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“Ocean acidification (OA): The other CO, problem”

The phenomenon: OA is described as the constant increase of atmospheric carbon dioxide (CO,_;..,)
which reduces ocean pH and causes wholesale shifts in seawater carbonate chemistry(l.
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Objective: We perform time-series analysis focused on temporal changes in month and annual time lag, in
order to detect the interaction between each variable element along with the seasonality effect.

\\g’_ P

o T SE ST, X
© American Chemical Society:
The Ocean Agency / XL Catlin Seaview Survey / Richard Vevers

Stochastic analysis of time-series related to ocean acidification | Vagenas et al. 2021



Methodology (1)

Data (Time-series) specifications:

—>
Variables /

[ u
1) Aquatic measurements: Hawaii Ocean Time series (HOT) [2] \ ' | St. ALOHA-XXII:
\ , 22.45'° N,
. : s 158 ° W
CO,.,: The mean surface seawater CO, partial pressure, in patm, 7 o

calculated from DIC* and TA** at in situ temperature. /

PH: The mean surface seawater pH, calculated from DIC and TA
at in situ temperature, on the total scale.

Temperature: The mean surface in situ seawater temperature, in °C.

2) Atmospheric measurements: (Mauna Loa, Hawaii) 3! /1
CO,_.: Surface CO, in-situ measurements (ppm) /
Location: North Pacific Ocean (Hawaiian Archipelago) s @
Year Range
October 1988 — October 2018 (30 years)

Time-step (At)
Monthly measurements

*Dissolved Inorganic Carbon
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Methodology (2)

Time series procedures-functions (Analysis steps):

1) Linear Interpolation
Step standardization at y (NA value), at a given x, was operated with the use of the following formulal*:

X — Xj
yx) =yi+ Qi1 —y)——— » X <X < Xy
Xi+1 — Xi
2) Cross- correlation function (CCF)
CCF (ryy) at a discrete time k was calculated according to the formula of(>6l;

o X:=predictor variable (x)  ¢jj =CCF function
min(n—t,n) _ — S i-P ! j :
Xy _Zs=max(1,—t) (xi(s+t)—x)(x(s)—X}) )ﬁ:respo:szvailabli(y) :=ts.,ampl)le size
n Xj=expected value of x =time lag
\SDxSDy X;=expected value ofy ~ SD=st. deviation

The statistical significance of the CCF was approximately approached with the 95% confidence intervals (Clgs,,) of the
CCF, estimated as follows!®!:

Clgsy)=—==

S|k

Bl

where n is the number of data points used in the calculation of the CCF, and the Clys, equations which are depicted as
dashed blue lines in the CCF plots. We utilized the simplified tool of CCF since it represent one of the most informative
indicators in terms of directionality!’). In cases where significant time dependence was observed, Monte-Carlo
simulation (MCS) was applied to determine the 95% confidence intervals through the fundamental stochastic
Markovian process AR(1) depicted as purple dot-dashed lines.
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Methodology (2)

Time series procedures (Analysis steps):

3) Moving Average (Rolling Monthly Average)

A simple (unweighed) moving average (MA) was calculated successively for complete annual time series (Jan-Dec) for
monthly (g=2 month) and annual (q=12 month) time step:

g=rolling grade (months)
_1lon n=sample size
_E Zi:n—q+1ﬁ Xi=x value
k=dynamic variable (initial k=0)
x=random variable

. Xn_ +X,_ 4+ X
MAq(l) —Zn k+1T4&n—k+2 An
aq

4) Annual differencing - A (Rolling Annual Difference)

Annual differencing A (X) was calculated successively for complete annual time series as follows in order to eliminate
periodicityl”):

v=time step differencing

Xy = Xk+v — Xy

5) Seasonality effect (SE) at various time lags (q)!”!

