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Abstract13

We present a new method for simulating and predicting hydrologic variables with un-14

certainty assessment and provide example applications to river flows. The method is iden-15

tified with the acronym “Bluecat” and is based on the use of a deterministic model which16

is subsequently converted to a stochastic formulation. The latter provides an adjustment17

on statistical basis of the deterministic prediction along with its confidence limits. The18

distinguishing features of the proposed approach are the ability to infer the probability19

distribution of the prediction without requiring strong hypotheses on the statistical char-20

acterization of the prediction error (e.g. normality, homoscedasticity) and its transpar-21

ent and intuitive use of the observations. Bluecat makes use of a rigorous theory to es-22

timate the probability distribution of the predictand conditioned by the deterministic23

model output, by inferring the conditional statistics of observations. Therefore Bluecat24

bridges the gaps between deterministic (possibly physically-based, or deep learning-based)25

and stochastic models as well as between rigorous theory and transparent use of data26

with an innovative and user oriented approach. We present two examples of application27

to the case studies of the Arno river at Subbiano and Sieve river at Fornacina. The re-28

sults confirm the distinguishing features of the method along with its technical sound-29

ness. We provide an open software working in the R environment, along with help fa-30

cilities and detailed instructions to reproduce the case studies presented here.31

Plain Language Summary32

We present a new method for simulating and predicting hydrologic variables and33

in particular river flows, which is rooted in the probability theory and conceived in or-34

der to provide a reliable quantification of its uncertainty for operational applications. In35

fact, recent practical experience during extreme events has shown that simulation and36

prediction uncertainty is essential information for decision makers and the public. A re-37

liable and transparent uncertainty assessment has also been shown to be essential to gain38

public and institutional trust in real science. Our approach, which we term with the acronym39

“Bluecat”, results from a theoretical and numerical development, and is conceived to make40

a transparent and intuitive use of the observations which in turn mirror the observed re-41

ality. Therefore, Bluecat makes use of a rigorous theory while at the same time proof-42

ing the concept that environmental resources should be managed by making the best use43

of empirical evidence and experience. We provide an open and user friendly software to44

apply the method to the simulation and prediction of river flows and test Bluecat’s re-45

liability for operational applications.46

1 Introduction47

Recent extreme events like the flood that occurred in central Europe in 2021 have48

shown that reliable hydrological predictions are essential to issue early warnings to in-49

stitutions and population. Indeed, effective warnings require people to be informed on50

the magnitude of a forthcoming event and the likelihood of that happening. Namely, a51

prediction along with its uncertainty needs to be timely developed and communicated.52

The time factor is in fact essential and therefore the whole warning system needs to be53

fast and reliable, in the estimation of both prediction and uncertainty (see, for instance,54

Ramos et al. (2013) and Pagano et al. (2014)). An additional key element for the suc-55

cess of a warning system is its credibility, which is usually evaluated by end users by con-56

fronting the prediction method with their expert judgment and empirical evaluation (Blöschl,57

2008). This is precisely the reason why the prediction and its uncertainty should be elab-58

orated with a transparent approach by making a perceptional use of the available infor-59

mation and data, which in turn mirror the observed reality of previous and likely future60

events.61
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In particular, the uncertainty inherent in scientific information is one of the rea-62

sons for failing to act on disaster warnings. Forecasts are often elaborated with method-63

ologies that are not easily understood by those who need it. Such lack of understand-64

ing of uncertainty estimation may lead people to interpret the predictions as unreliable,65

and to believe that estimations should no longer be trusted.66

Prediction and forecasting have been the focus of an intensive research activity in67

hydrology (see, for instance, Blöschl et al. (2013)). Here, we concentrate on uncertainty68

assessment which has been the subject of relevant efforts since the early works of Spear69

and Hornberger (1980) and Beven and Binley (1992). The literature is branched in sev-70

eral subtopics ranging from data uncertainty, parameter fitting, model structural uncer-71

tainty, operational uncertainty and so forth (Montanari, 2011).72

To date, the most used method for estimating the uncertainty of hydrological sim-73

ulations and predictions is the Generalized Likelihood Uncertainty Estimator (GLUE)74

(see Beven and Binley (1992) and Beven (2006)). GLUE rejects the concept of one sin-75

gle optimal model and adopts the notion of equifinality of modeling solutions (Beven &76

Lane, 2019). It makes use of an informal likelihood function that has been the subject77

of an interesting debate (see, for instance, Montanari (2005); Vrugt et al. (2009); Beven78

(2009)). Bayesian methods are widely used and include, among the others, Bayesian model79

averaging (see the recent work by Reggiani et al. (2021)), Bayesian estimation of model80

errors (Tajiki et al., 2020) and Bayesian data assimilation (Bulygina & Gupta, 2009),81

and signature domain calibration (Kavetski et al., 2018). In a Bayesian framework, iden-82

tifying a suitable likelihood function for hydrological models is a challenging task which83

requires the introduction of assumptions that need to be carefully checked as sometimes84

the related approximations are not easily understandable by end users.85

Another relevant example of Bayesian method is the Bayesian Forecasting System86

introduced by Krzysztofowicz (1999), which produces a probabilistic river stage or flow87

forecast based on a probabilistic quantitative precipitation forecast as an input to a hy-88

drological model. The BFS assumes that the dominant source of uncertainty derives from89

the imperfect knowledge of the future precipitation, so that it can be assumed that all90

other sources of uncertainty play a minor role. While it may be justified for operational91

forecasting, this assumption looks restrictive for hydrologic simulations where model struc-92

tural uncertainty may also be substantial.93

The literature presented several approaches to uncertainty assessment based on the94

statistical analysis of the probability distribution of model errors or, analogously, the joint95

probability distribution of observed and simulated data. These methods belong to the96

category of the post-processing approaches, which have been proved to outperform anal-97

yses that consider all the sources of uncertainty (see, for instance, the recent contribu-98

tion by Valdez et al. (2021)). This class of methods can be further subdivided in like-99

lihood based and likelihood-free approaches. The use of likelihood is considered by Tajiki100

et al. (2020) and previously by Schoups and Vrugt (2010), while likelihood-free meth-101

ods include the works by Montanari and Brath (2004), Montanari and Grossi (2008) and102

Montanari and Koutsoyiannis (2012). The statistical analysis of model errors to estimate103

simulation and prediction uncertainty with a likelihood-free approach presents the ad-104

vantage of being transparent to end users and computationally fast.105

In particular, Montanari and Koutsoyiannis (2012) proposed a theoretically based106

method to convert a deterministic hydrologic model into a stochastic approach by fit-107

ting the model error with a meta-Gaussian probability distribution. A similar approach108

was applied by Quilty and Adamowski (2020) and several other works. Notably, Sikorska109

et al. (2015) proposed a nearest neighbour approach to represent the probability distri-110

bution of the model error which makes the method flexible and fast. Similar approaches111

were applied by Papacharalampous, Tyralis, and Koutsoyiannis (2019), Papacharalampous112

et al. (2020), Papacharalampous, Tyralis, Langousis, et al. (2019b), Tyralis, Papachar-113
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alampous, and Langousis (2019),Tyralis, Papacharalampous, Burnetas, and Langousis114

