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Abstract This report contains Supplementary Information, namely, mathematical 

derivations, justifications and illustrations, for the paper series Revisiting causality using 

stochastics (Koutsoyiannis et al., 2022a,b) and in particular its first part, Theory 

(Koutsoyiannis et al., 2022a). It comprises three sections, namely Relationship of 

continuous- and discrete-time impulse response functions (SI1.1), Justification of the linear 

causal system (SI1.2), Derivation of the relationships of autocorrelations and cross-

correlations (SI1.3) and Temporal moments of the impulse response function (SI1.4).  

SI1.1 Relationship of continuous- and discrete-time impulse response 

functions 

The basic equation for the causal system in continuous (natural) time is: 

𝑦(𝑡) = ∫ 𝑔(ℎ)𝑥(𝑡 − ℎ)dℎ

∞

−∞

+ 𝑣(𝑡) (SI1.1) 

Changing variables, i.e., setting 𝑢 = 𝑡 − ℎ, we can also write equation (SI1.1) as 

𝑦(𝑡) = ∫ 𝑔(𝑡 − 𝑢)𝑥(𝑢)d𝑢

∞

−∞

+ 𝑣(𝑡) (SI1.2) 

Now we assume that we do not know the processes 𝑥(𝑡), 𝑣(𝑡), 𝑦(𝑡) in continuous 

time but only at discrete times 𝑡𝜏 = 𝜏𝐷, where 𝑡 is an integer. We can distinguish the 

following three cases.  

Case 1. The instantaneous processes are known at time instants 𝑡𝜏 . 

In this case we may assume that 𝑥(𝑡) is formed as a series of instantaneous impulses at 

𝑡𝑖 = 𝑖𝐷, each of magnitude 𝑥𝑖𝐷δ(𝑡 − 𝑖𝐷), where 𝑥𝑖  is the intensity of the process at time 𝑡𝑖 

and δ( ) is the Dirac delta function. Hence from equation (SI1.2) we get 
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𝑦𝜏 = ∑ ∫ 𝑔(𝜏𝐷 − 𝑢) 𝑥𝑖𝐷δ(𝑢 − 𝑖𝐷)d𝑢

∞

−∞

∞

𝑖=−∞

+ 𝑣𝜏 (SI1.3) 

This yields: 

𝑦𝜏 = ∑ 𝐷𝑔(𝜏𝐷 − 𝑖𝐷) 𝑥𝑖

∞

𝑖=−∞

+ 𝑣𝜏 (SI1.4) 

and finally, by changing variables again (𝑖 = 𝜏 − 𝑗), 

𝑦𝜏 = ∑ 𝑔𝑗  𝑥 𝜏 −𝑗

∞

𝑗=−∞

+ 𝑣𝜏, 𝑔𝑗 = 𝐷𝑔(𝑗𝐷) (SI1.5) 

Case 2. The process 𝑥(𝑡) is known as time averaged, while the other processes are known at 

times instants 𝑡𝜏 . 

In this case we assume that the input 𝑥(𝑡) in the period ((𝑖 − 1)𝐷, 𝑖𝐷) is constant, equal 

to the time average 

𝑥𝑖 ≔
1

𝐷
∫ 𝑥(𝑡)d𝑡

𝑖𝐷

(𝑖−1)𝐷

 (SI1.6) 

Thus, from equation (SI1.2) we get 

𝑦𝜏 = ∑ ∫ 𝑔(𝜏𝐷 − 𝑢) 𝑥𝑖d𝑢

𝑖𝐷

(𝑖−1)𝐷

∞

𝑖=−∞

+ 𝑣𝜏 = ∑ 𝑥𝑖 ∫ 𝑔(𝜏𝐷 − 𝑢) d𝑢

𝑖𝐷

(𝑖−1)𝐷

∞

𝑖=−∞

+ 𝑣𝜏 (SI1.7) 

