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Abstract. Motivated by the challenges induced by the so-
called Target Model and the associated changes to the cur-
rent structure of the energy market, we revisit the problem of
day-ahead prediction of power production from Small Hy-
dropower Plants (SHPPs) without storage capacity. Using as
an example a typical run-of-river SHPP in Western Greece,
we test alternative forecasting schemes (from regression-
based to machine learning) that take advantage of different
levels of information. In this respect, we investigate whether
it is preferable to use as predictor the known energy produc-
tion of previous days, or to predict the day-ahead inflows
and next estimate the resulting energy production via sim-
ulation. Our analyses indicate that the second approach be-
comes clearly more advantageous when the expert’s knowl-
edge about the hydrological regime and the technical charac-
teristics of the SHPP is incorporated within the model train-
ing procedure. Beyond these, we also focus on the predictive
uncertainty that characterize such forecasts, with overarching
objective to move beyond the standard, yet risky, point fore-
casting methods, providing a single expected value of power
production. Finally, we discuss the use of the proposed fore-
casting procedure under uncertainty in the real-world elec-
tricity market.

1 Introduction

Short-term forecasting of energy production is of high impor-
tance for power systems of all scales. This task becomes even
more crucial for the renewable sources, which are governed
by stochastic drivers, namely weather processes (e.g., wind

velocity, solar radiation, streamflow), that make particularly
difficult to ensure a credible power supply scheduling. At the
same time, the new legal framework in energy market called
“Target Model”, introduce further complexities to day-ahead
trades, thus making short-term forecasting not only a chal-
lenging technical problem but also an emerging need in the
imminent new era of decentralized electricity, dominated by
renewable energy sources.

The associated research and operational applications so
far mostly span over two main directions. The first refers
to the short-term energy production forecasting by solar and
wind power systems, typically on the basis of Numerical
Weather Prediction (NWP) models, providing determinis-
tic point forecasts. The second field of interest deals with
the long-term energy production by large hydropower reser-
voirs, based on projections of their inflows (e.g., Cassag-
nole et al., 2021). Nowadays, emphasis is given to data-
driven approaches (e.g., machine learning), also combined
with stochastic-probabilistic schemes for representing uncer-
tainties that are ignored by NWP models (Felder et al., 2018;
Talari et al., 2018; Croonenbroeck and Stadtmann, 2019).

Small hydroelectric works are classified as one of the most
cost-effective technologies, establishing them as one of the
most widespread form of renewable energy. This concerns
hydropower systems up to a specific capacity value (e.g.,
15 MW in Greece), commonly of negligible storage capac-
ity, where the energy production is a direct conversion of
the streamflow arriving at the intake. In contrast to other
renewables, the short-term energy forecasting problem, in
the field of SHPPs without storage, has not gained the nec-
essary attention from the research community (Yildiz and
Açikgöz, 2021). The typical input information used in fore-
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casting schemes appears to be the observed energy produc-
tion and rainfall (e.g., Li et al., 2015), while some researchers
also use forecasted precipitation, provided by NWP models
(Monteiro et al., 2013). However, we should highlight that
the accuracy of NWPs with respect to rainfall forecasting is
still questionable, particularly in complex mountainous re-
liefs (Ólafsson and Ágústsson, 2021).

Surprisingly, streamflow forecasting procedures, followed
by turbine operation models employing flow-energy conver-
sions, seem to be missing. A plausible explanation is the
scarcity of streamflow observations, since most of SHPPs are
located in small remote catchments, lacking of hydrometric
infrastructures. On the other hand, given that the technical
and operational characteristics of the SHPP are known (e.g.,
turbine scheduling and efficiency curves), the past inflows
can be retrieved with quite satisfactory accuracy, on the ba-
sis of observed power production data, through reverse engi-
neering (Sakki et al., 2022).