SEq(i)= Xt (i)— MAq (1) X=Time series
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Methodology (2)

Time series procedures (Analysis steps):

6) Empirical climacogram (Monthly & Annual) & Hurst parameter

Climacogram (GR: kAiuaé~climax; EN: scale) is defined as the variance of the averaged process at discrete time scale : (&

Xy Y Xy
Py = var [E :y— - Vi = var ? = ¥Y1Px » XK = X 4+ .- + Xy
1 — — —
Yy =variance (var)
Y1) K=time scale
Ya) = 2-2H H= Hurst parameter

y(K)=cIimacogram
Pao)= dimensionless climacogram

The selection of climacogram for the estimation of the Hurst parameter was applied since it functions as the most

statistical reliable tool towards the stochastic explanation of geophysical processes, compared to the widely-used
auto-covariance and power spectrum!®l,

Classification of temporal phenonomenona based on Hurst!®!

-H > %:persistence
-H= %:white noise (purely random process)

1 , ,
- H <7 :anti— persistence
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Time-series Analysis (1)

Time series of aquatic CO; ,q( yatm) @nd Temperature (HOT) measurements (1988-2018)
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In the CCF plot between the original observations of aquatic

0,.,(x) and temperature (y) the highest positive value has
been attained at lag zero (+0.53) and it keeps a decreasing
periodic positive and negative peak in a sequence of 6 and
12 lag (months), respectively. There is a significant cross-
symmetric behavior around lag zero and the periodic peaks
indicate a seasonal phenomenon!®l. Additionally, causality
cannot be explained through the above graphsl’l.
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In the original time series of the ocean carbon
dioxide (natural logarithm transformation!’l) and
temperature measurements it is apparent that
during the last 30 years there is a discrete increasing
trend of CO,,, while temperature exhibits a more
erratic behavior. Both processes appear to be under
a strong seasonal effect, a behavior that will be
further analyzed in the following sections.

Cross-correlation of CO; aq( s atm) @nd Temperature measurements
(Hawaii Ocean Time Series 1988-2018)
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Time-series Analysis (1)

Cross-correlation of 2 month Moving Average of CO; 5q(  atm) @nd Temperature measurements
(Hawaii Ocean Time Series 1988-2018)
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Cross-correlation of 12 month Moving Average of CO; aq( y atm) @nd Temperature measurements
(Hawaii Ocean Time Series 1988-2018)
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With the application of a 2-month moving average (2 month
lag) on the aquatic CO,,(x) and temperature (y), the
seasonal periodicity is still apparent with the highest
positive value recorded at lag zero (+0.52).

The annual (12-month) moving average showed an
interesting behavior, with an increasing and exclusively
significant CCF at negative lags, with the maximum
observed at the lag -45 (~4 years) with a positive value of
+0.34.
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Time-series Analysis (1)
CO,.,~ Temperature
q
Cross-correlation of 12 month Moving Average of CO; 4 , atm) @nd Temperature measurements
(Hawaii Ocean Time Series 1988-2018)
¢ In order to verify whether if the CCF values occur at
larger lags, we investigated the behavior in a larger
. lag-window (+120,-120) and we concluded that,
g indeed, the time lag range (months) from -37 to 47
5. (3y-4y) had the highest CCF observations in both
g H processes.
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Cross-correlation of Annual Average of CO; .q(ppmy) @nd Temperature
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Time-series Analysis (1)

Time series of aquatic CO; aq( jatm) @nd PH (HOT) measurements (1988-2018)

8.20
8.18
8.16

8.14

""."«M'l*""’“*"m’

[¥]

@

8.06

8.04

8.02 co
PH

8.00 aq

2aq

1989 1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015 2017 2019
Time

In the CCF between the original observations of
aquatic pH (x) and carbon dioxide (y) the highest
negative value has been attained at lag zero (-0.99)
and it keeps a decreasing negative periodic peak in a
standard sequence of 12 lag (months). There is a
significant symmetric behavior around lag zero and
the periodic peaks indicate a synchronous seasonal
interaction of processes.
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In the original time series of the ocean carbon
dioxide (natural logarithm transformation /1) and pH
measurements there is a clear reflecting mirroring
effect between the interaction of both variables.