On the other hand, setting 𝑤 =  𝜏𝐷 − 𝑢, we find 

∫ 𝑔(𝜏𝐷 − 𝑢) d𝑢

𝑖𝐷

(𝑖−1)𝐷

= ∫ 𝑔(𝑤) d𝑤

(𝜏−𝑖+1)𝐷

(𝜏−𝑖)𝐷

= 𝑔I((𝜏 − 𝑖 + 1)𝐷) − 𝑔I((𝜏 − 𝑖)𝐷) (SI1.8) 

where 

𝑔I(𝑎) ≔ ∫ 𝑔(ℎ)dℎ

𝑎

−∞

 (SI1.9) 

Hence,  

𝑦𝜏 = ∑ 𝑥𝑖 ∫ 𝑔(𝜏𝐷 − 𝑢) d𝑢

𝑖𝐷

(𝑖−1)𝐷

∞

𝑖=−∞

+ 𝑣𝜏

= ∑ 𝑥𝑖 (𝑔I((𝜏 − 𝑖 + 1)𝐷) − 𝑔I((𝜏 − 𝑖)𝐷))

∞

𝑖=−∞

+ 𝑣𝜏 

(SI1.10) 

and finally, by changing variables (𝑖 = 𝜏 − 𝑗), 
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𝑦𝜏 = ∑ 𝑔𝑗 𝑥 𝜏 −𝑗

∞

𝑗=−∞

+ 𝑣𝜏, 𝑔𝑗 = 𝑔𝑗 = 𝑔I((𝑗 + 1)𝐷) − 𝑔I(𝑗𝐷) (SI1.11) 

Case 3. All processes are known as time averaged in discrete time  

In this case, which constitutes the most reasonable choice and is most frequently met in 

practice, we have  

𝑦𝜏 ≔
1

𝐷
∫ 𝑦(𝑡)d𝑡

𝜏𝐷

(𝜏−1)𝐷

 (SI1.12) 

where, similarly to (SI1.7), 

𝑦(𝑡) = ∑ 𝑥𝑖 ∫ 𝑔(𝑦 − 𝑢) d𝑢

𝑖𝐷

(𝑖−1)𝐷

∞

𝑖=−∞

+ 𝑣𝑡 = ∑ 𝑥𝑖 ∫ 𝑔(𝑦 − 𝑢) d𝑢

𝑖𝐷

(𝑖−1)𝐷

∞

𝑖=−∞

+ 𝑣𝑡 =

= ∑ 𝑥𝑖(𝑔I(𝑡 − (𝑖 − 1)𝐷) − 𝑔I(𝑡 − 𝑖𝐷))

∞

𝑖=−∞

+ 𝑣𝜏 

(SI1.13) 

Hence, 

𝑦𝜏 ≔
1

𝐷
∫ 𝑦(𝑡)d𝑡

𝜏𝐷

(𝜏−1)𝐷

+
1

𝐷
∫ 𝑣(𝑡)d𝑡

𝜏𝐷

(𝜏−1)𝐷

 

=
1

𝐷
∫ ∑ 𝑥𝑖(𝑔I(𝑡 − (𝑖 − 1)𝐷) − 𝑔I(𝑡 − 𝜏))

∞

𝑖=−∞

d𝑡

𝜏𝐷

(𝜏−1)𝐷

+
1

𝐷
∫ 𝑣(𝑡)d𝑡

𝜏𝐷

(𝜏−1)𝐷

 

(SI1.14) 

where the order of the integral and the sum can be interchanged. On the other hand, 

∫ 𝑥𝑖𝑔I(𝑡 − (𝑖 − 1)𝐷)d𝑡 =

𝜏𝐷

(𝜏−1)𝐷

𝑥𝑖 ∫ 𝑔I(𝑤)d𝑤

(𝜏−𝑖+1)𝐷

(𝜏−𝑖)𝐷

= 𝑥𝑖 (𝐺((𝜏 − 𝑖 + 1)𝐷)  − 𝐺((𝜏 − 𝑖)𝐷)) 

(SI1.15) 

where 

𝐺(𝑏) ≔ ∫ 𝑔I(𝑎)d𝑎

𝑏

−∞

= ∫ ∫ 𝑔(ℎ)dℎ

𝑎

−∞

d𝑎

𝑏

−∞

 ⇔  𝑔I(𝑎) = 𝐺′(𝑎) (SI1.16) 