Taking as an example a run-off-river SHPP, in the upper
course of river Achelous, Western Greece, we investigate dif-
ferent day-ahead power forecasting approaches, driven by al-
ternative data sources. Since the limited scale of the SHPP
industry makes difficult to support highly sophisticated op-
erational forecasting systems, we seek for establishing sim-
ple and parsimonious regression-type approaches, instead of
more complex schemes, e.g., from the domain of machine
learning (ML) (cf. Papacharalampous et al., 2019), that yet
require significant expertise to be properly used and often
demanding computational infrastructures. This fact is proba-
bly associated with the growing interest in explainability of
such techniques (cf. discussion by Ribeiro et al., 2016). Key
objective, and at the same time novelty of this research, is
the maximization of information gathered from the available
data, by taking advantage of the hydrological expertise and
knowledge about the system’s properties (i.e., turbine capac-
ity, operational flow range, and efficiency). Our research also
highlights the training and evaluation procedure of each fore-
casting approach, as well as the representation of uncertainty
and its practical interpretation. In this vein, our overall ob-
jective is to move beyond the standard, yet risky, point fore-
casting methods, providing a single expected value of hy-
dropower production, thus quantifying the overall predictive
uncertainty of each method, and use it as a guidance for mod-
elling energy market behaviors and support decision-making.

2 Small hydroelectric plants: An overview

To define a hydroelectric plant as “small”, the installed power
capacity of the turbines must be under a certain limit, de-
termined by the national legislation. This limit varies con-
siderably globally, but the most common values are varying
from 10 to 30 MW. While the above definition can include
hydropower stations as additions to reservoirs, the common
type of small hydropower plants (SHPPs) refers to systems

Figure 1. Efficiency curve for the Francis turbine applied in the
hydropower system under study (analytically-derived relationship
provided by Sakki et al., 2021, based on nomographs by Papantonis,
2008, p. 231).

without storage capacity, taking advantage of different com-
binations of discharge and head. These are actually diversion
systems that exploit a specific range of the arriving stream-
flow, where the maximum flow value depends on the head
and installed capacity of turbines, while the minimum one
also depends on the turbine type.

The conversion of the turbine flow to hydropower is made
via the well-known formula:

P = γ η(qT)qThn (qT) (1)

where γ is the specific weight of water (9.81 kN/m3), qT is
the flow passing through the turbines, hn is the net head,
i.e. the gross head, after subtracting hydraulic losses, which
are function of discharge and the penstock characteristics,
and η(qT) is the total efficiency of the system, which is a
function of discharge and depends on the turbine type. Fig-
ure 1 demonstrates a typical efficiency curve for a Francis-
type turbines, which is also applied in our case study. In most
cases, a mixing of two turbines of different power capacity is
considered, in order to maximize the range of exploitation of
the highly varying streamflow. Often, this implies establish-
ing one large and one small turbine, and operate them under
a specific hierarchy, to ensure the optimal overall efficiency.

3 Study area and data

In the context of our analysis, we consider a run-of-river
plant under study, in the upper course of river Achelous,
Western Greece. The available hydrological information
comprises spatially-averaged daily precipitation data from
five representative meteorological stations, and daily stream-
flow data at the intake. The latter input is extracted by ad-
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Figure 2. Streamflow time series at the intake for hydrological year
1971–1972.

justing the observed inflows to a downstream site, i.e., Kre-
masta reservoir (Efstratiadis et al., 2014), by accounting for
the ratio of the corresponding drainage areas (about 1 : 40).
The common period of the two records extends over 39 years
(May 1969 to December 2008). Figure 2 illustrates the ad-
justed flow time series, the mean annual value of which is
2.15 m3/s.

Before proceeding with the forecasting problem, it is es-
sential to specify the technical characteristics of the project.
First, we estimate the environmental flow to be released
downstream of the intake, in order to sustain the riverine
ecosystems (Efstratiadis et al., 2014). Following the Greek
legislation for SHPPs, this is defined as the 30 % of mean
discharge of September, which here equals to 0.25 m3/s. The
flow arriving at the intake is diverted through an open channel
to a forebay and next conveyed to the power station through
a penstock, thus creating an elevation difference of 150 m.
In next computations, we consider this value as a constant
net head, for simplicity, taking advantage of the quite large
diameter of the penstock (1500 mm), causing minimal only
hydraulic losses even at the maximum discharge capacity.
We also apply a mixing of two Francis-type turbines, which
characteristics are summarized in Table 1. The two capaci-
ties have been estimated through optimization, by maximiz-
ing the net annual profit of the system, estimated as the dif-
ference between the anticipated revenues from energy pro-
duction and the depreciated costs of the electromechanical
equipment (Sakki et al., 2021).

