
1. Introduction
Recent extreme events like the flood that occurred in central Europe in 2021 have shown that reliable hydrolog-
ical predictions are essential to issue early warnings to institutions and population. Indeed, effective warnings 
require people to be informed on the magnitude of a forthcoming event and the likelihood of that happening. 
Namely, a prediction along with its uncertainty needs to be timely developed and communicated. The time factor 
is in fact essential and therefore the whole warning system needs to be fast and reliable, in the estimation of both 
prediction and uncertainty (see, for instance, Ramos et al., 2013 and Pagano et al., 2014). An additional key ele-
ment for the success of a warning system is its credibility, which is usually evaluated by end users by confronting 
the prediction method with their expert judgment and empirical evaluation (Blöschl, 2008). This is precisely 
the reason why the prediction and its uncertainty should be elaborated with a transparent approach by making a 
perceptional use of the available information and data, which in turn mirror the observed reality of previous and 
likely future events.

In particular, the uncertainty inherent in scientific information is one of the reasons for failing to act on disaster 
warnings. Forecasts are often elaborated with methodologies that are not easily understood by those who need it. 

Abstract We present a new method for simulating and predicting hydrologic variables with uncertainty 
assessment and provide example applications to river flows. The method is identified with the acronym 
“Bluecat” and is based on the use of a deterministic model which is subsequently converted to a stochastic 
formulation. The latter provides an adjustment on statistical basis of the deterministic prediction along with its 
confidence limits. The distinguishing features of the proposed approach are the ability to infer the probability 
distribution of the prediction without requiring strong hypotheses on the statistical characterization of the 
prediction error (e.g., normality, homoscedasticity), and its transparent and intuitive use of the observations. 
Bluecat makes use of a rigorous theory to estimate the probability distribution of the predictand conditioned by 
the deterministic model output, by inferring the conditional statistics of observations. Therefore Bluecat bridges 
the gaps between deterministic (possibly physically based, or deep learning-based) and stochastic models, as 
well as between rigorous theory and transparent use of data with an innovative and user oriented approach. 
We present two examples of application to the case studies of the Arno river at Subbiano and Sieve river at 
Fornacina. The results confirm the distinguishing features of the method along with its technical soundness. We 
provide an open software working in the R environment, along with help facilities and detailed instructions to 
reproduce the case studies presented here.

Plain Language Summary We present a new method for simulating and predicting hydrologic 
variables and in particular river flows, which is rooted in the probability theory and conceived in order 
to provide a reliable quantification of its uncertainty for operational applications. In fact, recent practical 
experience during extreme events has shown that simulation and prediction uncertainty is essential information 
for decision makers and the public. A reliable and transparent uncertainty assessment has also been shown to 
be essential to gain public and institutional trust in real science. Our approach, which we term with the acronym 
“Bluecat”, results from a theoretical and numerical development, and is conceived to make a transparent and 
intuitive use of the observations which in turn mirror the observed reality. Therefore, Bluecat makes use of a 
rigorous theory while at the same time proofing the concept that environmental resources should be managed 
by making the best use of empirical evidence and experience. We provide an open and user friendly software 
to apply the method to the simulation and prediction of river flows and test Bluecat's reliability for operational 
applications.
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Such lack of understanding of uncertainty estimation may lead people to interpret the predictions as unreliable, 
and to believe that estimations should no longer be trusted.

Prediction and forecasting have been the focus of an intensive research activity in hydrology (see, for instance, 
Blöschl et al., 2013). Here, we concentrate on uncertainty assessment which has been the subject of relevant 
efforts since the early works of Spear and Hornberger  (1980) and Beven and Binley (1992). The literature is 
branched in several subtopics ranging from data uncertainty, parameter fitting, model structural uncertainty, 
operational uncertainty and so forth (Montanari, 2011).

To date, the most used method for estimating the uncertainty of hydrological simulations and predictions is the 
Generalized Likelihood Uncertainty Estimator (GLUE; see Beven and Binley, 1992 and Beven, 2006). GLUE re-
jects the concept of one single optimal model and adopts the notion of equifinality of modeling solutions (Beven 
& Lane, 2019). It makes use of an informal likelihood function that has been the subject of an interesting debate 
(see, for instance, Montanari, 2005; Vrugt et al., 2009; Beven, 2009). Bayesian methods are widely used and 
include, among the others, Bayesian model averaging (see the recent work by Reggiani et al., 2021), Bayesian 
estimation of model errors (Tajiki et al., 2020) and Bayesian data assimilation (Bulygina & Gupta, 2009), and 
signature domain calibration (Kavetski et al., 2018). In a Bayesian framework, identifying a suitable likelihood 
function for hydrological models is a challenging task which requires the introduction of assumptions that need to 
be carefully checked as sometimes the related approximations are not easily understandable by end users.

Another relevant example of Bayesian method is the Bayesian Forecasting System introduced by Krzysztofow-
icz (1999), which produces a probabilistic river stage or flow forecast based on a probabilistic quantitative pre-
cipitation forecast as an input to a hydrological model. The BFS assumes that the dominant source of uncertainty 
derives from the imperfect knowledge of the future precipitation, so that it can be assumed that all other sources 
of uncertainty play a minor role. While it may be justified for operational forecasting, this assumption looks re-
strictive for hydrologic simulations where model structural uncertainty may also be substantial.

The literature presented several approaches to uncertainty assessment based on the statistical analysis of the 
probability distribution of model errors or, analogously, the joint probability distribution of observed and sim-
ulated data. These methods belong to the category of the post-processing approaches, which have been proved 
to outperform analyses that consider all the sources of uncertainty (see, for instance, the recent contribution by 
Valdez et al., 2021). This class of methods can be further subdivided in likelihood based and likelihood-free ap-
proaches. The use of likelihood is considered by Tajiki et al. (2020) and previously by Schoups and Vrugt (2010), 
while likelihood-free methods include the works by Montanari and Brath (2004), Montanari and Grossi (2008) 
and Montanari and Koutsoyiannis  (2012). The statistical analysis of model errors to estimate simulation and 
prediction uncertainty with a likelihood-free approach presents the advantage of being transparent to end users 
and computationally fast.

In particular, Montanari and Koutsoyiannis (2012) proposed a theoretically based method to convert a determin-
istic hydrologic model into a stochastic approach by fitting the model error with a meta-Gaussian probability 
distribution. A similar approach was applied by Quilty and Adamowski (2020) and several other works. Nota-
bly, Sikorska et al. (2015) proposed a nearest neighbor approach to represent the probability distribution of the 
model error which makes the method flexible and fast. Similar approaches were applied by Papacharalampous 
et  al.  (2019), Papacharalampous et  al.  (2020), Papacharalampous, et  al.  (2019b), Tyralis, Papacharalampous, 
and Langousis  (2019), Tyralis, Papacharalampous, Burnetas, and Langousis  (2019) and Papacharalampous, 
et al. (2019a). Notwithstanding the above research efforts, the statistical representation of the model error re-
mains difficult in some applications and thus there is still the need for end users to further simplify the procedure.

In view of the above previous works and the requirement for effective predictions, we present here an innova-
tive and transparent approach that builds on the concept proposed by Montanari and Koutsoyiannis (2012) to 
transform a generic deterministic model into a stochastic predictor. A distinguishing feature of the proposed 
method is its ability to infer the probability distribution of the prediction without running multiple simulations 
and without requiring strong hypotheses on the statistical characterization of the prediction itself or its error, 
therefore resolving critical issues that affect the previously proposed methods. Although intuitive, the method 
is supported by a rigorous theoretical development that ensures the best use of the information content of the 
observed data. The method can be applied to either physically based, process-based and data-based deterministic 
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prediction/simulation models. It can also be applied in conjunction with prediction models based on deep learn-
ing, which are gaining increasing popularity for hydrological predictions (see, for instance, Frame et al., 2021).