After algebraic manipulations on (SI1.14), also considering (SI1.15), we find  

𝑦𝜏 = ∑ 𝑔𝑗𝑥𝜏−𝑗

∞

𝑗=−∞

+ 𝑣𝜏, 𝑔𝑗 =
1

𝐷
(𝐺((𝑗 − 1)𝐷) − 2𝐺(𝑗𝐷) + 𝐺((𝑗 + 1)𝐷)) (SI1.17) 
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where now 𝑦𝜏 and 𝑣𝜏 are time averaged, rather than instantaneous process as were in the 

previous cases. 

Interestingly, in cases 1, 2 and 3 the discrete-time impulse response function (IRF) 

ordinate (the coefficient 𝑔𝑗) is, respectively, the zeroth, first and second discrete-time 

derivative of the zeroth, first and second continuous-time anti-derivative (integral) of the 

continuous-time IRF (the function 𝑔(ℎ)), multiplied by the time step 𝐷. Hence, because as 

𝐷 → 0 the continuous and discrete derivatives become identical, in all three cases, for 

small 𝐷 the approximation holds that 

𝑔𝑗 ≈ 𝐷𝑔(𝑗𝐷) (SI1.18) 

On the other hand, this approximation is not acceptable if 𝑗 is also small. In particular, for 

𝑗 = 0, if we assume a classic or potentially causal system, in which in continuous time 

𝑔(0) = 0, then approximation (SI1.18) gives also 𝑔𝑗 = 0, while equation (SI1.17) gives the 

better approximation 

𝑔0 =
1

𝐷
(𝐺(−𝐷) − 2𝐺(0) + 𝐺(𝐷)) (SI1.19) 

In a (classic or potentially) causal system, only the last term is nonzero and hence  

𝑔0 =
𝐺(𝐷)

𝐷
≠ 0 (SI1.20) 

SI1.2 Justification of the linear causal system 

We provide two different lines of thought that justify the linear form of the causal system.  

Justification 1 

In our first version of justification, we start from discrete time and then generalize to 
continuous time. A causal relationship with the process 𝑥𝜏 being the cause and 𝑦𝜏 the effect 

should imply  

𝑦𝜏 = 𝑓(𝑥𝜏, 𝑥𝜏−1, … , 𝑥𝜏−𝜂 , … ) (SI1.21) 

while 𝑦𝜏 should not be functionally dependent on 𝑥𝜏+1, 𝑥𝜏+2, …. We stress that, since we 

are using discrete time and as explained through equation (SI1.20), there no reason to 

exclude 𝑥𝜏 from the functional form 𝑓 in equation (SI1.21). At any point 

(𝑥𝜏, 𝑥𝜏−1, … , 𝑥𝜏−𝜂 , … ) = (𝜉𝜏, 𝜉𝜏−1, … , 𝜉𝜏−𝜂 , … ) we can make a linear approximation of 

𝑓(𝑥𝜏, 𝑥𝜏−1, … , 𝑥𝜏−𝜂 , … ). Omitting the terms of order 2 or higher, we write: 

𝑦𝜏 = 𝑓(𝜉𝜏, 𝜉𝜏−1, … , 𝜉𝜏−𝜂 , … ) + ∑
𝜕𝑓

𝜕𝑥𝜏−𝜂
(𝜉𝜏, 𝜉𝜏−1, … , 𝜉𝜏−𝜂 , … )

∞

𝜂=0

(𝑥𝜏−𝜂 − 𝜉𝜏−𝜂) (SI1.22) 

or 
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𝑦𝜏 ≈ 𝑓(𝜉𝜏, 𝜉𝜏−1, … , 𝜉𝜏−𝜂 , … ) − ∑
𝜕𝑓

𝜕𝑥𝜏−𝜂
(𝜉𝜏, 𝜉𝜏−1, … , 𝜉𝜏−𝜂 , … )