The operation policy of the SHPP is demonstrated in
Fig. 3. This has been obtained by seeking for the optimal hi-
erarchy of the two turbines, in order to maximize the power
production across different discharge ranges. In particular,
from 0.12 to 0.85 m3/s, i.e., the minimum flow of the small
and large turbine, respectively, only the small turbine oper-
ates, while next, and up to the maximum discharge of the
large turbine, i.e., 5.69 m3/s, it stops operating, since all di-
verted flow passes through the large turbine. For larger dis-
charges up to the total system’s discharge, the small turbine

Table 1. Design characteristics of the two Francis-type turbines.

Turbine 1 Turbine 2 Total

Power capacity, P (MW) 7.40 1.00 8.40
Maximum discharge, qmax (m3/s) 5.69 0.77 6.46
Minimum discharge, qmin (m3/s) 0.85 0.12 0.12

operates in its full capacity, which ensures a maximized over-
all efficiency. Under these assumptions, the project is ex-
pected to produce 47.5 MWh, on mean daily basis, thus en-
suring a capacity factor of about 24 %.

4 Application of alternative forecasting schemes

4.1 Generic framework

The consecutive conversions across SHPPs allows for estab-
lishing two alternative routes to the power forecasting prob-
lem, here employed on a day-ahead basis. The direct route
aims at predicting the next-day energy production via regres-
sion models that use as explanatory variables past observa-
tions, in terms of power production and the past rainfall, as
the sole source of hydrological data. On the other hand, the
indirect route initially aims at predicting the day-ahead dis-
charge, given that such data exist. The forecasted flows are
next introduced to the operation model of the system, for ex-
tracting the forecasted energy. For each approach, we assess
alternative forecasting schemes, in terms of model structure
and data. In order to calibrate the free parameters of each
model and evaluate their predictive capacity, we introduce a
quite strict skill score in terms of the generic efficiency for-
mula:

F = 1−

∑n
t=1
(
Et,obs−Et,forecast

)2∑n
t=1
(
Et,obs−Et,bencmark

)2 (2)

where Et,obs is the “observed” energy at day t , which is
known from the simulation model, Et,forecast is the fore-
casted value, which is estimated on the basis of past data
(xt−1, xt−2, . . .), and Et,bencmark is a reference prediction,
provided by a benchmark model. In the classical definition
of efficiency, this coincides with the mean observation (thus
the daily average energy production), yet here we also ap-
ply a stricter benchmark prediction, i.e., the so-called naïve
forecasting model Et = Et−1 (hereafter referred to as modi-
fied efficiency). The aforementioned expression ensures an
efficiency up to 75.1 %, for the entire period of historical
data (1969–2008; see Table 2). For each model, we also
compute the marginal statistical characteristics of residuals,
wt = Et,obs−Et,forecast (mean, standard deviation, coefficient
of skewness) and the lag-1 autocorrelation, which is measure
of dependence.
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Figure 3. Optimal sharing of discharge conveyed to the two turbines and associated power production.

4.2 Direct (energy-based) approaches

In the direct approaches we use as independent variables
(predictors) for the energy generated at time step (day) t+1,
the past energy production, E, as well as the available hy-
drological data, by means of rainfall, p, from a representa-
tive meteorological station or the spatially-aggregated rain-
fall from a set of stations. After investigations, we concluded
to a branched expression, that takes into consideration the
appearance of a rainfall event at day t , which is expected to
influence the generation of streamflow due to the increase of
soil moisture over the basin:

Et+1 =

{
3.88(Et )0.54(Et−1)

0.12(pt )
0.16, pt > 0.1mm

1.51(Et )0.63(Et−1)
0.25, pt ≤ 0.1mm

(3)

Following the typical split-sample approach, we estimated
the seven model parameters by calibrating against the ac-
tual energy production values in the half of observations,
and validating its predictive capacity in the other half. The
skill scores in calibration and validation, expressed in terms
of classical and modified efficiency, as well as the statistical
characteristics of the model error are summarized in Table 2.

