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Abstract: While entropy was introduced in the second half of the 19th century in the international
vocabulary as a scientific term, in the 20th century it became common in colloquial use. Popular
imagination has loaded “entropy” with almost every negative quality in the universe, in life and
in society, with a dominant meaning of disorder and disorganization. Exploring the history of the
term and many different approaches to it, we show that entropy has a universal stochastic definition,
which is not disorder. Hence, we contend that entropy should be used as a mathematical (stochastic)
concept as rigorously as possible, free of metaphoric meanings. The accompanying principle of
maximum entropy, which lies behind the Second Law, gives explanatory and inferential power to the
concept, and promotes entropy as the mother of creativity and evolution. As the social sciences are
often contaminated by subjectivity and ideological influences, we try to explore whether maximum
entropy, applied to the distribution of a wealth-related variable, namely annual income, can give
an objective description. Using publicly available income data, we show that income distribution is
consistent with the principle of maximum entropy. The increase in entropy is associated to increases
in society’s wealth, yet a standardized form of entropy can be used to quantify inequality. Historically,
technology has played a major role in the development of and increase in the entropy of income.
Such findings are contrary to the theory of ecological economics and other theories that use the term
entropy in a Malthusian perspective.

Keywords: entropy; wealth; income distribution; options; potentiality; principle of maximum
entropy; Second Law; stochastics

Dedicated to the memory of Themistocles Xanthopoulos
whose book series “Requiem with Crescendo?” [1–3] triggered [4] this paper

Wealth is not about having a lot of money; it’s about having a lot of options
Chris Rock (American comedian, writer, producer and director)

Πάντα τὰ ἐµὰ µετ’ ἐµoῦ ϕέρω (All that is mine I carry with me)
Bias of Priene (one of the seven Greek sages; 6th c. BC;

quoted in Latin by Cicero, Paradoxa Stoicorum I, 8, as “Omnia mea mecum porto”)

1. Introduction

The word “entropy” was introduced about 150 years ago as a scientific term, but
later its use became common in everyday language. We can find it in literature [5,6], in
poetry [7,8], in the press, and in web posts, but often its use is irrelevant to its real scientific
meaning. The most common use of the word entropy is when a writer wants to describe,
with an “intellectual” word, a kind of disorder. We will clarify in detail in Section 2.3
that this is a misinterpretation of the actual meaning of the term, which in fact is more
related to uncertainty. The wide colloquial use of entropy becomes clear if we consider
the detailed information available in the over 60,000 words (lemmas) of English, based
on data from the Corpus of Contemporary American English (COCA), whose content
includes eight genres: spoken, fiction, popular magazines, newspapers, academic texts and
more [9]. According to data given by Word and Phrase Info [10] and plotted in Figure 1,
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the frequency of “entropy” being used in fiction, for example, is not dramatically lower
than its use in academic texts.

Figure 1. Frequency of appearances of the words entropy, disorder and uncertainty in the Corpus of
Contemporary American English. The common and neutral word “and” was added as a proxy guide
to the relative frequencies of the five indicated genres, which appear to be very close to each other.
Data from [9,10].

The academic corpus can be investigated using bibliometric databases, such as Sco-
pus [11]. The results obtained from several searches in the latter are shown in Figure 2. One
would expect that the term “entropy” would more frequently appear in scholarly articles
in combination with terms such as “physics” or “thermodynamics”—and indeed this is the
case for recent years. Amazingly, however, before the 1960s, the combination of the term
“entropy” with “society” or “social” was more frequent than the former. This suggests
the appeal of a concept related to the Second Law of thermodynamics in social sciences.
We note that in that period, the probabilistic content of entropy (see Section 2) was not
fully developed, and thus, in papers before the 1960s, entropy was used with its classical
thermodynamic meaning (also explained in Section 2). Specifically, the resource flow in
economics was parallelized with the energy flow in thermodynamics. As seen in the figure,
in the 21st century, “entropy” is also used in combination with ecology and economics.

Figure 2. Relative frequency of appearances of the indicated key phrases in the article titles, abstracts
and keywords of about 70 million articles written in English, which are contained in the Scopus
database [11] up to year 2020.
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Out of its physical and stochastic context, the term “entropy” is typically used
metaphorically, and hence its meaning becomes ambiguous or diverse. For example,
the term “social entropy”, in one of its earliest uses in scholarly publications [12], is equated
to “dereliction, pollution and waste” created by “economic activity” or by “society as
consumers”, which have to be minimized. Bailey, in his book entitled “Social Entropy
Theory” [13], tried to illuminate

the fundamental problems of societal analysis with a nonequilibrium approach, a new
frame of reference built upon contemporary macrological principles, including general
systems theory and information theory.

His interest was more in illuminating “Social Entropy Theory” than in defining social
entropy per se. Nor in an overview of his book [14] did Bailey provide a definition of social
entropy. In a critique of the book, Mayer [15] found the “unrelenting abstractness of Social
Entropy Theory quite frustrating”, and added:

Never is the theory applied to real sociological data or anything like a real social situation.

Neto et al. [16], who also used Bailey’ theory, provided little help in clarifying what
social entropy is. Recently, Dinga et al. [17], building on Bailey’s theory, clarified, rather
qualitatively, the concept of social entropy as follows: (i) it cannot be of a thermodynamic
type; (ii) it must be connected with social order; (iii) its connection with social order must
be inversely proportional; (iv) it must hold connotations of the relationship between the
homogeneity and heterogeneity of a system/process; and (v) it is fundamentally grounded
by normativity. Interestingly, however, Balch [18] used the term “social entropy” as a
measure of robot group diversity, proposing a formal mathematical definition.

Different aspects of entropy and energy in social systems have been examined by
Mavrofides et al. [19], as well as by Davis [20], who examined how the physical and
mathematical notions of entropy can be usefully imported into the social sphere. Davis
also used the term “social entropy” without a definition. Further, he stated:

Entropy has been characterized variously and vaguely by the words decadence, decay,
anarchy, dystopia, randomness, chaos, decay, waste, inefficiency, dissipation, loss of
available energy, irreversibility, indeterminacy, most probable states, equilibrium, thermal
death [ . . . ]. In the social sphere it has been characterized as apocalypse, disorder,
disorganization, disappearance of distinctions, meaninglessness, absurdity, uncertainty,
pandemonium, loss of information, inert uniformity, incoherence. [ . . . ] In [humanistic]
areas, the concept is used more or less as a metaphor or a synonym for chaos, disorder,
breakdowns, dysfunctions, waste of material and energy, enervation, friction, inefficiencies.

Davis was influenced by Saridis [21], according to whom “entropy measures the waste
produced when work is done for the improvement of the quality of human life”; he
highlighted the following quotation by Saridis:

The concept of Entropy creates a pessimistic view for the future of our universe. The
equalization of all kinds of sources of activities is leading to the equivalent of thermal
death and universal boredom of our world.

In economics, Frederick Soddy (1877–1956) [22–24] and Nicholas Georgescu-Roegen
(1906–1994) [25–27], fascinated by entropy in thermodynamics, sought analogies with
economics and development from a Malthusian perspective. Avery [28] noted that:

Early in the 20th century, both Frederick Soddy and Nicholas Georgescu-Roegen dis-
cussed the relationship between entropy and economics. Soddy called for an index system
to regulate the money supply and a reform of the fractional reserve banking system, while
Georgescu-Roegen pointed to the need for Ecological Economics, a steady-state economy,
and population stabilization.

Following these, a series of papers and books studied similarities between economics
and thermodynamic entropy [25,29–42]. McMahon and Mrozek used entropy, within the
context of neoclassical economic thought, as a limit to economic growth [43]. In the same
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spirit, Smith and Smith used the Second Law of thermodynamics to again determine limits
to growth [44]. In a review paper, Hammond and Winnett [45] presented the influence of
thermodynamics on the emerging transdisciplinary field of ecological economics. However,
Kovalev [46] claimed that entropy cannot be used as a measure of economic scarcity.

In a different context, in their editorial note in a special issue on “Maximum Entropy
Economics: Foundations and Applications”, Scharfenaker and Yang [47] asked: “Maximum
entropy economics: where do we stand?” In reply, the same authors [48] offered a brief
overview of what they considered the state of maximum entropy reasoning in economic re-
search. This involved a probabilistic (or information-based) definition of entropy. Likewise,
Ryu [49], presented a technique to determine the functional forms of income distributions
maximizing entropy under given conditions. Fu et al. [50] used entropy divergence meth-
ods to define measures of income inequality; notably, they regard the uniform distribution
of income as the one with “the least inequality” (see discussion on this in Section 4.1 below).
Mayer et al. [51] provided a theoretical framework for studying the dynamics of coupled
human and natural systems in an attempt to define sustainability.

Related to these developments is the interdisciplinary research field of econophysics [52]
(apparently synthesized from the Greek words “oικoνoµία/economy” and “ϕυσική/physics”,
albeit violating the rules of word synthesis, as the correct use would result in “economo-
physics”; note that the omitted syllable “mo” distorts the intended meaning because it is
“νóµo(ς)/nomo(s)” the part of the word that means “law”, while “νo/no” means nothing).
In their comprehensive book entitled “Econophysics of income and wealth distributions”,
Chakrabarti et al. [53] discuss entropy maximization in several forms, inspired by physics
and applied to economics. Additional reviews of the field can be found in [48,54–58] and
references therein.

Apparently, the above overview of entropy in social sciences and particularly in
economics is not complete. Our purpose is not to review all related works, but to highlight
two facts. First, that the use of the notion of entropy is mainly metaphorical, rich in
imaginary interpretation, and divergent. Second, that the dominant view is that entropy
epitomizes all “bad things” one can think of in the universe, in life, in human societies and
in economics.

Our own view is quite different. On the first issue, we insist that entropy should be
used as a mathematical (in particular, stochastic) concept as rigorously as possible. We
avoid using ambiguous terms such as “social entropy”. We claim that any interpretation of
entropy should be as close to the mathematical definition as possible, and free of metaphoric
meanings. On the second issue, we believe that the overloading of the concept of entropy
with negative properties reflects a misunderstanding of the underlying theory, guided by a
deterministic world view—in which, however, entropy has no place.

We clarify our own view of entropy and its meaning in Section 2, after tracing its
roots as a scientific concept and its historical evolution in the last 150 years. In Section 3,
we provide a formal presentation of the principle of maximum entropy and its results
under conditions relevant to material wealth. In Section 4 we apply the framework to
the economy, trying to show that the principle of maximum entropy explains the general
behaviors seen in economics.

We try to provide several theoretical and even philosophical insights on important
issues related to entropy and economy, which are unavoidably influenced by our own
perception—clearly an optimistic one, contrary to the pessimism expressed in most of
the papers reviewed above. At the same time, we try to form insights based on real-
world data, rather than speculation. The data we use are freely available on the internet
and the reader can retrieve them and reproduce our calculations, or check and reprocess
them independently.

Finally, we try to make the paper self-contained and independent, so that even a
reader unfamiliar with entropy, with only a basic knowledge of calculus and probability,
could understand it. The mathematical framework we develop can readily be put to work
on the simplest computational framework (e.g., a spreadsheet).
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2. What Is Entropy?
2.1. The Origin of the Entropy Concept

The word ἐντρoπία (Greek for entropy) appears in ancient Greek [59] (from the verb
ἐντρέπειν, “to turn into, to turn about”) but was only introduced into the international
scientific vocabulary by Rudolf Clausius in 1865 (although the concept also appears in his
earlier works, as described in [60]). The rationale for introducing the term is explained in
his own words [61] (p. 358), which indicate that he was not aware of the existence of the
word in ancient Greek:

We might call S the transformational content of the body [ . . . ]. But as I hold it to be
better to borrow terms for important magnitudes from the ancient languages, so that they
may be adopted unchanged in all modern languages, I propose to call the magnitude S the
entropy of the body, from the Greek word τρoπή, transformation. I have intentionally
formed the word entropy so as to be as similar as possible to the word energy; for the two
magnitudes to be denoted by these words are so nearly allied their physical meanings,
that a certain similarity in designation appears to be desirable.