We make available an open software in the public domain, working in the R environment (R Core Team, 2013), 
along with instructions and examples of applications, to support applications by end users. The software also 
provides goodness of fit procedures that are based on the best practices of engineering and applied forecasting.

We propose for our approach the acronym Bluecat, from “Brisk local uncertainty estimator for generic simula-
tions and predictions”. In this paper we focus on river flow and therefore assume that the deterministic model is 
a rainfall-runoff model. However, the procedure can be generalized to any type of deterministic prediction model. 
In what follows, we use the term “prediction” to encompass simulation, prediction and forecasting.

2. Concept of Bluecat
Bluecat is a simple and transparent tool to transform point predictions obtained by any deterministic model 
in stochastic predictions, therefore deriving the probability distribution of the predictand. In what follows, we 
will use the terms “D-model” and “S-model” to denote the deterministic model and its stochastic counterpart, 
respectively.

The information that is needed to perform the above transformation is obtained in Bluecat by building on the well 
established concept of comparing the D-model output with observed data; namely, the same concept that we com-
monly use for parameter estimation. Basing on such comparison, Bluecat estimates the probability distribution of 
observed data conditioned on the D-model output and therefore obtains the corresponding S-model output, along 
with its mean (or median) value and confidence band. It is important to make clear that the S-model prediction 
may be markedly different from the D-model one. In fact, the latter is not necessarily included into the confidence 
band of the S-model, which are displaced around the mean prediction of the S-model itself. Such possible out-
come is schematically represented in Figure 1, where the concept of Bluecat is depicted.

Figure 1. Schematic representation of the Bluecat concept underlying the transformation of the deterministic model (D-model) to a stochastic model (S-model). The 
painting in the upper right corner is cropped from the picture available at https://www.flickr.com/photos/cizauskas/36142084534/ of the Andy Warhol exhibition at the 
High Museum, Atlanta, Georgia, USA (CC BY-NC-ND 4.0).
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Being based on the comparison between the D-model output and the observations, Bluecat is therefore transpar-
ent and easily understandable, while the theoretical development that we present in Section 3 ensures that such 
interpretation of uncertainty is rigorous and asymptotically consistent in estimating global uncertainty.

Bluecat is based on the following main assumptions:

1.  A single D-model is considered, with a single parameter set. Section 6 will present a discussion on the possi-
ble extension of the Bluecat concept to multimodel applications.

2.  The stochastic processes describing the modeled variables are stationary during the calibration and applica-
tion period. Non-stationarity can be accounted for by using non-stationary D-models (Koutsoyiannis & Mon-
tanari, 2015; Montanari & Koutsoyiannis, 2014a). Such extension is not considered in the present contribution 
but a discussion is provided in Section 6.

3.  The calibration data set is extended enough to ensure that sufficient information is available to upgrade the 
D-model into the S-model.

Further assumptions will be introduced and discussed in Section 3.

The third assumption above highlights that the S-model, like the D-model, needs a proper calibration, which im-
plies that a sufficiently long record of observed data, referring to a variety of hydrologic conditions, is available 
for model training. Such requirement may be difficult to satisfy in real world applications, which often refer to 
poorly gauged or ungauged conditions. We will discuss in Section 6 the implications of running Bluecat with a 
limited training.

The flow chart of the procedure for applying Bluecat is as follows (see Figure 1):

1.  The D-model is calibrated by using observed data;
2.  At the prediction time t* the D-model is run to produce an estimated river flow Q(t) at time t;
3.  A set of size m1 + m2 + 1 (see Section 3.1 for details) of predicted river flows from the calibration data set, 

including the one with the smallest difference from Q(t) plus m1 lower and m2 greater in magnitude of it, is 
extracted and the corresponding simulated river flows qi, i = 1, …, m1 + m2 + 1 are identified;

4.  From the obtained sample of qi the mean (or median) prediction and the confidence band for assigned confi-
dence level from the S-model are estimated by using one of the methods described in Section 3.

Thus, the S-model performs an adjustment of the D-model to compensate its inability to fully reproduce the ob-
served reality. We develop and present in the following section a theory to prove the rigorousness of the concept 
and the ability of the S-model to asymptotically represent the desired probability distribution of the predictand.

3. Theory of Bluecat
We consider a hydrologic D-model transforming inputs xτ (e.g., rainfall) at discrete time τ to deterministic outputs 
Qτ (e.g., river discharge) by means of a relationship that takes the form

�� = � (�� ), (1)

where xτ is a vector containing a number of consecutive input variables, or even a matrix consisting of several 
input variables (such as rainfall, evapotranspiration, perhaps river discharge in an upstream basin, and possibly 
others). The transformation function is generally complicated, also involving additional state variables (e.g., soil 
moisture). A model is never identical to reality and the observed output (the predictand) qτ will be different from 
the model prediction Qτ. In the present work we consider the HyMod rainfall-runoff model (Boyle, 2000) as 
D-model, which involves five parameters.

As mentioned above, Montanari and Koutsoyiannis  (2012) proposed a framework to upgrade a deterministic 
model into a stochastic one, which provides the probability distribution of the predictand given the inputs and 
the deterministic model output, considering the uncertainty in model parameters and input variables. This work 
has been discussed (Montanari & Koutsoyiannis, 2014b; Nearing, 2014) and advanced in other studies (Papacha-
ralampous et al., 2019; Quilty & Adamowski, 2020; Sikorska et al., 2015). Here we pursue the same aim but in 
a different setting, with the purpose of upgrading the D-model into the S-model by using the simplest approach 
based on data analysis.
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As anticipated in Section 2 we assume that the information contained in the true outputs qτ and concurrent pre-
dictions by the D-model Qτ is sufficient to support the above upgrade. This implies that the upgrade is properly 
trained over a sufficiently long calibration period. Transparency and ease of understanding of the procedure is 
a principal objective and therefore we do not involve multiple simulations, but rather focus on a single model 
for which we aim to estimate the global prediction uncertainty. As a consequence, we do not consider parameter 
uncertainty in the D-model on the basis that another parameter set is in fact another model. This assumption is 
further discussed in Section 6.

Second, we do not subdivide uncertainty in different components as Bluecat automatically incorporate all types, 
including the uncertainty in input data and parameters, for which no particular provision is necessary. As already 
mentioned, the framework also assumes stationarity. If different subperiods are characterized by different model 
parameters or different input uncertainty, then one can split the entire simulated period in subperiods in which 
stationarity can be safely assumed. In alternative, the assumption of stationarity may be relaxed by considering a 
non-stationary D-model, as discussed in Section 6.

For advancing the D-model into its corresponding S-model we regard all related quantities as stochastic (random) 
variables and their sequences as stochastic processes. For notational clarity we underline stochastic variables, 
stochastic processes and stochastic functions. We use non-underlined symbols for non stochastic variables and 
deterministic functions, as well as for realizations of stochastic variables and stochastic processes, where the latter 
realizations are also known as time series.