Cross-correlation of PH and CO; 44, atm) Measurements
(Hawaii Ocean Time Series 1988-2018)
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Time-series Analysis (1)

Cross-correlation of 2 month Moving Average of PH and CO; q(,atm) Measurements
(Hawaii Ocean Time Series 1988-2018)
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At a next phase, the 2-month moving average on the aquatic
pH (x) and carbon dioxide (y) resulted in significant negative
correlations with the maximum CCF value recorded at lag zero
(-0.99). Additionally, there is a seasonal periodic cycle with
subsequent decreasing negative peaks towards larger positive
and negative lags.

The annual (12-month) moving average sustained the
symmetric negative correlation at lag zero (-0.99), a consistent
behavior with the previous analyses.
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Time-series Analysis (1)

Time series of atmospheric CO; aim(ppm) (NOAA) and aquatic CO; 5q( yaim) (HOT)
measurements (1988-2018)
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The highest positive value n the CCF analysis between the
original observations of aquatic (x) and atmospheric (y)
carbon dioxide, was recorded at the 4% lag (+0.81) and
therefore, there is a positive periodic peak in a sequence
of an annual lag (12 months). Regarding larger time lags,
the interaction is characterized as significant symmetric
behavior around the fourth lag and once more, the
periodic peaks indicate the presence of a seasonal
phenomenon®],

Correlation coefficient
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Based on the of the aquatic and atmospheric
carbon dioxide (natural logarithm transformation!”])
measurements, a common increasing process
occurs. Atmospheric observations demonstrated a
steady positive escalation while aquatic carbon
dioxide time series exhibited a similar, though
variant, behavior.

Cross-correlation of CO; aq( yatm) HOT @and CO; 4ym(ppm) Mauna Loa measurements
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Time-series Analysis (1)

Cross-correlation of 2 month Moving Average of CO, 4q(uatm) HOT and CO; aim(pem)

Mauna Loa measurements
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Similarly, the 2-month moving average (2 month lag) on
the aquatic (x) and atmospheric (y) carbon dioxide
exhibited significant seasonal periodicity around the 4t
lag, with the CCF calculated the maximum CCF value
(+0.81).

The annual (12-month) moving average between both
processes showed a typical symmetric positively
correlated interaction at zero lag (+0.96). Hence, the
annual correlation is slightly greater than the effect of
the monthly observations.
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Time-series Analysis (2) ACO

2aq ATemperature

Time series of aquatic A CO; aq( jatm) @nd A Temperature (HOT) measurements (1988-2018) Cross-correlation of monthly A CO, sq( eum) and A Temperature measurements

(Hawaii Ocean Time Series 1988-2018)
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With the elimination of the periodicity effect on the processes, the annual difference (f.e. 15t PH value: PH_Oct;gg9-
PH_Oct,4g5), Ocean carbon dioxide and temperature measurements showed that there is not a clear pattern in the
succession of events. This can be validated with the CCF plot, indicating that the highest value recorded at lag zero
(+0.34) with a non significant pattern alongside the zero point, thus highlighting the erratic behavior of temperature in
the original time series.
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Time-series Analysis (2)

Time series of aquatic A CO; aq( patm) @nd A PH (HOT) measurements (1988-2018)

0.05

0.04

0.03

0.02

0.0

0.0

ApH
o

-0.0

-0.0

()

-0.03

-0.04

-0.05

1989 1991 1993 1995 1897

MM ) ‘l| m th it i |

2aq

PH,q

1999 2001 2003 2005 2007 2009 2011 2013 2015 2017 2019
Time (y)

5 & s e 22222 ¢2¢2 2 8
2 § 8 8B © B B & ® © N » O
be
(uner ) *z0ouy

e
o

Cross-correlation coefficient

0.2

0.0

-0.1

-0.2

-0.3

-0.4

-0.5

-0.6

0.7

-08

-0.9

APH ~ ACO,,,

Cross-correlation of monthly A CO; 5q(  atm) @nd A PH measurements
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Contrarily, the A-transformed time-series of aquatic pH and carbon dioxide difference, resulted in the same
reflected mirrored behavior of the time series. Furthermore, the cross-correlation of both variables strongly support
the original time-series behavior with a clear symmetric pattern. The maximum value (lag zero) of the CCF was

recorded at -0.98.
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Time-series Analysis (2)