In addition to its semantic content, this quotation contains a very important insight: the
recognition that entropy is related to transformation and change, and the contrast between
entropy and energy, whereby the latter is a quantity that is conserved in all changes. This
meaning has been more clearly expressed in Clausius’ famous aphorism [62]:

Die Energie der Welt ist constant. Die Entropie der Welt strebt einem Maximum zu.

(The energy of the world is constant. The entropy of the world strives to a maximum).

In other words, entropy and its ability to increase (as contrasted to energy, momentum
and other quantities that are conserved) is the driving force of change. This property of
entropy is acknowledged only rarely [63–65]. Instead, as we have already seen, in common
perception entropy epitomizes all “bad things”, as if it were disconnected from change, or
as if change can only have negative consequences, always leading to deterioration.

Mathematically, thermodynamic entropy, S, is defined in the same texts by Clausius
through the equation dS = δQ/T, where Q and T denote heat and temperature. The
definition, however, applies to a reversible process only. In an irreversible process, dS >
δQ/T, which makes the definition imperfect and affected by circular reasoning, as, in turn,
a reversible process is one in which the equation holds.

Two decades later (in 1877), Ludwig Boltzmann [66] (see also Swendsen [67]) gave
entropy a probabilistic content as he linked it to probabilities of statistical mechanical
system states, thus explaining the Second Law of thermodynamics as the tendency of the
system to run toward more probable states, which have higher entropy. The probabilistic
concept of entropy was advanced later in thermodynamics by Gibbs [68].

The next important step was made by Shannon in 1948 [69]. Shannon used an essen-
tially similar, albeit more general, definition describing information content, which he also
called entropy, at von Neumann’s suggestion [70–72]. According to the latter definition,
entropy is a probabilistic concept, a measure of information or, equivalently, uncertainty.
In the same year, Wiener, in his famous book Cybernetics, also published in 1948 [73], used
the same definition for information, albeit with a negative sign (p. 62) because he regarded
information as the negative of entropy (p. 11). (Interestingly, he formed the celebrated
term Cybernetics from the Greek word κυβερνήτης, meaning steersman, pilot, skipper, or
governor, albeit incorrectly spelling it in his book—p. 11—as χυβερνήτης.)

A few years later, in 1956, von Neumann [74] obtained virtually the same definition of
entropy as Shannon, in a slightly different manner. Notably, as von Neumann, in addition to
being a mathematician and computer scientist, was also a physicist, engineer and polymath,
he clearly understood the connection of the probabilistic definition of entropy with its
pre-existing physical content. Specifically, he wrote:

An important observation about this definition is that it bears close resemblance to the
statistical definition of the entropy of a thermodynamical system. [ . . . ] Pursuing this,
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one can construct a mathematical theory of the communication of information patterned
after statistical mechanics.

He also cited an earlier work (1929) in physics by Szilard [75], who implied the same
definition of entropy in a thermodynamic system.

The last fundamental contribution to the entropy concept was made a year later (in
1957) by Jaynes [76], who introduced the principle of maximum entropy. This postulates
that the entropy of a stochastic system should be at maximum, under some conditions,
formulated as constraints, which incorporate the information that is given about this
system. This principle can be used for logical inference as well as for modeling physical
systems. In this respect, the tendency of entropy to become maximal (Second Law of
thermodynamics), which drives natural change, can result from this principle. On the other
hand, the principle equips the entropy concept with a powerful tool for logical inference.

2.2. Are Thermodynamic and Probabilistic Entropy Different?

More than 150 years after the introduction of the entropy concept, its meaning is still
debated, and a diversity of opinions among experts is still encountered [77]. In particular,
despite having the same name, probabilistic (or information) entropy and thermodynamic
entropy are still regarded by many (perhaps the majority of scientists) as two distinct
notions, having in common only the name. The classical definition of thermodynamic
entropy (as above) does not give any hint of its similarity with probabilistic entropy. The
fact that the latter is a dimensionless quantity and the former has units (J/K) has been
regarded as an argument that the two are dissimilar. Even Jaynes (2003), the founder of the
maximum entropy principle, stated:

They should never have been called by the same name; the experimental entropy makes no
reference to any probability distribution, and the information entropy makes no reference
to thermodynamics. Many textbooks and research papers are flawed fatally by the author’s
failure to distinguish between these entirely different things.

However, the units of thermodynamic entropy are only an historical accident, related
to the arbitrary introduction of temperature scales [65]. Furthermore, the connection of
probabilistic and thermodynamic entropy is clearly implied by its pioneers, Boltzmann [66],
Gibbs [68], Szilard [75] and von Neumann [74]. More recent accounts of the connection
have been provided by Robertson [70] and Moore [78]. Furthermore, as has recently been
shown [79,80], the thermodynamic entropy of gases can be easily inferred from formal
probability theory, without the need for strange assumptions (e.g., indistinguishability of
particles). Impressive examples of deductive reasoning used for deriving thermodynamic
laws from the formal probabilistic principle of maximum entropy have been provided
in [80]. Notable among them is the derivation of the law of the phase transition of water
(Clausius–Clapeyron equation) by maximizing entropy, i.e., uncertainty, at the microscopic
level of a single water molecule, leading to an expression that is virtually certain at the
macroscopic level.

2.3. Does Entropy Measure Disorder?

As already mentioned, in the public perception entropy, has a negative content, and is
typically identified with disorganization or disorder and deterioration. This misleading
perception has its roots in the scientific community, albeit not with the founders of the
concept (except one, as we will see). Boltzmann did not identify entropy with disorder,
even though he used the latter word in a footnote appearing in two papers of his [81,82], in
which he speaks about the

agreement of the concept of entropy with the mathematical expression of the probability
or disorder of a motion.

Clearly, he speaks about the irregular motion of molecules in the kinetic theory of gases,
for which his expression makes perfect sense. Boltzmann also used the notion of disorder
with the same meaning, in his Lectures on Gas Theory [83]. On the other hand, Gibbs [68],
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Shannon [69] and von Neumann [74] did not use the terms disorder or disorganization
at all.

One of the earliest (in 1944) uses of the term disorder is in a paper by Darrow [84], in
which he states:

The purpose of this article has been to establish a connection between the subtle and
difficult notion of entropy and the more familiar concept of disorder. Entropy is a measure
of disorder, or more succinctly yet, entropy is disorder: that is what a physicist would like
to say.

Epistemologically, it is interesting that a physicist prefers the “more familiar” but fuzzy
concept of disorder over the “subtle and difficult”, yet well-defined at his time, concept
of entropy.

However, it appears that Wiener was the most influential scientist to support the
disorder interpretation. In 1946, he gave a keynote speech at the New York Academy of
Sciences [85], in which he declared that:

Information measures order and entropy measures disorder.

Additionally, in his influential book Cybernetics [73] (p. 11), he stated that

the entropy of a system is a measure of its degree of disorganization

wherein he replaced the term “disorder” with “disorganization”, as in this book he exten-
sively used the former term for mental illness.

Even in the 21st century, the disorder interpretation is dominant. For example,
Chaitin [86] stated:

Entropy measures the degree of disorder, chaos, randomness, in a physical system. A
crystal has low entropy, and a gas (say, at room temperature) has high entropy.

More recently, Bailey [87] claimed:

As a preliminary definition, entropy can be described as the degree of disorder or uncer-
tainty in a system. If the degree of disorder is too great (entropy is high), then the system
lacks sustainability. If entropy is low, sustainability is easier. If entropy is increasing,
future sustainability is threatened.

It is relevant to remark that in the latter quotations disorder has been used as equivalent
to uncertainty or randomness—where the latter two terms are in essence identical [88].
Furthermore, the claim that a high-entropy system lacks sustainability is at least puzzling,
given that the highest entropy occurs when a system is in the most probable (and hence
most stable) state (cf. [78]).

Interestingly, Atkins [64] also explained entropy as disorder. Additionally, he noted:

That the world is getting worse, that it is sinking purposelessly into corruption, the
corruption of the quality of energy, is the single great idea embodied in the Second Law
of thermodynamics.

There is no doubt that the notion of entropy entails difficulties in understanding,
but this happens because our education is based on a deterministic paradigm. Indeed,
it is difficult to incorporate a clearly stochastic concept, i.e., entropy, into a deterministic
mindset. The notion of order looks determinist-friendly, and its opposite, disorder, has a
negative connotation in the deterministic mindset.

However, the notions of order and disorder are less appropriate and less rigorous
as scientific terms, and more appropriate in describing mental states (as in Wiener’s use
described above; cf. personality disorder, stress disorder, bipolar disorder, mental disorder),
and even more so in describing socio-political states. The latter is manifest in the frequent
use of the expressions “world order” and “new world order” in political texts, included in
Google Books (see Figure 3). As a further example, the phrases “world order” and “new
world order” were favorites of Kissinger, the American geopolitical consultant who served
as United States Secretary of State and National Security Advisor. Specifically, they appear
in 109 and 28 of his articles registered in Google Scholar, respectively [89,90], of which
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the article from 2009 [91] was his most popular, until recently (48 citations). However, the
variant “new world order” used by Kissinger in [91] has become infamous, as has the Nazis’
“new order” after World War II (see Figure 3). Naturally, Kissinger changed it in his article
from 2020 [92], which by now has become even more popular (132 citations), to “liberal
world order”, using this phrase for first time but borrowing it from other authors (e.g., [93]).
As will be explained in the next few lines, the latter expression is self-contradictory, or
a euphemism.

Other representatives of oligarchic elites prefer the expression “global order” (also
included in Figure 3). For example, in the recent book from the World Economic Forum
“COVID-19: The Great Reset” [94], the latter expression appears seven times (and “global
disorder” once), while “new order” and “world order” do not appear at all (except in a
reference to Kissinger’s article). Note that the book invokes the “COVID-19 pandemic”
(appearing 14 times) along with “climate change” (appearing 37 times), “global warming”
(appearing 4 times), and “climate crisis” (appearing twice), to promote the idea of a “great
reset” (appearing 13 times). The latter comprises economic reset, societal reset, geopolitical
reset, environmental reset, industry and business reset, and even individual reset.

Figure 3. Frequency of appearance of the indicated phrases in Google Books [95,96]. Notice that the “new order” was the
political order that Nazi Germany wanted to impose, and naturally its use peaked in the early 1940s. The other phrases also
peaked at the same time, but they show higher peaks after 1990s.

In one of the earliest critiques of the disorder interpretation of entropy, Wright [97]
made a plea for moderation in the use of “intuitive qualitative ideas concerning disorder”.
With a more absolute tone, Leff [98] recently stated:

The too commonly used disorder metaphor for entropy is roundly rejected.

In an even more recent article, Styer [99] stated:

we cannot stop people from using the word “entropy” to mean “disorder” or “destruction”
or “moral decay.” But we can warn our students that this is not the meaning of the word
“entropy” in physics.

Steyer attributes an excessive contribution to the misconception of entropy as disorder
to the autobiographical book “The Education of Henry Adams” [100]. He relates that it
proved to be enormously influential, as it won the 1919 Pulitzer Prize in biography, and in
April 1999 was named by the Modern Library the 20th century’s best nonfiction book in
English. As quoted by Steyer, Adams contrasts chaos and anarchy, and states:

The kinetic theory of gas is an assertion of ultimate chaos. In plain words, Chaos was the
law of nature; Order was the dream of man.