We assume that the inputs 𝐴𝐴 𝐱𝐱
𝜏𝜏
 , at discrete times τ, have a stationary probability density function fx(x) and dis-

tribution function Fx(x). The output 𝐴𝐴 𝐴𝐴
𝜏𝜏
 depends on the inputs 𝐴𝐴 𝐱𝐱

𝜏𝜏
 and is given through some stochastic function 

(S-model) as

𝑞𝑞
𝜏𝜏

= 𝑔𝑔
(
𝐱𝐱
𝜏𝜏

)
. (2)

The stochastic process 𝐴𝐴 𝐴𝐴
𝜏𝜏
 is assumed to correspond to the real process, while the outcome of the deterministic 

model (D-model) of Equation 1 is an estimate thereof. By considering xτ in Equation 1 as a stochastic process, 
retaining however the function �(≠�) as a deterministic function, we obtain the estimator 𝐴𝐴 𝐴𝐴

𝜏𝜏
 of the output 𝐴𝐴 𝐴𝐴

𝜏𝜏
 as:

𝑄𝑄
𝜏𝜏
= 𝐺𝐺

(
𝐱𝐱
𝜏𝜏

)
. (3)

To advance from the D-model, in its form 3, to the S-model in 2 we just need to specify the conditional distribution:

𝐹𝐹𝑞𝑞|𝑄𝑄(𝑞𝑞|𝑄𝑄) = 𝑃𝑃

{

𝑞𝑞 ≤ 𝑞𝑞|𝑄𝑄 = 𝑄𝑄

}

, (4)

with q and Q assumed concurrent and referring to discrete time τ. In other words, here conditioning is meant in 
scalar setting. An extension where Q is a vector containing the current and earlier predictions by the D-model and 
possibly other variables is straightforward but not considered here (see also the discussion in Section 6).

It is relatively easy to infer from data the marginal distribution and density functions of the S-variable 𝐴𝐴 𝐴𝐴 and 
D-predicted variable 𝐴𝐴 𝐴𝐴 . Therefore we may assume that fq(q) and fQ(Q) are known. Then the conditional density 
sought should obey

∫
∞

−∞

𝑓𝑓𝑞𝑞|𝑄𝑄(𝑞𝑞|𝑄𝑄)𝑑𝑑𝑞𝑞 = 1 (5)

and

∫
∞

−∞

𝑓𝑓𝑞𝑞|𝑄𝑄(𝑞𝑞|𝑄𝑄)𝑓𝑓𝑄𝑄(𝑄𝑄)𝑑𝑑𝑄𝑄 = 𝑓𝑓𝑞𝑞(𝑞𝑞). (6)

Equation 5 is trivial. If we set z = FQ(Q) in 6, with 𝐴𝐴 𝐴𝐴 = 𝐹𝐹
−1

𝐴𝐴
(𝑧𝑧) , so that fQ(Q)dQ = dz, we obtain

∫
1

0

𝑓𝑓𝑞𝑞|𝑄𝑄

(
𝑞𝑞|𝐹𝐹 −1

𝑄𝑄
(𝑧𝑧)

)
𝑑𝑑𝑧𝑧 = 𝑓𝑓𝑞𝑞(𝑞𝑞). (7)
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By integration one finds

∫
𝑞𝑞

0
∫

1

0

𝑓𝑓𝑞𝑞|𝑄𝑄

(
𝑎𝑎|𝐹𝐹 −1

𝑄𝑄
(𝑧𝑧)

)
𝑑𝑑𝑧𝑧𝑑𝑑𝑎𝑎 = 𝐹𝐹𝑞𝑞(𝑞𝑞), (8)

and changing the order of the integrals we finally find

∫
1

0

𝐹𝐹𝑞𝑞|𝑄𝑄

(
𝑞𝑞|𝐹𝐹 −1

𝑄𝑄
(𝑧𝑧)

)
𝑑𝑑𝑧𝑧 = 𝐹𝐹𝑞𝑞(𝑞𝑞). (9)

At this stage, if one has time series of concurrent Q and q, each of size n, and if Q(i:n) is the ith smallest value in 
the time series of Q and q(j:n) is the jth smallest value in the time series of q, then the approximations FQ(Qi) ≈ i/n 
and Fq(qj) ≈ j/n can be used and thus one approximates Fq(q) in 9 as

1

𝑛𝑛

𝑛𝑛∑

𝑖𝑖=1

𝐹𝐹𝑞𝑞|𝑄𝑄 (𝑞𝑞|𝑄𝑄(𝑖𝑖∶𝑛𝑛)) ≈ 𝐹𝐹𝑞𝑞(𝑞𝑞), (10)

and, for q = qj,

1

𝑛𝑛

𝑛𝑛∑

𝑖𝑖=1

𝐹𝐹𝑞𝑞|𝑄𝑄 (𝑞𝑞(𝑗𝑗∶𝑛𝑛)|𝑄𝑄(𝑖𝑖∶𝑛𝑛)) ≈
𝑗𝑗

𝑛𝑛
. (11)

Hence,

𝐵𝐵𝑗𝑗∶=

𝑛𝑛∑

𝑖𝑖=1

𝐹𝐹𝑞𝑞|𝑄𝑄 (𝑞𝑞(𝑗𝑗∶𝑛𝑛)|𝑄𝑄(𝑖𝑖∶𝑛𝑛)) = 𝑗𝑗𝑗 (12)

We can thus attempt to determine Fq|Q by minimizing the quantity

𝐴𝐴∶=

𝑛𝑛∑

𝑗𝑗=1

(𝐵𝐵𝑗𝑗 − 𝑗𝑗)
2
=

𝑛𝑛∑

𝑗𝑗=1

(
𝑛𝑛∑

𝑖𝑖=1

𝐹𝐹𝑞𝑞|𝑄𝑄 (𝑞𝑞(𝑗𝑗∶𝑛𝑛)|𝑄𝑄(𝑖𝑖∶𝑛𝑛)) − 𝑗𝑗

)2

, (13)

therefore obtaining the desired conditional distribution which leads to the formulation of the S-model corre-
sponding to the D-model.

3.1. Determining the Conditional Distribution

In real world applications the D-model will provide an uncertain and possibly biased prediction. In such cases 
the S-model is applied by sampling from the conditional distribution Fq|Q(q|Q) which incorporates both a shift of 
the prediction Q toward the real value q (bias correction) and the probabilistic assessment of the stochastic error 
(uncertainty assessment). A necessary preliminary step is the definition of the above conditional distribution as 
defined by Equation 4.

One strategy to tackle the problem is to use a parametric relationship for the function Fq|Q(q|Q) and determine its 
parameters by minimizing the quantity A in Equation 12. A possibility would be to assume Fq|Q(q|Q) to be a Pare-
to-Burr-Feller (PBF) distribution (see Koutsoyiannis, 2021) with constant tail indices ξ and ζ and scale parameter 
varying with Q. A similar approach would be to assume a copula 𝐴𝐴 𝐴𝐴 (𝐹𝐹𝑞𝑞(𝑞𝑞), 𝐹𝐹𝑄𝑄(𝑄𝑄)) and determine Fq|Q(q|Q) as

𝐹𝐹𝑞𝑞|𝑄𝑄(𝑞𝑞|𝑄𝑄) =

𝐹𝐹𝑞𝑞𝑄𝑄(𝑞𝑞𝑞𝑄𝑄)

𝑓𝑓𝑄𝑄(𝑄𝑄)

𝑞 (14)

with

���(�,�) = �
(

��(�), ��(�)
)

. (15)

While a parametric approach like the above is attractive from many aspects, here we propose a fully data based 
approach, that is, we try to determine Fq|Q(q|Q) from the data alone (see Figure 1). As the variables of interest in 
hydrology are of continuous type, we may expect that each value Qτ in the available time series appears only once. 
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Thus we cannot form a sample of observed data for a particular value of Q. However, as a simple approximation 
of Fq|Q(q|Q), we can form a sample 𝐴𝐴 𝐴𝐴𝐴𝑖𝑖, 𝑖𝑖 = 1,… , (𝑚𝑚1 + 𝑚𝑚2 + 1) , of Q-neighbors based on:

��|�(�|�) = �
{

� ≤ �|� = �
}

≈ �
{

� ≤ �|� − Δ�1 ≤ � ≤ � + Δ�2

}

≈

≈ �
{

� ≤ �|��(�) − Δ�1 ≤ ��(�) ≤ ��(�) + Δ�2

}

=∶ ��|� (�|�,Δ�1,Δ�2),
 (16)

where the increments ΔQi and ΔFi can be chosen based on the requirement that the intervals below and above 
the value Q (or FQ(Q)) contain appropriate numbers of data values, m1 ≔ ΔF1n and m2 ≔ ΔF2n, respectively. 
The numbers m1 and m2 should not be too large, so that FQ(Q) ± ΔF1,2 be close to FQ(Q), nor too small, so that 
the probability

𝑃𝑃

{

𝑞𝑞 ≤ 𝑞𝑞|(𝐹𝐹𝑄𝑄(𝑄𝑄) − 𝑚𝑚1∕𝑛𝑛 ≤ 𝐹𝐹𝑄𝑄(𝑄𝑄) ≤ 𝐹𝐹𝑄𝑄(𝑄𝑄) + 𝑚𝑚2∕𝑛𝑛)

}

 (17)

can be estimated from the sample of 𝐴𝐴 𝐴𝐴𝐴𝑖𝑖 . From the above probability distribution one can easily estimate the 
mean value, or alternatively the median which may be more robust against outliers, which gives the S-model 
prediction. As for the confidence limits one possibility is to compute empirical quantiles through order statis-
tics. For example, one may choose ΔF1 = ΔF2 = ΔF and m1 = m2 = m. If one sets, say, m1 = m2 = m = 20, that 
is, m1 + m2 + 1 = 41, the lowest and highest quantiles that can be empirically estimated would correspond to 
1/41 ≈ 2.5% and 1 − 1/40 ≈ 97.5%, respectively. Conversely, for probabilities 2.5% and 97.5%, which correspond 
to a confidence level of 95%, we can empirically estimate the corresponding quantiles of q as the minimum and 
the maximum observed value, respectively, in the sample 𝐴𝐴 𝐴𝐴𝐴𝑖𝑖 of m1 + m2 + 1 values.

One should note that a sample size of m1 + m2 + 1 may not be obtained for the extreme values of the simulation, 
for which a number m1 of lower predictions and a number m2 of higher ones may not be available. In such cases 
the sample size need to be reduced accordingly.

We point out that order statistics deliver quantile estimation for a limited set of probabilities that correspond 
to the frequency of data in the sample 𝐴𝐴 𝐴𝐴𝐴𝑖𝑖 . Therefore the above approach cannot be used for estimating quantiles 
for arbitrary probabilities of the conditional distribution Fq|Q(q|Q). When such need arises, for instance when 
performing large ensemble simulations, a parametric relationship for Fq|Q(q|Q) should be adopted and fitted as 
suggested above. Since here we do not use a parametric approach, we will handle this problem by the concept 
of K-moments discussed in Section 3.2, noting though that even this cannot exceed some limits imposed by the 
subsample length (m1 + m2 + 1).

3.2. Robust Estimation of Empirical Quantiles

The above empirical estimation of quantiles through order statistics is based on one data point only, as it identifies 
the single observation that is closer in frequency to the probability that corresponds to the desired confidence 
level. A possible solution to increase the robustness of the estimation is offered by the recently introduced concept 
of knowable moments (K-moments, see Koutsoyiannis, 2019; Koutsoyiannis, 2021) which gives an alternative 
for empirical quantile evaluation that is more reliable than order statistics as it combines many data points in each 
estimate. Furthermore, K-moments offer unbiased estimates of distribution quantiles, while the order statistics 
enable unbiased estimates of the distribution function. The two estimates may differ substantially for heavy-tailed 
distributions.

The noncentral knowable moment (or noncentral K-moment) of order (p, q) of the random variable 𝐴𝐴 𝐴𝐴 is defined 
as (Koutsoyiannis, 2019)

� ′
�� ∶= (� − � + 1)E

[

(

� (�)
)�−���

]

, (18)

with p ≥ q and E indicating the expected value. A most interesting special case is q = 1. In fact, the noncentral 
knowable moment of order (p, 1) is given by

𝐾𝐾
′
𝑝𝑝 = 𝑝𝑝E

[(
𝐹𝐹 (𝑥𝑥)

)𝑝𝑝−1
𝑥𝑥

]

, (19)
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with p ≥ 1. A basic property that connects the K-moments with expectations of maxima is

� ′
� =E

[

�(�)

]

= E
[

max
(

�1, �2,… , ��

)]

. (20)

For expectations of minima another type of K-moments is defined, as described in Koutsoyiannis (2021). There-
fore, by definition 𝐴𝐴 𝐴𝐴

′
𝑝𝑝 represents the expected value of the maximum of p copies of 𝐴𝐴 𝐴𝐴 and thus it is an estimate for 

the empirical quantile, which is computed by considering the whole data sample.

A key step in the above procedure is the estimation of two K-moment orders ph and pl, corresponding to the 
desired confidence level, for the upper and lower confidence limit, respectively. We illustrate here below the 
procedure for computing ph and refer to Koutsoyiannis (2021) for details on the computation of pl.

First, let us introduce the Λ-coefficient of order ph as

Λ�ℎ ∶= 1
�ℎ

(

1 − � (� ′
�ℎ )

) . (21)

𝐴𝐴 Λ𝑝𝑝ℎ
 varies only slightly with ph. Any symmetric distribution will give exactly Λ1 = 2 because 𝐴𝐴 𝐴𝐴

′

1
 is the mean, 

which in a symmetric distribution coincides with the median and thus yields 𝐴𝐴 𝐴𝐴 (𝐾𝐾 ′
𝑝𝑝ℎ
) = 1∕2 . The exact value Λ1 

is easy to determine, as it is directly related to the mean, namely,

Λ1 ∶=
1

1 − � (�)
, (22)

while the exact value of Λ∞ depends only on the tail index ξ of the distribution according to

Λ∞ =

⎧

⎪

⎨

⎪

⎩

Γ(1 − �)
1
� , � ≠ 0

�� , � = 0

 (23)

where γ = 0.577 is the Euler's constant.

Basing on the above estimates for Λ1 and Λ∞ the following approximation may be used for estimating 𝐴𝐴 Λ𝑝𝑝ℎ
 , which 

is satisfactory for several distributions:

Λ𝑝𝑝ℎ
≈ Λ∞ +

Λ1 − Λ∞

𝑝𝑝ℎ
, (24)

and, substituting in Equation 21

𝐹𝐹
(
𝐾𝐾

′
𝑝𝑝ℎ

)
≈ 1 −

1

Λ∞𝑝𝑝ℎ + (Λ1 − Λ∞)
. (25)

Conversely, for a given non-exceedance probability F, we can calculate the quantile x as the 𝐴𝐴 𝐴𝐴
′
𝑝𝑝ℎ

 that corresponds 
to:

𝑝𝑝ℎ ≈
1

Λ∞ (1 − 𝐹𝐹 )
+ 1 −

Λ1

Λ∞
 (26)

where, in our case, F = 1 − α/2, being α the significance level of the confidence band.

