (Rossman 2000), used to simulate hy-
draulic systems, has recently started transforming toward bridging
that cyber-physical gap. Eliades et al. (2016) provided a program-
ming interaction for a simulator through MATLAB in an effort
to assist research in the field of smart water networks, used by
Taormina et al. (2018) to deploy the EpanetCPA toolbox and link
monitoring and control device interactions to traditional network
hydraulics. The latter, inter alia, provides a structured way of
importing CPA scenarios and pass them, in a certain level of mod-
eling abstraction, through a hydraulic solver. In a similar manner,
Klise et al. (2017) developed an open-source Python software
version 0.2.2 package, the Water Network Tool for Resilience
(WNTR), which employs both EPANET and a purpose-built
EPANET-based simulator to allow for the modeling and simulation
of water distribution networks (WDNs), focused on network resil-
ience in physical emergency states (e.g., earthquake, power out-
age). WNTR has been recently used in the work of Nikolopoulos
et al. (2019a) in an early prototype of a cyber-physical stress-testing
platform called RISKNOUGHT.

Stress testing introduces distributed or point loads that cause
performance to drift outside normal boundaries and lead to noni-
deal conditions of service. Events, like an attack or power outage at
a pumping station, can lead to pressure deficiency conditions, in
which demand-driven analysis (DDA) solvers, such as the original
EPANET solver, pose limitations (Chmielewski et al. 2016). DDA
solvers continuously supply nodes regardless of the pressure, yield-
ing unrealistic demand satisfaction and hydraulic behavior. Quality
of generated data is directly linked to the simulation approaches
and methods chosen (Wand and Wang 1996), and as such, DDA
is not suitable for the purposes of a stress test. On the other hand,
linking pressure to nodal outflow allows for pressure-driven analy-
sis (PDA) through nodal head-flow relationship (NHFR) formulas
(e.g., Fujiwara and Li 1998; Germanopoulos 1985; Wagner et al.
1988). Maximum demand satisfaction is met under optimal pres-
sure conditions and decreases as pressure drops, down to a mini-
mum operating value. Because water supply is based on available
operating pressure at each node, PDA-based stress-testing plat-
forms are indeed able to represent pressure deficiency effects more
realistically (Todini 2003).

Utilizing state-of-the-art tools and methodologies that best fit
the purposes of the analysis can form a realistic cyber-physical
stress-testing approach. Subsequently, this produces data deemed
to be of high quality that need to be mined to express failure. This
work provides a defined structure to interpret a system’s predica-
ment by translating simulation data to failure information, aiming
to enhance risk-informed decisions and prioritization of actions.

From Data to Performance Information

Translating model-derived data to meaningful aggregates and keep-
ing an overview of the simulated behavior is a difficult task because
of the large volume of raw data. Real water network models contain
thousands of nodes and assets, dynamically operated over a sim-
ulation period. Even skeletonized network models, with known
limitations and shortcomings (Davis and Janke 2018), produce
large sets of data, while fine-time-resolution simulation adds to
both the detail and volume of results. Thus, making sense of stress-
test results in a structured and efficient way becomes of paramount
importance for facilitating risk-informed decision-making (Hansson
and Aven 2014) and can be achieved by mapping results to suitable
indicators.
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Water-sector experts often keep track of network service perfor-
mance and communicate company goals through sets of measures
designed for management which are found to be very similar across
countries and companies (Vilanova et al. 2015). The similarity orig-
inates from the common fundamental processes, assets, and overall
goals of water companies, with metrics usually focused on five
main categories of management interest:
• Quality of service, which includes both quantity and quality

delivered to customers;
• Asset, which includes the physical performance of the

infrastructure;
• Operational, which relates to daily system monitoring and

maintenance;
• Personnel, which focuses on human resources management; and
• Financial, which keeps track of the financial soundness and

economic prosperity of the company.
Performance measures are metrics that quantify the efficiency or

effectiveness of an action (Neely et al. 2005). These are categorized
into result indicators (RIs), answering the question of what has
been achieved so far, and performance indicators (PIs), indicating
what needs to be done to increase performance (Parmenter 2015).
Adding the word key indicates the importance of those factors in
achieving the defined goals, revealing the critical success factors.
RIs capture the results of operational actions and show whether the
organization is “travelling at the right direction at the right speed”
(Parmenter 2015), which is important for the governance of the
organization. The difference can be seen through the definition
provided by Alegre et al. (2016), where PIs are efficiency and ef-
fectiveness measures for the delivery of services with respect to
target values. Such values are benchmarks used for comparison
(Cable and Davis 2004) or as reference points of improved perfor-
mance (Malano et al. 2004) and the establishment of policies
(Walter et al. 2009). Thus, metrics like those presented by Alegre
et al. (2016), Danilenko et al. (2014), Kanakoudis et al. (2011),
Bouziotas et al. (2019), and others, serving trend monitoring
(Andersen and Fagerhaug 2002) and long-term benchmarking objec-
tives (Berg 2013), do not reveal the dynamics or inner characteristics
of a system failing under stress.

An emerging concept related to the performance of water
systems under stress is that of resilience. Being a relatively recent
term in the water industry, it has received many definitions in the
scholarly literature (Francis and Bekera 2014). The variations are
mostly subtle (Butler et al. 2017), while a stress-testing-oriented ap-
proach regarding water system resilience is given by Makropoulos
et al. (2018), who define resilience as “the degree to which an urban
water system continues to perform under progressively increasing
disturbance.” As an expansion of stability (Holling 1996), resilience
is linked to the ability of a system to react to stress conditions
(Todini 2000) and reduce the magnitude or duration of disruptive
events (NIAC 2009), to retain a level of functionality. Several stud-
ies have tried to capture and indicate resilience against a failure
(mainly in network design), as a generic inverse function of failure
time (Hashimoto et al. 1982; Kjeldsen and Rosbjerg 2005), quan-
tified via resilience profile graphing tools (Makropoulos et al.
2018), through a demand satisfaction ratio (Mehran et al. 2015;
Zhuang et al. 2012), available energy (Creaco et al. 2016; Todini
2000), or graph theory metrics (Herrera et al. 2016), while resil-
ience through operational and financial dimensions is proposed in
the Risk Analysis and Management for Critical Asset Protection
(RAMCAP) approach (AWWA 2010). Though it is used in system
design optimization, linked to recovery plans (Chmielewski et al.
2016), and becoming increasingly recognized as essential to re-
thinking contemporary water CPSs (Nikolopoulos et al. 2019b),
it has been argued that no resilience measure proposed to date can

adequately describe cascading failures (Shin et al. 2018) or pro-
vide adequate context on a system’s complex integrity predica-
ment during stress.