This looks to be a very strong statement. Undoubtedly, elites that want to control the world
have exactly this dream (cf. [101] and references above). However, this does not necessarily
mean that all of humanity has the same dream as the elites. When speaking about entropy,
we should have in mind that the scale is an important element, and that entropy per se,
being a probabilistic concept, presupposes a macroscopic view of phenomena, rather than
a focus on individuals or small subsets. If we viewed the motion of a particular die-throw,
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we might say that it was irregular, uncertain, unpredictable, chaotic, or random. However,
macroscopization, by removing the details, may also remove irregularity. For example, the
application of the principle of maximum entropy to the outcomes of a die-throw results in
equal probabilities (1/6) for each outcome. This is the perfect order that can be achieved
macroscopically. Likewise, as already mentioned, the maximum uncertainty in a particular
water molecule’s state (in terms of position, kinetic state and phase), on a macroscopic scale
results in the Clausius–Clapeyron law. Again, we have perfect order, as the accuracy of
this law is so high that most people believe that it is a deterministic law.

However, if entropy is not disorder, what is it? This question is not as difficult to
answer as the above discussion seems to imply. According to its standard definition,
which will be repeated in Section 2.6, entropy is precisely the expected value of the minus
logarithm of probability. If this sounds too difficult to interpret, an easy and accurate
interpretation (again explained in Section 2.6) is that entropy is a measure of uncertainty.
Hence, maximum entropy means the maximum uncertainty that is allowed in natural
processes, given the constraints implied by natural laws (or human interventions). It
should be stressed that, with this general definition, entropy and its maximization do not
apply merely to physics—in particular to thermodynamics—but to any natural (or even
uncontrolled artificial) process in which there is uncertainty that necessitates a (macro-
scopic) probabilistic description. This application is not meant as an “analogy” with
physics. Rather, it is a formal application of the general definition of entropy, which relies
on stochastics.

If “disorder” is regarded as a “bad thing” for many, the same is the case with uncer-
tainty. The expressions “uncertainty monster” and “monster of uncertainty” appear in
about 250 scholarly articles registered in Google Scholar (samples are [102,103], to mention
a couple of the most cited with the word “monster” appearing in their title). However, if
uncertainty is a monster, it is thanks to this monster that life is liveable and fascinating.
Uncertainty is not an enemy of science or of life; rather, it is the mother of creativity and
evolution. Without uncertainty, life would be a “universal boredom” (to borrow a phrase
by Saridis [21] and reverse its connotation), and concepts such as hope, will (particularly,
free will), freedom, expectation, optimism, etc., would hardly make sense. A technocratic
system wherein an elite comprising super-experts who, using super-models, could predict
the future without uncertainty would also assume full control of the society [104]. Fortu-
nately, this will never happen because entropy, i.e., uncertainty, is a structural property of
nature and life. Hence, in our view, uncertainty is neither disorder nor a “bad thing”. How
could the most important law of physics (the Second Law) be a “bad thing”?

In a deterministic world view, there is no uncertainty, and there is no meaning in
speaking about entropy. If there is no uncertainty, each outcome can be accurately predicted,
and hence there are no options. In contrast, in an indeterministic world, there is a plurality
of options. This corresponds to the Aristotelian idea of δύναµις (Latin: potentia—English:
potency or potentiality). The existence of options entails that there is freedom, in the following
sequence:

entropy↔ uncertainty↔ plurality of options↔ freedom.

This view, also depicted in Figure 4, is consistent with what has been vividly expressed
by Brissaud [71]:

Entropy measures freedom, and this allows a coherent interpretation of entropy formulas
and of experimental facts. To associate entropy and disorder implies defining order as
absence of freedom.
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Figure 4. An attempt at an artistic representation of the notion of entropy. Uncertainty is depicted by Marc Chagall’s Palette
(adapted from [105]) and freedom by Marc Chagall’s Self-Portrait with Seven Fingers [106]; δύναµις (Greek) or potentia (Latin)
is the Aristotelian idea of potency or potentiality.

2.4. On Negentropy

In 1921, the Swiss physicist C.-E. Guye [107] (followed by other scientists) asked
the question: How is it possible to understand life, when the whole world is ruled by
such a law as the second principle of thermodynamics, which points toward death and
annihilation? Today it makes sense to ask: Has this question been answered by now? Or, is
it still relevant, one hundred years after? As insightfully discussed by Brillouin (1949 [108]),
scientists of the era wondered if there was a “life principle”, a new and unknown principle
that would explain life as an entity that contrasts the second law of thermodynamics. A
year after, Brillouin coined the term negentropy as an abbreviation of negative entropy [109].
In this, he used information theoretical concepts to express the idea that every observation
in a laboratory requires the degradation of energy, and is made at the expense of a certain
amount of negentropy, taken away from the surroundings.

The term “negative entropy” had earlier (in 1944) been used by Schrödinger in his
famous book “What is life?” [110]. Specifically, he argued that “What an organism feeds
upon is negative entropy”. At the same time, he did not mention any other “life principle”
additional to the Second Law that would drive life and evolution.

There is no general agreement about the meaning of negative entropy or negentropy.
Some (e.g., [111]) use them as technical terms referring to the difference between the entropy
of any variable and that of a variable with normal distribution, with the same mean and
variance (distance to normality). However, others, in a rather metaphysical context and
assuming a non-statistical definition of negentropy (e.g., [112]), see a negentropic principle
governing life, the biosphere, the economy, etc., because these convert things that have less
order into things with more order.

On the other hand, Atkins [64], who, as we have seen, explains entropy as disorder,
neatly remarked:

The ceaseless decline in the quality of energy expressed by the Second Law is a spring that
has driven the emergence of all the components of the current biosphere. [ . . . ] The spring
of change is aimless, purposeless corruption, yet the consequences of interconnected
change are the amazingly delightful and intricate efflorescences of matter we call grass,
slugs, and people.

Apparently, if we get rid of the disorder interpretation of entropy, we may also be able to stop
seeking a negentropic “life principle”, which was never found and probably will never be. For,
if we see entropy as uncertainty, we also understand that life is fully consistent with entropy
maximization. Human-invented steam engines (and other similar machines) increase entropy
all the time, and are fully compatible with the Second law, yet they produce useful work.
Likewise, the biosphere increases entropy, yet it produces interesting patterns, much more
admirable than steam engines. Life generates new options and increases uncertainty [113].
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Compare Earth with a lifeless planet: Where is uncertainty greater? On which of the two
planets would a newspaper have more events to report every day?

2.5. Final Theses on Entropy

The above considerations allow us to form a logical basis for a general entropic
framework, which can be applicable in many scientific fields including thermodynamics,
geosciences and social sciences. This includes the following points:

• Entropy is a stochastic concept with a simple and general definition that will be
formally stated in Section 2.6. Notably, according to its stochastic definition, entropy
is a dimensionless quantity;

• As a stochastic concept, entropy can be interpreted as a measure of uncertainty, leaving
aside the traditional but obscure and misleading “disorder” interpretation;

• The classical definition of thermodynamic entropy is not necessary, and it can be
abandoned and replaced by the probabilistic definition;

• Applied in thermodynamics, entropy thus defined is the fundamental quantity, which
supports the definition of all other derived ones. For example, temperature is defined
as the inverse of the partial derivative of entropy with respect to internal energy.
Entropy retains its dimensionless character in thermodynamics, thus rendering the
kelvin an energy unit. Notably, the extended and sophisticated study of entropy in
thermodynamics can serve, after the removal of the particulars pertinent to this specific
field, as a paradigm for other disciplines, given that entropy is a generic concept;

• The entropy concept is complemented by the principle of maximum entropy, which
states that entropy tends to take the maximum value that is allowed, given the avail-
able information about the system. The latter is incorporated into maximization in the
form of constraints. This can be regarded both as a physical (ontological) principle
obeyed by natural systems, as well as a logical (epistemological) principle applicable
when making inferences about natural systems;

• The tendency of entropy to reach its maximum is the driving force of natural change;
• Life, biosphere and social processes are all consistent with the principle of maximum

entropy, as they augment uncertainty. Therefore, no additional “life principle” is
necessary to explain them. Changes in life and evolution are also driven by the
principle of maximum entropy.

2.6. Mathematical Formulation

We consider a stochastic (random) variable x (notice that we underline stochastic vari-
ables to distinguish them from common variables), and we denote its distribution function
(i.e., probability of non-exceedance) and its tail function (i.e., probability of exceedance),
respectively, as:

F(x) := P{x ≤ x}, F(x) := 1− F(x) = P{x > x} (1)

where P denotes probability. If the variable x is discrete, i.e., it can take any of the values
xj, j = 1, . . . , Ω, with probability

Pj ≡ P
(
xj
)

:= P
{

x = xj
}

(2)

then the sequence Pj defines its probability mass function. If the variable is continuous, i.e.,
it can take any real value (or a value in a subset of the real numbers), then we define the
probability density function as the derivative of the distribution function:

f (x) :=
dF(x)

dx
(3)

The sequence Pj and the function f (x) obey the obvious relationships:
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Ω

∑
j=1

Pj = 1,
∞∫
−∞

f (x)dx = 1 (4)

Any deterministic function of x, g(x), is a stochastic variable per se, because its
argument is stochastic. The expectation of the stochastic variable g(x) is defined as

E[g(x)] :=
Ω

∑
j=1

g
(
xj
)

Pj, E[g(x)] :=
∞∫
−∞

g(x) f (x)dx (5)

for a discrete and continuous stochastic variable, respectively. For g(x) = x, we get the
mean of x, as

µ := E[x] =
Ω

∑
j=1

xj Pj, µ := E[x] =
∞∫
−∞

x f (x)dx (6)

and for g(x) = (x− µ)2, we get the variance of x as

γ := E
[
(x− µ)2

]
=

Ω

∑
j=1

(
xj − µ

)2 Pj,

γ := E
[
(x− µ)2

]
=

∞∫
−∞

(x− µ)2 f (x)dx
(7)

The variance is necessarily nonnegative, and its square root, σ :=
√

γ, is the standard
deviation. For nonnegative variables, the ratio σ/µ, termed the coefficient of variation, is a
useful dimensionless index of the variability of a system.

In the above presentation of these basic probabilistic notions, we have followed
Kolmogorov’s axiomatic system of probability [114,115], and we will do the same in what
follows. According to this system, the definition of a stochastic variable x entails an
enumeration of the basic set (the set of all possible elementary events). Hence, it reflects
arbitrary choices (e.g., about units) as there are many different options for enumeration.
In turn, expectations and moments depend on the option chosen. One may think of
defining the function g( ) whose expectation is sought in terms of the probability per se,
i.e., g(x) = h(P(x)) for a discrete variable or g(x) = h( f (x)) for a continuous variable,
where h( ) is any specified function. Among the several choices of h( ), the most useful is
the logarithmic function, which results in the definition of entropy.

The emergence of the logarithm in the definition of entropy follows some postulates
originally set up by Shannon (1948). Assuming a discrete stochastic variable x with
probability mass function Pj ≡ P

(
xj
)
, which satisfies Equation (4), the postulates, as

reformulated by Jaynes [116] (p. 347]), are:

(a) It is possible to set up a numerical measure Φ of the amount of uncertainty, which is
expressed as a real number;

(b) Φ is a continuous function of Pj;
(c) If all the Pj are equal (Pj = 1/Ω), then Φ should be a monotonic increasing function

of Ω;
(d) If there is more than one way of working out the value of Φ, then we should get the

same value for every possible way.