4.3 Indirect (flow-based) approaches

In the indirect approaches we aim to provide day-ahead fore-
casts of the discharge to feed the flow-energy conversion
model, which is summarized in the diagram of Fig. 3. In this
respect we use as predictors of streamflow at day t+1 the past
streamflow and the rainfall. In order to account for the base-
flow component of streamflow, we also extract the minimum
value of last five days, qmin5, and the mean monthly value
of the full data sample; these predictors were determined by
following an input variable selection procedure (Galelli and
Castelletti, 2013). We remark that the baseflow component
may incorporate several slow-flow elements, associated with
groundwater runoff, snow melting (which is quite significant,
during the spring period) as well as the falling limb of floods.

After investigations, we conclude to the parametric expres-
sion:

qt+1 =

{
a1(qmin5)+β1(qt )+ γ1(qmeant ), pt < 0.1mm
a2(qmin5)+β2(qt )+ γ2(qmeant )+ δ(pt ), pt ≥ 0.1mm (4)

As shown in Table 2, by employing a typical calibration
on the basis of maximizing the efficiency of the simulated
against the observed streamflows, in terms of day-ahead en-
ergy prediction we obtain a small only improvement with re-
spect to the direct modelling approach, namely from 79.9 %
to 80.7 % (for the full data). On the other hand, the model
error characteristics are less satisfactory, since the forecast-
ing model underestimates the energy production by about
−3.8 MWh, on average, while with the direct approach the
bias is negligible. This is due to the attempt of the calibration
procedure to predict streamflows outside of the operational
range of turbines, and particularly the peak flows, which re-
sult to large errors. Yet, these errors are beyond our concerns,
since during these periods the system operates continuously
in its nominal capacity.

In order to remedy the above shortcomings, we adjust the
fitting metric, i.e., efficiency, to the turbine operation range
(qmin, tot, qmax, tot), in order to ignore the errors that are pro-
duced from the flow forecasting model, if this correctly pre-
dicts that the flows being outside this range. Moreover, if the
forecasted flow is inside the range, whereas the observed is
outside, we only account from the distance from the two flow
limits. Under this premise, the error is calculated as follows:

e =

{
qmax, tot− qforecast, qobs > qmax, tot and qforecast < qmax, tot
qforecast− qmin, tot, qobs < qmin, tot and qforecast > qmin, tot
qobs− qforecast, qobs > qmin, tot and qobs < qmax, tot

(5)

The above error expression incorporates within calibration,
apart from the hydrological data, the expert’s knowledge
about the technical properties of the system that affect the
flow-energy conversions. The knowledge-based calibration
approach, herein called Indirect Model B, ensures a clearly
better skill score in terms of modified efficiency than the typ-
ical calibration approach (Indirect Model A), and good er-
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ror properties as well (practically zero mean and autocorre-
lation).

An interesting question that arises is whether just a bet-
ter day-ahead flow forecasting model that does not account
for the operational characteristics of the system, would out-
perform the optimal model so far. In this respect, we ap-
ply a more complex approach from the Machine Learning
(ML) family, namely a Deep Feedforward Neural Network
(DNN). The DNN model is composed by three hidden layers
with 128, 64 and 64 neurons, respectively, while the Recti-
fied Linear Unit (ReLu) activation function is adopted for all
neurons. As inputs, we use the streamflow of past 5 d and the
rainfall of past two days. The model is fitted on the basis of
Mean Square Error (MSE), for a number of 100 epochs, by
using a batch size of 64.

In Fig. 4 we compare the actual and forecasted flow and
energy values provided by the Indirect Model B and the
ML approach, for hydrological year 1971–1972. Surpris-
ingly, while the ML model ensures a much better fitting to
the observed flows than the simple regression expression (4),
(84 % vs. 63 %), the conversion to energy is rather disap-
pointing. In particular, the classical efficiency metric is only
50.7 %, while the modified efficiency is strongly negative.
Furthermore, the derived error properties are clearly non sat-
isfactory (underestimation of the average energy up to 1 MW,
quite large standard deviation, and, significant autocorrela-
tion). The poor predictive capacity of the data-driven ap-
proach is attributed to the training procedure, in which we ig-
nored the range of operation of the small hydroelectric plant,
which is key feature of its management.