For estimating Λ1 an expression for the probability distribution of F is to be selected and plugged into Equa-
tion 22. Koutsoyiannis (2021) provides ready-to-use relationship for Λ1 for several probability distributions. The 
distribution F can be assumed to be invariant over the range of the simulated river flows. Therefore, estimates 
for the tail index can be obtained by fitting the whole observed data sample (or the mean prediction sample ob-
tained with the S-model) with a suitable probability distribution (we use the PBF distribution for the case studies 
presented in Section 5). Note that the above distributional assumption on the whole data set has the only purpose 
of providing estimates for the tail index (F(μ) is also required but this can readily be estimated from data even 
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without fitting a distribution) and therefore we do not make any assumption on the distribution of each individual 
sample that is used for the estimation of the empirical quantiles at each time step.

4. Assessment of Goodness of Fit
Assessment of performance is essential to provide end users with an indication of the reliability of the S-model 
and its confidence limits. Besides providing values of the Pearson correlation coefficient between observed and 
simulated data and the Nash efficiency for both the D-model and S-model, we also draw the diagnostic plots 
described below and report the percentage of observations lying outside the confidence limits, estimated by using 
both order statistics and robust estimation.

4.1. Combined Probability-Probability (CPP) Plot

A simple graphical test is introduced here to assess the performances of the S-model. It is based on the compari-
son of the marginal distributions of observed and predicted variables. Here we refer to it as “Combined Probabil-
ity-Probability” (CPP) plot. CPP is a plot of the empirical distribution function Fw(w) of a stochastic variable 𝐴𝐴 𝐴𝐴 
against its value w. The variable is defined as the non-exceedance probability:

� ∶= ��(�). (27)

Its distribution function is 𝐴𝐴 𝐴𝐴𝑤𝑤(𝑤𝑤) = 𝑃𝑃
{
𝑤𝑤 ≤ 𝑤𝑤

}
= 𝑃𝑃

{

𝐴𝐴𝑄𝑄(𝑞𝑞) ≤ 𝑤𝑤

}

= 𝑃𝑃

{

𝑞𝑞 ≤ 𝐴𝐴
−1

𝑄𝑄
(𝑤𝑤)

}

 and hence:

𝐹𝐹𝑤𝑤(𝑤𝑤) = 𝐹𝐹𝑞𝑞

(
𝐹𝐹

−1

𝑄𝑄
(𝑤𝑤)

)
. (28)

In other words, Fw(w) combines the distribution functions of predictions Q and real quantities q. The predictions 
are regarded as good if the plot Fw(w) versus w is the equality line, that is, if Fw(w) = w, which means that the 
distribution of w is uniform. In this case 𝐴𝐴 𝐴𝐴

−1
𝑞𝑞 (𝑤𝑤) = 𝐴𝐴

−1

𝑄𝑄
(𝑤𝑤) . This is possible only if FQ(x) is identical to Fq(x), 

which is what we would like to check. Note that a CPP plot lying above (below) the equality line indicates over-
prediction (underprediction) while a S-shaped CPP plot with the initial part above (below) the equality line and 
the second part below (above) the equality line indicates overestimation of low (high) flows and underestimation 
of high (low) flows.

In essence, the plot tests whether the two distributions, estimated from the data, are identical. We note that the 
CPP plot, except for assessing the proximity of the two marginal distributions, does not give any other indication 
if the predictions are good. For example, if 𝐴𝐴 𝐴𝐴 is completely independent from 𝐴𝐴 𝐴𝐴 (as it may happen if an obviously 
irrelevant model is used) but the two distributions are identical, again the distribution of w will be uniform.

4.2. Predictive Probability-Probability Plot

A second check is herein used to verify the reliability of the estimated confidence band. Laio and Tamea (2007) 
have introduced a diagnostic plot combining probability distributions of predictions and true values, which has 
become later popular in similar studies, having been termed “predictive quantile-quantile” plot (Eslamian, 2014), 
even though in the original paper it has been called simply probability plot. Here we refer to it as “predictive 
probability-probability” (PPP) plot because the plot actually represents probabilities. PPP is a plot of the empir-
ical distribution function Fz(z), of a stochastic variable 𝐴𝐴 𝐴𝐴 , where the latter also represents probability, that is, a 
conditional non-exceedance probability, namely

�� ∶= ��|�(�). (29)

In other words, 𝐴𝐴 𝐴𝐴 is the distribution function of the prediction evaluated for the observed value of the predictand. 
The idea of PPP comes from the Rosenblatt's result that for any stochastic process 𝐴𝐴 𝐴𝐴

𝜏𝜏
 in discrete time τ = 1, 2, ..., 

the sequence of variables 𝐴𝐴 𝐴𝐴
1

, 𝐴𝐴
2

,… , 𝐴𝐴
𝜏𝜏
 , whose values are:

𝑧𝑧𝜏𝜏∶=𝑃𝑃
{
𝑥𝑥
𝜏𝜏
≤ 𝑥𝑥𝜏𝜏 |𝑥𝑥

𝜏𝜏−1
= 𝑥𝑥𝜏𝜏−1,… , 𝑥𝑥

1
= 𝑥𝑥1

}
= 𝐹𝐹𝑥𝑥𝜏𝜏 |𝑥𝑥𝜏𝜏−1 (𝑥𝑥𝜏𝜏 |𝐱𝐱𝜏𝜏−1) (30)
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are independent and identically distributed with uniform distribution in [0, 
1]. Note that here we used the vector notation 𝐴𝐴 𝐱𝐱𝜏𝜏−1∶=[𝑥𝑥𝜏𝜏−1,… , 𝑥𝑥1]

𝑇𝑇  to rep-
resent all values of the process earlier than τ. One may see an analogy of 𝐴𝐴 𝐴𝐴

𝑄𝑄
 

defined in Equation 29 with zτ defined in 30 as they both are predictive dis-
tributions. Extending this analogy, one would expect that different 𝐴𝐴 𝐴𝐴 defined 
by Equation 29 would also be independent and identically distributed, which 
allows considering the different values as a sample of a single variable 𝐴𝐴 𝐴𝐴 . In 
turn, this enables estimating the distribution function of 𝐴𝐴 𝐴𝐴 from the sample.

The information conveyed by the PPP plot is useful as it provides an over-
view of the reliability of the estimated confidence band for any confidence 
level, by showing departures of the calibrated predictive distribution from 
the optimal one. Specifically, a shape of the validation curve above or below 
the equality line indicates overprediction and underprediction, respectively, 
while a shape above (below) the equality line in the first part of the diagram 
and below (above) the same line in the second part means that the forecast is 
narrow (large). Figure 2 provides a graphical overview of the above features, 
while more details are given by Laio and Tamea (2007). Furthermore, the 
departure of the PPP plot from the equality line is a relative (with respect to 
the sample size) measure of the number of points lying below the lower and 
above the upper confidence limit. For example, coverage probabilities for 
confidence level of 0.8 are related to segments A and B in Figure 2.

In fact, the percentage of observations lying below a confidence limit is such that for a given Q the probability 
that the true discharge is not greater than q is

𝑃𝑃

{

𝑞𝑞 ≤ 𝑞𝑞|𝑄𝑄 = 𝑄𝑄

}

= 𝐹𝐹𝑞𝑞|𝑄𝑄(𝑞𝑞). (31)

If we choose a non-exceedance probability γ, 0 ≤ γ ≤ 1, so that, for any Q, Fq|Q(q) = γ then the latter relationship 
specifies a confidence curve for q, which is a function q = h(Q), given that γ is constant. The probability

𝑃𝑃

{

𝑞𝑞 ≤ ℎ(𝑄𝑄)|𝑄𝑄 = 𝑄𝑄

}

= 𝐹𝐹𝑞𝑞|𝑄𝑄(ℎ(𝑄𝑄)) = 𝛾𝛾 (32)

is constant, independent of Q. Moreover, given the definition of z and its property not to depend on Q, one obtains 
z = γ. If the distribution of z is uniform in 0,1, that is, Fz(z) = z, the value of Fz(z) at the point z = γ will be equal 
to γ. Therefore any deviation from uniformity is a relative measure of the number of observations exceeding the 
value γ that would be expected that fall outside the confidence limit.