Quantification of postulate (d) is given in, among others, in Refs. [70] (p. 3) and [117],
(theorem 1), and is related to the refinement of partitions to which the probabilities Pj refer.

From these general postulates about uncertainty, a unique (within a multiplicative
factor) metric Φ is derived, which serves as the definition of entropy:

Φ[x] := E[−ln P(x)] = −
Ω

∑
j=1

Pj ln Pj (8)
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While, as we have seen, in classical thermodynamics, entropy is denoted by S (the original
symbol used by Clausius; see Section 2.1), probability texts use the symbol H. Here, Φ was
preferred as a unifying symbol for information and thermodynamic entropy, under the
interpretation that the two are essentially the same thing.

The extension of the above definition for the case of a continuous stochastic variable x
with probability density function f (x) is possible, although not contained in Shannon’s
(1948) original work. This extension presents some difficulties. Specifically, if we discretize
the domain of x into intervals of size δx, then (8) would give an infinite value for the
entropy, as δx tends to zero (the quantity − ln P = − ln( f (x) δx) will tend to infinity).
However, if we involve a (so-called) background measure with density β(x) and take the
ratio ( f (x)δx)/(β(x)δx) = f (x)/β(x), then the logarithm of this ratio will generally con-
verge. This allows for the definition of entropy for continuous variables as (see, e.g., [116];
p. 375, [117]):

Φ[x] := E
[
− ln

f (x)
β(x)

]
= −

∞∫
−∞

ln
f (x)
β(x)

f (x)dx (9)

The background measure density β(x) can be any probability density, proper (with integral
equal to 1, as in Equation (4)) or improper (meaning that its integral diverges). Typically, it
is an (improper) Lebesgue density, i.e., a constant.

We note that most texts do not include β(x) in the definition (or set β(x) ≡ 1) but
in terms of physical consistency this is an error, because in order to take the logarithm
of a quantity, this quantity must be dimensionless. While the probability mass P(x) in a
discrete variable is indeed dimensionless, the density function has units [ f (x)] =

[
x−1],

and therefore we need to divide it by a quantity with the same units before taking the
logarithm. Even if we choose the Lebesgue measure as the background, with β(x) = 1/λ,
(constant), where λ is the unit used to measure x, the entropy still depends on the unit. It
can easily be verified that if we measure x with two different units λ1 and λ2, the respective
entropies Φ1[x] and Φ2[x] will differ by a constant:

Φ1[x]−Φ2[x] = ln
λ2

λ1
(10)

In other words, in contrast to the discrete variables where the entropy for a specified
probability mass function is a unique number, in continuous variables, the value of entropy
depends on the assumed β(x).

Furthermore, we note that in texts that miss the background measure in the definition
of entropy, the quantity that is defined in Equation (9), taken with a negative sign, is named
the relative entropy or the Kullback–Leibler divergence, as it measures how the density function
f (x) differs from β(x).

It can easily be seen that for both discrete and continuous variables, the entropy Φ[x]
is a dimensionless quantity. For discrete variables, it can only take nonnegative values up
to a maximum value, depending on the system. For continuous variables it can be either
positive or negative, depending on the assumed β(x), ranging from −∞ to a maximum
value, depending on the system and, in particular, on its constraints.

If there is no constraint in the system apart from a maximum value Ω, i.e., if the
system only obeys the inequality constraint of

0 ≤ x ≤ Ω (11)

then the maximization of entropy results in uniformity, i.e., P
(
xj
)
= 1/Ω or f (x) = 1/Ω.

In this case, the maximum entropy is

Φ[x] = ln Ω, Φ[x] = ln
Ω

λ
(12)
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for the discrete and the continuous case, respectively. The former equation corresponds
to Boltzmann’s original definition of entropy, a form of which has been carved on his
gravestone. In the latter case, a Lebesgue background measure is assumed, i.e., β(x) = 1/λ.

However, a system becomes more interesting when, in addition to inequality con-
straints such as (11), or even in the absence of them, there appear equality constraints,
corresponding to the information that is known about a system represented by the variable
x. Their formulation is typically given in the form of expectations of one or more function
gi(x) for some i:

E[gi(x)] = γi ⇔
∞∫
−∞

gi(x) f (x)dx− γi = 0 (13)

As shown in [118], for any background measure β(x), after incorporating the constraints to
the entropy with Lagrange multipliers, the entropy maximizing density is:

f (x) = A β(x) exp

(
−∑

i
bigi(x)

)
(14)

where A and bi are the parameters to be determined from the constraints of Equations (4)
and (13). Once f (x) is determined, the maximum entropy is calculated by Equation (9).

In closing the presentation of our general entropic framework, we return to the
definition of entropy, and stress the importance of the postulate (d). This allows us to
separate a whole system into partitions, requiring that, as the entropy of the whole is
maximized, the partial entropy in each of the partition blocks should also be maximized. In
turn, this enables a study of subsystems without necessarily considering the entire system.
For example, we can study the economy of a country without considering all processes on
Earth or in the universe.

3. Entropy Maximizing Distribution for Constrained Mean
3.1. Lebesgue Background Measure and the Exponential Distribution

When studying the material wealth (or income) in a certain society, current or past,
we assume two characteristic quantities: the mean µ, which is related to the total energy
available to the society [119], and the upper limit of wealth (or income) Ω, which is
mainly determined by the available technology (knowhow), and can thus be called the
technological upper limit. We define the ratio:

A
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Ω

µ
≥ 1 (15)

Hence, in entropy maximization, we have an equality constraint and an inequality one, i.e.,

∞∫
−∞

x f (x)dx = µ, 0 ≤ x ≤ Aµ (16)

The probability density that maximizes entropy is determined from the general so-
lution (14). Assuming a Lebesgue background measure with β(x) = 1/λ, with λ being
a monetary unit (e.g., λ = USD 1), after algebraic manipulations, we find the entropy
maximizing probability density to be:

f (x) =
b e−bx/µ

µ
(
1− e−bA

) (17)

which is a (doubly) bounded exponential distribution (or anti-exponential if b < 0). The
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value of b depends on A and is the solution to the implicit equation:

1
b
− A

eAb − 1
= 1 (18)

which renders b a function of A, b(A), albeit implicitly determined. The entropy is then
found to be:

Φ[x] = b(A) + ln
(µ

λ

)
+ ln

(
A

(A− 1) b(A) + 1

)
=: Φ(µ, A) (19)

Interesting special cases of the general solution of (17) are encountered for A = 1 (an
impulse function with all mass concentrated at x = µ, representing certainty), A = 2 (the
uniform distribution) and A→ ∞ (the unbounded exponential distribution). Their particular
characteristics are given in Table 1 as functions of µ and in Table 2 as functions of Ω.

Accurate solutions of Equation (18) can be directly calculated in terms of the auxiliary
variable:

c
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Starting with a known c, the exact solution is readily found by

A =

(
1

ln c
− 1

c− 1

)−1
, b = 1− ln c

c− 1
(21)

where for c ≥ e we get A ≥ 2, b ≥ 0, and for c ≤ e we get A ≤ 2, b ≤ 0. Two sample
solutions for c = 2−3 and c = 23 are also shown in Tables 1 and 2.

In a typical case where c is unknown, we need to solve Equation (18) numerically,
which is not too difficult. Alternatively, we can use the following very good approximation
for A ≥ 2:

b = 1−
(

1− 1.37e−0.89
)

e2(2−A) − 1.37 e0.89(1−A) (22)

Furthermore, a very good approximation for entropy Φ[x], which does not contain b at all, is:

Φ[x] = 1 + ln
(µ

λ

)
−
(

1− ln 2− 0.373e−1
)

e2(2−A) − 0.373 e(1−A) (23)

Approximations (22) and (23) were found via an extensive numerical investigation and are
optimized for A ≥ 2. For A < 2, we can exploit the following symmetry relationships:

b(A) = − 1
A− 1

b
(

A
A− 1

)
, Φ(µ, A) = Φ

(
(A− 1)µ,

A
A− 1

)
(24)

where it is readily seen that if A < 2, then A/(A− 1) > 2.
In addition to their tabulated form (Table 1), the characteristic density functions are

also depicted in graphical form in Figure 5. Likewise, the density functions of Table 2 are
depicted in Figure 6. Furthermore, Figure 7a shows the achieved maximum entropy for a
constant mean µ = 1, as a function of the technological limit Ω. For small and moderate
values of the technological limit, the entropy is an increasing function of Ω, but beyond
Ω ≈ 5, it reaches a virtually constant value. Likewise, Figure 7b shows the maximum
entropy for a constant technological limit Ω = 2.958 (this value corresponds to case #4 of
Table 2) as a function of the mean µ. Initially, for small µ, the entropy increases; it takes
a maximum value for µ = Ω/2 and then decreases in a symmetric pattern. However,
in the case that technology offers unlimited opportunities (infinite technological limit),
as also depicted in Figure 7b, the increase in entropy with µ is continuous. We can thus
say in conclusion that for Ω > 2µ, the entropy increases both with the mean µ and the
technological limit Ω. In this respect, entropy constitutes a measure of society’s wealth
(see also [119]).
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Table 1. Special (limiting) cases of the entropy maximizing distribution of Equation (18) for constant mean µ and varying technological limit Ω = Aµ, along with two exact solutions * (#2,
#4) calculated by Equation (21) for c = 2−3 and c = 23, respectively.

# A b f(x) Φ
[
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technological limit 𝛺 = 𝐴𝜇, along with two exact solutions * (#2, #4) calculated by Equation (21) for 𝑐 = 2ିଷ and 𝑐 = 2ଷ, 
respectively. 

# 𝑨 𝒃 𝒇(𝒙) 𝜱[ 𝒙 ] Distribution 
1 1 −∞ 𝛿(𝑥 − 𝜇) −∞ Certain (𝑥 = 𝜇) 

2 21 ln 224 ln 2 − 7 = 1.511 1 − 24 ln 27= −1.377 

0.197eଵ.ଷ଻଻௫/ఓ𝜇  
1 + ln ቀ𝜇𝜆ቁ − ln ቆ2ଶସ ଻⁄ (24 ln 2 − 7)49 ቇ= 0.250 + ln ቀ𝜇𝜆ቁ 

Truncated anti- 
exponential  

3 2 0 1/2𝜇 ln 2 + ln ቀ𝜇𝜆ቁ Uniform  

4 
21 ln 27 − 3 ln 2 = 2.958 1 − 3 ln 27 = 0.703 0.803eି଴.଻଴ଷ௫ఓ𝜇  

1 + ln ቀ𝜇𝜆ቁ − ln ቆ2ଶସ ଻⁄ (7 − 3 ln 2)49 ቇ= 0.922 + ln ቀ𝜇𝜆ቁ 

Truncated 
exponential 

5 → ∞ 1 eି௫/ఓ 𝜇⁄  1 + ln ቀ𝜇𝜆ቁ Unbounded 
exponential 

* Numerals are rounded to three decimal digits. 

]
Distribution

1 1 −∞ δ(x− µ) −∞ Certain (x = µ)

2 21 ln 2
24 ln 2−7 = 1.511 1− 24 ln 2

7 = −1.377 0.197e1.377x/µ

µ 1 + ln
( µ

λ

)
− ln

(
224/7(24 ln 2−7)

49

)
= 0.250 + ln

( µ
λ

)
Truncated anti- exponential

3 2 0 1/2µ ln 2 + ln
( µ

λ

)
Uniform

4 21 ln 2
7−3 ln 2 = 2.958 1− 3 ln 2

7 = 0.703 0.803e−
0.703x

µ

µ
1 + ln

( µ
λ

)
− ln

(
224/7(7−3 ln 2)

49

)
= 0.922 + ln

( µ
λ

)
Truncated exponential

5 → ∞ 1 e−x/µ/µ 1 + ln
( µ

λ

)
Unbounded exponential

* Numerals are rounded to three decimal digits.