∞

𝜂=0

𝜉𝜏−𝜂

+ ∑
𝜕𝑓

𝜕𝑥𝜏−𝜂
(𝜉𝜏, 𝜉𝜏−1, … , 𝜉𝜏−𝜂 , … )

∞

𝜂=0

𝑥𝜏−𝜂 

(SI1.23) 

We chose (𝜉𝜏, 𝜉𝜏−1, … , 𝜉𝜏−𝜂 , … ) so that  

𝑓(𝜉𝜏, 𝜉𝜏−1, … , 𝜉𝜏−𝜂 , … ) − ∑
𝜕𝑓

𝜕𝑥𝜏−𝜂
(𝜉𝜏, 𝜉𝜏−1, … , 𝜉𝜏−𝜂 , … )

∞

𝜂=0

𝜉𝜏−𝜂 = 0 (SI1.24) 

If it happens that zero input gives zero output, i.e., 𝑓(0,0, … ,0, … ) = 0, then the point 

sought is (𝜉𝜏, 𝜉𝜏−1, … , 𝜉𝜏−𝜂 , … ) = (0,0, … ,0, … ), as at this point, equation (SI1.24) is 

satisfied. Nonetheless, equation (SI1.24) is more general than this. For this chosen point, 

we have: 

𝑦𝜏 ≈ ∑
𝜕𝑓

𝜕𝑥𝜏−𝜂
(𝜉𝜏, 𝜉𝜏−1, … , 𝜉𝜏−𝜂 , … )

∞

𝜂=0

𝑥𝜏−𝜂 (SI1.25) 

Setting 

𝑔𝜂 ≔
𝜕𝑓

𝜕𝑥𝜏−𝜂
(𝜉𝜏, 𝜉𝜏−1, … , 𝜉𝜏−𝜂 , … ) (SI1.26) 

we find 

𝑦𝜏 ≈ ∑ 𝑔𝜂

∞

𝜂=0

𝑥𝜏−𝜂 (SI1.27) 

 Now to move to the case of continuous (natural) time, we consider that the 

quantities in equation (SI1.27) are time averages of the continuous-time processes. Hence 

we get  

1

𝐷
∫ 𝑦(𝑤)d𝑤

𝜏𝐷

(𝜏−1)𝐷

≈ ∑ 𝑔𝜂

∞

𝜂=0

1

𝐷
∫ 𝑥(𝑤)d𝑤

(𝜏−𝜂)𝐷

(𝜏−𝜂−1)𝐷

 (SI1.28) 

Using approximation (SI1.18), this gives 

1

𝐷
∫ 𝑦(𝑤)d𝑤

𝑡

𝑡−𝐷

≈ ∑ ∫ 𝑔(𝜂𝐷)𝑥(𝑤)d𝑤

𝑡−𝜂𝐷

𝑡−𝜂𝐷−𝐷

∞

𝜂=0

= ∫ 𝑔(0)𝑥(𝑤)d𝑤

𝑡

𝑡−𝐷

+ ∫ 𝑔(𝐷)𝑥(𝑤)d𝑤

𝑡−𝐷

𝑡−2𝐷

+ ⋯ 

(SI1.29) 

or 
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1

𝐷
∫ 𝑦(𝑤)d𝑤

𝑡

𝑡−𝐷

≈ ∫ 𝑔(𝑡 − 𝑤)𝑥(𝑤)d𝑤

𝑡

𝑡−𝐷

+ ∫ 𝑔(𝑡 − 𝑤)𝑥(𝑤)d𝑤

𝑡−𝐷

𝑡−2𝐷

+ ⋯

= ∫ 𝑔(𝑡 − 𝑤)𝑥(𝑤)d𝑤

𝑡

−∞

= − ∫ 𝑔(ℎ)𝑥(𝑡 − ℎ)dℎ

0

∞

 

(SI1.30) 

That is, 

1

𝐷
∫ 𝑦(𝑤)d𝑤

𝑡

𝑡−𝐷

≈ ∫ 𝑔(ℎ)𝑥(𝑡 − ℎ)dℎ

∞

0

 (SI1.31) 

Taking the limit as 𝐷 → 0 

𝑦(𝑡) = ∫ 𝑔(ℎ)𝑥(𝑡 − ℎ)dℎ

∞

0

 (SI1.32) 

By adding an error term 𝑣(𝑡), necessary to recover the linearization error (even if there 

is no actual error term in (SI1.21)), as well as the effect of processes other than 𝑥(𝑡) that 
may influence 𝑦(𝑡), and by substituting the processes 𝑦(𝑡), 𝑥(𝑡), 𝑣(𝑡) for their realizations, 

we obtain equation (SI1.1). 