5 Forecasting and uncertainty: reconciliation in
practice

Predictive uncertainty is defined as the probability of occur-
rence of a predictand’s value (in the particular case, energy
production) conditional upon prior observations and knowl-
edge, as well as on all the information we have obtained
on that specific value from model forecasts (Coccia and To-
dini, 2011). A typical means to quantify the predictive un-
certainty of a deterministic simulation model, is to add a ran-
dom component (noise), wt , to its output, yt , where the ran-
dom process wt should be consistent with the statistical and
stochastic regime of the associated residuals (Efstratiadis et
al., 2015). In the generic case of autocorrelated errors, the
process wt can be obtained by a stochastic generator (e.g.,
Kossieris et al., 2019; Tsoukalas et al., 2018, 2020), or a sta-
tistical distribution model, provided that the errors do not ex-
hibit significant dependencies in space and time. By gener-
ating a large enough set of random variables yi,t = yt +wi,t ,
where i = 1, . . ., n, we obtain an ensemble of n model real-
izations at each time step t , which allows for the detection of
empirically-derived probabilistic quantities. This procedure
is widely known as Monte Carlo simulation.

Figure 4. Comparison of historical vs. predicted time series ob-
tained by two forecasting models (indirect B and ML) for (a) in-
flows and (b) energy production (hydrological year 1972–1973).

In our case, we use the more robust forecasting scheme
(Indirect Model B) and provide n= 100 realizations of the
day-ahead energy at each time step (day), from which we get
the median and the 10th and 90th largest values (quantiles) of
forecasted energy production, as estimators of the 80 % em-
pirical confidence intervals. Given that the observed residuals
are uncorrelated, the errors are considered as a stationary pro-
cess that follows a three-parameter gamma distribution (i.e.,
Pearson type III), which reproduces the mean value, µe the
standard deviation, σe, and the coefficient of skewness, γe, of
the entire sample of residuals (Table 2). We also implement
the same analysis by applying seasonally-varying (cyclosta-
tionary) generation models, which account for the individual
statistical characteristics per month (Tsoukalas et al., 2018).
As shown in Table 3, these is a considerable difference of
the statistical behavior of the error across different seasons,
that is also reflected in the uncertainty of energy predictions.
In Fig. 5 we compare the uncertainty bounds obtained from
the two methods, for hydrological year 1971–1972. We ob-
serve that during the low-flow period, these bounds are sub-
stantially reduced, by accounting for the issue of seasonality.
This indicates that the more detailed analysis, where the pre-
diction error is represented as a cyclostationary process, is
much more realistic.

In order to take advantage of the concept of uncertainty
in practice, as would be made in a real-world energy mar-
ket, we can determine alternative market policies in terms
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Table 2. Comparison of different forecasting schemes.

Model type Efficiency Modified efficiency Error statistics

Calibr. Valid. Full Calibr. Valid. Full Mean SD Coeff. of Lag-1 auto-
data data (MWh) (MWh) skewness correlation

Naïve n/a n/a 0.751 n/a n/a n/a 0.00 27.76 1.21 −0.119
Direct 0.806 0.790 0.799 0.181 0.203 0.194 −0.48 24.92 1.47 0.059
Indirect A 0.817 0.796 0.807 0.228 0.226 0.227 −3.83 24.11 −0.37 0.079
Indirect B 0.848 0.819 0.833 0.356 0.314 0.331 0.16 22.70 1.25 0.068
DNN n/a n/a 0.507 n/a n/a −0.977 −0.99 39.04 −0.42 0.540

n/a: not applicable

Table 3. Monthly statistical characteristics of residuals derived from
the application of Indirect Model B.