Table 2. Special (limiting) cases of the entropy maximizing distribution of Equation (18) for constant technological limit Ω and varying mean µ = Ω/A, along with two exact solutions *
(#2, #4) calculated by Equation (21) for c = 2−3 and c = 23, respectively.

# A b f(x) Φ
[
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# 𝑨 𝒃 𝒇(𝒙) 𝜱[ 𝒙 ] Distribution 
1 1 −∞ 𝛿(𝑥 − 𝜇) −∞ Certain (𝑥 = 𝜇) 

2 21 ln 224 ln 2 − 7 = 1.511 1 − 24 ln 27= −1.377 

0.197eଵ.ଷ଻଻௫/ఓ𝜇  
1 + ln ቀ𝜇𝜆ቁ − ln ቆ2ଶସ ଻⁄ (24 ln 2 − 7)49 ቇ= 0.250 + ln ቀ𝜇𝜆ቁ 

Truncated anti- 
exponential  

3 2 0 1/2𝜇 ln 2 + ln ቀ𝜇𝜆ቁ Uniform  

4 
21 ln 27 − 3 ln 2 = 2.958 1 − 3 ln 27 = 0.703 0.803eି଴.଻଴ଷ௫ఓ𝜇  

1 + ln ቀ𝜇𝜆ቁ − ln ቆ2ଶସ ଻⁄ (7 − 3 ln 2)49 ቇ= 0.922 + ln ቀ𝜇𝜆ቁ 
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exponential 

5 → ∞ 1 eି௫/ఓ 𝜇⁄  1 + ln ቀ𝜇𝜆ቁ Unbounded 
exponential 

* Numerals are rounded to three decimal digits. 

]
Distribution

1 1 −∞ δ(x−Ω) −∞ Certain (x = Ω)

2 21 ln 2
24 ln 2−7 = 1.511 1− 24 ln 2

7 = −1.377 0.297e2.079x/Ω

Ω 1 + ln
(

Ω
λ

)
− ln

(
3(224/7) ln 2

7

)
= −0.163 + ln

(
Ω
λ

)
Truncated anti- exponential

3 2 0 1/Ω ln
(

Ω
λ

)
Uniform

4 21 ln 2
7−3 ln 2 = 2.958 1− 3 ln 2

7 = 0.703 2.377e−2.079x/Ω

Ω 1 + ln
(

Ω
λ

)
− ln

(
3(224/7) ln 2

7

)
= −0.163 + ln

(
Ω
λ

)
Truncated exponential

5 → ∞ 1 δ(x) −∞ Certain (x = 0)

* Numerals are rounded to three decimal digits.
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Figure 5. Entropy maximizing probability density functions of Table 1 for mean µ = 1. Panels
(a–e) correspond to cases 1 to 5 of Table 1, while panel (f) is same as (e) except that the vertical axis is
logarithmic. In each panel the mean is depicted as a red dashed line.

One could say that the mean µ is more representative, as a measure of wealth, than
the entropy Φ. We do not make a substantial objection to this. However, we prefer to use
entropy for two reasons: (a) because it is connected with the logarithm of the mean, and
intuitively this is a better quantification of the wealth; (b) because it quantifies the options,
and as seen in the motto at the beginning of the paper, the quantification of options is more
pertinent as a measure of average wealth.

Apparently, life offers much more options than material wealth, and one could choose to
pursue different opportunities (e.g., intellectual), snubbing material wealth, as formulated by
Bias of Priene in the second motto at the beginning of the paper. Certainly, the focus of the
paper is on material wealth, but we should keep in mind that seeking material wealth is just
one of the options (for example, many, including us, would not like to exchange their lives
with those of any of the persons whose income is discussed in Section 3.3 below).
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Figure 6. Entropy maximizing probability density functions of Table 2 for a mean technological limit Ω = 2.958 (corre-
sponding to µ = 1 for case #4 in Table 2). Panels (a–e) correspond to cases 5 to 1 of Table 2 (in reverse order, so that the
mean is increasing from 0 in panel (a) to Ω in panel (e)). In each panel, the mean is depicted as a red dashed line.

While for a constant background density equal to the inverse of the monetary unit
(i.e., 1/λ with λ equal, e.g., to USD 1) the entropy provides a measure of society’s wealth (even
if x expresses income), if we change the background measure to the value 1/µ, where µ is
the mean income, the resulting entropy is a measure of inequality. Calling the latter quantity
standardized entropy and denoting it as Φµ[x], from Equation (10) we get

Φµ[x] = Φ[x]− ln
µ

λ
(25)
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This has recently been introduced as an index of inequality by Sargentis et al. [119] (albeit
denoted as ∆Φ[x]). The quantity Φµ[x] cannot exceed a maximum value of 1, correspond-
ing to an exponential distribution. A value smaller than 1 usually indicates less inequality
with respect to the exponential distribution. However, as we will see in Section 3.2, there
are cases where it indicates higher inequality, and hence the value of Φµ[x] should be
accompanied with a second inequality index in order to decide whether the inequality is
lower or higher. As we will see below, a simple and appropriate additional index is the
coefficient of variation σ/µ.

Figure 7. Maximum entropy as a function of (a) the technological limit Ω for constant mean µ = 1 and (b) the mean µ for a
constant technological limit Ω = 2.958. The red dashed lines correspond to identical cases in the two panels. The green
dotted line in panel (b) depicts the maximum entropy for the infinite technological limit.

One issue that needs to be discussed here is whether or not the mean µ used in
the above formulation indeed represents an essential constraint, and should be used in
entropy maximization. In physics, the related constraint is imposed by natural laws
of conservation—most prominently, energy conservation. Is there sense in imposing a
constrained mean when using economic variables, such as income? Related to this question
is Tusset’s [120] note:

However, it is the relationship between thermodynamics and economics (hardly a new topic),
with its burden of “entropy” and information, that remains at the heart of any econophysics
view of production. In a nutshell, the point is: thermodynamics implies the conservation of
energy, a principle that so far has not been confirmed in economic processes.

This question is also thoroughly discussed by Yakovenko and Rosser [54]. In our view,
even in physics where energy is definitely conserved, this conservation applies to isolated
systems, and certainly not to open ones. Yet energy constraint is relevant even for configu-
rations that form open systems, provided that we deal with specified periods of time in
which energy changes can be neglected. Likewise, in economic processes in general, there
is no conservation of a quantity that could be regarded as a substitute of energy, such as
money. However, we can assume that in a system with large spatial extent (e.g., a country
or the globe), such changes are slow, and for a relatively small period of time (e.g., a year,
which is the basis of most statistical economic data), the mean can be regarded as constant.
Apparently, though, if we consider the entirety of history, the mean is evolving toward
higher values. We will illustrate this idea in Section 4.1, examining hypothetical scenarios
of historical evolution, each one corresponding to a period with a constant mean, and
where entropy maximization determines the distribution throughout the population of the
values that shape this mean.
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3.2. Hyperbolic Background Measure and the Pareto Distribution

Coming again to the quantification of material wealth, we recall that the obtained density
function and maximum entropy would be different if we choose a different background
measure. In particular, if we choose a hyperbolic background measure [80,118], i.e.,

βH(x) =
1

λ + x
(26)

leaving x unbounded, and constrain a generalized mean, consistent with the chosen
background measure, then the entropy maximizing distribution comes to be of Pareto type,
with density

f (x) =
1

λ1

(
1 + ξ

x
λ1

)− 1
ξ−1

, x ≥ 0 (27)

where ξ := 1/b1 (the parameter in Equation (14), known as the tail index) and λ1 := λξ. It
can be seen (by taking the limit) that, as ξ → 0 , the Pareto density (Equation (27)) tends to
the unbounded exponential one (case #5 in Table 1), with µ = λ1.

Equation (27) could also be derived in a different manner by using a generalized
definition of entropy, the so-called Havrda–Charvát–Tsallis entropy [121,122]. This has
been used in several econophysics studies (e.g., [123,124]). However, we contend that the
derivation using the classical (Boltzmann–Gibbs–Shannon) definition (and an appropriate,
non-Lebesgue background measure) is more natural and advantageous as it satisfies
Shannon’s postulates and retains the properties resulting from these postulates. In contrast,
the Havrda–Charvát–Tsallis entropy does not satisfy postulate (d). (About the importance
of that postulate, see the ultimate paragraph of Section 2.6.)

We note that the density in Equation (27) is often called the Pareto Type II or Lomax
distribution, while the name Pareto distribution (more precisely, Pareto Type I distribution)
is used for a case wherein the 1 in the parentheses in Equation (27) is neglected; in that case,
x cannot take a value smaller than λ1/ξ. The differences in the two cases are negligible for
a large x.

The distribution, elsewhere known as the “Pareto’s law”, is named after Vilfredo
Pareto, who first proposed it in 1896 while analyzing data on the distribution of wealth
and fitting a straight line on the logarithm of the number of people, Nx, whose net worth
or income exceeds x, and the logarithm of x [125]. A detailed historical account of his
discovery is given by Mornati [126], where it can be seen that Pareto developed both types I
and II of the distribution. In fact, it was not the power–law behavior of the distribution that
impressed Pareto. As evident from his celebrated book Manual of Political Economy, first
published in 1906, he was rather puzzled by its asymmetric shape, which is also shared by
the exponential distribution. Specifically, he drew a qualitative shape of the distribution in
Figure 54 of his book, and remarked [127] (p. 195):

The shape of the curve [ . . . ] of Figure 54, which is derived from statistics, does not
correspond by any means to the curve of errors [i.e., the normal distribution], i.e., to
the shape the curve would have if the acquisition and preservation of wealth depended
only on chance. Moreover, statistics reveal that the curve [ . . . ] varies very little in time
and space; different nations at different times have very similar curves. There is thus a
remarkable stability in the shape of this curve. [ . . . ] There is a certain minimum income
[ . . . ] below which men cannot descend without dying of poverty and hunger.

It is remarkable that Pareto regarded that “chance” is only connected with normal distribution—
an idea that is not consistent with reality. If we accept that what Pareto regarded as “chance”
can be represented by the principle of maximum entropy, then it is true that there is consistency
between the latter principle and the normal distribution. However, this occurs when the second
moment of x is constrained to a constant value (as, e.g., in the kinetic energy of a number of
molecules), and such a constraint is certainly not applicable to income. Instead, as we have
seen, reasonable constraints for the income necessarily result in asymmetric distributions, of
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either exponential or Pareto type. In this respect, the Pareto distribution is applied, and has
become popular in financial analysis, in either its original form or after generalization [128].

Coming back to the mathematical details, the mean and coefficient of variation of the
Pareto distribution are

µ =
λ1

1− ξ
=

λξ

1− ξ
,

σ

µ
=

1√
1− 2ξ

(28)

Assuming that both have finite values, a restriction is imposed for ξ, i.e., 0 ≤ ξ < 1/2. The
maximized entropy for the hyperbolic background measure is

ΦH = 1 + ln ξ = 1− ln(1 + λ/µ) (29)

while if, for the sake of compatibility, we also calculate the entropy for the Lebesgue
measure β(x) = 1/λ, this entropy is

Φ = 1 + ξ + ln ξ = 1 +
1

1 + λ/µ
− ln(1 + λ/µ) (30)

The proofs are omitted for both cases. It can also be shown (again the proof is omitted) that
the following inequality holds true:

ΦH ≤ Φ ≤ 1 + ln
(µ

λ

)
(31)

where the rightmost term is the entropy of the unbounded exponential distribution. The
three quantities become equal, as µ/λ→ 0 (or, equivalently, as ξ → 0).