Justification 2 

Here we work in continuous time from the beginning and, as a starting point, we assume 

that a causal link is characterized by rule-governedness (this is the regularity discussed by 

Hume, and the lawfulness of Kant’s analysis) and irreversibility (as in Kant’s analysis). The 

rule-governedness claim entails that there is some law that links the change in magnitude 

of a causing factor 𝑥 at time 𝑡 − ℎ (ℎ ≥ 0) to a change a causally impacted quantity 𝑦 at 

time 𝑡. This would take the general form, for any 𝑡: 

δ𝑦𝑡 = 𝑓ℎ(δ𝑥𝑡−ℎ) δℎ (SI1.33) 

where 𝑓ℎ is a function not necessarily expressible in closed form. The index ℎ is positive 

to reflect the claim of irreversibility according to which the effect must be completed after 

the cause has started acting. The inclusion of the term δℎ reflects the fact that a cause is 

never instantaneously effective. For instance, when Nadal (the famous tennis player) hits 

a forehand, the change of direction of the ball happens over a small time interval δℎ over 

which the energy from his arm is passed on to the ball. It is assumed that, if we were to 

freeze his motion after a fraction of time δℎ/𝑘 (𝑘 > 1) then a proportion 1/𝑘 of the energy 

would have been communicated to the ball so that the causally impacted quantity, 𝑦, 

would only have changed by a fraction 1/𝑘 of how it would have changed had the motion 

been allowed to last the full δℎ. The linear approximation will of course not work for any 

𝑥, 𝑦, but (for continuous non-quantum phenomena) it is plausible that for some 
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transformation of either 𝑥 or 𝑦 (here we shall want to keep 𝑦 fixed), over a short duration 

of time δℎ, the effect is (to a sufficiently good approximation) reduced in proportion to 

the reduction of δℎ. 

What can we say about 𝑓ℎ? If we isolate, for now, the causal link between 𝑥 and 𝑦, 

the inactivity of the cause will imply that the effect does not come about. So 

𝑓ℎ(0) = 0 (SI1.34) 

Further, if  δ𝑥𝑡−ℎ is small, by Taylor expansion assuming that 𝑓ℎ is continuously 

differentiable, we find 

δ𝑦𝑡 = δ𝑥𝑡−ℎ  
d𝑓ℎ

d𝑥
(0) δℎ + 𝑂(δ𝑥𝑡−ℎ) δℎ (SI1.35) 

If we define the function 𝑔 as:  

𝑔(ℎ) =
d𝑓ℎ

d𝑥
(0) (SI1.36) 

then (SI1.35) can be written: 

δ𝑦𝑡 = δ𝑥𝑡−ℎ 𝑔(ℎ)δℎ + 𝑂(δ𝑥𝑡−ℎ) δℎ (SI1.37) 

 

This relationship holds in the neighbourhood of 0, and depending on how close to linearity 

𝑓is, that neighbourhood will be more or less large. A first step in the proposal consists 

therefore in representing this uncertainty stochastically, so that (SI1.37) can be 

integrated to yield the following relation: 

𝑦𝑡 = 𝑥𝑡−ℎ 𝑔(ℎ)δℎ + 𝑤(ℎ)𝑡 δℎ (SI1.38) 

where 𝑤(ℎ)𝑡 is a random variable containing the constant of integration and the 

uncertainty arising from the possible non-linearity of 𝑓 as we move away from 0. 𝑦𝑡 in the 

left-hand side of the equation must therefore now also be considered as a random 

variable. 