Recognizing a need to summarize, interpret, and communicate
data derived from stress testing, a quantification framework is
proposed in the following sections that is deployable through a
purpose-built tool. It is designed specifically for water CIs under
threat and is adjustable to any internal and external operating envi-
ronment of a water utility.

Quantifying Consequences

Setting the Scene

Mapping data is essential in accurate information delivery for
emergency preparedness (Zoppi et al. 2016) and data-driven risk
management (Niesen et al. 2016) that aims to preserve water sys-
tem integrity. According to the European standard on drinking
water security [CEN-EN 15975-2 (CEN 2013)], referenced by
Commission Directive (EU) 2015/1787, integrity means meeting
“specified quality, quantity, continuity and pressure targets in
accordance with legal/regulatory requirements and the drinking
water supplier’s objectives.” These targets, regulatory restrictions,
and acceptable levels of performance vary according to each com-
pany’s operational environment and risk attitude. Results must be
presented in a way that assists water companies to comprehend
the nature and level of risk by linking potential consequences
to a company’s objectives.

Both events and their consequences are used to characterize risk
(ISO 2018), but to obtain a balanced information flow, especially in
a multistakeholder environment such as the water sector, it may be
argued that shared information needs to be
• Compatible with the purposes of its use,
• Concise to avoid losing focus,
• Comprehensive to thoroughly cover the subject of interest,
• Consistent with the physical and logical environment it de-

scribes, and
• Comparable in order to discover differences or similarities be-

tween reference points.
The preceding “5C” checklist is used as a guide to the approach

proposed in this work: the information produced through the pro-
posed approach is failure-oriented (compatible) focused on the center
of gravity of the CI (concise). Risk information can derive from dif-
ferent families of metrics in multiple dimensions (comprehensive)
adjustable to the internal and external operating environment (con-
sistent). Metrics are selected to be quantitative, dimensionful, and
related to a reference state of the system (comparable). Each of these
concepts is explained in one of the following sections, while the last
section briefly presents a basic flowchart and functionalities of an
early version of a tool designed to operationalize the proposed frame-
work for interested water companies.

Failure-Oriented Approach

Risk analysis is defined as a necessary step to comprehend the
nature and profile of a risk and define its level as a function of an
event’s consequences for a system. Consequences, either positive
or negative, are the outcomes of an event that affect system objec-
tives (ISO 2018). Performance improvements, measured through
PIs, come from utility management actions, while negative effects
on the system’s objectives come as the result of malfunctions, ac-
cidents, natural disasters, malevolent actions, or hybrids of these. In
the light of the cyber-physical era, threat actors can be categorized,

© ASCE 04020108-3 J. Environ. Eng.
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based on their intentions, as terrorists, state actors, cyber-criminals,
hacktivists, hobbyists, and insiders (Nicholson et al. 2012; Rasekh
et al. 2016). Evidently, the causality relationship between an actor’s
intentions and impact is affected by existing system vulnerabil-
ities, required capabilities, and available resources of the actor.
Whether seeking to harm people or an organization’s reputation,
the impact of an attack is measured by the decay of the system’s
performance. For CI stakeholders to acquire situational awareness
in that perspective, the adversary’s perspective should be adopted
(Schnaubelt et al. 2014) and address system behavior under stress
in a failure-oriented manner. This provides an information context
that is more compatible with the purposes of risk analysis. Such a
frame of reference also better serves the decision-making process:
A positive tone risk approach can be misleading, biasing decision-
making (Damasio et al. 1996; Sanfey et al. 2003), while in fact the
prospect and experience of losses lead to safer and higher reward
decisions (Bechara et al. 1999).

A water system’s state can be defined, at any point or period,
through sets of multidimensional metrics, which provide informa-
tion on performance relative to specified reference values. As the
operating environment changes, the system reacts to the received
stimulus and alters its state. Ex ante risk analysis focuses on the
prediction of the system’s potential state, if a threat event were
to occur, under specific internal and external operating conditions.
Stress testing the system results in a snapshot of its state, allowing
for a comparison between that and the system’s state without the
stimuli. The difference between the two is a measure of an event’s
consequences. This conceptualization of consequence is at the core
of the approach proposed herein.

A system’s performance, under normal operating conditions
(undistorted state), is depicted here as a steady state. Imposing
a stress would cause a change of state, shifting the system to lower
performance levels (stress state), as in Fig. 1. As described in
previous section, the retained functionality of the system under
stress is related to the system’s resilience. To provide a risk-
compatible context, the failure-oriented approach proposed is fo-
cused on profiling the area between the performance curves, which
is complementary, at least at an abstract level, to resilience.

To ensure a resilient and efficient system, companies orchestrate
assets and operations throughout the urban water cycle. From the
wide range of systems and subsystems included in the urban water
cycle, here the focus is on the WDN, which is suggested is the so-
called center of gravity of a water CI. The concept of center of grav-
ity is borrowed here from the general security literature (Schnaubelt
et al. 2014) and defined as the entity processing the key capabilities

to achieve a CI’s objectives. The purpose of identifying a center
of gravity is to assist stakeholders in maintaining their focus on
crucial risk information (Schnaubelt et al. 2014). For a resilient
water infrastructure, arguably, the distribution network is the key
indispensable resource utilized to provide services and support
the objectives of safe and adequate water supply to the community.
Destroying, weakening, or influencing a cyber-physical WDN’s
processes hinders the fulfillment of objectives, making it the
system’s center of gravity.

Failure Profile

A failure profile is defined as a collection of factual aspects of
consequences that can be used to interpret a system’s predicament.
Plain as it may sound, reconstructing the failure information from
simulation-derived data requires multiple viewpoints through met-
rics that allow an unbiased and opinion-free information flow to
interested stakeholders. To assess a system’s failure, especially in
the case of deliberate CPAs, stakeholders need to be aware of the
type, level, and characteristics of an event’s aftermath. For this rea-
son, this paper proposes a three-step approach for the main profil-
ing structure. The first step is categorizing the services provided by
the supplier to the community. The second step is to identify pivotal
levels of failure for each service category. The third and last step is
setting the dimensions on which failure, for each level, is mapped.