(2019) and Papacharalampous, Tyralis, Langousis, et al. (2019a). Notwithstanding the115

above research efforts, the statistical representation of the model error remains difficult116

in some applications and thus there is still the need for end users to further simplify the117

procedure.118

In view of the above previous works and the requirement for effective predictions,119

we present here an innovative and transparent approach that builds on the concept pro-120

posed by Montanari and Koutsoyiannis (2012) to transform a generic deterministic model121

into a stochastic predictor. A distinguishing feature of the proposed method is its abil-122

ity to infer the probability distribution of the prediction without running multiple sim-123

ulations and without requiring strong hypotheses on the statistical characterization of124

the prediction itself or its error, therefore resolving critical issues that affect the previ-125

ously proposed methods. Although intuitive, the method is supported by a rigorous the-126

oretical development that ensures the best use of the information content of the observed127

data. The method can be applied to either physically-based, process-based and data-based128

deterministic prediction/simulation models. It can also be applied in conjunction with129

prediction models based on deep learning, which are gaining increasing popularity for130

hydrological predictions (see, for instance, Frame et al. (2021)).131

We make available an open software in the public domain, working in the R en-132

vironment (R Core Team, 2013), along with instructions and examples of applications,133

to support applications by end users. The software also provides goodness of fit proce-134

dures that are based on the best practices of engineering and applied forecasting.135

We propose for our approach the acronym Bluecat, from “Brisk local uncertainty136

estimator for generic simulations and predictions”. In this paper we focus on river flow137

and therefore assume that the deterministic model is a rainfall-runoff model. However,138

the procedure can be generalized to any type of deterministic prediction model. In what139

follows, we use the term “prediction” to encompass simulation, prediction and forecast-140

ing.141

2 Concept of Bluecat142

Bluecat is a simple and transparent tool to transform point predictions obtained143

by any deterministic model in stochastic predictions, therefore deriving the probability144

distribution of the predictand. In what follows, we will use the terms “D-model” and “S-145

model” to denote the deterministic model and its stochastic counterpart, respectively.146

The information that is needed to perform the above transformation is obtained147

in Bluecat by building on the well established concept of comparing the D-model out-148

put with observed data; namely, the same concept that we commonly use for parame-149

ter estimation. Basing on such comparison, Bluecat estimates the probability distribu-150

tion of observed data conditioned on the D-model output and therefore obtains the cor-151

responding S-model output, along with its mean (or median) value and confidence band.152

It is important to make clear that the S-model prediction may be markedly different from153

the D-model one. In fact, the latter is not necessarily included into the confidence band154

of the S-model, which are displaced around the mean prediction of the S-model itself.155

Such possible outcome is schematically represented in Figure 1, where the concept of Blue-156

cat is depicted.157

Being based on the comparison between the D-model output and the observations,158

Bluecat is therefore transparent and easily understandable, while the theoretical devel-159

opment that we present in Section 3 ensures that such interpretation of uncertainty is160

rigorous and asymptotically consistent in estimating global uncertainty.161

Bluecat is based on the following main assumptions:162

–4–



Manuscript submitted to Water Resources Research

1. A single D-model is considered, with a single parameter set. Section 6 will present163

a discussion on the possible extension of the Bluecat concept to multimodel ap-164

plications.165

2. The stochastic processes describing the modelled variables are stationary during166

the calibration and application period. Non-stationarity can be accounted for by167

using non-stationary D-models (Koutsoyiannis & Montanari, 2015; Montanari &168

Koutsoyiannis, 2014a). Such extension is not considered in the present contribu-169

tion but a discussion is provided in Section 6.170

3. The calibration data set is extended enough to ensure that sufficient information171

is available to upgrade the D-model into the S-model.172

Further assumptions will be introduced and discussed in Section 3.173

The third assumption above highlights that the S-model, like the D-model, needs174

a proper calibration, which implies that a sufficiently long record of observed data, re-175

ferring to a variety of hydrologic conditions, is available for model training. Such require-176

ment may be difficult to satisfy in real world applications, which often refer to poorly177

gauged or ungauged conditions. We will discuss in Section 6 the implications of running178

Bluecat with a limited training.179

The flow chart of the procedure for applying Bluecat is as follows (see Figure 1):180

1. The D-model is calibrated by using observed data;181

2. At the prediction time t∗ the D-model is run to produce an estimated river flow182

Q(t) at time t;183

3. A set of size m1+m2+1 (see Section 3.1 for details) of predicted river flows from184

the calibration data set, including the one with the smallest difference from Q(t)185

plus m1 lower and m2 greater in magnitude of it, is extracted and the correspond-186

ing simulated river flows qi, i = 1, ..., 2m+ 1 are identified;187

4. From the obtained sample of qi the mean (or median) prediction and the confi-188

dence band for assigned confidence level from the S-model are estimated by us-189

ing one of the methods described in Section 3.190

Thus, the S-model operates an adjustment of the D-model to compensate its inability191

to fully reproduce the observed reality. We develop and present in the following section192

a theory to prove the rigorousness of the concept and the ability of the S-model to asymp-193

totically represent the desired probability distribution of the predictand.194

3 Theory of Bluecat195

We consider a hydrologic D-model transforming inputs xτ (e.g. rainfall) at discrete196

time τ to deterministic outputs Qτ (e.g. river discharge) by means of a relationship that197

takes the form198

Qτ = G (xτ ) , (1)199

where xτ is a vector containing a number of consecutive input variables, or even a ma-200

trix consisting of several input variables (such as rainfall, evapotranspiration, perhaps201

river discharge in an upstream basin, and possibly others). The transformation function202

is generally complicated, also involving additional state variables (e.g. soil moisture). A203

model is never identical to reality and the observed output (the predictand) qτ will be204

different from the model prediction Qτ . In the present work we consider the HyMod rainfall-205

runoff model (Boyle, 2000) as D-model, which involves 5 parameters.206

As mentioned above, Montanari and Koutsoyiannis (2012) proposed a framework207

to upgrade a deterministic model into a stochastic one, which provides the probability208

distribution of the predictand given the inputs and the deterministic model output, con-209
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Figure 1. Schematic representation of the Bluecat concept underlying the trans-

formation of the deterministic model (D-model) to a stochastic model (S-model).