It is relevant here to discuss the so-called “Pareto principle” or the “80/20 rule”
referred to in economic papers (e.g., [129]), suggesting that about 80% of wealth is concen-
trated in about 20% of any population. The mathematics for this principle is the following.
Let µx≥c :=

∫ ∞
c x f (x)dx be the mean of x conditional on x > c. The “principle” states that

for µx≥c/µ = 0.8, F(c) = 0.2.
It can be shown that for the Pareto distribution, the following relationship holds true:

µx≥c

µ
=

(
1 +

(
F(c)−ξ − 1

)
/ξ
)

F(c)

1− ξ
(32)

and it can be readily verified that the condition µx≥c/µ = 0.8, F(c) = 0.2 is met when
ξ = 0.253. For ξ → 0 , the Pareto distribution reduces to the exponential distribution, and
Equation (32) reduces to

µx≥c

µ
=
(
1− ln F(c)

)
F(c) (33)

From the latter, it is easy to verify that the condition µx≥c/µ = 0.8 is satisfied when
F(c) = 0.439, that is, substantially higher than 0.2.

When the articles refer to the “Pareto principle”, they usually cite Pareto’s Man-
ual [127]. However, our own research did not show that the “principle” is referred to or
implied by his book. On the contrary, it appears that this name was accidentally given in
1951 by Juran [130], as explained by himself in his paper entitled “The non-Pareto principle;
mea culpa”, where he claims that it was himself who introduced the principle, also using
the name “vital few and trivial many” [131]. For these reasons, in the following we will
call this “principle” the “80/20 rule”, and we will see that real-world data on income do
not satisfy it.

A graphic comparison of the Pareto density with the exponential one is given in
Figure 8. In addition, the two-parameter gamma density, the behavior of which is opposite
to Pareto, is also plotted in the figure. The gamma density, with a chosen shape parameter
of 2, is f (x) = xe−x/a/a2, and has a mean µ = 2a, a coefficient of variation 0.5 and entropy

Φ = 1 + γ + ln a/λ = 1 + γ− ln 2 + ln(µ/λ) = 0.884 + ln(µ/λ) (34)
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where γ = 0.5772 . . . is the Euler’s constant. For the comparison, we use the Lebesgue
measure β(x) = 1/λ. In all three distributions, the domain of x is [0, ∞) and the mean
is µ = λ = 1. The entropy maximizing distribution is exponential, which gives entropy
Φ = 1. The gamma distribution has a scale parameter a = 0.5 and entropy Φ = 0.884 < 1.
The tail index of the Pareto distribution was chosen so that it would have the same entropy
with a gamma distribution Φ = 0.884 and mean µ = 1; these are obtained when ξ = 0.408
and λ1 = 0.592.

Figure 8. Comparison of the entropy maximizing distribution (for Lebesgue measure β(x) = 1/λ) with two other
distributions, in terms of their probability density functions f (x). The domain of x is [0,∞) and in all three distributions the
mean is µ = λ = 1. The entropy maximizing distribution is exponential with entropy Φ = 1, and the other two are gamma
with shape parameter 2 and Pareto with tail index ξ = 0.408. Both the gamma and the Pareto distributions have the same
entropy, Φ = 0.884 < 1, but they have different coefficients of variation, 0.5 and 2.325, respectively. In both panels, f (x) is
plotted on logarithmic axis, while the variable x is plotted on linear axis in the left panel and logarithmic axis in the right
panel. Notice in the left panel that the exponential density has constant slope −1, while the gamma density has slope −2 for
large x. Likewise, in the right panel, the Pareto density has a constant slope −1− 1/ξ = −3.453.

While the Gamma and the Pareto distributions have the same mean and the same
entropy, they have different behaviors. The former favors (i.e., increases the frequency
of) the moderate values of x (i.e., populating the “middle class” more), while the latter
favors the extremes (diminishing the presence of the “middle class”, and populating more
the “poor” and the “very rich”). These differences cannot be captured by entropy alone,
as the entropy in the two cases is the same. One could think of using the concept of
divergence from the exponential distribution, which is easy, as it is only required to set the
background density as equal to that of the exponential distribution, i.e., β(x) = exp(−x)
(and change the sign in the right-hand side of Equation (9)). Again, though, this does not
help, as it yields almost the same divergence: 0.116 and 0.111 for the gamma and the Pareto
case, respectively.

Thus, to quantify the differences in the two cases, we have to use a different metric,
and the simplest is the coefficient of variation, whose values are 0.5 and 2.325 for the
gamma and the Pareto cases, respectively.

Notice in Figure 8 that in the left panel the vertical axis is logarithmic, while in the
right panel both axes are logarithmic. The left is better for visualizing the exponential tail
of a distribution, which appears as a straight line for large x. This is the case for both the
exponential and the gamma distribution, with their slopes being −1 and −2, respectively.
The right panel better visualizes the power–law tail of a distribution, as in the Pareto case,
which appears also as a straight line for large x with constant slope −1− 1/ξ = −3.453.

In natural (e.g., geophysical) processes, both exponential and power-type tails appear,
which means that the appropriate background measure, Lebesgue or hyperbolic, may
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differ in entropy maximization for different processes [118]. In socioeconomic processes,
the question of what is the appropriate measure has not been explored. However, as
already mentioned, the emergence of the Pareto distribution has been justified by using
Havrda–Charvát–Tsallis entropy. In addition, as already described in detail and reflected
in its name, the Pareto distribution stemmed from the field of economics. As already
mentioned, since its introduction, a plethora of empirical investigations have found the
Pareto distribution to be consistent with income data. To focus on the most recent related
publication, Néda et al. [132] used income data from Japan (2015), USA (2013), Russia
(2015), Australia (2011), Finland (2017), Hungary (2015) and a county in Romania (2005),
fitting a simple and elegant model to them, and identified a beta prime distribution,
which has a Pareto tail with tail index ξ = 1/3. The same research team, in a follow-up
publication [133], examined the wealth data for the USA and Russia and again reported a
Pareto tail.

However, other studies have criticized the appropriateness of the Pareto distribution and
pointed to an exponential distribution in income. Thus, Drăgulescu and Yakovenko [134]
stated:

The study of income distribution has a long history. Pareto [127] proposed in 1897
that income distribution obeys a universal power law valid for all times and countries.
Subsequent studies have often disputed this conjecture. In 1935, Shirras [135] concluded:
“There is indeed no Pareto Law. It is time it should be entirely discarded in studies
on distribution”. Mandelbrot [136] proposed a “weak Pareto law” applicable only
asymptotically to the high incomes. In such a form, Pareto’s proposal is useless for
describing the great majority of the population.

Bypassing the fact that this quotation, according to the above overview, severely miscites
Pareto, we highlight the authors’ conclusion that their analyses “demonstrate that the ex-
ponential law [ . . . ] fits the individual income distribution very well”. The title of their paper,
“Evidence for the exponential distribution of income in the USA”, reflects this conclusion.

Based on the above overview, one may assume that both exponential and Pareto tails
materialize in income distribution, depending on the country and time period studied.
If the income distribution is consistently exponential for a long period of time, then one
may infer, from the following line of thought, that the wealth (or net worth) distribution
will also have an exponential tail. One fact that distinguishes exponential from Pareto
distribution tails is that in the former, all moments exist, while in the latter, moments of
order > 1/ξ are infinite. If all moments exist in the income process, then the same will be
the case for savings (smaller than income) and any linear transformation thereof. Hence,
the moments of the wealth process (linear transformation, e.g., aggregation in time, of the
savings process) will exist, which implies an exponential tail. On the other hand, if there
are subperiods of income with a Pareto distribution tail, then the distribution tail of wealth
will also be Pareto.

Interestingly, Chakrabarti et al. [53] (p. 45) characterized a society with exponential wealth
distribution as “super-fair”, and one with Pareto distribution “fair” or “unfair”, depending
on the tail index and other parameters. Biró and Néda [124], referring to income or wealth
distributions, characterized exponential distribution as “natural”, and Pareto distribution
as “capitalism”, and they provide some additional cases (“communism”, “communism++”,
“eco-window”). Here we adopt the name “natural” for the exponential distribution, because
it corresponds to the Lebesgue background measure where the distance between two values
equals their difference (see discussion about the distance in [80,118]).

In Sections 3.3 and 4.4, we will investigate income distribution independently of
earlier studies using modern real-world data.

3.3. Empirical Investigation

The most informative evidence regarding the type of the distribution, and thus the
appropriate background measure, is obtained by studying the distribution tail. To study the
tail, we do not need to examine the entire population, i.e., the entire range of the variable
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x. It suffices to examine the behavior above a certain threshold x0, and in particular the
conditional tail function:

F(x|x > x0) = P{x > x|x > x0} =
F(x)
F(x0)

, x ≥ x0 (35)

An important property of both the exponential and the Pareto distribution (not shared
with other common distributions) is that, if the variable is shifted by x0, i.e., y := x− x0,
then the distribution is preserved, with only the scale parameter changing. This implies
that the coefficient of variation of x− x0 for the values of x exceeding x0 is the same as that
of x for the entire population.

In order to empirically study the tail of income distribution, we used data on the net
worth of the richest people in the world (billionaires), and the evolution thereof. We located
the database referenced in the Forbes list [137] for the years 1996 to 2018. We evaluated
these data with the Wayback Machine [138], and we found that amendments were needed
for the years 1997, 2014 and 2015, which we performed. We note that the Forbes data for
the wealth of the 400 richest people in the United States for the earlier period 1988–2003
were already analyzed in another publication [139]. Here, we study the annual income
(rather than the wealth) of the world’s richest for a longer and more recent period.

For the years 2019, 2020 and 2021, we retrieved data from Bloomberg using again
the Wayback Machine [140]. Specifically, the dates we located with the Wayback Machine
were 8 March 2019, 2 January 2020 (just before outbreak of the COVID pandemic) and
8 June 2021; these days allow us to study how the pandemic influenced the wealth of the
richest people.

Each year’s list contains a varying number of billionaires, with an average number of
860. The dataset of all years contains about 5000 names of billionaires. Many of them appear
in the list for several years. By subtracting the total net worth of a person for each year from
that of the previous year, we found an approximation of the person’s annual net income (as
a lower bound). Then, we sorted the list of net income in each year into decreasing order,
and we took the highest 100 of them in each year, setting the threshold x0 as equal to the
annual net income of the 100th person in each year’s list. We further processed those years
that contained at least 100 persons with positive annual net income—a total of 19 years.

Denoting x(i:n) as the net income of the person ranked i in a list of n (i = 1, . . . , n,
where in our case n = 100), the unbiased estimate of the probability of exceedance of the
value x(i:n) is [118]:

F̂
(

x(i:n)|x > x0

)
=

i
n + 1

(36)

The sequences of F̂
(

x(i:n)|x > x0

)
for each year are depicted in Figure 9. In the left

panel, in which the horizontal axis is linear and the vertical logarithmic, the exponential tails
appear as straight lines. In contrast, in the right panel, in which both axes are logarithmic,
the power–law (Pareto) tails appear as straight lines.