First Step: Service Categories
As mentioned earlier, water service integrity refers to the quality
and quantity delivered within a given operational range of pressure.
In an ex ante approach, simulation models transpose real-world
systems and threats into the virtual domain and encapsulate them
through sets of rules that define future system state changes at each
time step (Borshchev and Filippov 2004). Stimulated by the threat
scenario each time, a model reacts upon the predefined set of rules
and system state changes by dynamically addressing system behav-
ior. Such is the reaction of a hydraulic model in the presence of
low-pressure conditions, affecting node supply and adjusting net-
work flows based on the chosen NHFR formula. Thus, using the
more realistic PDA approach reduces the required information of
service integrity by one dimension because pressure and supply are
addressed in a direct cause-effect modeling dependence. The pro-
posed profiling approach needs to assess failure only in terms of
supply, creating two sets of metrics: those related to sufficiency
of quantity and those related to safety of quality.

Second Step: Service Levels
Urban water systems are operated under an ensemble of regulations
and policies defined by their internal and external environments.
Analogously, a system under failure is also called to balance under
the weight of strategic guidelines, perspectives, and plans of the
internal stakeholders and the ever-present accountability to regula-
tory, legislative, social, and political system expectations. To
capture the importance of such strains and limitations, this paper
proposes the use of service levels. These levels, confined within
adjustable ranges per stakeholder, represent a state between com-
plete failure and optimal performance of services. Though numer-
ous intermediate levels of service can be defined, there are two
generic, definable but not fixed, pivotal levels. The first level is
the maximum allowed interruption of services (based on regula-
tions, standards, and operational policies, for example) and the
other can be a tolerable level below undistorted services. The latter
can be associated with mild discomfort of customers and, pos-
sibly, reputational damage to a company. Hence, the key system
service levels are defined as disrupted, degraded, and normal states
[Fig. 2(c)].

Fig. 1. Idealized system performance curves in undistorted state and
under stress.
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The proposed service levels can be viewed as a “traffic lights for
risks” analogy. Complete failure levels (polluted or interrupted
supply) are a potentially harmful and operationally critical state
of the system, to which special attention should be given (red light).
Degraded services (insufficient or substandard supply) are a non-
harmful and more reputation-oriented failure level, raising a cau-
tion flag (yellow light). Any service that meets the requirements
above inadequate level thresholds, up to optimal service perfor-
mance, is considered normal (green light). To understand the need
for such a classification, one can assume a stress scenario that leads
to pressure deficiency conditions. If only complete service interrup-
tion were considered a failure, the spatial image of failure could be
represented by Fig. 2(a), with seven nodes being affected. But in
reality, failure in this part of the system could be closer to Fig. 2(b),
since pressure drops and partial supply of demand would not be
acceptable to customers (11 nodes). This applies to both types
of service recognized in Step 1 of the process. It is an intermediate
classification of failure, important to the separation between critical
and less critical levels per stakeholder, that makes it possible to
apply the metrics to each.

For a cyber-physical stress-testing simulation of T hours for a
network that contains N number of demand nodes, the parameters
of time t ∈ ð0;T� and node n ∈ ½1;N� are defined. Denoting supply
to node n of the network at time t by Sn;t and demand by Dn;t, the
thresholds and range for the disrupted (L1), degraded (L2), and nor-
mal (L3) levels of service in terms of quantity are found in Table 1.
In this paper, l denotes the lowest percentage of demand below
which (even in PDA configurations) supply is perceived as zero-
equivalent in terms of satisfaction of needs. Thus, complete failure
is assumed to occur for a range of low demand satisfaction (L1).
For the degraded state, the upper boundary, denoted by ℎ, is the
lowest acceptable service provided to customers in a state of emer-
gency before causing inconvenience or disturbance. For the crea-
tion of any other service level, the generic definition of its range is
found in the last line of Table 1, for any new level Li within the
thresholds pi and piþ1.

With respect to quality of supply, quality standards and legal
frameworks provide guidance in setting the minimum acceptable

quality, in view of customer safety. Both biological and chemical
contaminations directly affect human health, so, based on their tox-
icity, different minimum levels are applied. Assuming an excessive
concentration can be identified, a state of emergency with potential
life losses could be triggered. Although such concentrations are
rare, a low-probability, high-impact scenario should be properly
profiled. Such excessive concentration (e.g., a substance’s lethal
concentration LC50) is the lowest threshold for L1 and is denoted
by cse. It is worth noting that such is usually the threshold that many
regulations demand supply interruption or use restriction. Failure
state L2 is less critical but can still affect customers’ well-being,
with a lower concentration threshold csp . In technical details, it
can never exceed the concentration at which 0% of the population
is expected to die (LC0) or the Maximum Contaminant Level Goal
(MCLG) for which there is no known or expected risk to custom-
ers’ health. Any supply with a concentration below the maximum
permissible value csp is considered safe to consume (L3). As pre-
viously, the generic quality service level Li can be found in Table 1.

Third Step: Failure Dimensions
The very role and interests of each stakeholder shape and orient
their perception of the system. Different viewpoints of system ser-
vice failures can also be recognized by observing the more technical
and network-oriented view by the company and the behavior of ex-
ternal stakeholders during emergencies. Though motives may differ,
rationales converge on the overarching objective of restoring integ-
rity. Therefore, service integrity dimensions, as found in CEN-EN
15975-2 (CEN 2013), can provide a suitable metric spectrum. Under
optimal conditions, a system is expected to provide sufficient quan-
tity and quality of water, continuously meeting customer needs and
regulatory expectations for the entire network. Reversing this
definition of ideal performance, the failure metric spectrum can be
divided and categorized into four dimensions related to service,
spatial, social, and continuity aspects. Those dimensions were
chosen because they sequentially answer four key questions: How
much service is lost? At what spatial extent? How many customers
are affected? For how long?