The painting in the upper right corner is cropped from the picture available at

https://www.flickr.com/photos/cizauskas/36142084534/ of the Andy Warhol exhibition at the

High Museum, Atlanta, Georgia, USA (CC BY-NC-ND 4.0).
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sidering the uncertainty in model parameters and input variables. This work has been210

discussed (Nearing, 2014; Montanari & Koutsoyiannis, 2014b) and advanced in other stud-211

ies (Sikorska et al., 2015; Quilty & Adamowski, 2020; Papacharalampous, Tyralis, & Kout-212

soyiannis, 2019). Here we pursue the same aim but in a different setting, with the pur-213

pose of upgrading the D-model into the S-model by using the simplest approach based214

on data analysis.215

As anticipated in Section 2 we assume that the information contained in the true216

outputs qτ and concurrent predictions by the D-model Qτ is sufficient to support the above217

upgrade. This implies that the upgrade is properly trained over a sufficiently long cal-218

ibration period. Transparency and ease of understanding of the procedure is a princi-219

pal objective and therefore we do not involve multiple simulations, but rather focus on220

a single model for which we aim to estimate the global prediction uncertainty. As a con-221

sequence, we do not consider parameter uncertainty in the D-model on the basis that222

another parameter set is in fact another model. This assumption is further discussed in223

Section 6.224

Second, we do not subdivide uncertainty in different components as Bluecat au-225

tomatically incorporate all types, including the uncertainty in input data and param-226

eters, for which no particular provision is necessary. As already mentioned, the frame-227

work also assumes stationarity. If different subperiods are characterized by different model228

parameters or different input uncertainty, then one can split the entire simulated period229

in subperiods in which stationarity can be safely assumed. In alternative, the assump-230

tion of stationarity may be relaxed by considering a non-stationary D-model, as discussed231

in Section 6.232

For advancing the D-model into its corresponding S-model we regard all related233

quantities as stochastic (random) variables and their sequences as stochastic processes.234

For notational clarity we underline stochastic variables, stochastic processes and stochas-235

tic functions. We use non-underlined symbols for non stochastic variables and determin-236

istic functions, as well as for realizations of stochastic variables and stochastic processes,237

where the latter realizations are also known as time series.238

We assume that the inputs xτ , at discrete times τ , have a stationary probability239

density function fx(x) and distribution function Fx(x). The output q
τ

depends on the240

inputs xτ and is given through some stochastic function (S-model) as241

q
τ

= g (xτ ) . (2)242

The stochastic process q
τ

is assumed to correspond to the real process, while the out-243

come of the deterministic model (D-model) of eq. (1) is an estimate thereof. By consid-244

ering xτ in eq. (1) as a stochastic process, retaining however the function G( 6= g) as a245

deterministic function, we obtain the estimator Q
τ

of the output q
τ

as:246

Q
τ

= G (xτ ) . (3)247

To advance from the D-model, in its form (3), to the S-model in (2) we just need248

to specify the conditional distribution:249

Fq|Q(q|Q) = P
{
q ≤ q|Q = Q

}
, (4)250

with q and Q assumed concurrent and referring to discrete time τ . In other words, here251

conditioning is meant in scalar setting. An extension where Q is a vector containing the252

current and earlier predictions by the D-model and possibly other variables is straight-253

forward but not considered here (see also the discussion in Section 6).254

It is relatively easy to infer from data the marginal distribution and density func-255

tions of the S-variable q and D-predicted variable Q. Therefore we may assume that fq(q)256
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and fQ(Q) are known. Then the conditional density sought should obey257 ∫ ∞
−∞

fq|Q(q|Q)dq = 1 (5)258

and259 ∫ ∞
−∞

fq|Q(q|Q)fQ(Q)dQ = fq(q). (6)260

Eq. (5) is trivial. If we set z = FQ(Q) in (6), with Q = F−1Q (z), so that fQ(Q)dQ =261

dz, we obtain262 ∫ 1

0

fq|Q

(
q|F−1Q (z)

)
dz = fq(q). (7)263

By integration one finds264 ∫ q

0

∫ 1

0

fq|Q

(
a|F−1Q (z)

)
dzda = Fq(q), (8)265

and changing the order of the integrals we finally find266 ∫ 1

0

Fq|Q

(
q|F−1Q (z)

)
dz = Fq(q). (9)267

At this stage, if one has time series of concurrent Q and q, each of size n, and if Q(i:n)268

is the ith smallest value in the time series of Q and q(j:n) is the jth smallest value in the269

time series of q, then the approximations FQ(Qi) ≈ i/n and Fq(qj) ≈ j/n can be used270

and thus one approximates Fq(q) in (9) as271

1

n

n∑
i=1

Fq|Q
(
q|Q(i:n)

)
≈ Fq(q), (10)272

and, for q = qj ,273

1

n

n∑
i=1

Fq|Q
(
q(j:n)|Q(i:n)

)
≈ j

n
. (11)274

Hence,275

Bj :=

n∑
i=1

Fq|Q
(
q(j:n)|Q(i:n)

)
= j. (12)276

We can thus attempt to determine Fq|Q by minimizing the quantity277

A :=

n∑
j=1

(Bj − j)2 =

n∑
j=1

(
n∑
i=1

Fq|Q
(
q(j:n)|Q(i:n)

)
− j

)2

, (13)278

therefore obtaining the desired conditional distribution which leads to the formulation279

of the S-model corresponding to the D-model.280

3.1 Determining the conditional distribution281

In real world applications the D-model will provide an uncertain and possibly bi-282

ased prediction. In such cases the S-model is applied by sampling from the conditional283

distribution Fq|Q(q|Q) which incorporates both a shift of the prediction Q toward the284

real value q (bias correction) and the probabilistic assessment of the stochastic error (un-285

certainty assessment). A necessary preliminary step is the definition of the above con-286

ditional distribution as defined by eq. (4).287

One strategy to tackle the problem is to use a parametric relationship for the func-288

tion Fq|Q(q|Q) and determine its parameters by minimizing the quantity A in eq. (12).289
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A possibility would be to assume Fq|Q(q|Q) to be a Pareto-Burr-Feller (PBF) distribu-290

tion (see Koutsoyiannis (2021)) with constant tail indices ξ and ζ and scale parameter291

varying with Q. A similar approach would be to assume a copula C (Fq(q), FQ(Q)) and292

determine Fq|Q(q|Q) as293

Fq|Q(q|Q) =
FqQ(q,Q)

fQ(Q)
, (14)294

with295

Fq|Q(q,Q) = C (Fq(q), FQ(Q)) . (15)296

While a parametric approach like the above is attractive from many aspects, here297

we propose a fully data based approach, i.e. we try to determine Fq|Q(q|Q) from the data298

alone (see figure 1). As the variables of interest in hydrology are of continuous type, we299

may expect that each value Qτ in the available time series appears only once. Thus we300

cannot form a sample of observed data for a particular value of Q. However, as a sim-301

ple approximation of Fq|Q(q|Q), we can form a sample qi, i = 1, ..., (m1 + m2 + 1), of302