While equation (SI1.38) considers the case of a single cause at time 𝑡 − ℎ of the 

change δ𝑦𝑡, it can easily be generalized to include other causes. These are of two types: 

first, there can be further changes of 𝑥 at other times prior to 𝑡 which will causally impact 

𝑦 at time 𝑡. Consequently, we shall want to take into account all the causal impacts of 𝑥 

prior to 𝑡 by integrating over the time ℎ representing the delay between cause and effect. 

Since we are now considering processes in continuous time, the quantities 𝑥 and 𝑦 are 

now represented as functions of time. The 𝑤 terms are also integrated, which yields a new 

random variable 𝑣. This yields: 

𝑦(𝑡) = ∫ 𝑥(𝑡 − ℎ)𝑔(ℎ)dℎ

∞

0

+ 𝑣(𝑡) (SI1.39) 
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The second type of additional cause would be a cause that is not 𝑥, for example, 𝑧. This 

would require adding another integral term to equation (SI1.38), and many more can be 

added in this way: 

𝑦(𝑡) = ∫ 𝑥(𝑡 − ℎ)𝑔(ℎ)dℎ

∞

0

+ ∫ 𝑧(𝑡 − ℎ)𝑟(ℎ)dℎ

∞

0

+ 𝑣(𝑡) (SI1.40) 

In fact, the thesis of determinism would amount to claiming that such an equation 

can be written without the additional random variable 𝑣 if all the 𝑁 operative causes are 

accounted for: 

𝑦(𝑡) = ∑ ∫ 𝑥𝑖(𝑡 − ℎ)𝑔𝑖(ℎ)dℎ

∞

0

𝑁

𝑖=1

 (SI1.41) 

for some functions 𝑔𝑖, 𝑖 = 1, … , 𝑁, and where 𝑦 need no longer be a random variable. 

In practice, such a deterministic thesis cannot be validated. Moreover, most of the 

time, the interest focusses upon one particular causing process, so equation (SI1.38) is 

what will be most useful. Further, for any given 𝑥 and 𝑦, there are two possible directions 

of causality, both should be considered as random processes so the existence of an 

equation (SI1.39) can be tested in both directions. This means that the useful equation 

that defines our proposal for the key necessary condition for causality is: 

𝑦(𝑡) = ∫ 𝑥(𝑡 − ℎ)𝑔(ℎ)dℎ

∞

0

+ 𝑣(𝑡) (SI1.42) 

Random variable 𝑣(𝑡) therefore represents both the departure from linearity of the 

causal link 𝑥 and 𝑦, and the uncertainty around the role of other causal factors than 𝑥. 

There is an important assumption flagged above in this proposal about the approximate 

linearity of 𝑓. The more we move away from that assumption, the larger the variance of 

the process 𝑣(𝑡). To reflect that assumption, it is important to include the condition that 

this variance does not become too large when compared with the variance of the process 
to be explained, i.e. 𝑦. Should this not be achievable, the use of a non-linear transform of 

𝑥 should be considered: in principle, one can only conclude to an absence of causality if 

(SI1.42) does not hold for 𝑥 or any non-linear transform thereof.  

Further, since 𝑔 is a function that should have physical meaning, some condition of 

smoothness should be included. 

SI1.3 Derivation of the relationships of autocorrelations and cross-

correlations 

In order to determine 𝑐𝑦𝑥(ℎ) ≔ cov [𝑦(𝑡 + ℎ), 𝑥(𝑡)], first we assume, without loss of 

generality, that all processes have zero mean and we take into account the fact that 𝑣(𝑡) 
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is uncorrelated with 𝑥(𝑡). Writing equation (SI1.1) for 𝑦(𝑡 + ℎ), multiplying it with 𝑥(𝑡), 

and taking expected values we have 

E[𝑦(𝑡 + ℎ)𝑥(𝑡)] = ∫ 𝑔(𝑎)E[𝑥(𝑡 + ℎ − 𝑎)𝑥(𝑡)]d𝑎

∞

−∞

 (SI1.43) 

or, since the means are zero,  

𝑐𝑦𝑥(ℎ) = ∫ 𝑔(𝑎)𝑐𝑥𝑥(ℎ − 𝑎)d𝑎

∞

−∞

 (SI1.44) 