Service metrics refer to the physical dimension of failure for
supply (SLi;n;t

) found within the range of any previously defined
service level (Li). Thus, SLi;n;t

is the notation for every supply that
meets the criteria Sn;t ∈ Lijcsn;t ∈ Li. In terms of quantity, failure
at each level of service is seen through unmet demand (UDLi;n;t),
which is the difference between demand and supply as in Eq. (1).
In quality-related problems, the physical dimension of failure
PSLi;n;t

is identical to the supply SLi;n;t
found in the corresponding

level:

UDLi;n;t ¼ Dn;t − SLi;n;t
ð1Þ

Fig. 2. Performance predicament for part of a network: (a) without and
(b) with the proposed intermediate level; and (c) system performance
and relative service levels.

Table 1. Service level ranges

Service
level Alias

Quantity Quality

Range Range

L1 Disrupted 0 ≤ Sn;t < l ×Dn;t cse ≤ csn;t
L2 Degraded l ×Dn;t ≤ Sn;t < h ×Dn;t csp ≤ csn;t < cse
L3 Normal h ×Dn;t ≤ Sn;t < Dn;t csn;t < csp
Li Generic piþ1 ×Dn;t ≤ Sn;t < pi ×Dn;t csi ≤ csn;t < csiþ1

Note: Service levels are for (1) quantity based on supply Sn;t and higher and
lower acceptable (h and l for proposed service levels) or generic (piþ1 and
pi for any level Li) percentages of demand Dn;t being met; and (2) quality
of supply based on concentration csn;t of any substance s and excessive and
permitted by legislation (cse and csp for proposed service levels) or generic
(csiþ1 and csi for any level Li) concentrations of substance supplied.
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Spatialmetrics demonstrate the extent of a scenario’s impacts in
terms of affected nodes. Each node can represent a single connec-
tion (high resolution) or an entire district with a number of blocks
(skeletonized network). Regardless of the degree of skeletoniza-
tion, the spatial extent of failure is related to the connectivity
and dynamics of the system. Supply nodes that are affected by an
event can be described by a logical index (NLi;t) for both services
(1 affected, 0 not affected) as in Eq. (2):

NLi;n;t ¼
�
1 if Sn;t ∈ Lijjcsn;t ∈ Li

0 if Sn;t ∈= Lijcsn;t ∈= Li
ð2Þ

The spatial dimension of failure is critical in estimating the loss
of service coverage, identifying cascading behavior, and examining
potential risk reduction measures designed to isolate or decrease the
failure’s propagation.

Social metrics attempt to represent the social impact of an event
by addressing failure in terms of people affected. Spatial metrics are
unable to address this aspect since population density significantly
varies from one area to another. In addition, a real community is an
ever-shifting system, dynamic in its internal flows, with people
working, living, or entertaining in different areas within the com-
munity web. The WDN, with its fixed nodes, must change accord-
ingly. Exact knowledge of the number of people served in each
node is impossible, so this temporal change at the local level is
unveiled via demand curves. A rough estimation of customers
(Cn;t) can be exported by assuming a per capita consumption Dpc,
using Eq. (3):

Cn;t ¼
Dn;t

Dpc
ð3Þ

The spatiotemporal distribution of customers in the model di-
rectly affects multiple hydraulic characteristics, e.g., tank available
storage, refill time and pump speed. Such values, which change
over time, can assist in composing a more representative failure
profile during different critical hours, e.g., peak demand hours
(more people affected) and night hours (fewer people affected).
The number of customers affected per service level is found using
Eq. (4):

CLi;n;t ¼
�Cn;t if Sn;t ∈ Lijjcsn;t ∈ Li

0 if Sn;t ∈= Lijcsn;t ∈= Li
ð4Þ

Continuitymetrics constitute the last dimension and relate to the
duration of failure. The time dimension is crucial in risk manage-
ment processes because it indirectly defines a level of importance in
terms of exposure. Inarguably, spatial expansion, for instance, of
high microbial load, to N nodes for 1 h becomes more severe,
to the same extent, when it occurs for 2, 4, or 8 h. Time of failure
for any level can be defined using a logical index as in Eq. (5):

TLi;n;t ¼
�
1 if Sn;t ∈ Lijjcsn;t ∈ Li

0 if Sn;t ∈= Lijcsn;t ∈= Li
ð5Þ

Since simulation time steps can vary from seconds to minutes to
hours and so forth, the foregoing logical index is multiplied by the
simulation time step Δtt, at time t, to produce the physical dimen-
sion of failure duration. Such a dimension of information can be
used as a guide to select actions that allow the system to recover
faster from critical service failures by minimizing the duration of
disrupted services (L1). An overall schematic representation of
the failure profiling structure described in this section can be seen
in Fig. 3.

Quantifying Failure

The previously defined four categories of metrics are the dimen-
sions of failure manifestation for which failure needs to be quan-
tified. Let us assume a CPA occurring in a system affecting it at
time te. The attack affects performance, with loss of performance
building up to a maximum point (tp), while recovery actions
taking place at time td start restoring performance up to a recov-
ered state. Such a generic failure curve, inspired by EPA (2015),
is represented by Fig. 4, which strongly resembles the shape
of a flood hydrograph, with the CPA taking the place of the
rain event. Just as the shape and size of the flood hydrograph
are affected by rainfall and basin characteristics, so the CPA
and water system characteristics affect the form of the failure
curve.

With this analogy in mind, one observes that key information
found in flood hydrographs can also be defined for the case of
a CPA on a water system. The rising limb of the hydrograph, where
runoff gradually increases up to peak flow, is seen as the failure
from the undistorted state up to a peak value ðte; tpÞ, while the re-
ceding limb, where flood discharge decreases down to basic flow
again, is represented by the system recovering (tr). It is possible to
adopt a new, intermediate state prior to full restoration, similarly to
the new base flow. Following this analogy, the failure is explored
under a series of lenses to interpret the system’s predicament, as
presented in the following subsections.

Magnitude
Following the flood analogy, the first lens through which failure in
every dimension (i.e., service, spatial, social, and continuity) can

Fig. 4. Generic loss curve under the effect of stress events and resi-
lience actions.