Q-neighbours based on:303

Fq|Q(q|Q) = P
{
q ≤ q|Q = Q

}
≈ P

{
q ≤ q|Q−∆Q1 ≤ Q ≤ Q+ ∆Q2

}
≈304

≈ P
{
q ≤ q|FQ(Q)−∆F1 ≤ FQ(Q) ≤ FQ(Q) + ∆F2

}
=: Fq|Q (q|Q,∆F1,∆F2) , (16)305

where the increments ∆Qi and ∆Fi can be chosen based on the requirement that the306

intervals below and above the value Q (or FQ(Q)) contain appropriate numbers of data307

values, m1 := ∆F1n and m2 := ∆F2n, respectively. The numbers m1 and m2 should308

not be too large, so that FQ(Q)±∆F1,2 be close to FQ(Q), nor too small, so that the309

probability310

P
{
q ≤ q|(FQ(Q)−m1/n ≤ FQ(Q) ≤ FQ(Q) +m2/n)

}
(17)311

can be estimated from the sample of qi. From the above probability distribution one can312

easily estimate the mean value, or alternatively the median which may be more robust313

against outliers, which gives the S-model prediction. As for the confidence limits one pos-314

sibility is to compute empirical quantiles through order statistics. For example, one may315

choose ∆F1 = ∆F2 = ∆F and m1 = m2 = m. If one sets, say, m1 = m2 = m = 20,316

i.e. m1 + m2 + 1 = 41, the lowest and highest quantiles that can be empirically esti-317

mated would correspond to 1/41 ≈ 2.5% and 1 − 1/40 ≈ 97.5%, respectively. Con-318

versely, for probabilities 2.5% and 97.5%, which correspond to a confidence level of 95%,319

we can empirically estimate the corresponding quantiles of q as the minimum and the320

maximum observed value, respectively, in the sample qi of m1 +m2 + 1 values.321

One should note that a sample size of m1 +m2 + 1 may not be obtained for the322

extreme values of the simulation, for which a number m1 of lower predictions and a num-323

ber m2 of higher ones may not be available. In such cases the sample size need to be re-324

duced accordingly.325

We point out that order statistics deliver quantile estimation for a limited set of326

probabilities that correspond to the frequency of data in the sample qi. Therefore the327

above approach cannot be used for estimating quantiles for arbitrary probabilities of the328

conditional distribution Fq|Q(q|Q). When such need arises, for instance when perform-329

ing large ensemble simulations, a parametric relationship for Fq|Q(q|Q) should be adopted330

and fitted as suggested above. Since here we do not use a parametric approach, we will331

handle this problem by the concept of K-moments discussed in section 3.2, noting though332

that even this cannot exceed some limits imposed by the subsample length (m1+m2+333

1).334

3.2 Robust Estimation of Empirical Quantiles335

The above empirical estimation of quantiles through order statistics is based on one336

data point only, as it identifies the single observation that is closer in frequency to the337
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probability that corresponds to the desired confidence level. A possible solution to in-338

crease the robustness of the estimation is offered by the recently introduced concept of339

knowable moments (K-moments, see Koutsoyiannis (2019, 2021)) which gives an alter-340

native for empirical quantile evaluation that is more reliable than order statistics as it341

combines many data points in each estimate. Furthermore, K-moments offer unbiased342

estimates of distribution quantiles, while the order statistics enable unbiased estimates343

of the distribution function. The two estimates may differ substantially for heavy-tailed344

distributions.345

The noncentral knowable moment (or noncentral K-moment) of order (p, q) of the346

random variable x is defined as (Koutsoyiannis, 2019)347

K
′

pq := (p− q + 1)E
[
(F (x))

p−q
xq
]
, (18)348

with p ≥ q and E indicating the expected value. A most interesting special case is q =349

1. In fact, the noncentral knowable moment of order (p, 1) is given by350

K
′

p = pE
[
(F (x))

p−1
x
]
, (19)351

with p ≥ 1. A basic property that connects the K-moments with expectations of max-352

ima is353

K
′

p = E
[
x(p)

]
= E

[
max

(
x1, x2, ..., xp

)]
. (20)354

For expectations of minima another type of K-moments is defined, as described in Koutsoyiannis355

(2021). Therefore, by definition K
′

p represents the expected value of the maximum of p356

copies of x and thus it is an estimate for the empirical quantile, which is computed by357

considering the whole data sample.358

A key step in the above procedure is the estimation of two K-moment orders ph359

and pl, corresponding to the desired confidence level, for the upper and lower confidence360

limit, respectively. We illustrate here below the procedure for computing ph and refer361

to Koutsoyiannis (2021) for details on the computation of pl.362

First, let us introduce the Λ-coefficient of order ph as363

Λph :=
1

ph
(
1− F (K ′ph)

) . (21)364

Λph varies only slightly with ph. Any symmetric distribution will give exactly Λ1 = 2365

because K
′

1 is the mean, which in a symmetric distribution coincides with the median366

and thus yields F (K
′

ph
) = 1/2. The exact value Λ1 is easy to determine, as it is directly367

related to the mean, namely,368

Λ1 :=
1

1− F (µ)
, (22)369

while the exact value of Λ∞ depends only on the tail index ξ of the distribution accord-370

ing to371

Λ∞ =

{
Γ(1− ξ)

1
ξ

eγ
(23)372

where γ = 0.577 is the Euler’s constant.373

Basing on the above estimates for Λ1 and Λ∞ the following approximation may be374

used for estimating Λph , which is satisfactory for several distributions:375

Λph ≈ Λ∞ +
Λ1 − Λ∞

ph
, (24)376

and, substituing in eq. (21)377

F
(
K
′

ph

)
≈ 1− 1

Λ∞ph + (Λ1 − Λ∞)
. (25)378
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Conversely, for a given non-exceedance probability F , we can calculate the quan-379

tile x as the K
′

ph
that corresponds to:380

ph ≈
1

Λ∞ (1− F )
+ 1− Λ1

Λ∞
(26)381

where, in our case, F = 1−α/2, being α the significance level of the confidence band.382

For estimating Λ1 an expression for the probability distribution of F is to be se-383

lected and plugged into eq. (22). Koutsoyiannis (2021) provides ready-to-use relation-384

ship for Λ1 for several probability distributions. The distribution F can be assumed to385

be invariant over the range of the simulated river flows. Therefore, estimates for the tail386

index can be obtained by fitting the whole observed data sample (or the mean predic-387

tion sample obtained with the S-model) with a suitable probability distribution (we use388

the Pareto-Burr-Feller distribution for the case studies presented in Section 5). Note that389

the above distributional assumption on the whole data set has the only purpose of pro-390

viding estimates for the tail index (F (µ) is also required but this can readily be estimated391

from data even without fitting a distribution) and therefore we do not make any assump-392

tion on the distribution of each individual sample that is used for the estimation of the393

empirical quantiles at each time step.394

4 Assessment of Goodness of Fit395

Assessment of performance is essential to provide end users with an indication of396

the reliability of the S-model and its confidence limits. Besides providing values of the397

Pearson correlation coefficient between observed and simulated data and the Nash ef-398

ficiency for both the D-model and S-model, we also draw the diagnostic plots described399

below and report the percentage of observations lying outside the confidence limits, es-400

timated by using both order statistics and robust estimation.401

4.1 Combined Probability-Probability (CPP) Plot402

A simple graphical test is introduced here to assess the performances of the S-model.403

