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Urban water systems’ (UWS) design & lifespan
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• Urban water systems are typically designed for a long 
lifespan, i.e., 25-50 years. 

• However, in industrialized countries, designs are often 
outlived (e.g., in UK, France, USA, the entire systems (or 
parts of them) are over a century old) - most urban water 
systems were designed and built between 1930 and 1980.

• Budget for replacement is limited throughout the world
• Renewal rates are very low 
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Challenges for UWS
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• Various aspects of the world are volatile and ever-changing, interacting 
with UWSs and affecting their operation and performance
• Hydroclimatic factors (water availability and quality) 
• Socioeconomic factors (shifting demographics, urban growth, 

water demand patterns, economic crises, etc.)
• Policy factors (e.g., water price, incentives for water conservation)

Unknown and unknowable future pressures to UWS

Urban water planners cannot foresee future

Long-term, large-scale uncertainty



UWS design paradigm shift
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• Rethinking design objectives under large-scale uncertainty: ‘fail-
safe’  system design vs ‘safe to fail’

Design for 
“failure”?

Design for 
safety

Performance 
loss

Level of service

• Interest in how our water systems ‘behave’ when faced with 
accidents/incidents and/or extreme events and/or when faced with 
changing conditions.

• Interest in the capability of the system to bounce back quickly from 
a non-satisfactory state to delivering its goals again.

• Desired trait for UWS: resilience



Operationalizing resilience 
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• Holling (1973) on ecological systems’ resilience: “the capacity of a system to 
absorb disturbance … so as to still retain essentially the same function, 
structure, identity, and feedbacks”

• Building on it, Makropoulos et al (2018) defined resilience for UWS as: “the 
degree to which a water system continues to perform under disturbance” 

Degree of continued performance: 
measured through reliability

Degree of continued performance 

of the system under disturbance

System: what is installed 
(technologies) and how it is 

connected (design philosophy)

Disturbance: modelled through 
scenarios (future world views, 

incidents, events, etc.)



Communicating resilience with graphs
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• Resilience is measured as the area under the reliability curve in a resilience profile 
graph, scaled between 0 and 1. This is achieved by comparing with the area of an 
ideal perfectly reliable system across all scenarios (ordered by in severity).

• The method has been applied to synthetic (Makropoulos et al 2018) and real-
world UWS cases (Nikolopoulos et al 2019).



Need for an holistic simulation framework
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• The behaviour and properties of individual parts or sub-systems of a 
system is generally well modelled and understood.

• Modelling sub-systems under uncertainty: stochastic inputs and 
parameters or testing against a variety of future conditions

• Behaviour analysis of complex large systems with intertwining 
components: still a challenging task. 

• A holistic analysis requires the usage of different simulation models for 
sub-systems with differences in:
• inputs/outputs, data structures
• computational complexity 
• temporal and spatial scales
• metrics to measure performance

• Planners need to consider the assessment of different system topologies 
(deployment of technological assets) or different management 
decisions (operational decisions, target priorities, pricing strategies, 
etc.) across the whole system as a single unit under sets of significantly 
different, uncertain futures.



Coupling tools in a holistic simulation framework

Stochastic stress-testing approach for assessing resilience of urban water systems from source to tap 8

UWOT

• Model water demand 
• Utilized in the software 

coupling at household 
level to describe 
demographics, water use 
patterns appliance 
technology and temporal 
changes

• Different types of 
consumers can be 
modelled 

• Coupled through Python 
API

• 4 tools: UWOT (Rozos and Makropoulos, 2013), EPANET 2.2 
(Rossman et al, 2020), Hydronomeas2020 (Karavokiros et al, 2020) 
and AnySim (Tsoukalas et al, 2020)



Coupling tools in a holistic simulation framework
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EPANET 2.2

• Hydraulic solver
• Utilized in the software 

coupling to model 
water hydraulics in the 
distribution subsystem 
of the UWS

• Employs a pressure 
driven demand analysis 
solver to accurately 
simulate failure 
circumstances 

• Coupled through 
Python package WNTR 
(Klise et al, 2017)



Coupling tools in a holistic simulation framework
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Hydronomeas2020

• Decision Support 
System for water 
supply works

• Utilized in the 
software coupling to 
model water 
availability, water 
supply, the water 
transportation 
system and decision 
making (target 
priorities, water 
policy, costs etc.)