Fig. 3. Schematic representation of the three-step profiling approach.
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be viewed is magnitude, as total volume equivalent. Magnitude di-
rectly conveys the size of failure as total unmet demand (UDLi

) or
poor quality supply (PSLi

), nodes (NLi
) and customers affected

(CLi
), and total duration of failure (TLi

).
Service metrics magnitude, for any level (Li), as an absolute

number or percentage against expected optimum performance,
can be calculated using Eqs. (6)–(9) and quantify failure in terms
of its overall size:

UDLi
¼

Z
T

t0

Z
N

n¼1

UDLi;n;t ð6Þ

UD%Li
¼

R
T
t0

R
N
n¼1 UDLi;n;tR
T
t0

R
N
n¼1 Dn;t

× 100% ð7Þ

PSLi
¼

Z
T

t0

Z
N

n¼1

SLi;n;t ð8Þ

PS%Li
¼

R
T
t0

R
N
n¼1 SLi;n;tR

T
t0

R
N
n¼1 Dn;t

× 100% ð9Þ

In terms of the magnitude of spatial manifestation, it is recog-
nized that failure cannot be expressed as the integral of the nodes’
loss function [Eq. (2)] because service coverage does not present
cumulative behavior over time. The total number of nodes affected
is in fact the number of nodes that experience service disturbance,
according to each level, within the given timeframe. Thus, one can
define a vector of affected nodes for the entire simulation duration
T through

NLi;n ¼
�
1 if ∃t∶NLi;n;t ¼ 1

0 if ∄t∶NLi;n;t ¼ 1
ð10Þ

Following Eq. (10), one can now calculate the total spatial ex-
pansion of failure and the percentage of system compromised:

NLi
¼

X
n

NLi;n ð11Þ

N%Li
¼

P
n NLi;n

N
× 100% ð12Þ

The same principle holds for the customer dimension. Affected
population for each node is defined as the maximum number of
customers that experienced failure in that node [Eq. (13)] at any
point in time. One can argue that customers in time t1 may not
be the same as those in t2 for a node. But this practical assumption
is unavoidable, because in practice it is impossible, or at least im-
practical, to track individual customers for the duration of an event:

CLi;n ¼
8<
:

max
t0≤t≤T

CLi;n;t if ∃t∶CLi;n;t ¼ Cn;t

0 if ∄t∶CLi;n;t ¼ Cn;t

ð13Þ

Having estimated the affected population per node ∈ ½1;N�,
the total number of customers affected can be determined next.
Note that while referring to the affected population, the authors re-
frain and strongly advise against the use of percentages. Such a
metric could, unintentionally, be misunderstood if not coupled
with its absolute size, especially in cases of microbial or chemical
incidents:

CLi
¼

X
n

CLi;n ð14Þ

For continuity, duration of failure is the total time the system
services below expectations even 1 node. Thus the continuity vec-
tor per time step can be defined as follows:

TLi;t ¼
�
1 if ∃n∶NLi;n;t ¼ 1

0 if ∄n∶NLi;n;t ¼ 1
ð15Þ

As mentioned, reducing the duration of a critical level failure
(L1) can positively reflect on the system’s integrity. Failure duration
is calculated through Eqs. (16) and (17) as a percentage of service
hours:

TLi
¼

X
t

TLi;t ×Δtt ð16Þ

T%Li
¼

P
t TLi;t ×Δtt

T
× 100% ð17Þ

To the magnitude-related metrics is added one more, which is
widely used in the sector—customer minutes lost (CML). This is
the cumulative sum of customers experiencing 0-supply conditions
(L1) times the duration of failure in minutes. Note that this metric is
the only metric that depends on the use of specific time units, so
proper attention should be paid to unit conversions. Incorporating
this metric into the proposed approach requires the introduction
of the metric to multiple service levels. This paper proposes a new
variation of that metric (CMLi

), presented in the following equa-
tion, where Δtmint is the time step at time t in minutes:

CMLi
¼

X
n;t

CLi;n;t × TLi;n;t ×Δtmint ð18Þ

For disrupted services (L1), Eq. (18) refers to the known CML,
while at the degraded level (L2) it represents the cumulative expo-
sure to disturbing conditions, as improperly serviced customer
minutes. The latter can be a metric concerning the exposure of the
company to “reputational damage” for noncritical levels of failure.
At this point recall that this metric also applies to quality-related
incidents, revealing the cumulative exposure at certain levels of
concentration of a chemical or microbial load.

Average Propagation
The second lens through which quantification is proposed is that of
average propagation. The effects of a CPA propagate through the
system over time, spreading and amplifying the overall failure. For
a given dimension, the propagation over time can be seen through
the failure curves. Failure curves can have shapes that are more
complex than generic curves (Fig. 4), with multiple crests and val-
leys, demonstrating the dynamic evolution of failure. With magni-
tude metrics demonstrating the final size of failure, it is useful to
also create a snapshot to represent the failure’s average propaga-
tion. To do this, the arithmetic average is proposed, under the con-
dition of nonzero values. Such a condition ensures the calculation
of the metrics only for the duration of failure. It protects the accu-
racy and comparability of metrics, since identical events under dif-
ferent simulation durations would otherwise yield different results.
For each of the service dimensions, the average propagation of fail-
ure is determined via the following equations:

UDLi
¼

P
n;t UDLi;n;tP
n;t TLi;n;t

ð19Þ

PSLi
¼

P
n;t SLi;n;tP
n;t TLi;n;t

ð20Þ

© ASCE 04020108-7 J. Environ. Eng.

 J. Environ. Eng., 2020, 146(9): 04020108 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

N
at

io
na

l T
ec

h 
U

ni
ve

rs
ity

 O
f 

A
th

en
s 

on
 0

8/
27

/2
0.

 C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



NLi
¼

P
n;t NLi;n;tP
t TLi;t

ð21Þ

CLi
¼

P
n;t CLi;n;tP
t TLi;t

ð22Þ

In terms of continuity, the average propagation of failure over
time should be reflected in a manner that weights the importance of
the average time of exposure. Average exposure time per customer
is a social and continuity combinatory metric that is used, for ex-
ample, to assess potential health hazards from exposure to a chemi-
cal. The average per-customer exposure is estimated using Eq. (23):

CTLi
¼

P
n;t CLi;n;t × TLi;n;t ×Δtt

CLi

ð23Þ

Equivalently, to address the need for network continuity–related
metrics that useful for water company stakeholders, the average
failure per node can also be used. Note that the units of the time
step are the units of the combinatory metrics:

NTLi
¼

P
n;t TLi;n;t ×Δtt

NLi

ð24Þ

Such metrics may look simple but can prove effective tools, not
only for exploring different scenario configurations and mitigation
plans but also for comparing effects at different parts of the system.