To determine 𝑐𝑦𝑦(ℎ) ≔ cov [𝑦(𝑡 + ℎ), 𝑦(𝑡)] we multiply 𝑦(𝑡 + ℎ) with 𝑦(𝑡) and 

obtain  

𝑦(𝑡 + ℎ) 𝑦(𝑡) = ( ∫ 𝑔(𝑎)𝑥(𝑡 + ℎ − 𝑎)d𝑎

∞

−∞

+ 𝑣(𝑡 + ℎ))

× ( ∫ 𝑔(𝑏)𝑥(𝑡 − 𝑏)d𝑏

∞

−∞

+ 𝑣(𝑡)) 

(SI1.45) 

Taking expected values, we find 

E [𝑦(𝑡)𝑦(𝑡 + ℎ)]

= ∫ ∫ 𝑔(𝑎)𝑔(𝑏)E[𝑥(𝑡 + ℎ − 𝑎)𝑥(𝑡 − 𝑏)] d𝑎

∞

−∞

d𝑏

∞

−∞

+ E[𝑣(𝑡)𝑣(𝑡 + ℎ)]

= ∫ ∫ 𝑔(𝑎)𝑔(𝑏)𝑐𝑥𝑥(ℎ − 𝑎 + 𝑏) d𝑎

∞

−∞

d𝑏

∞

−∞

+ 𝑐𝑣𝑣(ℎ) 

(SI1.46) 

On the other hand, because of equation (SI1.44) we have 

∫ 𝑔(𝑎)𝑐𝑥𝑥(ℎ + 𝑏 − 𝑎)d𝑎

∞

−∞

=  𝑐𝑦𝑥(ℎ + 𝑏) (SI1.47) 

Hence 

𝑐𝑦𝑦(ℎ) = ∫ 𝑔(𝑏)𝑐𝑦𝑥(ℎ + 𝑏) d𝑏

∞

−∞

+ 𝑐𝑣𝑣(ℎ) (SI1.48) 

 It is relevant to note that a measure of the magnitude of the auto- and cross-

covariance functions is provided by the p-norm 

‖𝑐‖𝑝 ≔ ( ∫ |𝑐(ℎ)|𝑝dℎ

∞

−∞

)

1 𝑝⁄

 (SI1.49) 
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where p is typically taken 1, but in case of long-range dependence (LRD), ‖𝑐‖1 is infinite 

and so we should choose 𝑝 ≥ 1/(2 − 2𝐻), where 𝐻 is the Hurst parameter, in order for 

the norm to be finite. As the equations (SI1.44) and (SI1.48) denote convolution of 

functions, using Young's convolution inequality and assuming that ‖𝑔‖ ≡ ‖𝑔‖1 is finite, 

from equation (SI1.44) we obtain 

‖𝑐𝑦𝑥‖
𝑝

≤ ‖𝑔‖ ‖𝑐𝑥𝑥‖𝑝 (SI1.50) 

and from equation (SI1.48) 

‖𝑐𝑦𝑦‖
𝑝

− ‖𝑐𝑣𝑣‖𝑝 ≤ ‖𝑐𝑦𝑦 − 𝑐𝑣𝑣‖
𝑝

≤ ‖𝑔‖ ‖𝑐𝑦𝑥‖
𝑝

≤ ‖𝑔‖2‖𝑐𝑥𝑥‖𝑝 (SI1.51) 

where in the leftmost part we have also used the reverse triangle inequality, along with 

the inequality ‖𝑐𝑦𝑦‖
𝑝

> ‖𝑐𝑣𝑣‖𝑝.  