It is based on the comparison of the marginal distributions of observed and predicted404

variables. Here we refer to it as “Combined Probability-Probability” (CPP) plot. CPP405

is a plot of the empirical distribution function Fw(w) of a stochastic variable w against406

its value w. The variable is defined as the non-exceedance probability:407

w := FQ(q). (27)408

Its distribution function is Fw(w) = P {w ≤ w} = P
{
FQ(q) ≤ w

}
= P

{
q ≤ F−1Q (w)

}
409

and hence:410

Fw(w) = Fq

(
F−1Q (w)

)
. (28)411

In other words, Fw(w) combines the distribution functions of predictions Q and real quan-412

tities q. The predictions are regarded as good if the plot Fw(w) versus w is the equal-413

ity line, i.e., if Fw(w) = w, which means that the distribution of w is uniform. In this414

case F−1q (w)) = F−1Q (w). This is possible only if FQ(x) is identical to Fq(x), which is415

what we would like to check. Note that a CPP plot lying above (below) the equality line416

indicates overprediction (underprediction) while a S-shaped CPP plot with the initial417

part above (below) the equality line and the second part below (above) the equality line418

indicates overestimation of low (high) flows and underestimation of high (low) flows.419

In essence, the plot tests whether the two distributions, estimated from the data,420

are identical. We note that the CPP plot, except for assessing the proximity of the two421

marginal distributions, does not give any other indication if the predictions are good.422
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For example if Q is completely independent from q (as it may happen if an obviously ir-423

relevant model is used) but the two distributions are identical, again the distribution of424

w will be uniform.425

4.2 Predictive Probability-Probability Plot426

A second check is herein used to verify the reliability of the estimated confidence427

band. Laio and Tamea (2007) have introduced a diagnostic plot combining probability428

distributions of predictions and true values, which has become later popular in similar429

studies, having been termed “predictive quantile-quantile” (PQQ) plot (Eslamian, 2014),430

even though in the original paper it has been called simply probability plot. Here we re-431

fer to it as “predictive probability-probability” (PPP) plot because the plot actually rep-432

resents probabilities. PPP is a plot of the empirical distribution function Fz(z), of a stochas-433

tic variable z, where the latter also represents probability, i.e., a conditional non-exceedance434

probability, namely435

zQ := Fq|Q(q). (29)436

In other words, z is the distribution function of the prediction evaluated for the observed437

value of the predictand. The idea of PPP comes from the Rosenblatt’s result that for438

any stochastic process xτ in discrete time τ = 1, 2, . . . , the sequence of variables z1, z2, ..., zτ ,439

whose values are:440

zτ := P
{
xτ ≤ xτ |xτ−1 = xτ−1, ..., x1 = x1

}
= Fxτ |xτ−1

(xτ |xτ−1) (30)441

are independent and identically distributed with uniform distribution in [0, 1]. Note that442

here we used the vector notation xτ−1 := [xτ−1, ..., x1]T to represent all values of the443

process earlier than τ . One may see an analogy of zQ defined in eq. (29) with zτ defined444

in (30) as they both are predictive distributions. Extending this analogy, one would ex-445

pect that different z defined by eq. (29) would also be independent and identically dis-446

tributed, which allows considering the different values as a sample of a single variable447

z. In turn, this enables estimating the distribution function of z from the sample.448

The information conveyed by the PPP plot is useful as it provides an overview of449

the reliability of the estimated confidence band for any confidence level, by showing de-450

partures of the calibrated predictive distribution from the optimal one. Specifically, a451

shape of the validation curve above or below the equality line indicates overprediction452

and underprediction, respectively, while a shape above (below) the equality line in the453

first part of the diagram and below (above) the same line in the second part means that454

the forecast is narrow (large). Figure 2 provides a graphical overview of the above fea-455

tures, while more details are given by Laio and Tamea (2007). Furthermore, the depar-456

ture of the PPP plot from the equality line is a relative (with respect to the sample size)457

measure of the number of points lying below the lower and above the upper confidence458

limit. For example, coverage probabilities for confidence level of 0.8 are related to seg-459

ments A and B in figure 2.460

In fact, the percentage of observations lying below a confidence limit is such that461

for a given Q the probability that the true discharge is not greater than q is462

P
{
q ≤ q|Q = Q

}
= Fq|Q(q). (31)463

If we choose a non-exceedance probability α, 0 ≤ α ≤ 1, so that, for any Q, Fq|Q(q) =464

α then the latter relationship specifies a confidence curve for q, which is a function q =465

h(Q), given that α is constant. The probability466

P
{
q ≤ h(Q)|Q = Q

}
= Fq|Q(h(Q)) = α (32)467

is constant, independent of Q. Moreover, given the definition of z and its property not468

to depend on Q, one obtains z = α. If the distribution of z is uniform in (0,1), i.e. Fz(z) =469
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Figure 2. Information conveyed by the PPP plot.

z, the value of Fz(z) at the point z = α will be equal to α. Therefore any deviation from470

uniformity is a relative measure of the number of observations exceeding the value α that471

would be expected that fall outside the confidence limit.472

Note that the non-parametric fully data based approach of Bluecat infers Fq|Q(q)473

in calibration from eq. (16), basing on subranges of Q. Therefore, if one estimates the474

zτ sample for the same values of Q the empirical distribution of z will be clearly uniform,475

regardless of the D-model performance or any other feature of the processes qτ and Qτ .476

Therefore, the PPP plot for the calibration period of Bluecat will always be a straight477

line (equality line) by definition, because the data to be predicted are those that have478

been used to estimate the predictive distribution.479

5 Case Studies480

Bluecat was first tested with control experiments that have been presented by Koutsoyiannis481

and Montanari (2020). These confirmed the capability of the method to estimate reli-482

ably stochastic predictions and coverage probabilities in controlled conditions.483

Here we present two case studies to test the performances of Bluecat in real world484

applications. They refer to the cases of the Arno river at Subbiano and the Siver river485

at Fornacina, for which a rainfall-runoff model is used to elaborate river flow predictions.486

The Sieve river is a tributary of the Arno river. They flow in the Tuscany Region, in Italy.487

Figure 3 presents a schematic map of the river basins. Climate is continental with low488

flows during Summer and high flows in the Fall and Spring seasons. Occasionally high489

flow events may occur during the winter.490
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We apply to both case studies the rainfall-runoff model HyMod (Boyle, 2000; Mon-491

tanari, 2005) with 5 parameters. These are Cm[length], the maximum storage capacity492

within the basin), β[dimensionless], the degree of spatial variability of the soil moisture493

capacity within the basin, α[dimensionless], a factor for partitioning the flow between494

two routing procedures, k1 [time] and k2 [time], characteristic times for the two rout-495

ing components.496

For both case studies we calibrated the HyMod model by minimizing the Nash-Sutcliffe497

efficiency. It is well known that performance metrics are affected by significant sampling498

uncertainty (Clark et al., 2021; Barber et al., 2020). Lamontagne et al. (2020) have shown499

that estimation robustness may be improved by performing a preliminary logarithmic500

transformation of observed and simulated river flow data. Therefore, we considered the501

following transformation, which can be applied also to intermittent river flows (Koutsoyiannis,502