Severity
However, magnitude and average propagation do not uniquely de-
fine an event. As in the case of two flood events where the total
runoff volume and average per time runoff can be similar, while the
actual events could differ greatly in terms of severity when one of
the two has a much higher peak discharge. In the same analogy,
severity in the case of a CPA on a water system can be identified
through peak effects. Peak temporal effects can be identified for
three of the service dimensions, albeit not for continuity, as seen
in Eqs. (25)–(28):

UDpeakLi
¼ max

t0∶T
XN
n¼1

UDLi;n;t ð25Þ

PSpeakLi ¼ max
t0∶T

XN
n¼1

SLi;n;t ð26Þ

NpeakLi
¼ max

t0∶T
XN
n¼1

NLi;n;t ð27Þ

CpeakLi
¼ max

t0∶T
XN
n¼1

CLi;n;t ð28Þ

Peak temporal failure can be considered a measure of an event’s
severity. Besides allowing a comparison between attack scenarios,
these metrics can also capture a measure’s ability to blunt the peak
effect and create a ceiling on failure propagation.

Crest Factor
As failure propagates through a system (Fig. 4), it rises to its climax
before moving to lower states. Though the climax itself is impor-
tant, the rate of change in performance is also of interest. To con-
tinue with the flood analogy, it is useful to capture the difference

between a gradual flood and a rapidly occurring flash flood. This
can be assessed using a peak-to-average ratio (PAR) metric, which
helps detect whether performance changes occur abruptly or gradu-
ally. PAR is a crest factor defined as the ratio between the peak
effect and the average propagation (Rouphael 2009). PAR indicates
how extreme peaks are, as failure escalation is translated to higher
ratio values. Representing Eqs. (25)–(28) of peak failure as FpeakLi
and propagation Eqs. (19)–(22) as FLi

, PAR equations for any level
and dimension are derived as follows:

PARFLi
¼

FpeakLi

FLi

ð29Þ

PAR metrics are magnitude-independent. As PAR approaches 1,
failure propagation exhibits a more uniform profile, while larger
values imply a spikelike failure, indicative of disastrous major
events that tend to abruptly affect the system.

Rapidity
Another important metric, in view of crisis-management resource
allocation and mobilization, is one that quantifies a failure’s rap-
idity. To capture this important aspect, a “time to peak” metric is
proposed, specifically the interval from the beginning of an event
in te to its climax in tp, which will be referred to henceforth as
the time from event to peak (TEP). The TEP is equivalent to the
lag time in the flood hydrograph analogy, demonstrating the re-
quired time for peak discharge to occur after precipitation. The TEP
is defined through Eq. (30), where tpFLi

is the occurrence of peak
effect in the FLi

specified failure dimension:

TEPFLi
¼ tpFLi

− te ð30Þ

TEP quantifies the available time for stakeholders to react be-
fore the peak effect of an attack occurs and as such is important for
emergency planning. A similarly defined metric associated with
some user-defined “critical condition” can be used to act as a trig-
ger for crisis management plans to be set in motion. This critical
condition occurs at time tcr in the generic loss curve (Fig. 4) after
the event’s occurrence and prior to td. This is defined here as the
time from event to critical (TEC), which is calculated as follows,
where tCrFLi

is the occurrence time of the user-defined critical con-
dition CrFLi

in the FLi
specified failure dimension:

TECFLi
¼ tCrFLi

− te ð31Þ

To summarize, the proposed methodology quantifies a water
system’s failure in terms of its magnitude, average propagation,
severity, and peak-to-average ratio and identifies available reaction
times. The approach and its equations are designed to work with
different definitions of failure based on (user-defined) service
levels.

Approach Deployment

Risk assessment for the emerging cyber-physical water domain is
expected to become an integral component in water companies’
workflow (Makropoulos and Savíc 2019). Nonetheless, operation-
alizing and integrating new (potentially disruptive) approaches can
be challenging. To assist in this transition, the methodology pre-
sented in this paper is encapsulated as a standalone MATLAB com-
piled tool. The tool processes simulation data, of a specific format,
regardless of the stress-test model used, and generates the failure
profile for the given scenario based on user-defined criteria. Addi-
tional functionalities are also introduced and briefly presented next.
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Consistent with the scope described in the section “Failure
Oriented Approach,” the tool focuses on profiling the failure area
appearing between the ideal and the under-stress performance of
the system, based on user-defined service levels. This process can
be seen in the simplified flowchart of the tool in Fig. 5. The hy-
draulic network topology (EPANET.inp file) and data that compose
the undistorted, attack-free, performance are used as the reference
state. The network file provides information on units used and re-
ports layout information for validation purposes, to ensure that
performance data refer to the same topology. The stress-test results
of the CPA scenario to be profiled are the next required input, re-
porting performance data per asset. Currently the tool supports.csv
formats performance data tables that provide variable names and
corresponding asset IDs. For example, the expected demand of
Node N1 under normal conditions, for each time step, is found
in the undistorted performance file column labeled “Demand_N1.”
User-defined service levels L1 and L2 and critical conditions CrFLi
are specified using the tool’s interactive interface.

WDNs are typically zoned into districts with fixed boundaries,
known as district metered areas (DMAs), primarily to control leak-
ages and regulate supply pressure and quality (Butler et al. 2005).
Within such districts, service is provided to various customers,
some of which can be considered critical based on the (societal)
impact a disruption of service to them can cause (e.g., hospitals,
government, and military buildings). In this spirit, the tool provides
network sectorization capabilities to quantify failure and evaluate
CPAs at the district level. Different thresholds can be assigned per
district to signify the importance or specific performance require-
ments for each DMA. Such capability allows for additional adjust-
ability with spatial customization of failure quantification, to
account for critical parts of the serviced community and support
a more realistic assessment of cyber-physical consequences. After
defining the service levels and critical conditions through the tool’s
interface, at either the system or district level, the core algorithm

can be deployed and results can be visually explored through the
tool’s visualization capabilities. An example can be seen in Fig. 6,
which shows the main dashboard, where key failure information
can be explored. Peak effects and available time slots to react are
also visualized in the tool. The tool profiles and represents failure
using preferred simulation parameters; thus, both SI and customary
US units are supported.