The differences between the CO

Time series of atmospheric A CO; 4ym(ppm) (NOAA) and aquatic A CO; 4ym( yatm) (HOT)
measurements (1988-2018)
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demonstrated a clear pattern of a negligible statistical significance

between the two processes, except an allocated time-lag grouping at -40 to -45 time lag (months) which was
partially-rejected through the MSC Clg,, thresholds. Since temperature showed an interesting behavior in the
previous section we tested its difference (A) related with the ACO,,,,and it appeared that there’s a validated and
statistical significant directionality of T->CO,_,, with a ~2.5 year lag.

Time series of atmospheric A CO; gim(pem) (NOAA) and aquatic ATemperature (HOT)
measurements (1988-2018)

Cross-correlation of Annual A COy 4 (pem) (NOAA) and A Temperature (°C)
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Time-series Analysis (3)

Seasonality effect
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Since seasonality was highlighted as a crucial component in the behavior of the phenomenon, we extracted gradual
increasing annual (1;2;5 years) moving averages (MA) from the original time-series, and we estimated the monthly
average effect on the observations units. In the case of aquatic temperature and CO,_, both variables had a common
phase with the highest positive peak between August-September and lowest in February. Correspondingly, pH had the
exact opposite phase compared to the CO,,, with the highest peak in February and lowest in September.
The, exclusively seasonal effect, 4-month phase lag of the air-ocean CO, transferability was confirmed since the
highest peak of CO,_,,appeared to be in May and the lowest between September-October.

It is worth mentioning that the different applied moving average (MA) extractions appeared to show equal behavior,
with the 5" MA having a slight divergence during summer months (June-August).
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Time-series Analysis (4) Climacograms

Climacogram of ocean surface PH
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Main findings —Conclusions

- Analyses of time-series related to OA concluded that the increase of pCO,,, was similar to the pCO,,,,[*!. In the
present analysis we discovered an interannual 4 month phase difference between both variables which was
eliminated after the extraction of seasonality through appropriate procedures. The annual differences thereof
exhibited a ~4 year lag with directionality CO,.. =>CO,__ which however is statistically non-significant (tested by
MCS).

- An interesting observation was the detection of a statistically significant, assesed through stochastic simulation,
~2.5 year lag in the annual differences (4), in the processes of T,,CO,,,,. The directionality is consistent with the
results of a previous study on atmospheric T,,,,, 2 CO,,,, With a '“1 year lag in an annual scale!”].

2atm 2aq

2atm

- The relationship between pH and CO,,, resulted in a reflecting-mirrored interaction, which is confirmed by previous
studies (1121, Regarding the observed seasonallty, pH seasonal variation appeared to be in agreement with previous
analysis in the regiontl,

- Strong persistence (H>>1/2) was detected in all the examined variables, which indicates strong clustering
(grouping) of similar values, enhanced change and uncertainty, a quite common behavior in natural processes!’.19],

- A negative effect of OA is the possibility that it can impact aquatic populations of shell-forming organisms[%14],
These ocean chemical alternations may cause progressive negative feedback response, starting from the population
level to marine ecosystems as a whole.

- The present study was focused on a single site dataset. However, there exist site-specific differences on a global
scalel1.12] along with a variability of biological responses and vulnerability to OA related with the latitude location
of each case-study 23], Except the geospatial variance, the interaction of impacts has been found to be diverging
during the life-history (development) stages of an organism!4,

- Based on the findings of this work, it appears that there may exist an interesting interdisciplinary research arena in
the interaction between trends and seasonality effects on the response of marine biota. This evolutionary concept
of adaptivity, described as the “phenotypic plasticity” (1], may function towards the mitigation of the severe effects
of environmental stressors related to OA:
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