Note that the non-parametric fully data based approach of Bluecat infers 𝐴𝐴 𝐴𝐴𝑞𝑞|𝑄𝑄(𝑞𝑞) in calibration from Equation 16, 
basing on subranges of Q. Therefore, if one estimates the zτ sample for the same values of Q the empirical distri-
bution of z will be clearly uniform, regardless of the D-model performance or any other feature of the processes 
qτ and Qτ. Therefore, the PPP plot for the calibration period of Bluecat will always be a straight line (equality line) 
by definition, because the data to be predicted are those that have been used to estimate the predictive distribution.

5. Case Studies
Bluecat was first tested with control experiments that have been presented by Koutsoyiannis and Montanari (2020). 
These confirmed the capability of the method to estimate reliably stochastic predictions and coverage probabili-
ties in controlled conditions.

Here we present two case studies to test the performances of Bluecat in real world applications. They refer to the 
cases of the Arno river at Subbiano and the Siver river at Fornacina, for which a rainfall-runoff model is used to 
elaborate river flow predictions. The Sieve river is a tributary of the Arno river. They flow in the Tuscany Region, 
in Italy. Figure 3 presents a schematic map of the river basins. Climate is continental with low flows during Sum-
mer and high flows in the Fall and Spring seasons. Occasionally high flow events may occur during the winter.

Figure 2. Information conveyed by the predictive probability-probability plot.
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We apply to both case studies the rainfall-runoff model HyMod (Boyle, 2000; Montanari, 2005) with 5 param-
eters. These are Cm [length], the maximum storage capacity within the basin), β [dimensionless], the degree of 
spatial variability of the soil moisture capacity within the basin, α [dimensionless], a factor for partitioning the 
flow between two routing procedures, k1 [time] and k2 [time], characteristic times for the two routing components.

For both case studies we calibrated the HyMod model by minimizing the Nash-Sutcliffe efficiency. It is well 
known that performance metrics are affected by significant sampling uncertainty (Barber et  al.,  2020; Clark 
et al., 2021). Lamontagne et al. (2020) have shown that estimation robustness may be improved by performing a 
preliminary logarithmic transformation of observed and simulated river flow data. Therefore, we considered the 
following transformation, which can be applied also to intermittent river flows (Koutsoyiannis, 2021):

𝑦𝑦 = 𝜆𝜆log

(

1 +
𝑥𝑥

𝜆𝜆

)

 (33)

where x and y are original and transformed data, respectively, and λ is a parameter. For λ → 0 and λ → ∞ Equa-
tion 33 becomes equivalent to the logarithmic and the identity (y = x) transform, respectively.

It is well known that a limited training for hydrologic models may cause overparameterization, which in turn 
implies that model performances in calibration may not deliver a useful information on the reliability of model 
predictions in validation. This issue will be further discussed in Section 6.

We estimated confidence limits by applying both robust estimation and order statistics by adopting a confidence 
level of 80%. We selected m1 = m2 = 100 which means that each prediction distribution is estimated over a sample 
of m1 + m2 + 1 = 201 observations. For the extreme values of the prediction the sample size was reduced when 
enough lower/higher predictions were not available (see the note at the bottom of Section 3.1). The S-model 
predictions were obtained by estimating the median value of the conditional probability distribution given by 
Equation 4, although CPP plots were drawn for the mean stochastic prediction as well.

Median prediction and confidence band for the S-model were estimated for both the calibration and validation 
period. Of course we expect better performances of the S-model for the calibration period while the validation 
exercise is expected to provide an indication of the Bluecat performances for out of sample prediction. Goodness 
of fit is estimated by the performance indicators discussed in Section 4.

Figure 3. Basins of the Arno river at Subbiano and the Sieve river at Fornacina.
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5.1. Arno River at Subbiano

The catchment of the Arno river at Subbiano is located within the mountain 
belt of the Northern Apennines, with mean, minimum and maximum eleva-
tion of 750, 250 and 1,657 m above sea level, respectively. The catchment 
area is about 752 km2 and the average catchment slope is about 14%. The 
data of mean areal daily rainfall (estimated from raingauge observations) and 
evapotranspiration (estimated from temperature data) span the 22-year period 
1992–2013. We use the first 20 years for model calibration and the last two 

years for model validation. Optimization was performed after transforming data as in Equation 33 with λ = 0.000 
1, a value that was selected by looking at the S-model performances in calibration. Calibrated model parameters 
are given in Table 1. For the calibration period the Pearson correlation coefficient between the D-model outputs 
Q and the observed values q is 0.84, which means that the model is able to explain 0.842 = 71% of the total var-
iance. The Nash efficiency is 0.63.

Figure 4 shows the results of the application of Bluecat in calibration mode with robust estimation. In the left 
panel a scatterplot of D-model predictions versus observed values and S-model predictions is shown, along with 
the related confidence limits. The inset shows a detailed representation of the low flow range. The right panel 
depicts 100 days of the calibration period, where the first day is January 1st, 2011.

The S-model displayed improved predicting performances, with a Pearson correlation coefficient of 0.88 and 
a Nash efficiency of 0.77 (median prediction). Figure 4, particularly in the inset, also shows that the D-model 
overpredicts low discharges and underpredicts high ones. The bias is reduced by the S-model. Coverage probabil-
ities are reported in Table 2, for confidence band estimated with both order statistics and robust estimation. The 
CPP plot, shown in Figure 6, confirms the prediction bias of the D-model and the improved performances of the 
S-model which, however, still overpredicts the low flows as Figure 4 anticipated.

The results of the validation are shown in Figures 5 and 6 and Table 2. The right panel in Figure 5 depicts 
100 days of the validation period, where the first day is January 1st, 2013. The D-model performance in vali-
dation is summarized by a Pearson correlation coefficient of 0.80 and a Nash efficiency of 0.57. Slightly better 
performances are given by the S-model prediction, with Pearson coefficient of 0.81 and a Nash efficiency of 0.62. 
The CPP plot confirms that the S-model improves the performances in terms of probability distribution of the 
predictions and proves the slightly better performances of the median with respect to the mean of the probability 
distribution given by Equation 4 to compute the S-model prediction. It also suggests an overestimation and un-
derestimation of low and high flows, respectively.

Basin Cm[mm] β[ − ] α[ − ] k1[days] k2[days]

Arno 336 0.10 0.61 24.34 1.25

Sieve 323 0.20 0.55 4.61 357.53

Table 1 
HyMod Model Calibrated Parameters for the Considered Case Studies

Figure 4. D-model and S-model predictions, along with confidence limits, for the calibration period of the Arno river at Subbiano. The right panel depicts 100 days of 
the calibration period, where the first day is January 1st, 2011.
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The PPP plot is reported in Figure 10 (left) and shows that in validation the 
confidence limits are narrow. This outcome is confirmed by the percentage 
of observations lying outside the confidence limits, which are reported in Ta-
ble 2, which are higher than the values of 10% for each band that one would 
expect for a confidence level of 80%. Further consideration on the PPP plot 
results for the Arno River are found in Section 6.