To assist the usability and communication of risk-related infor-
mation, which is a very important aspect of rapid situational aware-
ness, the tool supports two export capabilities. The first export
capability produces a JSON file, which contains all failure profile
data for both system and district levels and a set of metadata. This
file can then be stored in a database or used as input in other soft-
ware. The second export capability comes in the form of a report.
The report-generating module of the tool includes human readable
files, organizing numerical information into structured word
templates with supporting figures to increase comprehension and
provide a faster, easier, and more standardized way to communicate
information. The modular design of the report generator allows for
further customization, including customizing the reports’ language
to facilitate local operators.

Case Study

Case Study Configuration

To demonstrate the proposed failure quantification approach imple-
mented through the purpose-built tool, a case study was conducted
where a WDN was subjected to a CPA. The network selected was
the well-known C-Town benchmark network, an EPANET network
introduced by Ostfeld et al. (2012) that is composed of 388 demand
nodes and 7 tanks linked with 429 pipes, 11 pumps, and 4 valves to
a single source (1 reservoir) divided into 5 DMAs (Fig. 7). The
cyber network is composed of 9 PLCs, linked to 7 tank stage sen-
sors, and 12 actuators across the WDN, based on a configuration
proposed by Taormina et al. (2017). To generate the data on the
effects of CPA needed to demonstrate the quantification approach
that was used, one of the CPA scenarios introduced in Taormina
et al. (2017) was adopted and simulated using the same tool:
the EpanetCPA toolbox. This CPA scenario is explained in what
follows.

C-town actuators are operated by the main SCADA based on the
water levels reported by the sensors found in each of the seven
tanks. For example, tank T2 and control valve V2 are operationally
linked through such a control logic. Based on the reported T2 level
sensor readings, the SCADA updates the status of valve V2 and
remotely opens it when a low level (<0.5 m) is detected. Or, when
the tank sensor reports high water levels (>5.5 m), the SCADA
closes the valve. For this case study, it is assumed that a threat actor,
after breaching the system and repeatedly obtaining sensor and ac-
tuator status data, has leveraged operational knowledge over this
refill protocol. This allows him to perform an attack that alters the
T2 stage readings, introducing bogus input data (Zhu et al. 2011)
that lead the assigned PLC to (erroneously) believe the tank is full.
This information is then reported back to the SCADA, deceiving it
and preventing it from activating the refill protocol by requesting
V2 status to be “closed.” This CPA scenario is expected to cause
supply problems to the districts supplied by tank T2. It is assumed
that the false sensor reading attack begins at time te ¼ 5 h and has
a duration of 15 h. To produce a more realistic behavior in the
network, a PDA approach was selected using the NHFR formula
of Wagner et al. (1988). For the purposes of estimating the number
of customers based on Eq. (3), a per-capita consumption Dpc of

Fig. 5. Failure quantification tool simplified flowchart.
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Fig. 7. C-Town DMAs compartmentalization as created by the tool and used for failure quantification.

Fig. 6. Main dashboard tab for a CPA affecting quantity of supply.
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200 L=day is assumed. Failure quantification using the proposed
approach was conducted both on the entire system and at the
DMA scale. Service level thresholds [disrupted (L1) and degraded
(L2)], defined for the system and per DMA, are shown in Table 2.
Conditions critical for the examination of failure rapidity and
available reaction times are also defined in the same table.

Results

The attack led to low pressure conditions and supply deficiency
to parts of C-Town. Failure in terms of magnitude for all four
dimensions (service, spatial, social, and continuity) can be found
in Table 3.

The results suggest that C-Town was unable to meet nearly 12%
of the total daily demand to 28.6% of the network due to interrup-
tions. This resulted in 31,571 customers being cut off during the
11 h of failure. Note that, although the system faces degraded
supply conditions for a longer period of time, its spatial expansion

is limited, while high values for CML1
indicate a significant service

outage. The main impact was felt in DMA2, which saw 47.5% of
its supply lost owing to complete supply interruption (L1). Some
damage also spread to DMA3, but only partially, while the rest of
the system remained intact. In fact, one can clearly see in Fig. 8(b)
that DMA3 started to fail shortly before the attack ended, allowing
the PLC to detect the low stage and react. The refill process caused
pump activation and a rise in pressure, which restored supply
services.

In terms of the failure’s average propagation, the results are
presented in Table 4. In an average hour of disrupted services,
82 nodes were cut off, unable to meet the demands of 22,814
customers for 52.71 L=s. On average each affected customer of the
system experienced 6.48 h of disrupted service. The nearly iden-
tical down time per affected node in DMA2 (NTL1

¼ 9.49 h) and
total disruption duration (TL1

¼ 9.5 h) indicate that the attack
affected a fixed area throughout the failure duration, which can
be seen in Fig. 9(a).

Table 2. Service level thresholds and critical condition at system and DMA scales for C-Town

Analysis
scale

Service level Critical conditions

L1 L2 crUD (%) crN (%) crCL1

System 0 ≤ Sn;t < 15% ×Dn;t 15% ×Dn;t ≤ Sn;t < 90% ×Dn;t 10 10 1,250
DMA1 0 ≤ Sn;t < 20% ×Dn;t 20% ×Dn;t ≤ Sn;t < 90% ×Dn;t 7.5 10 5,000
DMA2 0 ≤ Sn;t < 22.5% ×Dn;t 22.5% ×Dn;t ≤ Sn;t < 95% ×Dn;t 5 5 5,000
DMA3 0 ≤ Sn;t < 15% ×Dn;t 15% ×Dn;t ≤ Sn;t < 90% ×Dn;t 7.5 5 5,000
DMA4 0 ≤ Sn;t < 20% ×Dn;t 20% ×Dn;t ≤ Sn;t < 98% ×Dn;t 7.5 5 5,000
DMA5 0 ≤ Sn;t < 15% ×Dn;t 15% ×Dn;t ≤ Sn;t < 90% ×Dn;t 7.5 5 5,000