Inspection in both panels shows that both exponential and power–law tails appear,
with the former being more common than the latter. Characteristically, in the year with
the lowest earnings, 2002, the tail is clearly exponential, while in the year with the highest
earnings, 2021, the tail is clearly of power–law type. It is relevant to note that 2021, which
was the most anomalous as the COVID-19 pandemic negatively affected the economy
globally, also brought the highest profits ever recorded to the world’s richest. This is also
seen in Figure 10, where the average of the 100 highest incomes in 2021 is unprecedented,
and several times higher than the average of the previous years.
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Figure 9. Conditional probability of exceedance of the annual income of the richest persons in the world for the indicated
years. The income per person was found by subtracting the total net worth of a year from that of the previous year. For the
years 2002 (lowest average income) and 2021 (highest average income) exponential and power–law trends, respectively, are
also plotted with dashed lines of the same color (where in the left panel the green dashed line for 2002 is indistinguishable
from the continuous line). In both panels, the probability of exceedance is plotted on logarithmic axis, while the income x is
plotted on linear axis in the left panel and logarithmic axis in the right panel.

Figure 10. Average and coefficient of variation of the 100 highest incomes in the world per year. The
coefficient of variation is calculated for the difference x− x0, where x0 is the 100th highest income
value, so that it can be representative for the entire population (see explanation in text).

Figure 10 also depicts the evolution of the coefficient of variation of the high incomes
through the years with available data. We observe that the coefficient is consistently higher
than unity, the value corresponding to the exponential distribution, but in most years the
deviation from 1 is small. This justifies, at least as an approximation, the assumption of
the exponential distribution as the “natural” norm, with the Pareto distribution being
more common in anomalous periods. Put differently, the evidence from the data does not
exclude the hypothesis of an exponential distribution, and hence of entropy maximization
with a Lebesgue background measure. Therefore, we will use this hypothesis as the
main explanatory tool for what the “natural” (and hence sustainable) tendency in the
distribution of wealth is. We will provide additional evidence on the plausibility of the
hypothesis in Section 4, where we will also discuss the forces that lead to deviation from
the “natural” tendency.
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4. Application to Societies’ Income Distribution
4.1. From the Ancient Classless Society to Modern Stratified Societies

As suggested in the recent paper by Sargentis et al. [119], in prehistoric societies
wealth could be measured in terms of available energy per person. Following this idea,
we identify the income x, and set x = 0 to represent the energy that will cover the most
basic bodily energy needs (through food intake), thus keeping a human alive. Here it is
relevant to note that, while energy in a closed natural system is conserved, the energy
available to human individuals or societies varies, and has substantially increased with the
development of civilization.

With absence of technology (i.e., with a technological limit Ω = 0), the value x = 0
is the only option, and the entropy is −∞. The single allowed option and the −∞ value
of entropy, as depicted in Figure 11a, signifies a classless society. Most probably, this
corresponds to a so-called hunter–gatherer society [1], admired in Marxist literature as a
form of ancient communal ownership [141] (p. 44) and also aspired to in a modern form.

Figure 11. A possible evolution of human wealth from prehistory to modern times: from the primitive
classless society (a) to a uniform distribution of wealth (b) and to the increasing diversity of wealth,
inequality and stratification (c–e). Panel (f), in which the technological limit is infinite, is similar to
panel (e), illustrating the fact that if the technological limit is large enough, its effect can be neglected.
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The notion remains popular even today (Figure 12) and, strikingly, it has been regarded
as a basis for real personal freedom [141,142], despite corresponding to an entropy of minus
infinity. Apparently, Marx and Engels were faithful to the deterministic scientific paradigm
of their era, which they attempted to transplant into history and sociology. They could
not have been aware of the modern concept of entropy. The popularity of their ideas even
today [2,3] reflects the fact that the deterministic paradigm remains quite strong. In it,
entropy has no place, let alone in its connection with freedom. It is relevant to quote here
the seminal book by Piketty, Capital in the Twenty-first Century [143], whose first conclusion
is that “one should be wary of any economic determinism in regard to inequalities of
wealth and income”. He also notes that “Modern economic growth and the diffusion of
knowledge have made it possible to avoid the Marxist apocalypse but have not modified
the deep structures of capital and inequality”.

Figure 12. Frequency of appearances of the indicated phrases in Google Books [95,96].

Undoubtedly, primitive societies developed some technologies in terms of stone tools,
and therefore the technological limit Ω = 0 depicted in Figure 11a is merely a simplification.
Nonetheless, the technological revolutions that really advanced the technological limit
to a higher order of magnitude were the domestication of animals (allowing the use of
energy additional to that of human muscles) and the invention of agriculture. Before these
developments, there could not be any storage of goods, which is a necessary condition for
the very notion of wealth. At later stages, as knowledge was developed, the technological
limit Ω was increased. The mean wealth µ also increased. It is plausible to assume
that the rate of increase of µ always followed that of Ω. Based on this assumption, the
remaining panels of Figure 11 have been constructed to represent various phases of human
wealth development.

For example, at some phase of the development, the mean wealth µ was half the
technological limit Ω (Figure 11b). At this phase, entropy maximization suggests that
the wealth was uniformly distributed among people. Uniformity means that being poor
and being rich were equally probable—not that the wealth is equally distributed among
people. When the technological limit increased to more than twice the mean wealth, the
distribution became (bounded) exponential. This means that the poor were more and
the rich fewer in number—but they were richer than before (Figure 11c–e). However,
careful inspection of the graphs shows that it is not only the richest who became richer as
technology evolved. The poor also became fewer in number, and the curves f (x) moved
to the right, i.e., everybody, on average, became richer thanks to technological evolution.
At some point in evolution, when the technological limit became very high (Figure 11e),
its effect on wealth distribution became negligible. This also applies to modern societies,
in which we can totally neglect this effect, replacing Figure 11e (µ = 2, Ω = 10) with
Figure 11f (µ = 2, Ω = ∞). This is consistent with what we have already discussed in
Figure 7a.
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4.2. The Elites’ Role

It is reasonable to assume that the economic elites pursue a greater share of the
community’s wealth. In this respect, their function can be twofold. On the one hand, they
advance both the technological limit and the average wealth. On the other hand, they tend
to modify the distribution of income from exponential to Pareto (Figure 8), thus increasing
the number of poor and diminishing the middle class for their own benefit [3]. As has
been already discussed in Section 3.3, a persuasive illustration of this is the super profit of
economic elites during the recent anomalous period of the pandemic.

The means by which the elites increase their profits certainly include political power,
and more recently, an attitude of world control [101]. Their endeavours are made more
efficient and acceptable within the society by several means, such as by overstating existing
or non-existing threats, and then by presenting themselves as philanthropists (e.g., by
funding nongovernmental organizations dealing with these threats) and world saviors [94]
(see also [144]). Apparently, if they succeed in controlling the world, this will decrease
entropy and hence delimit freedom. In turn, this will lead to decadence, the signs of which
are already visible in the Western world (cf. [145]).

4.3. Income Redistribution in Organized Societies

One of the important roles of a state in an organized society is the redistribution of
income and wealth through their transferal from some individuals to others by means
of several mechanisms, such as taxation, public services, land reform, monetary policies,
and others. Such means contrast those of the elites, and aim to reduce poverty and social
inequality. Here, we examine one of the mechanisms, i.e., taxation, by means of a simplified
toy model example, which illustrates how redistribution affects the entropy maximizing
exponential distribution.

In our toy model, we assume that the original income x follows the exponential
distribution with parameter λ (equal to the mean µ), and that the tax rate p increases with
the original income, according to the function:

p(x) =


0 x ≤ x0
pu x ≥ xu
pu

x−x0
xu−x0

, otherwise
(37)

where x0 is a low value of income, denoting the starting point of taxation, and xu is a high
value of income, beyond which the tax rate takes a constant value pu. The tax amount will
be y = p(x)x, the income minus tax w = x− y = (1− p(x))x and the redistributed income

z = w + aµy = (1− p(x))x + aµy, where µy := E
[
y
]

is the average tax and a < 1 is the
tax fraction that is returned to all people at equal shares. In order for the relationship of w
and x to be a monotonically increasing function, the following inequalities should hold:

pu < 0.5, xu >
1− pu

1− 2pu
x0 (38)

Using probabilistic algebra on these variables, we find that the probability density of
w is:

fw(w) =



1
λ exp

(
−w

λ

)
, 0 ≤ w ≤ x0

xu−x0

λ
√

D(w)
exp

(
− xu−(1−pu)x0−

√
D(w)

2λpu

)
, x0 ≤ w ≤ wu

1
λ(1−pu)

exp
(
− w

λ(1−pu)

)
, w ≥ wu

(39)

where
wu
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interconnected change are the amazingly delightful and intricate efflorescences of matter 
we call grass, slugs, and people. 
Apparently, if we get rid of the disorder interpretation of entropy, we may also be 

able to stop seeking a negentropic “life principle”, which was never found and probably 
will never be. For, if we see entropy as uncertainty, we also understand that life is fully 
consistent with entropy maximization. Human-invented steam engines (and other similar 
machines) increase entropy all the time, and are fully compatible with the Second law, yet 
they produce useful work. Likewise, the biosphere increases entropy, yet it produces 
interesting patterns, much more admirable than steam engines. Life generates new 
options and increases uncertainty [113]. Compare Earth with a lifeless planet: Where is 
uncertainty greater? On which of the two planets would a newspaper have more events 
to report every day? 

2.5. Final Theses on Entropy 
The above considerations allow us to form a logical basis for a general entropic 

framework, which can be applicable in many scientific fields including thermodynamics, 
geosciences and social sciences. This includes the following points: 
• Entropy is a stochastic concept with a simple and general definition that will be 

formally stated in Section 2.6. Notably, according to its stochastic definition, entropy 
is a dimensionless quantity; 

• As a stochastic concept, entropy can be interpreted as a measure of uncertainty, 
leaving aside the traditional but obscure and misleading “disorder” interpretation; 

• The classical definition of thermodynamic entropy is not necessary, and it can be 
abandoned and replaced by the probabilistic definition; 

• Applied in thermodynamics, entropy thus defined is the fundamental quantity, 
which supports the definition of all other derived ones. For example, temperature is 
defined as the inverse of the partial derivative of entropy with respect to internal 
energy. Entropy retains its dimensionless character in thermodynamics, thus 
rendering the kelvin an energy unit. Notably, the extended and sophisticated study 
of entropy in thermodynamics can serve, after the removal of the particulars 
pertinent to this specific field, as a paradigm for other disciplines, given that entropy 
is a generic concept; 

• The entropy concept is complemented by the principle of maximum entropy, which 
states that entropy tends to take the maximum value that is allowed, given the 
available information about the system. The latter is incorporated into maximization 
in the form of constraints. This can be regarded both as a physical (ontological) 
principle obeyed by natural systems, as well as a logical (epistemological) principle 
applicable when making inferences about natural systems; 

• The tendency of entropy to reach its maximum is the driving force of natural change; 
• Life, biosphere and social processes are all consistent with the principle of maximum 

entropy, as they augment uncertainty. Therefore, no additional “life principle” is 
necessary to explain them. Changes in life and evolution are also driven by the 
principle of maximum entropy. 

2.6. Mathematical Formulation 
We consider a stochastic (random) variable 𝑥 (notice that we underline stochastic 

variables to distinguish them from common variables), and we denote its distribution 
function (i.e., probability of non-exceedance) and its tail function (i.e., probability of 
exceedance), respectively, as: 𝐹(𝑥) ≔ 𝑃൛𝑥 ≤ 𝑥ൟ, 𝐹(𝑥) = 1 − 𝐹(𝑥) = 𝑃൛𝑥 > 𝑥ൟ (1)

where P denotes probability. If the variable 𝑥 is discrete, i.e., it can take any of the values 𝑥௝, 𝑗 = 1, … , 𝛺, with probability 
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From fw(w) we can find the mean values:

µw = λ− λpu

xu − x0

(
e−

x0
λ (x0 + 2λ)− e−

xu
λ (xu + 2λ)

)
, µy = λ− µw (41)

Finally, the probability density of the final income z will be

fz(z) = fw
(
z− aµy

)
(42)

Now we apply the toy model, assuming λ = µ = 1, x0 = 0.2, xu = 1.4, pu = 0.4, a = 0.5,
resulting in µy = 0.32, aµy = 0.16. Figure 13 shows the variation in the tax, the income minus
tax, and the redistributed income vs. the original income. Notice that for small incomes, the
tax is zero, and thus the income minus tax equals the original income, while for larger incomes
it equals 60% of the original income (Figure 13, right).

