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1. One-slide summary
o Background: Probabilistic hydrological modelling methodologies often rely on statistical post-processing 

schemes for benefitting from the “hydrological experience” encompassed in conceptual and physically-
based rainfall-runoff models (see e.g., Montanari and Brath 2004; Montanari and Grossi 2008; Tyralis et al. 
2019). These schemes might require issuing an ensemble of rainfall-runoff model simulations by using 
different input data and/or different parameters (see the blueprint by Montanari and Koutsoyiannis 2012 
and its summary in Slide 2). For obtaining a large number of rainfall-runoff model parameters in this regard, 
Bayesian large-scale calibration schemes have been adopted in the literature (e.g., in Montanari and 
Koutsoyiannis 2012; Sikorska et al. 2015).

o Objective: Here, we investigate a possible replacement of Bayesian with non-Bayesian schemes for large-
scale rainfall-runoff model calibration within probabilistic hydrological modelling methodologies of the 
above-defined family.

o Motivation: Bayesian rainfall-runoff model calibration schemes are accompanied by computational 
limitations, which are well-recognized in the literature and may prohibit applications “at scale”.

o Methodology: Starting from a Bayesian rainfall-runoff model calibration scheme, we define a 
computationally convenient calibration scheme (see Slide 4). We then apply both these schemes as parts 
of six diverse variants (hereafter, referred to as “ensemble schemes”) of the probabilistic hydrological 
modelling methodology by Papacharalampous et al. (2020a) and  Papacharalampous et al. (2020b). This 
latter methodology (see its summary in Slide 3) retains some robust features from its mother blueprint-
method (Montanari and Koutsoyiannis 2012) and simultaneously allows for benefitting from machine 
learning quantile regression algorithms (see e.g., the references in Papacharalampous et al. 2019, Section 
2.3). In this specific context, the two calibration schemes are compared using proper scores and large-
scale benchmarking (see Slides 5 and 6; see also Slide 11). 

o Main finding: Overall, our results (see Slides 7−9) suggest that the two rainfall-runoff model calibration 
approaches can lead to mostly comparable probabilistic predictions (see also Slide 10).

o Further reading: For further information on the experiments summarized herein, the reader is referred to 
Papacharalampous et al. (2020b, Appendix E).



o Our methods and experiments build on top of the blueprint by Montanari and Koutsoyiannis 

(2012), a theoretically consistent and flexible scheme for predictive uncertainty 

quantification in hydrological modelling.

o In its basic implementation, this scheme uses (a) one rainfall-runoff model to issue a large 

number of point predictions-simulations (within an ensemble simulation framework), and (b) 

one error model to statistically post-process each of these point predictions.

o Its output is an ensemble of statistically post-processed point predictions-simulations, 

together constituting the probabilistic prediction.

o Its hydrological and error models are estimated/trained in two subsequent stages.

o This two-stage character naturally allows the accommodation of regression-based 

predictive modelling solutions to the scheme (see e.g., the variants of this blueprint by 

Sikorska et al 2015, Quilty et al. 2019, Papacharalampous et al. 2020a, Papacharalampous et 

al. 2020b, Quilty and Adamowski 2020).

o Quantile regression algorithms differ from the typical regression algorithms, and can be 

incorporated into the blueprint by Montanari and Koutsoyiannis (2012), as detailed in 

Papacharalampous et al. (2020a) and Papacharalampous et al. (2020b); see also Slide 3.

o Basic two-stage probabilistic hydrological post-processing (see e.g., Montanari and Brath 

2004; Montanari and Grossi 2008; López López et al. 2014; Dogulu et al. 2015; 

Papacharalampous et al. 2019; Koutsoyiannis and Montanari 2020) can also be viewed as a 

subcase of this blueprint.

2. Probabilistic hydrological modelling blueprint



3. Probabilistic hydrological modelling methodology

For details, see Papacharalampous et al. (2020a) and Papacharalampous et al. (2020b).

In this 
presentation, 
we compare 
two modelling 
schemes for 
taking this 
step. These 
two schemes 
are hereafter 
referred to as 
“calibration 
schemes” and 
are described 
in Slide 4.



4. Rainfall-runoff model and its calibration

Calibration scheme 1: A Bayesian calibration scheme

o We simulate the posterior distribution of the parameters of the rainfall-runoff model conditional on the 

observations of the period T1 (see Slide 3) within a Bayesian MCMC framework.

o We use flat priors for both the parameters θ1 and θ2. 

o The likelihood error function is defined by the following equation, where yt is the monthly streamflow 

discharge observations at time t, ut(θ1, θ2) is the prediction at time t and |T1| is the number of target 

data points included in the period T1:

o We run three parallel Markov chains with different initial values, each comprising 2 000 iterations.

o The iterative simulation is performed by using the DRAM algorithm by Haario et al. (2006).

o We assess the approximate convergence of these chains by implementing the algorithm by Brooks 

and Gelman (1998).

o The simulation process is repeated until approximate convergence is achieved.

o Once the simulation is over, we retain the last 200 values of each chain, i.e., 600 values in total for 

each catchment (see e.g., the related example in Slide 6).