Table 3. Magnitude of service failure due to CP attack on tank sensor

Failure
magnitude Unit System DMA1 DMA2 DMA3 DMA4 DMA5

UDL1
Liters 1.80 × 106 0 1.74 × 106 62.43 × 103 0 0

UDL2
Liters 4.76 × 103 0 142.76 0 5.61 × 103 0

NL1
Nodes 111 0 79 32 0 0

NL2
Nodes 4 0 2 0 2 0

CL1
Individuals 31,571 0 24,063 7,508 0 0

CL2
Individuals 114 0 21 0 93 0

TL1
Hours 9.5 0 9.5 1 0 0

TL2
Hours 11 0 11 0 13.5 0

CML1
Customer minutes 13,004,400 0 12,553,920 450,480 0 0

CML2
Customer minutes 34,800 0 1,080 0 41,130 0

Fig. 8. Unmet demand time series and peak effect for (a) DMA2; and (b) DMA3 and 15-h attack log (top).
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Severity was then calculated as a snapshot of the system at its
highest stress point (Table 5). In addition to the absolute number of
the peak effect for each dimension, the PAR metrics are also calcu-
lated and shown in the second part of Table 5. At the system level
one can see a rather uniform profile, revealing a steadily evolving
failure. The failure seems to gradually (as opposed to abruptly) add
load to the system after its manifestation, as seen through the PAR
metrics. This can be seen in Fig. 10, where the time series of unmet
demand for the system are plotted.

At the district level, DMA2 PAR metrics (PARUDL1
¼ 1.09,

PARNL1
¼ 1, PARCL1

¼ 1.09) indicate a smoothly propagating
failure, with no extreme peaks, as seen in Figs. 8(a) and 9(a).

The rapidity of propagation is calculated from the attack’s oc-
currence (te ¼ 5 hÞ until the peak and critical marks, respectively.
Defining the available time until peak effect of the attack occurs
creates the first and largest possible time window for mitigation
actions to become effective. In the absence of effective actions, dis-
ruption of supply seems to gradually rise and spread, as TEPUDL1

Table 4. Propagation of service failure due to CP attack on tank sensor

Failure propagation Unit System DMA1 DMA2 DMA3 DMA4 DMA5

UDL1
L=s 52.71 0 50.89 17.34 0 0

UDL2
L=s 0.14 0 0.02 0 0.11 0

NL1
Nodes 82.31 0 78.94 32 0 0

NL2
Nodes 2 0 1 0 2 0

CL1
Individuals 22,814 0 22,204 7,508 0 0

CL2
Individuals 64.44 0 9 0 50.78 0

CTL1
Hours 6.48 0 8.7 1 0 0

CTL2
Hours 3.23 0 0.68 0 7.09 0

NTL1
Hours 7.04 0 9.49 1 0 0

NTL2
Hours 4.37 0 1 0 13.5 0

Fig. 9. Nodes out of service time series and peak effect for (a) DMA2; and (b) DMA3 and 15-h attack log (top).

Table 5. Peak of service failure and peak-to-average ratio due to CP attack on tank sensor

Failure climax Unit System DMA1 DMA2 DMA3 DMA4 DMA5

UDpeakL1
L=s 70.66 0 55.61 17.34 0 0

UDpeakL2
L=s 0.21 0 0.04 0 0.21 0

NpeakL1
Nodes 111 0 79 32 0 0

NpeakL2
Nodes 3 0 1 0 2 0

CpeakL1
Individuals 30,504 0 24,063 7,508 0 0

CpeakL2
Individuals 93 0 20 0 93 0

Peak-to-average
PARUDL1

— 1.34 — 1.09 1 — —
PARUDL2

— 1.5 — 2 — 1.9 —
PARNL1

— 1.34 — 1 1 — —
PARNL2

— 1.54 — 1 — 1 —
PARCL1

— 1.34 — 1.09 1 — —
PARCL2

— 1.44 — 2.22 — 1.83 —
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and TEPNL1
approach attack duration. This was seen previously,

with failure cascading to DMA3 shortly before the end of the at-
tack. With respect to the entire system, the water company has 8 h
before maximum service disruption. The maximum disruption of
service to DMA2 occurs 12 h after the attack, but the company
only has 5.5 h to deploy the necessary resources before the maxi-
mum spatial spread to the subsystem. This is almost 2.5 times faster
than the failure occurrence to DMA3, raising a priority flag in terms
of available time.

The identical times to critical (TEC) found in Table 6 for all
three conditions at the system and DMA levels are the result
of lower critical condition thresholds determined and the C-Town
dependence on tanks to regulate nodal pressure, which allows for
immediate disruption once the tank is empty. Prioritization of ac-
tions for DMA2 is highlighted in terms of criticality, available time
to react, and size of failure, as a result of the proposed methodology
implementation.

Conclusions

In this article, a failure quantification methodology is presented that
can capture the impact of a water CI under cyber-physical threats
and communicate this information to relevant stakeholders. The
method is designed to allow for the exploration of different dimen-
sions of a failure’s manifestation under user-defined levels of ser-
vice. Two levels of service are identified, representing the critical

levels specified by the regulatory, legislative, or internal operating
environment. Since more intermediate service levels may be de-
sired, generic equations to calculate the proposed metrics for any
set of service levels are also provided. The method also allows for
the identification of available response times as a basis for emer-
gency planning. To support the operationalization of the method, a
dedicated tool was developed within the STOP-IT project. The tool
allows users to define thresholds, select DMAs, and implement the
methodology at any scale (system or DMA), and it provides an
additional spatial overview and possesses metric export capabil-
ities. Based on this work, comparison of the effects of different
attack types can be showcased for a network, including scenarios
for denial of service, bad data injection, or replay attacks, for ex-
ample. To consider the effect of user-defined thresholds per se,
selected either based on experience or following adopted standards,
legislation, and so forth, a sensitivity analysis can be conducted.
Although both the tool and the methodology are hydraulic solver-
agnostic, a purpose-built stress-testing platform is also developed
and presented in a companion paper by Nikolopoulos et al. (2020).
The intention behind the companion papers is to node towards
potential future interactions between the two methods and tools
to further advance research on the cyber-physical security of water
systems.
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