5.2. Sieve River at Fornacina

The Sieve river is a tributary of the Arno river that is also located in the 
Northern Apennines, with mean, minimum and maximum elevation of 488, 
96 and 1,637 m above sea level, respectively. The catchment area is about 
846 km2 and the average catchment slope is about 12%. The data of mean 
areal hourly rainfall (estimated from raingauge observations) and evapotran-
spiration (estimated from temperature observations) span the 5-year period 

1992–1996. The flow regime of the Sieve river is intermittent with the presence of about 4% of zero values in 
the available record.

We use the data from June 1st, 1992 to December 31st, 1994 for model calibration and the data from June 2nd, 
1995 to December 31st, 1996 for model validation. Note that we discarded the January–May period for both cali-
bration and validation because high flows typically occur in that season that are not satisfactorily reproduced by 
HyMod for the limited duration of the model warm up. We maximized the Nash-Sutcliffe efficiency to calibrate 
the parameters without applying any transformation to the data, as this led to the best S-model performances in 
terms of median prediction and coverage probabilities.

Calibrated model parameters are given in Table 1. For the calibration period the correlation coefficient between 
the D-model outputs Q and the observed values q is 0.91, which means that the model is able to explain 82% of 
the total variance. The Nash efficiency is 0.81. Figure 7 confirms the good fit of the model in calibration. The 
right panel depicts 150 hr of the calibration period starting from September 16th, 1992 at 5 a.m.

The calibration results confirm the improved performances of the S-model, whose mean prediction has a Pear-
son correlation coefficient of 0.94 and Nash efficiency of 0.88. Figure 7, particularly in the inset, shows that 
the S-model corrects the prediction bias of the D-model. The percentage of points lying above and below the 

Arno calibration Arno validation Sieve calibration Sieve validation

%h %l %h %l %h %l %h %l

Robust estimation

10% 8% 17% 16% 17% 7% 13% 14%

Estimation with order statistics

9% 10% 17% 22% 8% 9% 6% 16%

Note. Band was estimated with both order statistics and robust estimation. 
Subscripts h and l refer to upper and lower limit, respectively.

Table 2 
Percentage of Observations Lying Outside the 80% Confidence Limits for 
the Considered Case Studies

Figure 5. D-model and S-model predictions, along with confidence limits, for the validation period of the Arno river at Subbiano. The right panel depicts 100 days of 
the validation period, where the first day is January 1st, 2013.
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confidence limits is reported in Table 2. The CPP plot, shown in Figure 9, confirms the improved performances 
of the S-model and in particular its effectiveness in correcting the D-model bias in the high flow domain.

Validation results are shown in Figure 8, where the right panel depicts 150 hr of the validation period starting 
from January 5th, 1996 at 12 a.m., and Figure 9. The D-model performance in validation is summarized by a 
Pearson correlation coefficient of 0.87 and a Nash efficiency of 0.53. The low value of the Nash efficiency is 
due to the significant overestimation of the low flows by the D-model. It is interesting to note that the S-model 
prediction exhibits a better fit with a Pearson coefficient of 0.88 and a Nash efficiency of 0.66. The latter is 
markedly improved thanks to the capability of Bluecat to correct the prediction bias. As for the confidence band, 
the PPP plot shows overall a good fit with a slight overprediction especially with regard to the lower limit (see 
also Table 2).

The results of the two case studies will be further discussed in Section 6.

Figure 6. Combined probability-probability plots for the predictions of the river flows of the Arno river at Subbiano in calibration (left) and validation (right).

Figure 7. D-model and S-model predictions, along with confidence limits, for the calibration period of the Sieve river at Fornacina. The right panel depicts 150 hr of 
the calibration period starting from September 16th, 1992 at 5 a.m.
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6. Discussion
In introducing Bluecat we assumed that the probability distribution of the observed data, conditioned to the 
D-model simulation, can be reliably inferred from a calibration exercise (see Sections 2 and 3). Actually, this 
assumption holds asymptotically, namely, when the size of the calibration data sample is large. Furthermore, the 
assumption that we made that input and parameter uncertainty are satisfactorily resembled by the probability 
distribution given by Equation 4 also holds asymptotically.

When the calibration data set is not extended enough one may experience overparameterization, which implies 
that the calibrated model exhibits satisfactory performances in calibration that are not confirmed in validation. 
Therefore, in such cases the D-model errors in calibration may be much smaller than those in validation, which 
implies that the S-model generated by Bluecat may underestimate prediction uncertainty. That is, confidence 
band may be narrow, which means that the PPP plot would be S-shaped with the first and second part displaced 
above and below the equality line, respectively.

Furthermore, a limited extension of the validation period may imply uncertainty due to sampling variability. 
Namely, even if the confidence limits are statistically correct they may still provide a poor assessment of uncer-
tainty when referring to specific and short prediction periods.

To inspect this issue, we performed an additional experiment for the Arno river by referring to the calibration 
period. We first computed the PPP plot in calibration, therefore obtaining an equality line as expected (see Fig-
ure 11). Then, we redrew the PPP plot for 10 non-overlapping subperiods including 731 observations, which is 
precisely the length of the validation period. As expected, Figure 11 shows that sampling variability causes a 
dispersion of the obtained PPP plots. For the sake of comparison, Figure 11 also shows the PPP plot for the val-
idation period, which is almost entirely included within the envelop of the calibration PPP plots obtained for the 
same sample size. Therefore, Figure 11 shows that the deviation from the equality line that we obtained for the 
Arno river in validation may be explained by sampling variability.

About the CPP plot, one should always take into account that the marginal distributions of predicted and observed 
data may be incidentally similar even if the prediction is poor. In particular, this may happen when the model 
performances in terms of correlation and Nash efficiency are far from satisfactory.

Regarding the case studies presented here it is intersting to note that for both Arno and Sieve rivers the stochastic 
prediction outperformed the deterministic model by correcting its bias for the various flow regimes. This out-
come confirms that the additional value provided by the S-model is technically useful.

Figure 8. D-model and S-model predictions, along with confidence limits, for the validation period of the Sieve river at Fornacina. The right panel depicts 150 hr of 
the validation period starting from January 5th, 1996.
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With regard to the confidence band, for the cases presented here, we indeed found that the observations lying out-
side the higher and lower confidence limits in validation are often higher than the value of 10% for each band that 
one would expect for a confidence level of 80% (see Table 2). Such deviations are expected when the simulation 
period is short, even due merely to sampling variability, as illustrated with the Arno river case study.

In technical applications it is important for the user to recognize the cases of “huge uncertainty in uncertainty as-
sessment”. First, we conclude that an accurate selection of the model calibration period is particularly important 
for Bluecat, which is calibrated at each local flow range. It is not possible to provide a general rule for assessing 
if a calibration period is long enough, as the answer depends on the type of model, the variability of the modeled 
processes, data seasonality and many others. It may be useful to split the available data sample in non-overlap-
ping pieces and perform repeated validation tests to assess whether model performances are stable. The split 
sample exercise also allows to infer sampling variability. Second, we suggest that the final model training before 
application is carried out by using the largest possible data set and paying particular attention to detect possible 
model deficiencies that may not be resembled by the estimated conditional probability distribution of Equation 4.