• Coupled through 
the new Python 
version



Coupling tools in a holistic simulation framework
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AnySim

• Stochastic model to 
provide synthetic inputs 
for the various tools

• Arbitrary time scales

• AnySim generates stochastic inputs for all tools.
• UWOT generates the daily water demand of different household types for a 

design horizon, with changing appliances, population, behavioural demand etc.
• Nodes  in EPANET are assigned a mix of household types (changing through 

time), and the nodal daily demand is aggregated. Disaggregation to hourly (or 
finer) timesteps is accomplished with stochastic patterns generated by AnySim.

• EPANET hydraulic simulation generates the daily water production needs, as 
well any failure to distribute water, water losses due to leaks etc.

• Hydronomeas2020 simulates the water supply and transportation component of 
the UWS with the daily water production needs as a target.

• Final reliability metric is aggregated from both hydraulic and hydrologic 
reliability sub-metrics from EPANET and Hydronomeas2020 

Coupling the models



Toy case study
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• C-Town water distribution 
network (Ostfeld et al. 2012)

• Controls are altered to allow full 
water flow form the source if 
needed.

• 5 synthetic hourly demand pattern 
multipliers generated by AnySim 
(one for each DMA), for a 25-year 
horizon.

• Pipe bursts are generated 
stochastically with a basic daily 
probability per km of pipe, 
affected also by the diameter of 
pipe.

• Every node represents a 
neighbourhood with a mix of 
three household types.

• The number of households in a 
node is changing through time to 
simulate urban growth.



Toy case study
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• Household type 1: 
conventional appliances

• Household 2: water 
conserving appliances

• Household 3: water 
conserving appliances + 
local grey water recycling 
and a water tank for storage

Changing parameters in a 
scenario:
• Average household 

occupancy
• Frequency of water 

appliances usage
• Seasonal demand 

fluctuation



Toy case study
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• Simple water supply system 
consisting of a surface water 
reservoir, an aqueduct and two 
different water use targets 
(drinking water supply and non-
potable irrigation and industrial 
applications).

• Rainfall, river inflows and 
evaporation are stochastically 
generated inputs from AnySim.

• Aqueduct leakage is a parameter 
that can be changed due to the 
decision-making process 
(allocating budget for repairs) in a 
future world view.

• Target priorities are parameters 
that can be changed due to the 
decision-making process in a future 
world view.



Systems and scenarios
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• System A: business as usual
• System B: incentives for consumers through subsidization to change 

household types to II and III, budget for repairs and replacement to 
aqueducts and pipes in the UWS

• 8 scenarios (future world views) for stress-testing the 2 systems:

Scenario Description

S1 Baseline future world view

S2 Decreased water availability I

S3 Decreased water availability II

S4 Decreased water availability III

S5 Increased demand

S6 Increased demand and decreased water availability I

S7 Increased demand and decreased water availability II

S8 Increased demand and decreased water availability III



Resilience assessment results
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• As demonstrated, System 
B is more resilient than 
System A when subjected 
to the same future world 
views.

• Resilience scores for the 
whole system as one unit 
(0-1):
• System A: 0.894
• System B: 0.943



Conclusions

Stochastic stress-testing approach for assessing resilience of urban water systems from source to tap 17

• The resilience assessment methodology is extended to support 
holistic analysis on an UWS as a single unit.

• Both hydraulic and hydrological aspects of the system can be 
simulated through the coupling of EPANET 2.2 with 
Hydronomeas2020.

• UWOT can be utilized as a full-fledged demand generation model 
when coupled with the capabilities of AnySim to accept stochastic 
inputs and then disaggregate daily demand to finer time-scales for 
use in EPANET demand junctions, while Hydronomeas2020 
simulates the water availability in EPANET reservoir nodes.

• The UWS resilience concept could be extended in the future to also 
include the  stormwater and wastewater aspects of urban water 
systems in case studies.

• It is envisaged that the resilience assessment methodology and the 
coupled simulation framework presented here can aid water utilities 
in strategic planning, decision making, risk and asset management.
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