2021):503

y = λ log(1 +
x

λ
) (33)504

where x and y are original and transformed data, respectively, and λ is a parameter. For505

λ → 0 and λ → ∞ eq. (33) becomes equivalent to the logarithmic and the identity506

(y = x) transform, respectively.507

It is well known that a limited training for hydrologic models may cause overpa-508

rameterisation, which in turn implies that model performances in calibration may not509

deliver a useful information on the reliability of model predictions in validation. This is-510

sue will be further discussed in Section 6.511

We estimated confidence limits by applying both robust estimation and order statis-512

tics by adopting a confidence level of 80%. We selected m1 = m2 = 100 which means513

that each prediction distribution is estimated over a sample of m1 +m2 +1 = 201 ob-514

servations. For the extreme values of the prediction the sample size was reduced when515

enough lower/higher predictions were not available (see the note at the bottom of Sec-516

tion 3.1). The S-model predictions were obtained by estimating the median value of the517

conditional probability distribution given by eq. (4), although CPP plots were drawn518

for the mean stochastic prediction as well.519

Median prediction and confidence band for the S-model were estimated for both520

the calibration and validation period. Of course we expect better performances of the521

S-model for the calibration period while the validation exercise is expected to provide522

an indication of the Bluecat performances for out of sample prediction. Goodness of fit523

is estimated by the performance indicators discussed in Section 4.524

5.1 Arno River at Subbiano525

The catchment of the Arno river at Subbiano is located within the mountain belt526

of the Northern Apennines, with mean, minimum and maximum elevation of 750, 250527

and 1657 m above sea level, respectively. The catchment area is about 752 km2 and the528

average catchment slope is about 14%. The data of mean areal daily rainfall (estimated529

from raingauge observations) and evapotranspiration (estimated from temperature data)530

span the 22-year period 1992-2013. We use the first 20 years for model calibration and531

the last two years for model validation. Optimization was performed after transform-532

ing data as in eq. (33) with λ = 0.0001, a value that was selected by looking at the S-533

model performances in calibration. Calibrated model parameters are given in Table 1.534

For the calibration period the Pearson correlation coefficient between the D-model out-535

puts Q and the observed values q is 0.84, which means that the model is able to explain536

0.842 = 71% of the total variance. The Nash efficiency is 0.63.537

Figure 4 shows the results of the application of Bluecat in calibration mode with538

robust estimation. In the left panel a scatterplot of D-model predictions versus observed539

values and S-model predictions is shown, along with the related confidence limits. The540
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Figure 3. Basins of the Arno river at Subbiano and the Sieve river at Fornacina.

Figure 4. D-model and S-model predictions, along with confidence limits, for the calibration

period of the Arno river at Subbiano. The right panel depicts 100 days of the calibration period,

where the first day is January 1st, 2011.

inset shows a detailed representation of the low flow range. The right panel depicts 100541

days of the calibration period, where the first day is January 1st, 2011.542

The S-model displayed improved predicting performances, with a Pearson corre-543

lation coefficient of 0.88 and a Nash efficiency of 0.77 (median prediction). Figure 4, par-544

ticularly in the inset, also shows that the D-model overpredicts low discharges and un-545

derpredicts high ones. The bias is reduced by the S-model. Coverage probabilities are546

reported in Table 2, for confidence band estimated with both order statistics and robust547

estimation. The CPP plot, shown in Figure 6, confirms the prediction bias of the D-model548

and the improved performances of the S-model which, however, still overpredicts the low549

flows as Figure 4 anticipated.550

The results of the validation are shown in Figure 5, Table 2 and Figure 6. The right551

panel in Figure 5 depicts 100 days of the validation period, where the first day is Jan-552

uary 1st, 2013. The D-model performance in validation is summarised by a Pearson cor-553
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Figure 5. D-model and S-model predictions, along with confidence limits, for the validation

period of the Arno river at Subbiano. The right panel depicts 100 days of the validation period,

where the first day is January 1st, 2013.

Figure 6. Combined probability-probability (CPP) plots for the predictions of the river flows

of the Arno river at Subbiano in calibration (left) and validation (right).
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Table 1. HyMod model calibrated parameters for the considered case studies

Basin Cm[mm] β[−] α[−] k1[days] k2[days]

Arno 336 0.10 0.61 24.34 1.25
Sieve 323 0.20 0.55 4.61 357.53

relation coefficient of 0.80 and a Nash efficiency of 0.57. Sligthly better performances are554

given by the S-model prediction, with Pearson coefficient of 0.81 and a Nash efficiency555

of 0.62. The CPP plot confirms that the S-model improves the performances in terms556

of probability distribution of the predictions and proves the slightly better performances557

of the median with respect to the mean of the probability distribution given by eq. (4)558

to compute the S-model prediction. It also suggests an overestimation and underestima-559

tion of low and high flows, respectively.560

The PPP plot is reported in Figure 10 (left) and shows that in validation the con-561

fidence limits are narrow. This outcome is confirmed by the percentage of observations562

lying outside the confidence limits, which are reported in Table 2, which are higher than563

the values of 10% for each band that one would expect for a confidence level of 80%. Fur-564

ther consideration on the PPP plot results for the Arno River are found in the Section565

6.566

5.2 Sieve River at Fornacina567

The Sieve river is a tributary of the Arno river that is also located in the North-568

ern Apennines, with mean, minimum and maximum elevation of 488, 96 and 1637 m above569

sea level, respectively. The catchment area is about 846 km2 and the average catchment570

slope is about 12%. The data of mean areal hourly rainfall (estimated from raingauge571

observations) and evapotranspiration (estimated from temperature observations) span572

the 5-year period 1992-1996. The flow regime of the Sieve river is intermittent with the573

presence of about 4% of zero values in the available record.574

We use the data from June 1st, 1992 to December 31st, 1994 for model calibra-575

tion and the data from June 2nd, 1995 to December 31st, 1996 for model validation. Note576

that we discarded the January-May period for both calibration and validation because577

high flows typically occur in that season that are not satisfactorily reproduced by Hy-578

Mod for the limited duration of the model warm up. We maximized the Nash-Sutcliffe579

efficiency to calibrate the parameters without applying any transformation to the data,580

as this led to the best S-model performances in terms of median prediction and cover-581

age probabilities.582

Calibrated model parameters are given in Table 1. For the calibration period the583

correlation coefficient between the D-model outputs Q and the observed values q is 0.91,584

which means that the model is able to explain 82% of the total variance. The Nash ef-585

ficiency is 0.81. Figure 7 confirms the good fit of the model in calibration. The right panel586

depicts 150 hours of the calibration period starting from September 16th, 1992 at 5 AM.587

The calibration results confirm the improved performances of the S-model, whose588

mean prediction has a Pearson correlation coefficient of 0.94 and Nash efficiency of 0.88.589

Figure 7, particularly in the inset, shows that the S-model corrects the prediction bias590

of the D-model. The percentage of points lying above and below the confidence limits591

is reported in Table 2. The CPP plot, shown in Figure 9, confirms the improved perfor-592

mances of the S-model and in particular its effectiveness in correcting the D-model bias593

in the high flow domain.594
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Figure 7. D-model and S-model predictions, along with confidence limits, for the calibration

period of the Sieve river at Fornacina. The right panel depicts 150 hours of the calibration period

starting from September 16th, 1992 at 5 AM.