Rainfall-runoff model

o We use the GR2M conceptual rainfall-runoff model by Mouelhi et al. (2006). 

Calibration scheme 2: A computationally convenient calibration scheme

o Instead of retaining the last 200 parameter values of each simulated chain (see above), we retain the 

first 200 parameter values that have not converged to the posterior distribution of the parameters.



o For our experiments, we use 50-year long monthly precipitation, potential evapotranspiration and streamflow 

time series originating from 270 MOPEX catchments (Schaake et al. 2006).

o The geographical locations of the streamflow stations are presented on the bottom of this slide.

o Following the notations provided in Slide 3, we define the periods T1 = {13, …, 156}, T2 = {157, …, 300} and T3 = 

{301, …, 600} (respectively corresponding to years 1951−1962, 1963−1974 and 1975−1999). We also define 

period T0 = {1, …, 12} (corresponding to year 1950 in our dataset). This period is used for warming up the 

rainfall-runoff model (see Slide 4).

o Additionally, we define six ensemble schemes starting from the selected probabilistic hydrological modelling 

methodology (see Slide 3).

o These ensemble schemes differ with each other in terms of some of their components, as detailed in 

Papacharalampous et al. (2020b).

5. Experimental data and large-scale benchmarking

o We apply the ensemble schemes twice, each time 

using a different calibration scheme (see Slide 4).

o Specifically, we predict the quantiles of monthly 

streamflow at levels 0.005, 0.0125, 0.025, 0.05, 0.10, 

0.90, 0.95, 0.975, 0.9875 and 0.995 for the period T3. 

These quantiles are then used to form the 80%, 90%, 

95%, 97.5% and 99% prediction intervals for the 

same period.

o Lastly, we assess the quality of our predictions by 

computing (a) their average interval scores (see 

e.g., Gneiting and Raftery 2007), and (b) the 

relative improvements provided by the Bayesian 

calibration scheme over the computationally 

convenient scheme (see Slides 7 and 8). We further 

summarize these relative improvements in terms of 

their means and medians (see Slide 9).



Examples of probabilistic predictions

Examples of simulated chains using the Bayesian calibration scheme

95% and 80% prediction intervals95% and 80% prediction intervals

95% and 80% prediction intervals 95% and 80% prediction intervals

6. Application examples within the study’s framework



7. Relative improvements in terms of average interval score 

Ensemble scheme 1

Ensemble scheme 2

Ensemble scheme 3



8. Relative improvements in terms of average interval score 

Ensemble scheme 4

Ensemble scheme 5

Ensemble scheme 6



9. Relative improvements in terms of average interval score 

Mean relative improvements Median relative improvements



o Overall, the Bayesian calibration scheme and the computationally convenient 

calibration scheme can lead to mostly comparable probabilistic predictions in the long 

run.

o The relative improvements provided by the Bayesian calibration scheme over the 

computational convenient calibration scheme (see Slides 7 and 8) have been found to 

be either positive or negative for all the ensemble schemes.

o They have also been found to considerably depend both on the examined catchment 

and the examined prediction interval.

o On average, they favour the Bayesian calibration scheme to a small extent, mostly due 

to outliers, while their median values are closer to zero (see Slide 9).

o We feel that outliers could be fewer if longer time series had been examined.

o We hope that our preliminary experiments will trigger further investigations on the subject.

10. Key findings and conclusions



The analyses and visualizations have been performed in R Programming Language 

(R Core Team 2019). We have used the following contributed R packages: airGR

(Coron et al. 2017, 2019), bestNormalize (Peterson 2017, 2019), coda (Plummer et 

al. 2006, 2019), data.table (Dowle and Srinivasan 2019), devtools (Wickham et al. 

2019c), dplyr (Wickham et al. 2019b), FME (Soetaert and Petzoldt 2010, 2016), gdata

(Warnes et al. 2017), ggplot2 (Wickham 2016a; Wickham et al. 2019a), ggridges

(Wilke 2018), hddtools (Vitolo 2017, 2018), knitr (Xie 2014, 2015, 2019), maps 

(Brownrigg et al. 2018), matrixStats (Bengtsson 2018), plyr (Wickham 2011, 2016b), 

quantreg (Koenker 2019), readr (Wickham et al. 2018), reshape (Wickham 2007, 

2018), rmarkdown (Allaire et al. 2019), tidyr (Wickham and Henry 2019) and zoo

(Zeileis and Grothendieck 2005; Zeileis et al. 2019). We have also followed 
procedures described in the contributed vignettes of the airGR R package.

11. Statistical software information
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