Figure 13. Variation in the indicated quantities with the original income (x) in the toy model: (left) tax and redistributed
income; (right) original income minus tax.

Figure 14 depicts the probability density of the redistributed income in comparison to
that of the original income. The differences are that in the redistributed income: (a) poverty
below the level aµy = 0.16 is eliminated; (b) the middle class, corresponding to incomes
up to the mean, is more populated and amplified; (c) the rich lose income. As a result of
this, both entropy and the coefficient of variation have been reduced in the redistributed
income; the former from Φ = 1 of the exponential distribution to Φ = 0.55 (or Φµ from 1 to
0.73), and the latter from σ/µ = 1 to σ/µ = 0.57.

Figure 14. Comparison of the density function of the original income (x) and the final (redistributed)
income (z) in the toy model.
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4.4. Empirical Investigation

The empirical investigation in this section provides a comparison of the theoreti-
cal framework developed with the real-world data. Sargentis et al. [119] made similar
comparisons, also intercomparing with the Lorenz curve [146–148] and the Gini coef-
ficient [149–151], which are more standard measures of income distribution and socio-
economic inequality [152–155]. In their comparisons, they used data given in tenths of the
share of people from the lowest to the highest income versus the share of income earned.
The partitioning into tenths is a standard form of income data structuring that is offered
in relevant databases, but it fully hides the behavior of the tail, which, as we have seen,
is extremely important for understanding the structural characteristics of the economy
and for quantifying inequality. We will provide additional evidence for this importance in
this section.

For our purposes, we searched for data given at a higher resolution than tenths of
people’s income, and we found such data for USA and Sweden. Even in this case, the
information about the tail (the very rich people) is missing, as the data values end at a
specified level c, with the last bunch of data given as “c and over”. It is thus crucial to find
a way to extrapolate the distribution function beyond c and estimate expectations based on
this extrapolation.

It is consistent with our theoretical framework to assume that beyond c, the following
approximation is suitable:

f (x) = e−x/k+b ⇒ F(x) = ke−x/k+b = k f (x), x ≥ c (43)

where b and k are parameters to be estimated. The expectation of any function g(x) can be
calculated as

E[g(x)]
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∞∫
c

g(x) f (x)dx
(44)

The quantity Ag can be directly estimated from the available data, by approximating
the integral with a sum. Assuming that the data are given in terms of the number of
persons Ni with income between levels xi−1 and xi, with i = 1, . . . n and xn ≡ c, we have:

Âg =
n
∑

i=1
g
(

xi−1+xi
2

)
f̂i (xi − xi−1), f̂i =

Ni
N(xi−xi−1)

,

N =
n
∑

i=1
Ni + Nc

(45)

where Nc is the number of people with income > c.
The quantity Bg is estimated from the approximation (43). For the moment of order p

of the distribution, we have:

Bp
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c

xpe−ax+bdx =
eb

k1+p Γ
(

1 + p,
c
k
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(46)

In particular, for p = 0, 1, 2, we have

B0 = keb−c/k, B1 = B0(c + k), B2 = B0

(
k2 + (c + k)2

)
(47)

Since both f (c) and F(c) can be directly estimated from the data as f̂ (c) ≡ f̂n and F̂(c) =
Nc/N, we have

f̂ (c) = e−c/k+b, B̂0 = F̂(c) = k f̂ (c) (48)
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and by solving these equations we find the unknown parameters, as

k̂ =
F̂(c)
f̂ (c)

, b̂ = ln f̂ (c) +
c
k̂

(49)

This allows for the estimation of Bg for the expectation of any function g(x), by replacing
B0, k and b with their estimates. In particular, for the entropy we have

B̂Φ = B̂0

(
1− b̂ +

c
k̂

)
(50)

The data from the USA are available online thanks to the United States Census Bu-
reau [156]; of those, we chose to use the most recent available: those for year 2019 [157],
and in particular those for the entire population irrespective of particular characteristics
(sex, race, etc.). The empirical probability density and tail function (probability of ex-
ceedance) estimated from the data are shown in Figure 15, and compared with the entropy
maximizing exponential distribution.
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Here, it is useful to remark that the detailed data cover only a small portion of the
range of incomes, up to less than double the mean income. Thus, they provide little
information on the distribution tail (the richest people). As a result, the extrapolation
becomes very important. Without the extrapolation, the mean income (i.e., the quantity
A1, according to the above notation) is USD 30,601, and it becomes USD 53,336 after the
extrapolation (i.e., after adding B1). Note that the actual mean value, according to the
source data [157], is USD 54,129, i.e., close to the extrapolated estimate, which suggests that
the extrapolation model is not bad. Even more drastic is the change in the second moment:
before extrapolation, it is 1.62 × 109, and after it 4.74 × 109, i.e., almost three times higher.
The final (with extrapolation) estimate of the coefficient of variation is σ/µ = 1.11, which
is slightly higher than 1. The final estimate of entropy (for λ = USD 1) is Φ = 11.82, and
that of the standardized entropy is Φµ = 0.94, which is slightly lower than 1.

Overall, the picture in Figure 15 suggests that the principle of maximum entropy with
Lebesgue background measure can explain the income distribution. It is interesting that
the frequency of moderately rich people, from the mean income to more than twice the
mean, is somewhat overpredicted by the exponential distribution, and that of the very rich
(with income more than thrice the mean) is underpredicted. The incomes of the poor and
middle classes do not differ from what is predicted by the principle of maximum entropy.
Remarkably, the condition µx≥c/µ = 80% is satisfied when F(c) = 42%, close to the value
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43.9% of the exponential distribution (Equation (33)) and substantially higher than 20%,
thus suggesting the inappropriateness of the “80/20 rule”.

Somewhat different is the picture of Sweden, shown in Figure 16, again for the year
2019. The data, provided by Statistics Sweden [158], are more detailed than the American
data, covering a range of income that reaches about nine times the mean income [159]. The
estimated statistics are also shown in the figure. Here, the graph is consistent with that of
Figure 14 (our toy model) up to about five times the mean income, indicating the presence
of a populated middle class and suggesting an effect of the redistribution mechanisms. The
standardized entropy (Φµ = 0.79) and the coefficient of variation (σ/µ = 0.72) are lower
than in the USA, suggesting lower inequality. Strikingly, however, there is an opposite
effect on the very rich, whose frequency is considerably higher than that predicted by
the exponential distribution. A possible explanation involves the globalization of the
financial activities of high-net-worth individuals. Again, the condition µx≥c/µ = 80% is
satisfied for F(c) at substantially higher than 20%, namely, F(c) = 45%, which is close to the
value 43.9% of the exponential distribution, thus suggesting again the inappropriateness
of the “80/20 rule”. Overall, the principle of maximum entropy again provides a good
representation of the average behavior.

Figure 16. Illustration of the entropic framework using income data from Sweden for year 2019; (left) probability density;
(right) tail function (probability of exceedance).

5. Discussion and Conclusions

We have shown that entropy is one of the most misunderstood concepts, with rich and
diverse interpretations that are continuously being debated. With the transplantation of
the scientific term into colloquial language, the popular imagination has loaded “entropy”
with almost every negative quality in the universe, in life and in society. For example, The-
saurus.com lists as its synonyms the words breakup, collapse, decay, decline, degeneration,
destruction, worsening and falling apart, while on the site wordhippo.com, the synonyms
listed, in addition to those previous, amount to hundreds of words with negative meanings,
including deterioration, chaos, havoc, confusion, disorder, disorganization, calamity, etc.
Furthermore, in scholarly articles, there is no shortage of negative associations, as quoted
in the Introduction.

There are historical reasons, as discussed in Section 2, for why the concept has gener-
ated so many negative connotations. However, at the end of the 1940s, entropy acquired a
clear and universal stochastic definition that is not a related to disorder. Furthermore, at
the end of the 1950s, it was complemented by the principle of maximum entropy, which
lies behind the Second Law, and gives explanatory and inferential power to the concept.
By now, 60 years later, one would expect that entropy should have dropped its negative
meanings, and be recognized as the driving force of natural change and the mother of
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creativity and evolution. This has not happened. Instead, it has been used as a spectre in
the social sciences, including economics and ecology, to promote neo-Malthusian ideas.

The social sciences are often contaminated by subjectivity and ideological influences,
which become apparent when examined from distance, in the light of history [1,2]. Here,
we explore whether maximum entropy, applied to economics and, in particular, to the
distribution of a wealth-related variable, namely, annual income, can give an objective
description. We show that under plausible constraints related to mean income, the principle
of maximum entropy results in an exponential distribution, bounded from above if we
consider an upper technological limit, but unbounded otherwise. Historically, technology
has played a major role in the increase in the entropy of income. Under the current
conditions, technology no longer imposes a bounding condition on the economy, but it still
remains an important factor in increasing wealth.

This entropy maximizing distribution emerges when the background measure has a
constant density, while if a hyperbolic background measure is used, the resulting distri-
bution is Pareto. Based on real-world data, and in particular, those related to the world’s
richest, in order to give a better image of the distribution tail, we conclude that the ex-
ponential tail is not uncommon, while the Pareto tail appears particularly in anomalous
periods. Surprisingly, the latest period of the pandemic has resulted in unprecedented
profits for the world’s richest, with a clear Pareto tail.

We conclude that a constant (Lebesgue) density in the background measure is natural
and reasonable, and that under this measure the entropy maximizing exponential distri-
bution is connected to a stable economy. Furthermore, we examined two different factors,
both leading to a reduction in entropy and the modification of the stable exponential distri-
bution, but in different directions. On the one hand, organized societies use mechanisms
of income redistribution to minimize poverty and enhance the middle class. On the other
hand, an assumption can be made that politico-economic elites try to increase their profits,
thus pointing toward a Pareto distribution, which expands the poor and the very rich and
reduces the middle class [3]. A thorough study of the mechanisms pushing toward both
the convergence and divergence of wealth distribution has been offered by Piketty [143].

Using publicly available income data for the USA and Sweden, we showed that
income distribution is consistent with the principle of maximum entropy, and in particular
with exponential distribution. Yet the effect of the elites is visible, as the distribution tails
exceed those of the exponential. On the other hand, the data do not support the “80/20”
rule, which is consistent with the Pareto distribution (with a specific value of the tail index).
Specifically, 80% of the income is not generated by 20% of the population, but by more than
40% thereof, which is fully consistent with the exponential distribution.

Overall, in this study, we have tried to dispel the “bad name” of entropy in social
sciences. We emphasized its connection with the plurality of options, and we showed that
increasing entropy is associated with increases in wealth. In addition, we showed that a
standardized form of entropy can be used to quantify inequality.

We tried to make this paper self-contained and independent, so that even a reader
unfamiliar with entropy, with only a basic knowledge of calculus and probability, could
understand it. The mathematical framework we developed can be readily put to work
on the simplest computational framework (e.g., a spreadsheet). The entire study is of
exploratory character, and is not depending on earlier published results, as our priority
was to present what we believe entropy really is, and under what conditions it could be
applied to economics. Future work could open up additional options, thus increasing
entropy.
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