Figure 8. D-model and S-model predictions, along with confidence limits, for the validation

period of the Sieve river at Fornacina. The right panel depicts 150 hours of the validation period

starting from January 5th, 1996.

Figure 9. Combined probability-probability (CPP) plots for the predictions of the river flows

of the Sieve river at Fornacina in calibration (left) and validation (right).
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Figure 10. Predictive probability-probability (PPP) plots for the validation of the river flows

predictions for the Arno river (left) and the Sieve river (right).

Table 2. Percentage of observations lying outside the 80% confidence limits for the considered

case studies. Band was estimated with both order statistics and robust estimation. Subscripts h

and l refer to upper and lower limit, respectively.

Arno calibration Arno validation Sieve calibration Sieve validation
%h %l %h %l %h %l %h %l

Robust estimation
10% 8% 17% 16% 17% 7% 13% 14%

Estimation with order statistics
9% 10% 17% 22% 8% 9% 6% 16%

Validation results are shown in Figure 8, where the right panel depicts 150 hours595

of the validation period starting from January 5th, 1996 at 12 AM, and Figure 9. The596

D-model performance in validation is summarized by a Pearson correlation coefficient597

of 0.87 and a Nash efficiency of 0.53. The low value of the Nash efficiency is due to the598

significant overestimation of the low flows by the D-model. It is interesting to note that599

the S-model prediction exhibits a better fit with a Pearson coefficient of 0.88 and a Nash600

efficiency of 0.66. The latter is markedly improved thanks to the capability of Bluecat601

to correct the prediction bias. As for the confidence band, the PPP plot shows overall602

a good fit with a slight overprediction especially with regard to the lower limit (see also603

Table 2).604

The results of the two case studies will be further discussed in Section 6.605

6 Discussion606

In introducing Bluecat we assumed that the probability distribution of the observed607

data, conditioned to the D-model simulation, can be reliably inferred from a calibration608

exercise (see Sections 2 and 3). Actually, this assumption holds asymptotically, namely,609

when the size of the calibration data sample is large. Furthermore, the assumption that610

we made that input and parameter uncertainty are satisfactorily resembled by the prob-611

ability distribution given by eq. (4) also holds asymptotically.612

When the calibration data set is not extended enough one may experience over-613

parameterisation, which implies that the calibrated model exhibits satisfactory perfor-614
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Figure 11. Sampling variability for the PPP plot of the Arno river in calibration and compar-

ison with the PPP plot in validation.

mances in calibration that are not confirmed in validation. Therefore, in such cases the615

D-model errors in calibration may be much smaller than those in validation, which im-616

plies that the S-model generated by Bluecat may underestimate prediction uncertainty.617

That is, confidence band may be narrow, which means that the PPP plot would be S-618

shaped with the first and second part displaced above and below the equality line, re-619

spectively.620

Furthermore, a limited extension of the validation period may imply uncertainty621

due to sampling variability. Namely, even if the confidence limits are statistically cor-622

rect they may still provide a poor assessment of uncertainty when referring to specific623

and short prediction periods.624

To inspect this issue, we performed an additional experiment for the Arno river by625

referring to the calibration period. We first computed the PPP plot in calibration, there-626

fore obtaining an equality line as expected (see figure 11). Then, we redrew the PPP plot627

for 10 non-overlapping subperiods including 731 observations, which is precisely the length628

of the validation period. As expected, figure 11 shows that sampling variability causes629

a dispersion of the obtained PPP plots. For the sake of comparison, figure 11 also shows630

the PPP plot for the validation period, which is almost entirely included within the en-631

velop of the calibration PPP plots obtained for the same sample size. Therefore, figure632

11 shows that the deviation from the equality line that we obtaned for the Arno river633

in validation may be explained by sampling variability.634

About the CPP plot, one should always take into account that the marginal dis-635

tributions of predicted and observed data may be incidentally similar even if the predic-636

tion is poor. In particular, this may happen when the model performances in terms of637

correlation and Nash efficiency are far from satisfactory.638

Regarding the case studies presented here it is intersting to note that for both Arno639

and Sieve rivers the stochastic prediction outperformed the deterministic model by cor-640

recting its bias for the various flow regimes. This outcome confirms that the additional641

value provided by the S-model is technically useful.642

With regard to the confidence band, for the cases presented here, we indeed found643

that the observations lying outside the higher and lower confidence limits in validation644
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are often higher than the value of 10% for each band that one would expect for a con-645

fidence level of 80% (see Table 2). Such deviations are expected when the simulation646

period is short, even due merely to sampling variability, as illustrated with the Arno river647

case study.648

In technical applications it is important for the user to recognize the cases of “huge649

uncertainty in uncertainty assessment”. First, we conclude that an accurate selection of650

the model calibration period is particularly important for Bluecat, which is calibrated651

at each local flow range. It is not possible to provide a general rule for assessing if a cal-652

ibration period is long enough, as the answer depends on the type of model, the vari-653

ability of the modeled processes, data seasonality and many others. It may be useful to654

split the available data sample in non-overlapping pieces and perform repeated valida-655

tion tests to assess whether model performances are stable. The split sample exercise656

also allows to infer sampling variability. Second, we suggest that the final model train-657

ing before application is carried out by using the largest possible data set and paying658

particular attention to detect possible model deficiencies that may not be resembled by659

the estimated conditional probability distribution of eq. (4).660

We would like to discuss further the assumption of stationarity, which may be re-661

garded as a limitation if one believes that the impact due to a possibly changing climate662

may be better predicted with a non-stationary approach (for an extended discussion on663

this subject see, e.g., Luke et al. (2017) and Montanari and Koutsoyiannis (2014a)). We664

also note that the conditional distribution given by eq. (4) might be seasonal, although665

part of the seasonality features are already incorporated in the D-model (for example,666

a large prediction of discharge would appear during the rainy, rather than the dry, pe-667

riod). There are many possible solutions for applying Bluecat in a non-stationary con-668

text. We may suggest to first consider a D-model with time varying (perhaps seasonal)669

parameters under the assumption that the uncertainty of the non-stationary model is670

described by a stationary distribution as given by eq. (4). If one would like to consider671

a non-stationary uncertainty, then a parametric and non-stationary distribution (per-672

haps a Pareto-Burr-Feller distribution with time varying seasonal parameters) may be673

adopted to describe uncertainty as described in Section 3.1, by paying particular atten-674

tion to the increased risk of overparameterization that non-stationary models imply. In-675

deed, exploring the above dependencies in a stochastic framework would require an ex-676

tended calibration data set to compensate the uncertainty introduced by additional model677

complexity. Overall, such modelling choices will unavoidably increase uncertainty and678

therefore would hardly be advisable for copying with real-word problems. If the extent679

of the data set is large enough, in cases justifying a seasonal approach, partioning the680

whole data set into seasons is a possible solution to ensure that both the D-model and681