We would like to discuss further the assumption of stationarity, which may be regarded as a limitation if one be-
lieves that the impact due to a possibly changing climate may be better predicted with a non-stationary approach 
(for an extended discussion on this subject see, e.g., Luke et al., 2017; Montanari and Koutsoyiannis, 2014a). We 
also note that the conditional distribution given by Equation 4 might be seasonal, although part of the seasonality 
features are already incorporated in the D-model (e.g., a large prediction of discharge would appear during the 
rainy, rather than the dry, period). There are many possible solutions for applying Bluecat in a non-stationary 
context. We may suggest to first consider a D-model with time varying (perhaps seasonal) parameters under the 
assumption that the uncertainty of the non-stationary model is described by a stationary distribution as given 
by Equation 4. If one would like to consider a non-stationary uncertainty, then a parametric and non-stationary 
distribution (perhaps a PBF distribution with time varying seasonal parameters) may be adopted to describe un-
certainty as described in Section 3.1, by paying particular attention to the increased risk of overparameterization 
that non-stationary models imply. Indeed, exploring the above dependencies in a stochastic framework would re-
quire an extended calibration data set to compensate the uncertainty introduced by additional model complexity. 
Overall, such modeling choices will unavoidably increase uncertainty and therefore would hardly be advisable 
for copying with real-word problems. If the extent of the data set is large enough, in cases justifying a seasonal 
approach, partioning the whole data set into seasons is a possible solution to ensure that both the D-model and 
Bluecat provide a good fit of seasonality. If a permanent change of the process statistics is detected (e.g., due to 
urbanization) it would recommendable to “stationarize” the data, adapting them to the current conditions and 
perform similar adaptations to the D-model. This is similar (albeit opposite) to “naturalization” of data series that 
is typically made in cases of river modifications due to dams and so forth.

Figure 9. Combined probability-probability plots for the predictions of the river flows of the Sieve river at Fornacina in calibration (left) and validation (right).
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One may wonder what the distinguishing behavior of Bluecat is with respect to the approaches that we previously 
proposed (Montanari & Koutsoyiannis, 2012; Sikorska et al., 2015). We first note that Bluecat relies on different 
assumptions and procedures. In Montanari and Koutsoyiannis (2012) we adopted a meta-Gaussian distribution 
to describe uncertainty of model predictions which were preliminarily transformed to stabilize their variance. 
Bluecat, in a similar manner as Sikorska et al. (2015), avoids data transformation as the conditional probability 
distribution is automatically defined by the data. Furthermore, in Montanari and Koutsoyiannis (2012) and Sikor-
ska et al. (2015) we accounted for parameter uncertainty at the expense of a more demanding approach for model 
calibration and application, which is a concern as in a data assimilation context calibration is to be frequently 
repeated. In fact, by avoiding any data transformation and offering a fast calibration, Bluecat allows technical 
applications with limited computational requirements and time.

Bluecat indeed shares some similarities with the nearest neighboring method by Sikorska et al. (2015), which may 
be also used to correct the D-model bias (see, for instance, Ehlers et al., 2019). However, we note that Bluecat 

infers the conditional probability distribution of the true data, while Sikorska 
et  al.  (2015) estimate the conditional probability distribution of the simu-
lation error. Thus, they estimate the prediction uncertainty of the D-model 
rather than updating the D-model to the S-model. Therefore Bluecat provides 
a more comprehensive perspective. In view of the above differences, the user 
may select the most appropriate approach for the considered case study, with 
the awareness that model selection should be tailored to the underlying as-
sumptions and operational needs.

Although Bluecat has been conceived to be applied to one single model, a 
multimodel application would be straightforward. It was already mentioned 
in Section 3 that an extension where Q is a vector containing the current and 
earlier predictions by the D-model is possible, yet here we study the simpler 
scalar version of the model. Likewise, the multi-model case is another pos-
sible vector version of Bluecat, where the vector Q contains the outcomes of 
the various D-models.

We believe that the application of Bluecat to the considered case studies of-
fers encouraging performances for technical applications. Indeed, Bluecat 
does, under a rigorous statistical interpretation and clear assumptions, what 
the intuition of a technician would suggest: to correct model predictions and 

Figure 10. Predictive probability-probability plots for the validation of the river flows predictions for the Arno river (left) and the Sieve river (right).

Figure 11. Sampling variability for the Predictive probability-probability 
(PPP) plot of the Arno river in calibration and comparison with the PPP plot 
in validation.
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estimate their uncertainty by looking at model performances in the simulation of known data. It is a straightfor-
ward and extremely simple concept.

Finally, the end users should be informed that hydrologic modeling, including uncertainty assessment, is always 
uncertain and therefore the information provided by the confidence band should be interpreted critically. Never-
theless, this information is tremendously useful: by selecting an appropriate confidence level Bluecat provides the 
desired information for an assigned safety level of the prediction.

7. The Bluecat Package
In order to facilitate the application of Bluecat we make available a software working under the R-environment (R 
Core Team, 2013) to fit the HyMod rainfall-runoff model and estimate its prediction uncertainty. Model fitting 
can be performed by maximizing the Nash-Sutcliffe efficiency using either untransformed data or transformed 
with Equation 33, with the option of selecting two different optimization algorithms. Confidence limits can be 
defined by estimating empirical quantiles through order statistics or robust estimation (see Sections 3.1 and 3.2). 
Assessment of the goodness of fit is performed by plotting the CPP and PPP plots and estimating the Nash-Sut-
cliffe efficiency. The software is accompanied by instructions (to be displayed with the R help function) and data 
bases of rainfall and potential evapotranspiration for the Arno and Sieve case studies that have been presented 
here. We also include instructions to be used within R to reproduce the case studies and the results we presented 
above.

While the package focuses on river flow prediction with HyMod, it can be easily adapted by substituting HyMod 
with any deterministic model. In fact, the model routine is isolated into a subroutine, currently written in the 
Fortran 95 programming language, that can be quickly replaced.

The software is available for download at the web address: https://github.com/albertomontanari/hymodbluecat 
along with instructions to compile it in R.

8. Conclusions
We introduce here a new method identified with the acronym “Bluecat” for simulating and predicting hydrologic 
processes, which is based on the use of a generic deterministic model that is subsequently converted to a stochas-
tic formulation. The latter provides an update of the deterministic prediction along with uncertainty assessment 
with a transparent data based approach.

The results of the presented case studies confirm the distinguishing features of Bluecat, its reliability and robust-
ness. In fact, for both case studies the stochastic version of the deterministic model provided an improvement of 
the performances of the deterministic model alone, both in calibration and validation. Furthermore, the estimated 
confidence band turned out to be informative: even if some uncertainty affected the estimation of coverage prob-
abilities, we provided quantitative tests to verify their reliability. In fact, for both case studies Bluecat improved 
the prediction and provided confidence limits with an innovative and rigorous information content for technical 
applications.

In our opinion, for its computational efficiency and transparency Bluecat is a step forward for hydrogic modeling 
with uncertainty assessment. It is also flexible, as it can work in conjunction with any type of deterministic model 
and can be extended to multimodel applications or multiple predictor variables.

In view of technical applications, particular care is to be payed to the reliability and extension of the calibration 
data set. In fact, it is usual in hydrology to work in poorly gauged conditions, which may lead to overparametri-
sation, sampling variability and consequent inflation of uncertainty. Although Bluecat has been proven to be 
robust, the reliability of the deterministic model calibration should be carefully considered in order to avoid a 
“huge uncertainty in uncertainty assessment”. We discussed potential solutions to support operational assessment 
of calibration reliability, which should ultimately rely on a careful assessment by end users.

When developing Bluecat and preparing this paper we decided to give high priority to simplicity, transparen-
cy, openness and reproducibility. For this reason we make available a software to support Bluecat operational 

https://github.com/albertomontanari/hymodbluecat
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applications and reproduction of the case studies presented here. We are looking forward to interacting with users 
for improving the software in an open access and open source context.

Data Availability Statement
The software and data that have been used to develop this work are included in a package working under the R  
environment, that is open source and available for download at: https://github.com/albertomontanari/
hymodbluecat.
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