The last two equations can easily be transformed to norms of auto- and cross-

correlation functions (e.g. 𝑟𝑦𝑥 ≔ 𝑐𝑦𝑥/(𝜎𝑥𝜎𝑦), where 𝜎 denotes standard deviation), 

obtaining 

‖𝑟𝑦𝑥‖
𝑝

≤
𝜎𝑥

𝜎𝑦

‖𝑔‖ ‖𝑟𝑥𝑥‖𝑝 (SI1.52) 

and  

‖𝑟𝑦𝑦‖
𝑝

−
𝜎𝑣

2

𝜎𝑦
2

‖𝑟𝑣𝑣‖𝑝 ≤ ‖𝑟𝑦𝑦 −
𝜎𝑣

2

𝜎𝑦
2

𝑟𝑣𝑣‖
𝑝

≤
𝜎𝑥

𝜎𝑦

‖𝑔‖ ‖𝑟𝑦𝑥‖
𝑝

≤
𝜎𝑥

2

𝜎𝑦
2

‖𝑔‖2‖𝑟𝑥𝑥‖𝑝 (SI1.53) 

However, these inequalities are too involved to provide useful information about the 

relative magnitude of ‖𝑟𝑥𝑥‖, ‖𝑟𝑦𝑦‖ and ‖𝑟𝑦𝑥‖. Nonetheless, they allow us to discuss the 

rather common intuitive consideration that the autocorrelation of the effect 𝑦 is higher 

than that of the cause 𝑥. This is regarded to be particularly the case if 𝑥 is white noise, 

whose autocorrelation is zero for any lag except 0. In fact, though, the autocovariance of 

the white noise is 𝑐𝑥𝑥(ℎ) = 𝜎𝑥
2δ(ℎ) and its norm is not zero but ‖𝑐𝑥𝑥‖1 = 𝜎𝑥

2, which means 

that ‖𝑟𝑥𝑥‖1 = 1. Hence, even assuming zero variance of 𝑣, the above inequalities yield 

‖𝑟𝑦𝑥‖
1

≤
𝜎𝑥

𝜎𝑦

‖𝑔‖, ‖𝑟𝑦𝑦‖
1

≤
𝜎𝑥

2

𝜎𝑦
2

‖𝑔‖2 (SI1.54) 

The order direction “≤” in these inequalities does not suggest an increased 
autocorrelation of 𝑦. Rather it is more accurate to say that here we have a more diffuse 

shape of the autocorrelation function of 𝑦 in comparison to that of 𝑥. 

SI1.4 Temporal moments of the impulse response function 

In the main paper (Koutsoyiannis et al., 2022a) we have defined several temporal indices 
of the IRF and connected them to characteristics of the the processes 𝑥(𝑡) and 𝑦(𝑡) with 

equation (17). Furthermore, it is useful to define the temporal moments as: 
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𝐻𝑛(𝑇) ≔
1

𝑇
∫ 𝑔(𝑡)𝑡𝑛d𝑡

𝑇

0

, 𝑋𝑛(𝑇) ≔
1

𝑇
∫ 𝑥(𝑡)𝑡𝑛d𝑡

𝑇

0

  (SI1.55) 

and likewise for 𝑌𝑛(𝑇) and 𝑉𝑛(𝑇). If T is a large time period, i.e., 𝑇 ≫ 𝐽 where 𝐽 is such that 

𝑔(ℎ) ≈ 0 for |ℎ| > 𝐽, it can be shown that  

𝑌𝑛 = ∑ 𝐻𝑛−𝑖 𝑋𝑖

𝑛

𝑖=0

+ 𝑉𝑛 (SI1.56) 

where we have omitted the reference to 𝑇 for notational simplification. Nb., Nash (1959) 

found similar relationships for the unit hydrograph.  

For 𝑛 = 0, the respective quantities are the temporal averages of the three 

processes, and in this case equation (SI1.56) takes the form 

𝑌0 = 𝐻0𝑋0 + 𝑉0 (SI1.57) 

which is similar to equation (17) of the main paper (Koutsoyiannis et al., 2022a). For 𝑛 =

1 the temporal moments represent the centroids of the geometric shapes of the time 

series and in this case equation (SI1.56) takes the form 

𝑌1 = 𝐻1𝑋0 + 𝐻0𝑋1 + 𝑉1 (SI1.58) 

More generally, equation (SI1.56) can be used in a recursive manner to find the temporal 
moments of the IRF based on those of the processes 𝑥(𝑡) and 𝑦(𝑡). 
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