Bluecat provide a good fit of seasonality. If a permanent change of the process statis-682

tics is detected (e.g. due to urbanization) it would recommendable to “stationarize” the683

data, adapting them to the current conditions and perform similar adaptations to the684

D-model. This is similar (albeit opposite) to “naturalization” of data series that is typ-685

ically made in cases of river modifications due to dams and so forth.686

One may wonder what is the distinguishing behavior of Bluecat with respect to the687

approaches that we previously proposed (Montanari & Koutsoyiannis, 2012; Sikorska et688

al., 2015). We first note that Bluecat relies on different assumptions and procedures. In689

Montanari and Koutsoyiannis (2012) we adopted a meta-Gaussian distribution to de-690

scribe uncertainty of model predictions which were preliminarily transformed to stabi-691

lize their variance. Bluecat, in a similar manner as Sikorska et al. (2015)), avoids data692

transformation as the conditional probability distribution is automatically defined by the693

data. Furthermore, in Montanari and Koutsoyiannis (2012) and Sikorska et al. (2015)694

we accounted for parameter uncertainty at the expense of a more demanding approach695

for model calibration and application, which is a concern as in a data assimilation con-696

text calibration is to be frequently repeated. In fact, by avoiding any data transforma-697
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tion and offering a fast calibration, Bluecat allows technical applications with limited com-698

putational requirements and time.699

Bluecat indeed shares some similarities with the nearest neighbouring method by700

Sikorska et al. (2015), which may be also used to correct the D-model bias (see, for in-701

stance, Ehlers et al. (2019)). However, we note that Bluecat infers the conditional prob-702

ability distribution of the true data, while Sikorska et al. (2015) estimate the conditional703

probability distribution of the simulation error. Thus, they estimate the prediction un-704

certainty of the D-model rather than updating the D-model to the S-model. Therefore705

Bluecat provides a more comprehensive perspective. In view of the above differences, the706

user may select the most appropriate approach for the considered case study, with the707

awareness that model selection should be tailored to the underlying assumptions and op-708

erational needs.709

Although Bluecat has been conceived to be applied to one single model, a multi-710

model application would be straightforward. It was already mentioned in Section 3 that711

an extension where Q is a vector containing the current and earlier predictions by the712

D-model is possible, yet here we study the simpler scalar version of the model. Likewise,713

the multi-model case is another possible vector version of Bluecat, where the vector Q714

contains the outcomes of the various D-models.715

We believe that the application of Bluecat to the considered case studies offers en-716

couraging performances for technical applications. Indeed, Bluecat does, under a rigor-717

ous statistical interpretation and clear assumptions, what the intuition of a technician718

would suggest: to correct model predictions and estimate their uncertainty by looking719

at model performances in the simulation of known data. It is a straightforward and ex-720

tremely simple concept.721

Finally, the end users should be informed that hydrologic modeling, including un-722

certainty assessment, is always uncertain and therefore the information provided by the723

confidence band should be interpreted critically. Nevertheless, this information is tremen-724

dously useful: by selecting an appropriate confidence level Bluecat provides the desired725

information for an assigned safety level of the prediction.726

7 The Bluecat package727

In order to facilitate the application of Bluecat we make available a software work-728

ing under the R-enviroment (R Core Team, 2013) to fit the HyMod rainfall-runoff model729

and estimate its prediction uncertainty. Model fitting can be performed by maximizing730

the Nash-Sutcliffe efficiency using either untransformed data or transformed with equa-731

tion (33), with the option of selecting two different optimization algorithms. Confidence732

limits can be defined by estimating empirical quantiles through order statistics or robust733

estimation (see Section 3.1 and 3.2). Assessment of the goodness of fit is performed by734

plotting the CPP and PPP plots and estimating the Nash-Sutcliffe efficiency. The soft-735

ware is accompanied by instructions (to be displayed with the R help function) and data736

bases of rainfall and potential evapotranspiration for the Arno and Sieve case studies that737

have been presented here. We also include instructions to be used within R to reproduce738

the case studies and the results we presented above.739

While the package focuses on river flow prediction with HyMod, it can be easily740

adapted by substituting HyMod with any deterministic model. In fact, the model rou-741

tine is isolated into a subroutine, currently written in the Fortran 95 programming lan-742

guage, that can be quickly replaced.743

The software is available for download at the web address:744

https://github.com/albertomontanari/hymodbluecat745

along with instructions to compile it in R.746
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8 Conclusions747

We introduce here a new method identified with the acronym “Bluecat” for sim-748

ulating and predicting hydrologic processes, which is based on the use of a generic de-749

terministic model that is subsequently converted to a stochastic formulation. The lat-750

ter provides an update of the deterministic prediction along with uncertainty assessment751

with a transparent data based approach.752

The results of the presented case studies confirm the distinguishing features of Blue-753

cat, its reliability and robustness. In fact, for both case studies the stochastic version of754

the deterministic model provided an improvement of the performances of the determin-755

istic model alone, both in calibration and validation. Furthermore, the estimated con-756

fidence band turned out to be informative: even if some uncertainty affected the esti-757

mation of coverage probabilities, we provided quantitative tests to verify their reliabil-758

ity. In fact, for both case studies Bluecat improved the prediction and provided confi-759

dence limits with an innovative and rigorous information content for technical applica-760

tions.761

In our opinion, for its computational efficiency and transparency Bluecat is a step762

forward for hydrogic modeling with uncertainty assessment. It is also flexible, as it can763

work in conjunction with any type of deterministic model and can be extended to mul-764

timodel applications or multiple predictor variables.765

In view of technical applications, particular care is to be payed to the reliability766

and extension of the calibration data set. In fact, it is usual in hydrology to work in poorly767

gauged conditions, which may lead to overparametrisation, sampling variability and con-768

sequent inflation of uncertainty. Although Bluecat has been proven to be robust, the re-769

liability of the deterministic model calibration should be carefully considered in order770

to avoid a “huge uncertainty in uncertainty assessment”. We discussed potential solu-771

tions to support operational assessment of calibration reliability, which should ultimately772

rely on a careful assessment by end users.773

When developing Bluecat and preparing this paper we decided to give high prior-774

ity to simplicity, transparency, openness and reproducibility. For this reason we make775

available a software to support Bluecat operational applications and reproduction of the776

case studies presented here. We are looking forward to interacting with users for improv-777

ing the software in an open access and open source context.778
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