Month Mean Standard deviation Skewness Lag-1
(MWh) (MWh) correlation

JAN 0.69 28.57 1.23 0.069
FEB 1.48 28.98 0.87 0.138
MAR 4.79 27.99 0.95 0.066
APR 1.87 26.48 0.48 0.059
MAY 1.45 19.06 1.37 0.089
JUN −0.29 8.42 0.99 −0.062
JUL 0.12 7.72 −0.28 −0.014
AUG −0.69 7.11 −1.89 0.056
SEP −1.90 11.06 −1.40 0.044
OCT −2.56 20.71 1.75 −0.050
NOV −0.57 31.43 1.33 0.043
DEC −2.92 30.53 0.84 0.045

of quantiles. In particular, we can apply the upper, mid-
dle and low quantiles as representatives of a risky, mild
and conservative forecast of the day-ahead energy, and eval-
uate them in economic terms, by assigning a unit profit
value for delivering the energy produced up to the fore-
casted value, and a unit penalty for the deviations (i.e.,
deficits with respect to the forecasted value). For instance,
we account for the 90 %, 50 % and 10 % quantiles and ap-
ply a fixed profit of EUR 60/MWh and a penalty value of
EUR 50/MWh; the aforementioned values are representa-
tive of the recent system marginal price and price of devia-
tions, respectively, of the Hellenic Electricity Market. Under
this premise, the mild policy ensures a mean annual profit
of EUR 0.86 million, the conservative EUR 0.81 million, and
the risky EUR 0.43 million. This quick pseudo-financial anal-
ysis allows for comparing the different interpretations of a
forecasting approach under uncertainty.

6 Conclusions

This research aims to revisit the problem of day-ahead power
forecasting in the case of small hydropower plants without

Figure 5. Comparison of actual energy production for hydrolog-
ical year 1972–1973 with three characteristic prediction quantiles
(10 %, 50 % and 90 %), by considering the error process as: (a) sta-
tionary and (b) cyclostationary.

storage capacity, which has received little attention so far.
Taking as an example a typical project of this category, and
by using simple yet effective modeling schemes, we attempt
to revisit several issues that may have been well-addressed in
the generic context of hydrological forecasting, but not in the
specific case of SHPPs, namely: (a) the essential information
as input to hydropower forecasting; (b) the advantages of the
indirect forecasting approach, involving the use of a stream-
flow forecasting model, against the direct one, that does not
account for the inflow input, but relies solely on the energy
production data; (c) the importance of past precipitation data
as exogenous predictor, providing macroscopic information
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about the catchment state (e.g. antecedent soil moisture con-
ditions); (d) the training procedure and the skill score to be
applied; and (e) the representation of the predictive uncer-
tainty around the point forecast of day-ahead energy; (f) and
the use of uncertainty-aware forecasts from the practicians’
point-of-view (investors, power engineers, stakeholders).

Our investigations indicated that the proposed flow-based
approach is more flexible and physically consistent, since it
provides forecasts of the hydropower system’s driver, i.e., the
inflow arriving at the intake. We also revealed that apart from
the inflow data per se, additional information should be intro-
duced within prediction schemes in order to better reflect our
hydrological knowledge, in terms of statistical characteris-
tics. In the particular example, these were the mean monthly
inflows and the past five-day average values, as representa-
tive of the long and short-term regime of the upstream catch-
ment, respectively. However, it is worth mentioning that even
a very good prediction of inflows (as quantified in terms of
efficiency), does not guarantee an equally good performance
in energy prediction (see Fig. 4). Equivalently important is
the training procedure and the associated performance mea-
sure, where the system’s characteristics, i.e., the range of op-
eration of turbines, are embedded as inputs to calibration.

Key outcome of this research was also the quantification of
uncertainty, by means of empirical quantiles, which were es-
timated through a Monte Carlo approach, after fitting a suit-
able probability distribution to the model residuals. This task,
although proved to be simple and effective in its implemen-
tation, requires more careful examination, including analy-
sis of the error properties and their seasonal variability, as
well as could be benefited from more advanced concepts and
tools, such as copulas and conditional non-Gaussian distri-
butions (cf. Tsoukalas, 2018, for a development of this kind).
Nevertheless, the interpretation of uncertainty is essential as
a guidance for modelling energy market behaviors and pro-
viding decision support in the Target model era.
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